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Introduction
 Artificial intelligence (AI) is a rapidly developing field that uses knowledge to simulate 
human behaviors [1] and train computers to learn, make judgments, and make decisions 
similarly to humans [2, 3]. In other words, AI involves developing techniques and algo-
rithms that are capable of thinking, acting, and implementing tasks using protocols that 
are otherwise beyond human comprehension [4].

Machine learning (ML) is a subset of AI that learns from historical data, without 
being explicitly programmed [5]. ML algorithms can be used to analyze data and 
build data-driven systems, including classification, clustering, regression, association 
rule mining, and reinforcement learning [6, 7]. Deep learning is a branch of machine 
learning that uses artificial neural networks to intelligently analyze large amounts of 
data [8, 9]. The digital world has been provided with a large amount of data in many 
different areas, such as cybersecurity, business, health, and the Internet of Things 
(IoT). This wealth of data is analyzed by machine learning, one of the most popular 
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technologies in Industry 4.0, in order to develop smarter and more automated sys-
tems [10]. ML algorithms have been widely used in many application domains, such 
as computer vision [11, 12] and natural language processing (NLP) [13]. They have 
proven to be effective across a wide range of industries comprising education [14], 
healthcare [15], marketing [16], transportation [17], energy [18], combustion science 
[19], and manufacturing [20].

A machine learning solution is influenced by the characteristics of the data and the 
performance of the learning algorithms [10]. Traditionally, a bottleneck in developing 
more intelligent systems was data availability which is no longer the case. However, 
the problem now is that learning algorithms are unable to employ all the data within 
a reasonable period of time for learning. Creating an effective ML model is generally 
a complex and time-consuming process that involves selecting an appropriate algo-
rithm and developing an optimal model architecture [21].

In order to train ML models over large volumes of data, one machine’s storage and 
computation capabilities are insufficient. One solution for this challenge is employing 
distributed machine learning for the executation of ML programs on clusters, data 
centers, and cloud providers [22]. It can divide the learning process across several 
workstations, achieving scalability of learning algorithms [23]. Generally, distributed 
machine learning allows a cloud or server to collect combined models from multi-
ple participants, with each participant training their own model locally [24]. Further-
more, it allows the handling of naturally distributed data sets, which is a common 
scenario in many real-world applications [23]. Many researchers are currently focus-
ing on algorithmic correctness and faster convergence rates of ML models [25, 26].

This paper presents a comprehensive view of various types of distributed machine 
learning algorithms to overcome the problems of traditional machine learning 
approaches. The main contribution of this study is the introduction of different dis-
tributed machine learning techniques, which can provide a valuable guide for those in 
academia and industry interested in studying, researching, and developing machine 
learning-based data-driven automation and intelligent systems.

Compared to traditional machine learning algorithms, distributed deep learning 
has received more attention in studies. In recent years, deep learning has achieved 
tremendous success in various areas, such as image processing, NLP, and speech rec-
ognition. One of the reasons for this success is the availability of a large amount of 
data and the increased size of the deep learning model. As deep learning continues to 
improve, increasing its scalability is essential. Currently, distributed deep learning is 
gaining increasing recognition to overcome the challenges of deep learning. The ben-
efits of distributed deep learning include [27]:

• Increased scalability: Distributed deep learning is increasingly necessary as neural 
networks and datasets grow. The training process could be scaled to handle more 
extensive datasets and models, and more computers can be added to the distrib-
uted system to increase scalability and enable quicker training cycles.

• Resource utilization: By spreading the work across several computers, we may use 
the already available resources and reach a higher level of parallelism, resulting in 
shorter training durations and less resource usage.



Page 3 of 21Dehghani and Yazdanparast  Journal of Big Data          (2023) 10:158  

 The rest of the paper is organized as follows. Section  "Related works" provides an 
overview of differences between this survey and existing surveys. Section "Distributed 
machine learning algorithms" provides a taxonomy of distributed machine learning algo-
rithms. Section "Conclusions and research directions" concludes the survey and consid-
ers the direction of future research.

Related works
To the best of the authors’ knowledge, very few works have proposed to survey distrib-
uted algorithms. This article presents a literature review on distributed machine learn-
ing algorithms and states their distinctions from existing surveys. This study provides 
an extensive overview of the current state-of-the-art in the field by outlining the chal-
lenges and opportunities of distributed machine learning over conventional (centralized) 
machine learning and discussing the techniques used for distributed machine learning.

Verbraeken et al. [28] discussed distributed techniques and systems and covered vari-
ous aspects of distributed machine learning including its challenges and opportunities. 
Langer et al. [29] investigated the fundamental principles for training deep neural net-
work (DNN) in a cluster of independent machines. Moreover, they analyzed the com-
mon attributes of training deep learning models and surveyed the distribution of such 
workloads in a cluster to attain collaborative model training. Ouyang et al. [30] provided 
a comprehensive survey of communication strategies for distributed DNN. They consid-
ered algorithm and network optimizations to diminish the communication overhead in 
distributed DNN training. Tang et al. [31] have detailed discussions on communication 
compression techniques.

Xing et al. [22] investigated different synchronization schemes, scheduling, workload 
balancing schemes, and communication types. Nassef et al. [32] overviewed distributed 
machine learning architectures for 5G networks and beyond. They also considered opti-
mizing communication, computation, and resource distribution to improve the perfor-
mance of distributed machine learning in 5G networks. Mayer et  al. [33] overviewed 
deep learning infrastructures, parallel deep learning methods, scheduling, and data 
management. Muscinelli et al. [34] surveyed the influential research of distributed learn-
ing technologies playing a critical role in the 6G networks. In particular, they reviewed 
federated learning and multi-agent reinforcement learning algorithms. They discussed 
several emerging applications and their fundamental concepts relating to their imple-
mentation and optimization.

An overview of distributed deep reinforcement learning is provided by Yin et al. [35]. 
Their study compared classical distributed deep reinforcement learning (DRL) meth-
ods and examined important factors that contribute to efficient distributed learning. 
Furthermore, they discuss both single player, single agent distributed DRLs as well as 
multiple players, multiple agents. A further review was carried out of recently released 
toolboxes which assist in the realization of distributed DRL. Antwi-Boasiako et al. [36] 
provided a comprehensive survey of privacy issues in distributed deep learning. They 
described various cryptographic algorithms and other techniques that can be used to 
preserve privacy, as well as their benefits and drawbacks.

Other surveys lack detailed discussions on the distribution of machine learning algo-
rithms, which are introduced explicitly in this survey. We cover a variety of algorithms 
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of traditional machine learning (classification and clustering algorithms), deep learning, 
and reinforcement learning.

Distributed machine learning algorithms
A number of popular algorithms for distributed machine learning are described in this 
section. Figure 1 represents a classification of these algorithms.

Distributed classification

Classification is a supervised method in machine learning that uses label data to predict 
the future. A classification model trains using historical data to produce a function that 
can predict outputs for new unseen data. Classification outputs are categorical [37]. Two 
popular distributed classification methods are boosting and support vector machines 
(SVM), which we discuss in the following. These algorithms are summarized in Table 1.

Distributed boosting

Boosting is a technique used in machine learning that trains an ensemble of so-called 
weak learners to produce an accurate model, or strong learner. It relies on the idea that 
learning and combining many weak classifiers instead of learning a single strong classi-
fier can achieve better performance [38].

In distributed boosting, AdaBoost [39] is modified for use in distributed environments 
[23]. Lazarevic and Obradovic [40] proposed a framework for the integration of special-
ized classifiers learned from very large, distributed datasets that cannot be stored in the 
main memory of a computer. The suggested method combines classifiers from all sites 
and creates a classifier ensemble on each site. Filmus et al. [41] proposed a distributed 
boosting algorithm that is resilient to a limited amount of noise using Impagliazzo’s 
hard-core lemma [42]. This algorithm is novel because it applies non-standard boosting 
that identifies small “hard” sets so that any hypothesis derived from the class will have 
high error rates.

Sarnovsky and Vronc [43] implemented a distributed boosting algorithm based on 
MapReduce and employed the GridGain framework for distributed data processing. 
The algorithm works as follows: (i) The master node computes the dataset statistics, 

Fig. 1 Ditributed machin learning algorithms
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including the number of categories and the distribution of indexed terms within the 
dataset. (ii) The number of subtasks (jobs) necessary to construct the final model is 
calculated based on the gridSize parameter. (iii) AdaBoost is implemented to train the 
model.

Cooper et al. [44] presented two distributed boosting algorithms. The first algorithm 
uses the entire dataset to train a classifier and requires significant communication 
between the distributed sites. In contrast, the second algorithm requires little communi-
cation but trains its final classifier using a subset of the dataset.

Distributed SVM

SVM is a linear binary classifier that identifies a single boundary between classes. It 
seeks to overcome the local extremum dilemma inherent in other machine learning 
techniques by solving a convex quadratic optimization problem [45]. SVM determines 
an optimal hyperplane (a line in the simplest case) by which it is possible to divide the 
dataset into a discrete number of classes. To optimize the separation, SVM employs a 
portion of the training sample that lies closest to the optimal decision boundary in the 
feature space [46].

SVM training requires quadratic computation time. To its speed up, several distrib-
uted computing paradigms have been investigated by dividing the training dataset 
into smaller sections and processing each section in the parallel cluster of computers 
[47]. Lu et al. [48] proposed a distributed parallel support vector machine (DPSVM) 

Table 1 Distributed classification

Algorithm Articles Year No. of 
references

Simulation/ Dataset Evaluation metrics

Distributed Boosting [41] 2022 26 • Accuracy
• Correctness
• Communication complexity

[44] 2017 20 • ocr17
• ocr49
• forestcover12
• particle
• ringnorm
• twonorm
• Yahoo!

• Error

[43] 2014 19 • Reuters-21,578
• Medlin

• Time

[40] 2002 31 • Covertype
• Pen-based digits
• Waveform
• LED

• Accuracy
• Speedup

Distributed SVM [51] 2019 32 • Optical satellite images • RMSE

[50] 2015 14 • Spiral data set
• MNIST
• COVERTYPE

• Integrations
• Parallel Speed-up

[49] 2011 40 • Images from Corel data-
base

• accuracy
• training times

[48] 2008 17 • MNIST • CPU seconds
• Number of iterations
• Communication overhead

[47] 2003 16 • Handwritten Chinese 
database ETL9B

• Error rate
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that exchanges support vectors among a network of strongly connected servers. It 
results in limited communication costs and fast training times for multiple servers 
working concurrently on distributed datasets. DPSVM uses SVM as a local classifica-
tion mechanism for subsets of training data within a strongly connected network.

According to Alham et al. [49], SVM training is computationally intensive, particu-
larly with large datasets. To address this issue, they presented MRSMO, a distributed 
SVM algorithm based on MapReduce for automatic image annotation. MRSM parti-
tions datasets into small subsets and optimizes them across a cluster of computers. 
Ke et al. [50] proposed a method for distributed SVM, where the local SVMs use the 
state-of-the-art SVM solvers and implement it on MapReduce to shorten the com-
munication between nodes. Wang et  al. [51] described a spatially distributed SVM 
method for estimating shallow water bathymetry from optical satellite imagery. This 
method uses SVMs that have been trained locally and spatially weighted votes to 
make predictions. According to the results, the localized model reduced the RMSE by 
60%.

Distributed clustering

Clustering is an unsupervised machine learning method that involves defining classes 
from data without knowing the labels of classes. In clustering, data is categorized into 
collections (or clusters) based on their similarities [52]. Clustering algorithms apply 
when there is no class for prediction, so the instances divide into natural groups. 
Clustering distributed classifiers relies on the following: (i) A measure of classifier 
distance, (ii) An efficient algorithm for computing this distance measure for classi-
fiers induced in physically distributed databases, and (iii) A clustering algorithm [23]. 
The distributed clustering algorithms of consensus-based algorithm and distributed 
k-means algorithm are discussed in the following. A summary of these algorithms can 
be found in Table 2.

Table 2 Distributed clustering

Algorithm Articles Year No. of 
references

Simulation/ Dataset Evaluation metrics

Consensus-based algo-
rithm

[53] 2016 35 • Wireless sensor networks 
(WSNs)

• Within-cluster sum of 
squares (WCSS)
• Iteration time

[54] 2011 15 • Two data sites • Xie-Beni (XB) fuzzy clus-
tering validity index

Distributed k-means [59] 2021 25 • MRI image segmenta-
tion

• Number of iterations

[61] 2016 39 • YearPredictionMSD • Communication costs

[57] 2013 33 • Mammal’s Milk
• River dataset
• Water treatment dataset

• Communication 
Overhead
• Computation Overhead

[58] 2013 42 • Wireless sensor networks • Time complexity
• Memory complexity

[60] 2008 38 • P2P network • Accuracy
• Scalability
• Communication
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Consensus‑based algorithm

Consensus clustering is a technique in which multiple clusters combine into a 
more stable single cluster that is better than the input clusters. It yields a stable and 
robust final clustering in agreement with multiple clusterings. Consensus clustering 
is a more robust approach that relies on multiple iterations of the chosen cluster-
ing method on sub-samples of the dataset [53]. Vendramin et  al. [54] presented a 
consensus-based algorithm for distributed fuzzy clustering that allows an automatic 
estimation of the number of clusters by using a distributed version of the Xie-Beni 
validity criterion.

Distributed k‑means

K-means clustering is one of the most popular clustering algorithms due to its many 
advantages, such as simple mathematical concepts, quick convergence, and ease of 
implementation [55]. K-means is an iterative process in which k centroids are deter-
mined. Then, each sample is assigned to the closest current centroid (assignment 
phases). The new centroid will be determined by the average of all samples in the 
same partition (refinement phase) [56].

Patel et al. [57] presented a parallel version of k-means focusing on privacy pres-
ervation. In distributed environments, where data mining becomes a collabora-
tive effort, it is crucial to maintain privacy. The basic concept involves the use of a 
secret sharing mechanism to share information privately along with a code-based 
zero-knowledge identification scheme to add protection against malicious adver-
saries. Oliva et al. [58] suggested a fully distributed execution of the k-means clus-
tering algorithm. It was applied for wireless sensor networks where each agent was 
provided with a high-dimensional observation. To spread information on current 
centroids across the network, the proposed algorithm uses a maximum consensus 
algorithm. Each agent employs this information to select the nearest centroid, thus 
segmenting the network into communities. For the purpose of updating centroids, 
meta-information is gathered by combining max-consensus and average-consensus 
algorithms. The agents are able to update the centroids locally once such informa-
tion has been gathered.

A distributed k-means method has proposed by Benchara and Youssfi [59]. It inte-
grates a parallel virtual distributed computing model with a low-cost communication 
mechanism. K-means is implemented as a distributed service using an asynchronous 
communication protocol based on Advanced Message Queuing Protocol (AMQP). 
Datta et al. [60] discussed a distributed k-means clustering, in which data and com-
puting resources are distributed over a large peer-to-peer network. Using two algo-
rithms, it approximates the result produced by the centralized k-means clustering 
algorithm. The first algorithm is intended to be used in a dynamic peer-to-peer 
network. It is capable of producing clusterings only through the use of “local” syn-
chronization. In the second algorithm, peers are uniformly sampled, and analytical 
guarantees are provided about the accuracy of clustering on an Internet-based peer-
to-peer system. Ding et  al. [61] studied distributed k-means clustering, in which 
dimensions of the data are distributed across multiple computers.
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Distributed deep learning

Deep learning is a type of machine learning process that uses interconnected nodes or 
neurons in a layered structure that resembles the human brain [62]. Neural networks 
consist of many computation units, known as neurons, which are connected and form 
the neural network. The input neurons of the network are actuated by input parameters. 
The neurons in the following layer are activated by weighted connections from neu-
rons in the previous layer. To provide the desired functionality, usually classification or 
regression, the neural network must determine the appropriate weight value for every 
connection [63].

To overcome the problem of training DNN models, which requires a large volume of 
data and computational resources, a variety of parallel and distributed methods have 
been proposed [64, 65]. These methods can be divided into four categories: data parallel-
ism, model parallelism, pipeline parallelism, and hybrid parallelism [66]. An overview of 
these algorithms is presented in Table 3.

Data parallelism

Data parallelism is a popular method for training a neural network that involves sharing 
a large-scale DNN among all computational workers [67, 68]. In data parallelism, data 
samples are partitioned into mini-batches (Fig. 2) [69]. During the computation of gradi-
ents, each node or worker contains one of the mini-batches, a replica of the neural net-
work model, and independently computes gradients (usually using the Mini-Batch SGD) 
[70]. The following steps are involved in training: (i) Computation of local gradients by 
each worker; (ii) Calculation of the new parameters of the DNN by combining all sub-
gradients. (iii) Distribution of the new parameters among the workers, and retraining of 
the DNN [71]. To aggregate and update gradients, either a centralized architecture such 
as parameter server architecture [72], or a decentralized architecture such as All-Reduce 
[73] is used.

Fig. 2 Data parallelism
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Data parallelization allows for processing large datasets that cannot be stored on a 
single machine and can increase the system’s throughput through distributed parallel 
computing. However, data parallelism also has some challenges, including the over-
head of parameter synchronization, optimization algorithms, and hardware limita-
tions when the DNN model size is too large [64, 74].

Dean et  al. [67] introduced DistBelief, a framework for parallel distributed train-
ing of deep networks, and two new algorithms for large-scale distributed training: 
Downpour SGD and Sandblaster L-BFGS. Downpour SGD is an asynchronous vari-
ant of stochastic gradient descent (SGD), which is effective for training nonconvex 
deep learning models. As a distributed version of L-BFGS, Sandblaster L-BFGS makes 
efficient use of network bandwidth to train a single model on a large number of con-
current cores.

Zhang et al. [68] developed an algorithm for optimizing deep learning under com-
munication constraints in a parallel environment. In this algorithm, elastic force is 
used to link the parameters calculated by local workers to the central variable stored 
by the parameter server. As a result, the amount of communication between the mas-
ter and the local workers is reduced. Asynchronous and synchronous variants of this 
algorithm are available.

An algorithm for distributed SGD based on a communication trigger mechanism 
has been proposed by George et al. [69]. They presented the Distributed Event-Trig-
gered Stochastic GRAdient Descent (DETSGRAD) algorithm, which allows net-
worked agents to update model parameters periodically in order to solve non-convex 
optimizations. The evaluation was conducted using MNIST with 60,000 images for 
training and 10,000 images for testing. During training, each agent used LeNet-5. 
There are two types of DETSGRAD: DETSGRAD-r, in which agents are randomly 
selected from the entire training set, and DETSGRAD-s, in which each agent has 
access to the images of only one class. According to the results obtained after 40 
epochs with 10 agents, the accuracy of DETSGRAD-r and DETSGRAD-s was 98.33 
and 98.51, almost similar to the accuracy of SGD-r and SGD-s with 98.97 and 98.87. 
Based on the results, it appears that DETSGRAD reduced inter-agent communication 
while maintaining similar performance.

Kim et  al. [70] proposed Parallax, a framework that integrates parameter server 
and AllReduce architectures in order to optimize parallel data training by exploiting 
model parameter sparsity. ResNet-50 and Inception-v3 were used to classify images 
from the ImageNet dataset. In NLP, the LM model was trained using the One Billion 
Word Benchmark, and the NMT model was trained using the WMT English-German 
dataset. Image classification models are trained at the same speed as Horovod and 
1.53x faster than TensorFlow. For NLP models, Parallax has achieved speedups of 
2.8x and 6.02x compared to TensorFlow and Horovod.

The Dynamic Batch Size (DBS) strategy has been proposed by Ye et al. [71] for the 
distributed training of DNNs. According to the performance of previous epochs, DBS 
evaluates the performance of each worker, and then dynamically adjusts the batch 
size and dataset partition. DBS aims to optimize cluster utilization based on worker 
performance and can be used with all synchronous methods. The estimated batch size 
and dataset partition are employed in the next training. As compared synchronous 
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stochastic gradient descent (S-SGD), DBS saved approximately 12% of the consumed 
time of each epoch on a scale of 4 and 10% on a scale of 8. The decreases can be 
attributed to cluster synchronization and communication costs, which are higher as 
the cluster expands.

Using data parallelism, Dong et al. [75] proposed a technique called “natural compres-
sion” that is an effective method for compressing data. It is based on the randomized 
rounding to the nearest (negative or positive) power of two, which can be computed 
in a “natural” manner without taking into account the mantissa. The natural compres-
sion method reduced the training time for ResNet110 by 26% (compared to only a 9% 
decrease for QSGD for the same setup) and 66% for AlexNet, compared to using no 
compression. In their study, they also presented convergence theory for distributed SGD 
to apply bidirectional compression at both the master and worker levels.

Model parallelism

Model parallelism is a technique used to speed up the training of DNNs by dividing a 
large model among multiple nodes or workers (Fig. 3) [76]. Each node is responsible for 
part of the computation of model parameters, such as weights [74]. However, the major 
challenges are how to break the model into partitions, as each model has its own charac-
teristics, and the allocation of partitions to GPUs to maximize the efficiency of training 
[77]. Furthermore, model parallelism alone is not scalable [78] due to high communica-
tion latency between devices.

A fully decoupled training scheme was proposed by Zhang et al. [79]. A neural net-
work was broken down into several modules (K) and trained on multiple devices. In the 
WRN-28-10 (CIFAR-10) case, delayed gradients slightly outperformed the decoupled 
greedy learning and achieved a speedup of 1.88x for K = 2, 2.72x for K = 3, and 3.20x 
for K = 4. For the ResNet-101 (ImageNet) case, the delayed gradients achieved a 1.68x 
speedup for K = 2, and 2.1x and 2.3x for K = 3 and K = 4.

Huo et al. [80] proposed a Decoupled Parallel Back-propagation (DDG) algorithm for 
training feedforward neural networks. This algorithm splits the model and stores the 
delayed error gradient to solve the backward-locking problem. By increasing the number 
of GPUs from two to four, the method is able to reduce the total computation time by 
about 30–50%.

Fig. 3 Model parallelism
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Table 3 Distributed deep learning

Algorithm Articles Year No. of 
references

Simulation/ dataset Evaluation metrics

Data parallelism [75] 2022 61 • ResNet110 and AlexNet 
models on CIFAR10

• Train loss
• Test accuracy

[72] 2022 24 • Matrix Classification
• MovieLens Avazu-CTR 

• Convergence time per 
epoch
• Disk I/O
• Network communication

[65] 2021 138 • ResNet-50 on ImageNet 
dataset
• ALBERT-large on Wiki-
Text-103 dataset

• Training time

[71] 2020 37 • ResNet101 on CIFAR10 
dataset

• Convergence
• Robustness

[69] 2019 53 • LeNet-5 on MNIST dataset • Accuracy

[70] 2019 46 • ResNet-50 and Inception-
v3 on ImageNet
• LM model on One Billion 
Word Benchmark
• NMT model on WMT 
English-German dataset

• Validation error
• Test perplexity
• BLEU

[73] 2018 20 • Inception V3
• ResNet-101
• VGG-16

• Images processed per 
second

[68] 2015 31 • CNN on CIFAR and Ima-
geNet datasets

• Test loss
• Test error

[67] 2012 29 • ImageNet • Accuracy

Model parallelism [77] 2021 72 • GNN model on OGB-Prod-
uct, OGB-Paper, UK-2006-
05, UK-Union, Facebook 
datasets

• ROC

[79] 2021 29 • ResNet and WRN models 
on CIFAR-10 dataset
• ResNet-18 and MobileNet 
v2 on Tiny-ImageNet

• Error rate

[76] 2019 30 • AlexNet, Inception-v3 and 
ResNet-101 on ImageNet 
dataset
• RNNTC on Movie Reviews 
dataset
• RNNLM on Penn Treebank 
dataset
• NMT on WMT English-
German dataser

• Accuracy

[80] 2018 25 • ResNet on CIFAR • Accuracy
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Pipelining parallelism

Pipeline parallelism is a technique used to divide training tasks for DNN models into 
sequential processing stages, and the results of each sequence are passed on to the next 
[81]. Narayanan et al. [82] proposed PipeDream, a system that adds inter-batch pipelin-
ing to intra-batch parallelism to further improve parallel training throughput, allowing 
computation and communication to overlap more effectively and reduce communica-
tion. PipeDream updates model parameters for numerically correct gradient computa-
tions. In addition, forward and backward passes are scheduled concurrently on separate 
workers in order to minimize pipeline stalls. Furthermore, it automatically distributes 
DNN layers among workers so that work can be balanced and communication can be 

Table 3 (continued)

Algorithm Articles Year No. of 
references

Simulation/ dataset Evaluation metrics

Pipelining parallelism [81] 2020 29 • AmoebaNet-D
• U-Net

• Throughput
• Speed up

[82] 2019 57 • VGG-16 and ResNet-50 on 
ImageNet
• AlexNet on Synthetic Data
• GNMT-16 and GNMT-8 on 
WMT16 EN-De
• AWD LM on Penn Tree-
bank
• S2VT on MSVD

• Accuracy
• Speed up

[83] 2018 50 • VGG16, ResNet-152, 
Inception v4 and SNN on 
CIFAR-10
• Transformer on IMDb 
Movie Review Sentiment 
Dataset
• Residual LSTM on IMDb 
Dataset

• Speed up

[84] 2017 25 • VGG-A model on Ima-
geNet

• Speed up

Hybrid parallelization [88] 2023 64 • MATCHNET, CTRDNN, 
2EMB and NCE models

• Scheduling performance
• Throughput

[64] 2022 57 • 3D-ResAttNet on Alz-
heimer’s Disease Neuro-
imaging Initiative (ADNI) 
database

• Speedup
• Accuracy
• Training time•

[91] 2020 64 • CosmoFlow and 3D UNet 
models

• MSE

[86] 2019 23 • Seq2Seq RNN MT with 
attention on WMT14 and 
WMT17 datasets

• BLEU scores

[87] 2019 120 • SFC, SCONV, Lenet-c, Cifar-
c, AlexNet,VGG-A, VGG-B, 
VGG-C, VGG-D and VGG-E 
models on MNIST, CIFAR-10 
and ImageNet datasets

• Energy efficiency
• Performance
• Total communication

[85] 2018 67 • AlexNet and VGG models • Communication Overhead
• Training time
• Speed up

[90] 2017 33 • CNN on ImageNet LSVRC-
2010 dataset

• Error rate

[89] 2013 12 • ImageNet dataset • Error rate
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minimized. Compared to common intra-batch parallelism techniques, PipeDream per-
formed 5.3 times faster.

Chen et al. [83] achived robust training accuracy by implementing a pipelined model 
and using a novel weight prediction technique. On a four-GPU platform, this method 
achieves an 8.91x speedup compared with data parallelism. Lee et al. [84] implemented 
a thread in each computer server to overlap computation and communication prob-
lems during model training. They achieved speedups of 62.97x and 77.97x for training 
VGG-A model on ImageNet. In parallel pipelines, there are two major problems: the 
slowest stage becomes a bottleneck. and scalability is limited [64].

Hybrid parallelization

Hybrid parallelization is a technique employed to minimize the communication over-
head of DNN training by combining data and model parallelization techniques [85]. 
Ono et al. [86] proposed a hybrid approach, which applies a model parallel to the RNN 
encoder-decoder in the Seq2Seq model, and data parallel to the attention-softmax. 
According to the results, using four GPUs increased training speed by 4.13 to 4.20 times 
over using one GPU alone. The solution proposed by Song et  al. [87], HYPAR, parti-
tions the feature map tensors (inputs and outputs), kernel tensors, gradient tensors, and 
error tensors among the DNN accelerators. During training, the goal of optimization is 
to search for a partition that minimizes the amount of communication. In an evaluation 
of classic Lenet to large-size model VGGs, HYPAR outperformed model parallelism and 
data parallelism alone. Compared to data parallelism, results showed a performance of 
3.39x and an energy efficiency of 1.51x was achieved.

A hybrid parallelization method for training DNNs was proposed by Akintoye et al. 
[64], as well as a Genetic Algorithm Based Heuristic Resources Allocation (GABRA) 
approach for optimal partitioning on GPUs to maximize computing performance. Model 
parallelization includes neural network model partitioning and the GABRA mechanism. 
Asynchronous Stochastic Gradient Descent (ASGD) and ring All-Reduce mechanisms 
are used for data parallelization. The proposed approach that was applied to a 3D Resid-
ual Attention Deep Neural Network (3D-ResAttNet) using the ANDI dataset, achieved a 
20% average improvement over existing parallel methods in terms of training time while 
maintaining accuracy.

The Heterogeneous Parameter Server (HeterPS) was proposed by Liu et  al. [88] to 
facilitate the training of large-scale models using elastic heterogeneous computing 
resources. HeterPS consists of three modules: (i) Scheduling module for the DNN layer 
that generates a scheduling plan as well as a provisioning plan. In the provisioning plan, 
the number of computing resources of each type is defined, whereas in the scheduling 
plan, each layer is assigned the appropriate type of computing resource. (ii) A data man-
agement module that facilitates the transfer of data between clusters or servers. (iii) A 
distributed training module that exploits the combination of data parallelism and pipe-
line parallelism in order to parallelize the training process of the model. Experimental 
results indicated that the provisioning method can outperform baseline methods by up 
to 57.9% and the scheduling method can outperform state-of-the-art methods by up 
to 312.3% (monetary cost). Additionally, the framework has a throughput 14.5 times 
greater than TensorFlow.
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Yadan et  al. [89] achieved a speed improvement of 2.2x when training a large deep 
CNN using hybrid parallelization. Krizhevsky et  al. [90] used hybrid parallelization to 
train a deep CNN and evaluated its performance by classifying 1.2 million images in the 
ImageNet LSVRC-2010 dataset. By combining parallel data and model training, Oyama 
et al. [91] increased throughput and minimized I/O scaling bottlenecks for a 3D CNN.

To address the challenge of aggregating sub-gradients effectively, several synchronous 
strategies have been used, including Parallel S-SGD [92, 93] and Bulk Synchronous Par-
allel (BSP) [94] among others.

Distributed deep reinforcement learning

Reinforcement learning is a learning algorithm that involves learning by interacting with 
the environment through actions, observations, and rewards. Reinforcement learning 
faces a major challenge when it comes to learning good representations of high-dimen-
sional states or action spaces [95]. DRL combines reinforcement learning with deep 
learning, allowing the representation of a continuous state or action, which was difficult 
for a table representation [96]. However, DRL faces technical and scientific challenges 
such as data inefficiency, multi-task learning, and exploration-exploitation trade-offs. To 
overcome these challenges, distributed DRL was introduced. In distributed DRL, agents 
can run simultaneously on several computers allowing for parallelization of the learning 
process [97].

Nair et al. [98] introduced the GORILA (General Reinforcement Learning Architec-
ture), which is similar to DQN [99], but with multiple workers and learners, and the SGD 
is computed using the DistBelief [67] method. In the GORILA architecture, there are N 
different actor processes, which are applied to N corresponding instances of the same 
environment. The Q-network is replicated in each actor, which determines its behavior. 
A parameter server periodically synchronizes the parameters of the Q-network. There 
are N learner processes in GORILA. Learners contain replicas of the Q-network and are 
responsible for computing desired changes to its parameters. There are many ways in 
which a reinforcement learning agent may be parallelized using the GORILA architec-
ture. One approach is parallel acting, where large quantities of data can be generated and 
then processed by a single serial learner using a global replay database. Alternatively, a 
single actor can generate data into a local replay memory, after which multiple learners 
can process this data in parallel to maximize the effectiveness of their learning. Using the 
Arcade Learning Environment, GORILA was evaluated on 49 Atari 2600 games. In 25 
games, GORILA achieved 75% of the human score or higher.

The A3C (Asynchronous Advantage Actor-Critic) algorithm was proposed by Mnih 
et  al. [100], in which multiple agents generate data in parallel asynchronously, and 
DNN controllers are optimized through gradient descent asynchronously. Similar to 
the GORILA, actor-learners were used asynchronously, however, instead of using sep-
arate machines and a parameter server, multiple CPU threads were used on a single 
computer. The cost of communication can be eliminated by keeping learners on the 
same computer. It is likely that multiple actors and learners explore different aspects 
of the environment simultaneously. This approach can maximize diversity by utilizing 
different exploration policies for each actor-learner. As multiple actor-learners use 
online updates in parallel, the overall changes being made to the parameters are more 
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likely to be less correlated over time than the changes made by a single agent. As a 
result of parallelization, the data is also diverse and decorated, which provides a more 
practical alternative to experience replay.

IMPALA (Importance Weighted Actor-Learner Architecture) is a scalable DDR 
learning algorithm proposed by Espeholt et  al. [101]. IMPALA uses GPUs and dis-
tributed deep learning methods to update mini-batches of data in parallel, which 
allows it to train large neural networks efficiently with a distributed set of learners 
uses synchronized parameter updating and is capable of training. In IMPALA, there 
is a distribution of parameters across the learners and actors retrieve the parameters 
from all the learners simultaneously while only sending observations to one learner. 
IMPALA outperforms A3C-based agents on DMLab-30, achieving a 49.4% vs. 23.8% 
human normalized score.

Heess et al. [102] introduced Distributed Proximal Policy Optimization (DPPO), a 
DRL approach based on the principle of proximal policy optimization (PPO) [103]. In 
DPPO, the collection of data and the calculation of gradients are distributed among 
the workers. The experiments have been conducted with both synchronous and asyn-
chronous updates, and the results have shown that averaging gradients and applying 
them synchronously leads to better results.

Ape-X [104] is a distributed architecture for DRL that decouples acting from learn-
ing. In Ape-X, a shared neural network is used to select actions by actors and the 
resulting experience is stored in a shared experience replay memory. The neural net-
work is updated by replaying samples of experience, with prioritizing given to the 
most significant data generated by the actors.

SEED (Scalable, Efficient Deep-RL) was proposed by Espeholt et al. [105]. SEED RL 
utilizes modern accelerators to improve the speed and efficiency of DRL. SEED RL 
uses three types of threads: the inference thread, data prefetching threads, and train-
ing threads. The inference thread receives a batch of observations, rewards, and epi-
sode termination flags, while data prefetching threads sample data as it is added to a 
FIFO queue or replay buffer. For each of the TPU cores participating in training, the 
trajectories are pushed to a device buffer. In comparison with the baseline IMPALA, 
SEED improves the speed by 1.6x (with 2 cores), 4.1 × (8 cores), and 4.5x (if the batch 
size is increased linearly with 5 cores).

Acme [106] is a research framework that helps with algorithm development. Acme 
aims to increase reproducibility in reinforcement learning and simplify the develop-
ment of novel and creative algorithms. Acme’s main advantage is that it can be used 
to implement large-scale distributed reinforcement learning algorithms enabling 
operation at enormous scales while maintaining the inherent readability of the code. 
In most cases, algorithms implemented with Acme result in a distributed agent with 
a number of separate (parallel) acting, learning, diagnostic, and helper processes. 
Acme’s main design decision, however, is to reuse the same components across sim-
ple, single-process implementations and large-scale distributed systems.

In a recent paper, Dai et al. [107] proposed a “hybrid near-on policy” DRL frame-
work, called Coknight, which leverages a game theory-based DNN partition approach 
to achieve fast and dynamic partitioning in distributed DRL architectures.

Table 4 provides an overview of these algorithms.
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Conclusions and research directions
Distributed machine learning is becoming increasingly important due to the increase 
in data, the need for more accurate models, the ability to solve complex problems, 
and the reduction of computation time.

Researchers have proposed different methods for distributing machine learning 
algorithms, including distributed algorithms for classification, clustering, deep learn-
ing, and reinforcement learning. In the case of traditional machine learning meth-
ods (clustering and classification algorithms), some studies have attempted to develop 
distributed versions of them. Our study reviewed the distribution of Boosting, SVM, 
Consensus-based, and K-means algorithms. For deep learning, there are four types 
of parallelism: data parallelism, model parallelism, pipelining parallelism, and hybrid 
parallelism. The majority of these studies considered neural networks such as ResNet, 
VGG, and AlexNet. In the case of reinforcement learning, researchers have proposed 
various distributed reinforcement learning algorithms, including A3C, IMPALA, 
DPPO, Ape-X, SEED RL, and Acme. Distributed machine learning has several limita-
tions that need to be addressed in future research. These limitations include:

• Lack of attention to distributed traditional machine learning: There has been a sig-
nificant focus on distributed deep learning in recent studies and less attention has 
been paid to distributed traditional machine learning. Although machine learning 
algorithms have their advantages and have shown promising results in a number 

Table 4 Distributer DRL

Algorithm Articles Year No. of 
references

Simulation/dataset Evaluation metrics

Distributed deep rein-
forcement learning

[107] 2022 42 • Atari games • Onvergence rate
• Convergence time
• Running time
• GPU usage
• Memory usage
• Bandwidth consumption

[106] 2020 127 • 5 Atari games: Asterix,
• Breakout, MsPacman, 
Pong and SpaceInvaders
• Arcade Learning Envi-
ronment
• DeepMind Control suite
• Gym environments

• Mean and standard 
deviation
• Speed

[105] 2019 53 • Atari-57
• DeepMind Lab
• Google Research 
Football

• Training cost
• Speed

[101] 2018 41 • Atari-57
• DMLab-30

• Median and Mean 
Human-Normalized scores

[104] 2018 40 • Atari games • Median and Mean 
Human-Normalized scores

[100] 2016 43 • Atari games
• TORCS 3D
• Mujoco
• Labyrinth

• Median and Mean 
Human-Normalized scores

[98] 2015 19 • 49 games from Atari 
2600 games

• Human Score
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of areas, they have not been studied as extensively as deep learning in distributed 
systems.

• Lack of benchmarks: Most studies used MNIST and ImageNet datasets to evaluate 
their proposed method, but there is no benchmarking to evaluate and compare the 
performance of existing approaches. Researchers considered a wide range of models, 
datasets, and evaluation metrics, and even in distributed RL, each study evaluated its 
method on different types of Atari games. Consequently, benchmarks are necessary 
to compare the results of different methods.

• Interpretability: Even though DNNs have excellent performance in many areas, 
understanding their results, particularly in distributed systems, can be challenging. 
A model’s interpretability can help to provide insight into the relationship between 
input data and the trained model, which is particularly useful in critical domains like 
healthcare. The interpretability of distributed algorithms remains an open problem.

• New issues: New subjects arise when we try to have distributed algorithms, includ-
ing the way data and model are partitioned, optimality, delay of the slowest node, 
communication overhead, scalability, and aggregation of results. These issues need to 
be addressed to succeed at distributed training and to make it more accessible to data 
scientists and researchers.

Therefore, this is an open line of research that will have to overcome these new chal-
lenges in the future.
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