
From distributed machine to distributed
deep learning: a comprehensive survey
Mohammad Dehghani1* and Zahra Yazdanparast2

Introduction
 Artificial intelligence (AI) is a rapidly developing field that uses knowledge to simulate
human behaviors [1] and train computers to learn, make judgments, and make decisions
similarly to humans [2, 3]. In other words, AI involves developing techniques and algo-
rithms that are capable of thinking, acting, and implementing tasks using protocols that
are otherwise beyond human comprehension [4].

Machine learning (ML) is a subset of AI that learns from historical data, without
being explicitly programmed [5]. ML algorithms can be used to analyze data and
build data-driven systems, including classification, clustering, regression, association
rule mining, and reinforcement learning [6, 7]. Deep learning is a branch of machine
learning that uses artificial neural networks to intelligently analyze large amounts of
data [8, 9]. The digital world has been provided with a large amount of data in many
different areas, such as cybersecurity, business, health, and the Internet of Things
(IoT). This wealth of data is analyzed by machine learning, one of the most popular

Abstract

Artificial intelligence has made remarkable progress in handling complex tasks, thanks
to advances in hardware acceleration and machine learning algorithms. However,
to acquire more accurate outcomes and solve more complex issues, algorithms should
be trained with more data. Processing this huge amount of data could be time-con-
suming and require a great deal of computation. To address these issues, distributed
machine learning has been proposed, which involves distributing the data and algo-
rithm across several machines. There has been considerable effort put into developing
distributed machine learning algorithms, and different methods have been proposed
so far. We divide these algorithms in classification and clustering (traditional machine
learning), deep learning and deep reinforcement learning groups. Distributed deep
learning has gained more attention in recent years and most of the studies have
focused on this approach. Therefore, we mostly concentrate on this category. Based
on the investigation of the mentioned algorithms, we highlighted the limitations
that should be addressed in future research.

Keywords: Artificial intelligence, Machine learning, Distributed machine learning,
Distributed deep learning, Ditributed reinforcement learning, Data-parallelism, Model-
parallelism

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Dehghani and Yazdanparast
Journal of Big Data (2023) 10:158
https://doi.org/10.1186/s40537-023-00829-x

Journal of Big Data

*Correspondence:
dehghani.mohammad@ut.ac.ir

1 University of Tehran, Tehran,
Iran
2 Tarbiat Modares University,
Tehran, Iran

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00829-x&domain=pdf

Page 2 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

technologies in Industry 4.0, in order to develop smarter and more automated sys-
tems [10]. ML algorithms have been widely used in many application domains, such
as computer vision [11, 12] and natural language processing (NLP) [13]. They have
proven to be effective across a wide range of industries comprising education [14],
healthcare [15], marketing [16], transportation [17], energy [18], combustion science
[19], and manufacturing [20].

A machine learning solution is influenced by the characteristics of the data and the
performance of the learning algorithms [10]. Traditionally, a bottleneck in developing
more intelligent systems was data availability which is no longer the case. However,
the problem now is that learning algorithms are unable to employ all the data within
a reasonable period of time for learning. Creating an effective ML model is generally
a complex and time-consuming process that involves selecting an appropriate algo-
rithm and developing an optimal model architecture [21].

In order to train ML models over large volumes of data, one machine’s storage and
computation capabilities are insufficient. One solution for this challenge is employing
distributed machine learning for the executation of ML programs on clusters, data
centers, and cloud providers [22]. It can divide the learning process across several
workstations, achieving scalability of learning algorithms [23]. Generally, distributed
machine learning allows a cloud or server to collect combined models from multi-
ple participants, with each participant training their own model locally [24]. Further-
more, it allows the handling of naturally distributed data sets, which is a common
scenario in many real-world applications [23]. Many researchers are currently focus-
ing on algorithmic correctness and faster convergence rates of ML models [25, 26].

This paper presents a comprehensive view of various types of distributed machine
learning algorithms to overcome the problems of traditional machine learning
approaches. The main contribution of this study is the introduction of different dis-
tributed machine learning techniques, which can provide a valuable guide for those in
academia and industry interested in studying, researching, and developing machine
learning-based data-driven automation and intelligent systems.

Compared to traditional machine learning algorithms, distributed deep learning
has received more attention in studies. In recent years, deep learning has achieved
tremendous success in various areas, such as image processing, NLP, and speech rec-
ognition. One of the reasons for this success is the availability of a large amount of
data and the increased size of the deep learning model. As deep learning continues to
improve, increasing its scalability is essential. Currently, distributed deep learning is
gaining increasing recognition to overcome the challenges of deep learning. The ben-
efits of distributed deep learning include [27]:

• Increased scalability: Distributed deep learning is increasingly necessary as neural
networks and datasets grow. The training process could be scaled to handle more
extensive datasets and models, and more computers can be added to the distrib-
uted system to increase scalability and enable quicker training cycles.

• Resource utilization: By spreading the work across several computers, we may use
the already available resources and reach a higher level of parallelism, resulting in
shorter training durations and less resource usage.

Page 3 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

 The rest of the paper is organized as follows. Section "Related works" provides an
overview of differences between this survey and existing surveys. Section "Distributed
machine learning algorithms" provides a taxonomy of distributed machine learning algo-
rithms. Section "Conclusions and research directions" concludes the survey and consid-
ers the direction of future research.

Related works
To the best of the authors’ knowledge, very few works have proposed to survey distrib-
uted algorithms. This article presents a literature review on distributed machine learn-
ing algorithms and states their distinctions from existing surveys. This study provides
an extensive overview of the current state-of-the-art in the field by outlining the chal-
lenges and opportunities of distributed machine learning over conventional (centralized)
machine learning and discussing the techniques used for distributed machine learning.

Verbraeken et al. [28] discussed distributed techniques and systems and covered vari-
ous aspects of distributed machine learning including its challenges and opportunities.
Langer et al. [29] investigated the fundamental principles for training deep neural net-
work (DNN) in a cluster of independent machines. Moreover, they analyzed the com-
mon attributes of training deep learning models and surveyed the distribution of such
workloads in a cluster to attain collaborative model training. Ouyang et al. [30] provided
a comprehensive survey of communication strategies for distributed DNN. They consid-
ered algorithm and network optimizations to diminish the communication overhead in
distributed DNN training. Tang et al. [31] have detailed discussions on communication
compression techniques.

Xing et al. [22] investigated different synchronization schemes, scheduling, workload
balancing schemes, and communication types. Nassef et al. [32] overviewed distributed
machine learning architectures for 5G networks and beyond. They also considered opti-
mizing communication, computation, and resource distribution to improve the perfor-
mance of distributed machine learning in 5G networks. Mayer et al. [33] overviewed
deep learning infrastructures, parallel deep learning methods, scheduling, and data
management. Muscinelli et al. [34] surveyed the influential research of distributed learn-
ing technologies playing a critical role in the 6G networks. In particular, they reviewed
federated learning and multi-agent reinforcement learning algorithms. They discussed
several emerging applications and their fundamental concepts relating to their imple-
mentation and optimization.

An overview of distributed deep reinforcement learning is provided by Yin et al. [35].
Their study compared classical distributed deep reinforcement learning (DRL) meth-
ods and examined important factors that contribute to efficient distributed learning.
Furthermore, they discuss both single player, single agent distributed DRLs as well as
multiple players, multiple agents. A further review was carried out of recently released
toolboxes which assist in the realization of distributed DRL. Antwi-Boasiako et al. [36]
provided a comprehensive survey of privacy issues in distributed deep learning. They
described various cryptographic algorithms and other techniques that can be used to
preserve privacy, as well as their benefits and drawbacks.

Other surveys lack detailed discussions on the distribution of machine learning algo-
rithms, which are introduced explicitly in this survey. We cover a variety of algorithms

Page 4 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

of traditional machine learning (classification and clustering algorithms), deep learning,
and reinforcement learning.

Distributed machine learning algorithms
A number of popular algorithms for distributed machine learning are described in this
section. Figure 1 represents a classification of these algorithms.

Distributed classification

Classification is a supervised method in machine learning that uses label data to predict
the future. A classification model trains using historical data to produce a function that
can predict outputs for new unseen data. Classification outputs are categorical [37]. Two
popular distributed classification methods are boosting and support vector machines
(SVM), which we discuss in the following. These algorithms are summarized in Table 1.

Distributed boosting

Boosting is a technique used in machine learning that trains an ensemble of so-called
weak learners to produce an accurate model, or strong learner. It relies on the idea that
learning and combining many weak classifiers instead of learning a single strong classi-
fier can achieve better performance [38].

In distributed boosting, AdaBoost [39] is modified for use in distributed environments
[23]. Lazarevic and Obradovic [40] proposed a framework for the integration of special-
ized classifiers learned from very large, distributed datasets that cannot be stored in the
main memory of a computer. The suggested method combines classifiers from all sites
and creates a classifier ensemble on each site. Filmus et al. [41] proposed a distributed
boosting algorithm that is resilient to a limited amount of noise using Impagliazzo’s
hard-core lemma [42]. This algorithm is novel because it applies non-standard boosting
that identifies small “hard” sets so that any hypothesis derived from the class will have
high error rates.

Sarnovsky and Vronc [43] implemented a distributed boosting algorithm based on
MapReduce and employed the GridGain framework for distributed data processing.
The algorithm works as follows: (i) The master node computes the dataset statistics,

Fig. 1 Ditributed machin learning algorithms

Page 5 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

including the number of categories and the distribution of indexed terms within the
dataset. (ii) The number of subtasks (jobs) necessary to construct the final model is
calculated based on the gridSize parameter. (iii) AdaBoost is implemented to train the
model.

Cooper et al. [44] presented two distributed boosting algorithms. The first algorithm
uses the entire dataset to train a classifier and requires significant communication
between the distributed sites. In contrast, the second algorithm requires little communi-
cation but trains its final classifier using a subset of the dataset.

Distributed SVM

SVM is a linear binary classifier that identifies a single boundary between classes. It
seeks to overcome the local extremum dilemma inherent in other machine learning
techniques by solving a convex quadratic optimization problem [45]. SVM determines
an optimal hyperplane (a line in the simplest case) by which it is possible to divide the
dataset into a discrete number of classes. To optimize the separation, SVM employs a
portion of the training sample that lies closest to the optimal decision boundary in the
feature space [46].

SVM training requires quadratic computation time. To its speed up, several distrib-
uted computing paradigms have been investigated by dividing the training dataset
into smaller sections and processing each section in the parallel cluster of computers
[47]. Lu et al. [48] proposed a distributed parallel support vector machine (DPSVM)

Table 1 Distributed classification

Algorithm Articles Year No. of
references

Simulation/ Dataset Evaluation metrics

Distributed Boosting [41] 2022 26 • Accuracy
• Correctness
• Communication complexity

[44] 2017 20 • ocr17
• ocr49
• forestcover12
• particle
• ringnorm
• twonorm
• Yahoo!

• Error

[43] 2014 19 • Reuters-21,578
• Medlin

• Time

[40] 2002 31 • Covertype
• Pen-based digits
• Waveform
• LED

• Accuracy
• Speedup

Distributed SVM [51] 2019 32 • Optical satellite images • RMSE

[50] 2015 14 • Spiral data set
• MNIST
• COVERTYPE

• Integrations
• Parallel Speed-up

[49] 2011 40 • Images from Corel data-
base

• accuracy
• training times

[48] 2008 17 • MNIST • CPU seconds
• Number of iterations
• Communication overhead

[47] 2003 16 • Handwritten Chinese
database ETL9B

• Error rate

Page 6 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

that exchanges support vectors among a network of strongly connected servers. It
results in limited communication costs and fast training times for multiple servers
working concurrently on distributed datasets. DPSVM uses SVM as a local classifica-
tion mechanism for subsets of training data within a strongly connected network.

According to Alham et al. [49], SVM training is computationally intensive, particu-
larly with large datasets. To address this issue, they presented MRSMO, a distributed
SVM algorithm based on MapReduce for automatic image annotation. MRSM parti-
tions datasets into small subsets and optimizes them across a cluster of computers.
Ke et al. [50] proposed a method for distributed SVM, where the local SVMs use the
state-of-the-art SVM solvers and implement it on MapReduce to shorten the com-
munication between nodes. Wang et al. [51] described a spatially distributed SVM
method for estimating shallow water bathymetry from optical satellite imagery. This
method uses SVMs that have been trained locally and spatially weighted votes to
make predictions. According to the results, the localized model reduced the RMSE by
60%.

Distributed clustering

Clustering is an unsupervised machine learning method that involves defining classes
from data without knowing the labels of classes. In clustering, data is categorized into
collections (or clusters) based on their similarities [52]. Clustering algorithms apply
when there is no class for prediction, so the instances divide into natural groups.
Clustering distributed classifiers relies on the following: (i) A measure of classifier
distance, (ii) An efficient algorithm for computing this distance measure for classi-
fiers induced in physically distributed databases, and (iii) A clustering algorithm [23].
The distributed clustering algorithms of consensus-based algorithm and distributed
k-means algorithm are discussed in the following. A summary of these algorithms can
be found in Table 2.

Table 2 Distributed clustering

Algorithm Articles Year No. of
references

Simulation/ Dataset Evaluation metrics

Consensus-based algo-
rithm

[53] 2016 35 • Wireless sensor networks
(WSNs)

• Within-cluster sum of
squares (WCSS)
• Iteration time

[54] 2011 15 • Two data sites • Xie-Beni (XB) fuzzy clus-
tering validity index

Distributed k-means [59] 2021 25 • MRI image segmenta-
tion

• Number of iterations

[61] 2016 39 • YearPredictionMSD • Communication costs

[57] 2013 33 • Mammal’s Milk
• River dataset
• Water treatment dataset

• Communication
Overhead
• Computation Overhead

[58] 2013 42 • Wireless sensor networks • Time complexity
• Memory complexity

[60] 2008 38 • P2P network • Accuracy
• Scalability
• Communication

Page 7 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

Consensus‑based algorithm

Consensus clustering is a technique in which multiple clusters combine into a
more stable single cluster that is better than the input clusters. It yields a stable and
robust final clustering in agreement with multiple clusterings. Consensus clustering
is a more robust approach that relies on multiple iterations of the chosen cluster-
ing method on sub-samples of the dataset [53]. Vendramin et al. [54] presented a
consensus-based algorithm for distributed fuzzy clustering that allows an automatic
estimation of the number of clusters by using a distributed version of the Xie-Beni
validity criterion.

Distributed k‑means

K-means clustering is one of the most popular clustering algorithms due to its many
advantages, such as simple mathematical concepts, quick convergence, and ease of
implementation [55]. K-means is an iterative process in which k centroids are deter-
mined. Then, each sample is assigned to the closest current centroid (assignment
phases). The new centroid will be determined by the average of all samples in the
same partition (refinement phase) [56].

Patel et al. [57] presented a parallel version of k-means focusing on privacy pres-
ervation. In distributed environments, where data mining becomes a collabora-
tive effort, it is crucial to maintain privacy. The basic concept involves the use of a
secret sharing mechanism to share information privately along with a code-based
zero-knowledge identification scheme to add protection against malicious adver-
saries. Oliva et al. [58] suggested a fully distributed execution of the k-means clus-
tering algorithm. It was applied for wireless sensor networks where each agent was
provided with a high-dimensional observation. To spread information on current
centroids across the network, the proposed algorithm uses a maximum consensus
algorithm. Each agent employs this information to select the nearest centroid, thus
segmenting the network into communities. For the purpose of updating centroids,
meta-information is gathered by combining max-consensus and average-consensus
algorithms. The agents are able to update the centroids locally once such informa-
tion has been gathered.

A distributed k-means method has proposed by Benchara and Youssfi [59]. It inte-
grates a parallel virtual distributed computing model with a low-cost communication
mechanism. K-means is implemented as a distributed service using an asynchronous
communication protocol based on Advanced Message Queuing Protocol (AMQP).
Datta et al. [60] discussed a distributed k-means clustering, in which data and com-
puting resources are distributed over a large peer-to-peer network. Using two algo-
rithms, it approximates the result produced by the centralized k-means clustering
algorithm. The first algorithm is intended to be used in a dynamic peer-to-peer
network. It is capable of producing clusterings only through the use of “local” syn-
chronization. In the second algorithm, peers are uniformly sampled, and analytical
guarantees are provided about the accuracy of clustering on an Internet-based peer-
to-peer system. Ding et al. [61] studied distributed k-means clustering, in which
dimensions of the data are distributed across multiple computers.

Page 8 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

Distributed deep learning

Deep learning is a type of machine learning process that uses interconnected nodes or
neurons in a layered structure that resembles the human brain [62]. Neural networks
consist of many computation units, known as neurons, which are connected and form
the neural network. The input neurons of the network are actuated by input parameters.
The neurons in the following layer are activated by weighted connections from neu-
rons in the previous layer. To provide the desired functionality, usually classification or
regression, the neural network must determine the appropriate weight value for every
connection [63].

To overcome the problem of training DNN models, which requires a large volume of
data and computational resources, a variety of parallel and distributed methods have
been proposed [64, 65]. These methods can be divided into four categories: data parallel-
ism, model parallelism, pipeline parallelism, and hybrid parallelism [66]. An overview of
these algorithms is presented in Table 3.

Data parallelism

Data parallelism is a popular method for training a neural network that involves sharing
a large-scale DNN among all computational workers [67, 68]. In data parallelism, data
samples are partitioned into mini-batches (Fig. 2) [69]. During the computation of gradi-
ents, each node or worker contains one of the mini-batches, a replica of the neural net-
work model, and independently computes gradients (usually using the Mini-Batch SGD)
[70]. The following steps are involved in training: (i) Computation of local gradients by
each worker; (ii) Calculation of the new parameters of the DNN by combining all sub-
gradients. (iii) Distribution of the new parameters among the workers, and retraining of
the DNN [71]. To aggregate and update gradients, either a centralized architecture such
as parameter server architecture [72], or a decentralized architecture such as All-Reduce
[73] is used.

Fig. 2 Data parallelism

Page 9 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

Data parallelization allows for processing large datasets that cannot be stored on a
single machine and can increase the system’s throughput through distributed parallel
computing. However, data parallelism also has some challenges, including the over-
head of parameter synchronization, optimization algorithms, and hardware limita-
tions when the DNN model size is too large [64, 74].

Dean et al. [67] introduced DistBelief, a framework for parallel distributed train-
ing of deep networks, and two new algorithms for large-scale distributed training:
Downpour SGD and Sandblaster L-BFGS. Downpour SGD is an asynchronous vari-
ant of stochastic gradient descent (SGD), which is effective for training nonconvex
deep learning models. As a distributed version of L-BFGS, Sandblaster L-BFGS makes
efficient use of network bandwidth to train a single model on a large number of con-
current cores.

Zhang et al. [68] developed an algorithm for optimizing deep learning under com-
munication constraints in a parallel environment. In this algorithm, elastic force is
used to link the parameters calculated by local workers to the central variable stored
by the parameter server. As a result, the amount of communication between the mas-
ter and the local workers is reduced. Asynchronous and synchronous variants of this
algorithm are available.

An algorithm for distributed SGD based on a communication trigger mechanism
has been proposed by George et al. [69]. They presented the Distributed Event-Trig-
gered Stochastic GRAdient Descent (DETSGRAD) algorithm, which allows net-
worked agents to update model parameters periodically in order to solve non-convex
optimizations. The evaluation was conducted using MNIST with 60,000 images for
training and 10,000 images for testing. During training, each agent used LeNet-5.
There are two types of DETSGRAD: DETSGRAD-r, in which agents are randomly
selected from the entire training set, and DETSGRAD-s, in which each agent has
access to the images of only one class. According to the results obtained after 40
epochs with 10 agents, the accuracy of DETSGRAD-r and DETSGRAD-s was 98.33
and 98.51, almost similar to the accuracy of SGD-r and SGD-s with 98.97 and 98.87.
Based on the results, it appears that DETSGRAD reduced inter-agent communication
while maintaining similar performance.

Kim et al. [70] proposed Parallax, a framework that integrates parameter server
and AllReduce architectures in order to optimize parallel data training by exploiting
model parameter sparsity. ResNet-50 and Inception-v3 were used to classify images
from the ImageNet dataset. In NLP, the LM model was trained using the One Billion
Word Benchmark, and the NMT model was trained using the WMT English-German
dataset. Image classification models are trained at the same speed as Horovod and
1.53x faster than TensorFlow. For NLP models, Parallax has achieved speedups of
2.8x and 6.02x compared to TensorFlow and Horovod.

The Dynamic Batch Size (DBS) strategy has been proposed by Ye et al. [71] for the
distributed training of DNNs. According to the performance of previous epochs, DBS
evaluates the performance of each worker, and then dynamically adjusts the batch
size and dataset partition. DBS aims to optimize cluster utilization based on worker
performance and can be used with all synchronous methods. The estimated batch size
and dataset partition are employed in the next training. As compared synchronous

Page 10 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

stochastic gradient descent (S-SGD), DBS saved approximately 12% of the consumed
time of each epoch on a scale of 4 and 10% on a scale of 8. The decreases can be
attributed to cluster synchronization and communication costs, which are higher as
the cluster expands.

Using data parallelism, Dong et al. [75] proposed a technique called “natural compres-
sion” that is an effective method for compressing data. It is based on the randomized
rounding to the nearest (negative or positive) power of two, which can be computed
in a “natural” manner without taking into account the mantissa. The natural compres-
sion method reduced the training time for ResNet110 by 26% (compared to only a 9%
decrease for QSGD for the same setup) and 66% for AlexNet, compared to using no
compression. In their study, they also presented convergence theory for distributed SGD
to apply bidirectional compression at both the master and worker levels.

Model parallelism

Model parallelism is a technique used to speed up the training of DNNs by dividing a
large model among multiple nodes or workers (Fig. 3) [76]. Each node is responsible for
part of the computation of model parameters, such as weights [74]. However, the major
challenges are how to break the model into partitions, as each model has its own charac-
teristics, and the allocation of partitions to GPUs to maximize the efficiency of training
[77]. Furthermore, model parallelism alone is not scalable [78] due to high communica-
tion latency between devices.

A fully decoupled training scheme was proposed by Zhang et al. [79]. A neural net-
work was broken down into several modules (K) and trained on multiple devices. In the
WRN-28-10 (CIFAR-10) case, delayed gradients slightly outperformed the decoupled
greedy learning and achieved a speedup of 1.88x for K = 2, 2.72x for K = 3, and 3.20x
for K = 4. For the ResNet-101 (ImageNet) case, the delayed gradients achieved a 1.68x
speedup for K = 2, and 2.1x and 2.3x for K = 3 and K = 4.

Huo et al. [80] proposed a Decoupled Parallel Back-propagation (DDG) algorithm for
training feedforward neural networks. This algorithm splits the model and stores the
delayed error gradient to solve the backward-locking problem. By increasing the number
of GPUs from two to four, the method is able to reduce the total computation time by
about 30–50%.

Fig. 3 Model parallelism

Page 11 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

Table 3 Distributed deep learning

Algorithm Articles Year No. of
references

Simulation/ dataset Evaluation metrics

Data parallelism [75] 2022 61 • ResNet110 and AlexNet
models on CIFAR10

• Train loss
• Test accuracy

[72] 2022 24 • Matrix Classification
• MovieLens Avazu-CTR

• Convergence time per
epoch
• Disk I/O
• Network communication

[65] 2021 138 • ResNet-50 on ImageNet
dataset
• ALBERT-large on Wiki-
Text-103 dataset

• Training time

[71] 2020 37 • ResNet101 on CIFAR10
dataset

• Convergence
• Robustness

[69] 2019 53 • LeNet-5 on MNIST dataset • Accuracy

[70] 2019 46 • ResNet-50 and Inception-
v3 on ImageNet
• LM model on One Billion
Word Benchmark
• NMT model on WMT
English-German dataset

• Validation error
• Test perplexity
• BLEU

[73] 2018 20 • Inception V3
• ResNet-101
• VGG-16

• Images processed per
second

[68] 2015 31 • CNN on CIFAR and Ima-
geNet datasets

• Test loss
• Test error

[67] 2012 29 • ImageNet • Accuracy

Model parallelism [77] 2021 72 • GNN model on OGB-Prod-
uct, OGB-Paper, UK-2006-
05, UK-Union, Facebook
datasets

• ROC

[79] 2021 29 • ResNet and WRN models
on CIFAR-10 dataset
• ResNet-18 and MobileNet
v2 on Tiny-ImageNet

• Error rate

[76] 2019 30 • AlexNet, Inception-v3 and
ResNet-101 on ImageNet
dataset
• RNNTC on Movie Reviews
dataset
• RNNLM on Penn Treebank
dataset
• NMT on WMT English-
German dataser

• Accuracy

[80] 2018 25 • ResNet on CIFAR • Accuracy

Page 12 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

Pipelining parallelism

Pipeline parallelism is a technique used to divide training tasks for DNN models into
sequential processing stages, and the results of each sequence are passed on to the next
[81]. Narayanan et al. [82] proposed PipeDream, a system that adds inter-batch pipelin-
ing to intra-batch parallelism to further improve parallel training throughput, allowing
computation and communication to overlap more effectively and reduce communica-
tion. PipeDream updates model parameters for numerically correct gradient computa-
tions. In addition, forward and backward passes are scheduled concurrently on separate
workers in order to minimize pipeline stalls. Furthermore, it automatically distributes
DNN layers among workers so that work can be balanced and communication can be

Table 3 (continued)

Algorithm Articles Year No. of
references

Simulation/ dataset Evaluation metrics

Pipelining parallelism [81] 2020 29 • AmoebaNet-D
• U-Net

• Throughput
• Speed up

[82] 2019 57 • VGG-16 and ResNet-50 on
ImageNet
• AlexNet on Synthetic Data
• GNMT-16 and GNMT-8 on
WMT16 EN-De
• AWD LM on Penn Tree-
bank
• S2VT on MSVD

• Accuracy
• Speed up

[83] 2018 50 • VGG16, ResNet-152,
Inception v4 and SNN on
CIFAR-10
• Transformer on IMDb
Movie Review Sentiment
Dataset
• Residual LSTM on IMDb
Dataset

• Speed up

[84] 2017 25 • VGG-A model on Ima-
geNet

• Speed up

Hybrid parallelization [88] 2023 64 • MATCHNET, CTRDNN,
2EMB and NCE models

• Scheduling performance
• Throughput

[64] 2022 57 • 3D-ResAttNet on Alz-
heimer’s Disease Neuro-
imaging Initiative (ADNI)
database

• Speedup
• Accuracy
• Training time•

[91] 2020 64 • CosmoFlow and 3D UNet
models

• MSE

[86] 2019 23 • Seq2Seq RNN MT with
attention on WMT14 and
WMT17 datasets

• BLEU scores

[87] 2019 120 • SFC, SCONV, Lenet-c, Cifar-
c, AlexNet,VGG-A, VGG-B,
VGG-C, VGG-D and VGG-E
models on MNIST, CIFAR-10
and ImageNet datasets

• Energy efficiency
• Performance
• Total communication

[85] 2018 67 • AlexNet and VGG models • Communication Overhead
• Training time
• Speed up

[90] 2017 33 • CNN on ImageNet LSVRC-
2010 dataset

• Error rate

[89] 2013 12 • ImageNet dataset • Error rate

Page 13 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

minimized. Compared to common intra-batch parallelism techniques, PipeDream per-
formed 5.3 times faster.

Chen et al. [83] achived robust training accuracy by implementing a pipelined model
and using a novel weight prediction technique. On a four-GPU platform, this method
achieves an 8.91x speedup compared with data parallelism. Lee et al. [84] implemented
a thread in each computer server to overlap computation and communication prob-
lems during model training. They achieved speedups of 62.97x and 77.97x for training
VGG-A model on ImageNet. In parallel pipelines, there are two major problems: the
slowest stage becomes a bottleneck. and scalability is limited [64].

Hybrid parallelization

Hybrid parallelization is a technique employed to minimize the communication over-
head of DNN training by combining data and model parallelization techniques [85].
Ono et al. [86] proposed a hybrid approach, which applies a model parallel to the RNN
encoder-decoder in the Seq2Seq model, and data parallel to the attention-softmax.
According to the results, using four GPUs increased training speed by 4.13 to 4.20 times
over using one GPU alone. The solution proposed by Song et al. [87], HYPAR, parti-
tions the feature map tensors (inputs and outputs), kernel tensors, gradient tensors, and
error tensors among the DNN accelerators. During training, the goal of optimization is
to search for a partition that minimizes the amount of communication. In an evaluation
of classic Lenet to large-size model VGGs, HYPAR outperformed model parallelism and
data parallelism alone. Compared to data parallelism, results showed a performance of
3.39x and an energy efficiency of 1.51x was achieved.

A hybrid parallelization method for training DNNs was proposed by Akintoye et al.
[64], as well as a Genetic Algorithm Based Heuristic Resources Allocation (GABRA)
approach for optimal partitioning on GPUs to maximize computing performance. Model
parallelization includes neural network model partitioning and the GABRA mechanism.
Asynchronous Stochastic Gradient Descent (ASGD) and ring All-Reduce mechanisms
are used for data parallelization. The proposed approach that was applied to a 3D Resid-
ual Attention Deep Neural Network (3D-ResAttNet) using the ANDI dataset, achieved a
20% average improvement over existing parallel methods in terms of training time while
maintaining accuracy.

The Heterogeneous Parameter Server (HeterPS) was proposed by Liu et al. [88] to
facilitate the training of large-scale models using elastic heterogeneous computing
resources. HeterPS consists of three modules: (i) Scheduling module for the DNN layer
that generates a scheduling plan as well as a provisioning plan. In the provisioning plan,
the number of computing resources of each type is defined, whereas in the scheduling
plan, each layer is assigned the appropriate type of computing resource. (ii) A data man-
agement module that facilitates the transfer of data between clusters or servers. (iii) A
distributed training module that exploits the combination of data parallelism and pipe-
line parallelism in order to parallelize the training process of the model. Experimental
results indicated that the provisioning method can outperform baseline methods by up
to 57.9% and the scheduling method can outperform state-of-the-art methods by up
to 312.3% (monetary cost). Additionally, the framework has a throughput 14.5 times
greater than TensorFlow.

Page 14 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

Yadan et al. [89] achieved a speed improvement of 2.2x when training a large deep
CNN using hybrid parallelization. Krizhevsky et al. [90] used hybrid parallelization to
train a deep CNN and evaluated its performance by classifying 1.2 million images in the
ImageNet LSVRC-2010 dataset. By combining parallel data and model training, Oyama
et al. [91] increased throughput and minimized I/O scaling bottlenecks for a 3D CNN.

To address the challenge of aggregating sub-gradients effectively, several synchronous
strategies have been used, including Parallel S-SGD [92, 93] and Bulk Synchronous Par-
allel (BSP) [94] among others.

Distributed deep reinforcement learning

Reinforcement learning is a learning algorithm that involves learning by interacting with
the environment through actions, observations, and rewards. Reinforcement learning
faces a major challenge when it comes to learning good representations of high-dimen-
sional states or action spaces [95]. DRL combines reinforcement learning with deep
learning, allowing the representation of a continuous state or action, which was difficult
for a table representation [96]. However, DRL faces technical and scientific challenges
such as data inefficiency, multi-task learning, and exploration-exploitation trade-offs. To
overcome these challenges, distributed DRL was introduced. In distributed DRL, agents
can run simultaneously on several computers allowing for parallelization of the learning
process [97].

Nair et al. [98] introduced the GORILA (General Reinforcement Learning Architec-
ture), which is similar to DQN [99], but with multiple workers and learners, and the SGD
is computed using the DistBelief [67] method. In the GORILA architecture, there are N
different actor processes, which are applied to N corresponding instances of the same
environment. The Q-network is replicated in each actor, which determines its behavior.
A parameter server periodically synchronizes the parameters of the Q-network. There
are N learner processes in GORILA. Learners contain replicas of the Q-network and are
responsible for computing desired changes to its parameters. There are many ways in
which a reinforcement learning agent may be parallelized using the GORILA architec-
ture. One approach is parallel acting, where large quantities of data can be generated and
then processed by a single serial learner using a global replay database. Alternatively, a
single actor can generate data into a local replay memory, after which multiple learners
can process this data in parallel to maximize the effectiveness of their learning. Using the
Arcade Learning Environment, GORILA was evaluated on 49 Atari 2600 games. In 25
games, GORILA achieved 75% of the human score or higher.

The A3C (Asynchronous Advantage Actor-Critic) algorithm was proposed by Mnih
et al. [100], in which multiple agents generate data in parallel asynchronously, and
DNN controllers are optimized through gradient descent asynchronously. Similar to
the GORILA, actor-learners were used asynchronously, however, instead of using sep-
arate machines and a parameter server, multiple CPU threads were used on a single
computer. The cost of communication can be eliminated by keeping learners on the
same computer. It is likely that multiple actors and learners explore different aspects
of the environment simultaneously. This approach can maximize diversity by utilizing
different exploration policies for each actor-learner. As multiple actor-learners use
online updates in parallel, the overall changes being made to the parameters are more

Page 15 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

likely to be less correlated over time than the changes made by a single agent. As a
result of parallelization, the data is also diverse and decorated, which provides a more
practical alternative to experience replay.

IMPALA (Importance Weighted Actor-Learner Architecture) is a scalable DDR
learning algorithm proposed by Espeholt et al. [101]. IMPALA uses GPUs and dis-
tributed deep learning methods to update mini-batches of data in parallel, which
allows it to train large neural networks efficiently with a distributed set of learners
uses synchronized parameter updating and is capable of training. In IMPALA, there
is a distribution of parameters across the learners and actors retrieve the parameters
from all the learners simultaneously while only sending observations to one learner.
IMPALA outperforms A3C-based agents on DMLab-30, achieving a 49.4% vs. 23.8%
human normalized score.

Heess et al. [102] introduced Distributed Proximal Policy Optimization (DPPO), a
DRL approach based on the principle of proximal policy optimization (PPO) [103]. In
DPPO, the collection of data and the calculation of gradients are distributed among
the workers. The experiments have been conducted with both synchronous and asyn-
chronous updates, and the results have shown that averaging gradients and applying
them synchronously leads to better results.

Ape-X [104] is a distributed architecture for DRL that decouples acting from learn-
ing. In Ape-X, a shared neural network is used to select actions by actors and the
resulting experience is stored in a shared experience replay memory. The neural net-
work is updated by replaying samples of experience, with prioritizing given to the
most significant data generated by the actors.

SEED (Scalable, Efficient Deep-RL) was proposed by Espeholt et al. [105]. SEED RL
utilizes modern accelerators to improve the speed and efficiency of DRL. SEED RL
uses three types of threads: the inference thread, data prefetching threads, and train-
ing threads. The inference thread receives a batch of observations, rewards, and epi-
sode termination flags, while data prefetching threads sample data as it is added to a
FIFO queue or replay buffer. For each of the TPU cores participating in training, the
trajectories are pushed to a device buffer. In comparison with the baseline IMPALA,
SEED improves the speed by 1.6x (with 2 cores), 4.1 × (8 cores), and 4.5x (if the batch
size is increased linearly with 5 cores).

Acme [106] is a research framework that helps with algorithm development. Acme
aims to increase reproducibility in reinforcement learning and simplify the develop-
ment of novel and creative algorithms. Acme’s main advantage is that it can be used
to implement large-scale distributed reinforcement learning algorithms enabling
operation at enormous scales while maintaining the inherent readability of the code.
In most cases, algorithms implemented with Acme result in a distributed agent with
a number of separate (parallel) acting, learning, diagnostic, and helper processes.
Acme’s main design decision, however, is to reuse the same components across sim-
ple, single-process implementations and large-scale distributed systems.

In a recent paper, Dai et al. [107] proposed a “hybrid near-on policy” DRL frame-
work, called Coknight, which leverages a game theory-based DNN partition approach
to achieve fast and dynamic partitioning in distributed DRL architectures.

Table 4 provides an overview of these algorithms.

Page 16 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

Conclusions and research directions
Distributed machine learning is becoming increasingly important due to the increase
in data, the need for more accurate models, the ability to solve complex problems,
and the reduction of computation time.

Researchers have proposed different methods for distributing machine learning
algorithms, including distributed algorithms for classification, clustering, deep learn-
ing, and reinforcement learning. In the case of traditional machine learning meth-
ods (clustering and classification algorithms), some studies have attempted to develop
distributed versions of them. Our study reviewed the distribution of Boosting, SVM,
Consensus-based, and K-means algorithms. For deep learning, there are four types
of parallelism: data parallelism, model parallelism, pipelining parallelism, and hybrid
parallelism. The majority of these studies considered neural networks such as ResNet,
VGG, and AlexNet. In the case of reinforcement learning, researchers have proposed
various distributed reinforcement learning algorithms, including A3C, IMPALA,
DPPO, Ape-X, SEED RL, and Acme. Distributed machine learning has several limita-
tions that need to be addressed in future research. These limitations include:

• Lack of attention to distributed traditional machine learning: There has been a sig-
nificant focus on distributed deep learning in recent studies and less attention has
been paid to distributed traditional machine learning. Although machine learning
algorithms have their advantages and have shown promising results in a number

Table 4 Distributer DRL

Algorithm Articles Year No. of
references

Simulation/dataset Evaluation metrics

Distributed deep rein-
forcement learning

[107] 2022 42 • Atari games • Onvergence rate
• Convergence time
• Running time
• GPU usage
• Memory usage
• Bandwidth consumption

[106] 2020 127 • 5 Atari games: Asterix,
• Breakout, MsPacman,
Pong and SpaceInvaders
• Arcade Learning Envi-
ronment
• DeepMind Control suite
• Gym environments

• Mean and standard
deviation
• Speed

[105] 2019 53 • Atari-57
• DeepMind Lab
• Google Research
Football

• Training cost
• Speed

[101] 2018 41 • Atari-57
• DMLab-30

• Median and Mean
Human-Normalized scores

[104] 2018 40 • Atari games • Median and Mean
Human-Normalized scores

[100] 2016 43 • Atari games
• TORCS 3D
• Mujoco
• Labyrinth

• Median and Mean
Human-Normalized scores

[98] 2015 19 • 49 games from Atari
2600 games

• Human Score

Page 17 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

of areas, they have not been studied as extensively as deep learning in distributed
systems.

• Lack of benchmarks: Most studies used MNIST and ImageNet datasets to evaluate
their proposed method, but there is no benchmarking to evaluate and compare the
performance of existing approaches. Researchers considered a wide range of models,
datasets, and evaluation metrics, and even in distributed RL, each study evaluated its
method on different types of Atari games. Consequently, benchmarks are necessary
to compare the results of different methods.

• Interpretability: Even though DNNs have excellent performance in many areas,
understanding their results, particularly in distributed systems, can be challenging.
A model’s interpretability can help to provide insight into the relationship between
input data and the trained model, which is particularly useful in critical domains like
healthcare. The interpretability of distributed algorithms remains an open problem.

• New issues: New subjects arise when we try to have distributed algorithms, includ-
ing the way data and model are partitioned, optimality, delay of the slowest node,
communication overhead, scalability, and aggregation of results. These issues need to
be addressed to succeed at distributed training and to make it more accessible to data
scientists and researchers.

Therefore, this is an open line of research that will have to overcome these new chal-
lenges in the future.

Abbreviations
AI Artificial intelligence
BSP Bulk synchronous parallel
DNN Deep neural network
DRL Deep reinforcement learning
IOT Internet of Things
ML Machine learning
NLP Natural language processing
PPO Proximal policy optimization
SVM Support vector machines
SGD Stochastic gradient descent
S-SGD Synchronous stochastic gradient descent
WSNs Wireless sensor networks

Acknowledgements
Not applicable.

Author contributions
MD and ZY wrote the paper .All authors discussed the results, commented on the manuscript, reviewed drafts of the
article, and approved the final draft.

Funding
No Funding.

Availability of data and materials
No data were used to support this study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Page 18 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

Received: 14 July 2023 Accepted: 17 September 2023

References
 1. Sarker IH, Furhad MH, Nowrozy R. Ai-driven cybersecurity: an overview, security intelligence modeling and

research directions. SN Comput Sci. 2021;2:1–18.
 2. Duan L, Da Xu L. Business intelligence for enterprise systems: a survey. IEEE Trans Industr Inf. 2012;8(3):679–87.
 3. Zhang C, Lu Y. Study on artificial intelligence: the state of the art and future prospects. J Industrial Inform Integr.

2021;23: 100224.
 4. Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ. A systematic review on supervised and unsupervised

machine learning algorithms for data science. In: Berry MW, Mohamed A, Yap BW, editors. Supervised and unsu-
pervised learning for data science. Cham: Springer International Publishing; 2020. p. 3–21.

 5. Sandhu T. Machine learning and natural language processing – a review. Int J Adv Res Comput Sci. 2018;9:582–4.
 6. Witten IH, Frank E. Data mining: practical machine learning tools and techniques with java implementations. ACM

SIGMOD Rec. 2002;31(1):76–7.
 7. Han JM. Kamber in J. Pei, Data mining: concepts and techniques: concepts and techniques, Amsterdam, Elsevier;

2011:3
 8. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Markets. 2021;31(3):685–95.
 9. Dong S, Wang P, Abbas K. A survey on deep learning and its applications. Comput Sci Rev. 2021;40: 100379.
 10. Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci.

2021;2(3):160.
 11. Sarıgül M, Karacan L. Region contrastive camera localization. Pattern Recognit Lett. 2023;169:110–7.
 12. Sarıgül M. A survey on digital video stabilization. Multimedia Tools Appl. 2023;1:1–27.
 13. Liu P, Yuan W, Fu J, Jiang Z, Hayashi H, Neubig G. Pre-train, prompt, and predict: a systematic survey of prompting

methods in natural language processing. ACM-CSUR. 2023;55(9):1–35.
 14. Munir H, Vogel B, Jacobsson A. Artificial intelligence and machine learning approaches in digital education: a

systematic revision. Information. 2022;13(4): 203.
 15. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med

Inform Assoc. 2020;27(3):491–7.
 16. Ngai EW, Wu Y. Machine learning in marketing: a literature review, conceptual framework, and research agenda. J

Bus Res. 2022;145:35–48.
 17. Megnidio-Tchoukouegno M, Adedeji JA. Machine learning for road traffic accident improvement and environ-

mental resource management in the transportation sector. Sustainability. 2023;15(3): 2014.
 18. Entezari A, Aslani A, Zahedi R, Noorollahi Y. Artificial intelligence and machine learning in energy systems: a biblio-

graphic perspective. Energ Strat Rev. 2023;45: 101017.
 19. Ihme M, Chung WT, Mishra AA. Combustion machine learning: principles, progress and prospects. Prog Energy

Combust Sci. 2022;91: 101010.
 20. Lee J, Davari H, Singh J, Pandhare V. Industrial artificial intelligence for industry 4.0-based manufacturing systems.

Manuf Lett. 2018;18:20–3.
 21. Elshawi R, Maher M, Sakr S. Automated machine learning: state-of-the-art and open challenges. arXiv preprint

arXiv:190602287. 2019.
 22. Xing EP, Ho Q, Xie P, Wei D. Strategies and principles of distributed machine learning on big data. Engineering.

2016;2(2):179–95.
 23. Peteiro-Barral D, Guijarro-Berdiñas B. A survey of methods for distributed machine learning. Progress in Artificial

Intelligence. 2013;2:1–11.
 24. Khalid N, Qayyum A, Bilal M, Al-Fuqaha A, Qadir J. Privacy-preserving artificial intelligence in healthcare: tech-

niques and applications. Comput Biol Med. 2023;158: 106848.
 25. Agarwal A, Duchi JC. Distributed delayed stochastic optimization. In: Proceedings of the 24th international confer-

ence on neural information processing systems; Granada, Spain: Curran Associates Inc; 2011. p. 873–81.
 26. Niu F, Recht B, Re C, Wright SJ. HOGWILD! a lock-free approach to parallelizing stochastic gradient descent. In: Pro-

ceedings of the 24th international conference on neural information processing systems; Granada, Spain. Curran
Associates Inc; 2011. p. 693–701.

 27. Distributed deep neural networks over the cloud, the edge and end devices. In: Teerapittayanon S, McDanel B,
Kung H-T, editors. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE; 2017.

 28. Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. A survey on distributed machine
learning. Acm Comput Surv (csur). 2020;53(2):1–33.

 29. Langer M, He Z, Rahayu W, Xue Y. Distributed training of deep learning models: a taxonomic perspective. IEEE
Trans Parallel Distrib Syst. 2020;31(12):2802–18.

 30. Ouyang S, Dong D, Xu Y, Xiao L. Communication optimization strategies for distributed deep neural network train-
ing: a survey. J Parallel Distrib Comput. 2021;149:52–65.

 31. Tang Z, Shi S, Chu X, Wang W, Li B. Communication-efficient distributed deep learning: a comprehensive survey.
arXiv Preprint arXiv:200306307. 2020.

 32. Nassef O, Sun W, Purmehdi H, Tatipamula M, Mahmoodi T. A survey: distributed machine learning for 5G and
beyond. Comput Netw. 2022;207: 108820.

 33. Mayer R, Jacobsen H-A. Scalable deep learning on distributed infrastructures: challenges, techniques, and tools.
ACM Comput Surv (CSUR). 2020;53(1):1–37.

 34. Muscinelli E, Shinde SS, Tarchi D. Overview of distributed machine learning techniques for 6G networks. Algo-
rithms. 2022;15(6): 210.

Page 19 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

 35. Yin Q, Yu T, Shen S, Yang J, Zhao M, Huang K et al. Distributed deep reinforcement learning: a survey and a multi-
player multi-agent learning toolbox. arXiv preprint arXiv:221200253. 2022.

 36. Antwi-Boasiako E, Zhou S, Liao Y, Liu Q, Wang Y, Owusu-Agyemang K. Privacy preservation in distributed deep
learning: a survey on distributed deep learning, privacy preservation techniques used and interesting research
directions. J Inform Secur Appl. 2021;61:102949.

 37. Supervised classification algorithms in machine learning: a survey and review. In: Sen PC, Hajra M, Ghosh M, edi-
tors. Emerging Technology in Modelling and Graphics: Proceedings of IEM Graph 2018. Springer; 2020

 38. Ferreira AJ, Figueiredo MAT. Boosting algorithms: a review of methods, theory, and applications. In: Zhang C, Ma Y,
editors. Ensemble machine learning: methods and applications. New York: Springer; 2012. p. 35–85.

 39. In: Freund Y, Schapire RE, editors. Experiments with a new boosting algorithm. Citeseer; 1996. icml.
 40. Lazarevic A, Obradovic Z. Boosting algorithms for parallel and distributed learning. Distrib Parallel Databases.

2002;11:203–29.
 41. A Resilient Distributed Boosting Algorithm. In: Filmus Y, Mehalel I, Moran S, editors. International Conference on

Machine Learning. PMLR; 2022.
 42. Hard-core distributions for somewhat hard problems. In: Impagliazzo R, editor. Proceedings of IEEE 36th Annual

Foundations of Computer Science. IEEE; 1995.
 43. Distributed boosting algorithm for classification of text documents. In: Sarnovsky M, Vronc M, editors. 2014 IEEE

12th International Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE; 2014.
 44. Cooper J, Reyzin L, editors. Improved algorithms for distributed boosting. 2017 55th Annual Allerton Conference

on Communication, Control, and Computing (Allerton). 2017: IEEE.
 45. Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P, Homayouni S. Support vector

machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE
J Sel Top Appl Earth Observations Remote Sens. 2020;13:6308–25.

 46. Kuo B-C, Ho H-H, Li C-H, Hung C-C, Taur J-S. A kernel-based feature selection method for SVM with RBF kernel for
hyperspectral image classification. IEEE J Sel Top Appl Earth Observations Remote Sens. 2013;7(1):317–26.

 47. Dong J-x, Krzyżak A, Suen CY. A fast parallel optimization for training support vector machine. Machine learning
and data mining in pattern recognition: Third International Conference, MLDM 2003 Leipzig, July 5–7, 2003 Pro-
ceedings, Springer.

 48. Lu Y, Roychowdhury V, Vandenberghe L. Distributed parallel support vector machines in strongly connected
networks. IEEE Trans Neural Networks. 2008;19(7):1167–78.

 49. Alham NK, Li M, Liu Y, Hammoud S. A mapreduce-based distributed SVM algorithm for automatic image annota-
tion. Comput Math Appl. 2011;62(7):2801–11.

 50. Ke X, Jin H, Xie X, Cao J. A distributed SVM method based on the iterative MapReduce. Proceedings of the 2015
IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015); 2015: IEEE.

 51. Wang L, Liu H, Su H, Wang J. Bathymetry retrieval from optical images with spatially distributed support vector
machines. GIScience & Remote Sensing. 2019;56(3):323–37.

 52. Rodriguez MZ, Comin CH, Casanova D, Bruno OM, Amancio DR, Costa LF, et al. Clustering algorithms: a compara-
tive approach. PLoS ONE. 2019;14(1): e0210236.

 53. Qin J, Fu W, Gao H, Zheng WX. Distributed $ k $-means algorithm and fuzzy $ c $-means algorithm for sensor
networks based on multiagent consensus theory. IEEE Trans Cybernetics. 2016;47(3):772–83.

 54. Vendramin L, Campello RJGB, Coletta LF, Hruschka ERs. Distributed fuzzy clustering with automatic detection
of the number of clusters. International Symposium on Distributed Computing and Artificial Intelligence; 2011:
Springer.

 55. Li XY, Yu LY, Lei H, Tang XF. The parallel implementation and application of an improved K-means algorithm. Dianzi
Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China. 2017;46:61–8.

 56. Yuan C, Yang H. Research on K-value selection method of K-means clustering algorithm. J. 2019;2(2):226–35.
 57. Patel S, Patel V, Jinwala D, editors. Privacy preserving distributed k-means clustering in malicious model using zero

knowledge proof. Distributed Computing and Internet Technology: 9th International Conference, ICDCIT 2013,
Bhubaneswar, February 5–8, 2013 Proceedings 9; 2013: Springer.

 58. Oliva G, Setola R, Hadjicostis CN. Distributed k-means algorithm. arXiv Preprint arXiv:13124176. 2013.
 59. Benchara FZ, Youssfi M. A new scalable distributed k-means algorithm based on cloud micro-services for high-

performance computing. Parallel Comput. 2021;101: 102736.
 60. Datta S, Giannella C, Kargupta H. Approximate distributed k-means clustering over a peer-to-peer network. IEEE

Trans Knowl Data Eng. 2008;21(10):1372–88.
 61. Ding H, Liu Y, Huang L, Li J. K-means clustering with distributed dimensions. International Conference on Machine

Learning; 2016: PMLR.
 62. Farkas A, Kertész G, Lovas R. Parallel and distributed training of deep neural networks: a brief overview. 2020 IEEE

24th International Conference on Intelligent Engineering Systems (INES); 2020: IEEE.
 63. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.
 64. Akintoye SB, Han L, Zhang X, Chen H, Zhang D. A hybrid parallelization approach for distributed and scalable deep

learning. IEEE Access. 2022;10:77950–61.
 65. Diskin M, Bukhtiyarov A, Ryabinin M, Saulnier L, Sinitsin A, Popov D, et al. Distributed deep learning in open col-

laborations. Adv Neural Inf Process Syst. 2021;34:7879–97.
 66. Ben-Nun T, Hoefler T. Demystifying parallel and distributed deep learning: an in-depth concurrency analysis. ACM

Comput Surv (CSUR). 2019;52(4):1–43.
 67. Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, et al. Large scale distributed deep networks. In: Proceed-

ings of the 25th international conference on neural information processing systems - Vol. 1; Lake Tahoe, Nevada:
Curran Associates Inc.; 2012. p. 1223–31.

 68. Zhang S, Choromanska A, LeCun Y. Deep learning with elastic averaging SGD. In: Proceedings of the 28th interna-
tional conference on neural information processing systems - Vol. 1; Montreal, Canada: MIT Press; 2015. p. 685–93.

Page 20 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

 69. George J, Gurram P. Distributed deep learning with event-triggered communication. arXiv Preprint
arXiv:190905020. 2019.

 70. Kim S, Yu G-I, Park H, Cho S, Jeong E, Ha H, et al. Parallax: sparsity-aware data parallel training of deep neural net-
works. Proceedings of the Fourteenth EuroSys Conference 2019; 2019.

 71. Ye Q, Zhou Y, Shi M, Sun Y, Lv J. DBS: dynamic batch size for distributed deep neural network training. arXiv Pre-
print arXiv:200711831. 2020.

 72. Song Z, Gu Y, Wang Z, Yu G. DRPS: efficient disk-resident parameter servers for distributed machine learning. Front
Comput Sci. 2022;16:1–12.

 73. Sergeev A, Del Balso M. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv preprint
arXiv:180205799. 2018.

 74. Alqahtani S, Demirbas M. Performance analysis and comparison of distributed machine learning systems. arXiv
Preprint arXiv:190902061. 2019.

 75. Horvóth S, Ho C-Y, Horvath L, Sahu AN, Canini M, Richtárik P. Natural compression for distributed deep learning.
Mathematical and scientific machine learning: PMLR; 2022.

 76. Jia Z, Zaharia M, Aiken A. Beyond data and model parallelism for deep neural networks. Proceedings of Machine
Learning and Systems. 2019;1:1–13.

 77. Gandhi S, Iyer AP, editors. P3: distributed deep graph learning at scale. OSDI; 2021.
 78. Mirhoseini A, Pham H, Le QV, Steiner B, Larsen R, Zhou Y, et al, editors. Device placement optimization with rein-

forcement learning. International conference on machine learning; 2017: PMLR.
 79. Zhuang H, Wang Y, Liu Q, Lin Z. Fully decoupled neural network learning using delayed gradients. IEEE Trans

Neural Networks Learn Syst. 2021;33(10):6013–20.
 80. Huo Z, Gu B, Huang H. Decoupled parallel backpropagation with convergence guarantee. International Confer-

ence on Machine Learning; 2018: PMLR.
 81. Kim C, Lee H, Jeong M, Baek W, Yoon B, Kim I et al.: Torchgpipe: On-the-fly pipeline parallelism for training giant

models. arXiv Preprint arXiv:200409910. 2020.
 82. Narayanan D, Harlap A, Phanishayee A, Seshadri V, Devanur NR, Ganger GR, et al, editors. PipeDream: generalized

pipeline parallelism for DNN training. Proceedings of the 27th ACM symposium on operating systems principles;
2019.

 83. Chen C-C, Yang C-L, Cheng H-Y. Efficient and robust parallel dnn training through model parallelism on multi-gpu
platform. arXiv preprint arXiv:180902839. 2018.

 84. Lee S, Jha D, Agrawal A, Choudhary A, Liao W-K, editors. Parallel deep convolutional neural network training by
exploiting the overlapping of computation and communication. 2017 IEEE 24th international conference on high
performance computing (HiPC); 2017: IEEE.

 85. Wang M, Huang C-c, Li J.: Unifying data, model and hybrid parallelism in deep learning via tensor tiling. arXiv
preprint arXiv:180504170. 2018.

 86. Ono J, Utiyama M, Sumita E. Hybrid data-model parallel training for sequence-to-sequence recurrent neural
network machine translation. arXiv Preprint arXiv:190900562. 2019.

 87. Song L, Mao J, Zhuo Y, Qian X, Li H, Chen Y, editors. Hypar: towards hybrid parallelism for deep learning accelerator
array. 2019 IEEE international symposium on high performance computer architecture (HPCA); 2019: IEEE.

 88. Liu J, Wu Z, Feng D, Zhang M, Wu X, Yao X, et al. Heterps: distributed deep learning with reinforcement learning
based scheduling in heterogeneous environments. Fut Generat Computer Syst. 2023. https:// doi. org/ 10. 1016/j.
future. 2023. 05. 032.

 89. Yadan O, Adams K, Taigman Y, Ranzato MA. Multi-gpu training of convnets. arXiv Preprint arXiv:13125853. 2013.
 90. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun

ACM. 2017;60(6):84–90.
 91. Oyama Y, Maruyama N, Dryden N, McCarthy E, Harrington P, Balewski J, et al. The case for strong scaling in deep

learning: training large 3d cnns with hybrid parallelism. IEEE Trans Parallel Distrib Syst. 2020;32(7):1641–52.
 92. Povey D, Zhang X, Khudanpur S. Parallel training of DNNs with natural gradient and parameter averaging. arXiv

Preprint arXiv:14107455. 2014.
 93. Yu H, Yang S, Zhu S, editors. Parallel restarted SGD with faster convergence and less communication: demystifying

why model averaging works for deep learning. Proceedings of the AAAI conference on artificial intelligence; 2019.
 94. Cheatham T, Fahmy A, Stefanescu D, Valiant L. Bulks ynchronous parallel computing—a paradigm for transport-

able software. In: Zaky A, Lewis T, editors. Tools and environments for parallel and distributed systems. Berlin:
Springer; 1996.

 95. Mousavi SS, Schukat M, Howley E. Deep reinforcement learning: an overview. Proceedings of SAI intelligent
systems conference (IntelliSys) 2016:2;2018 Springer.

 96. Le N, Rathour VS, Yamazaki K, Luu K, Savvides M. Deep reinforcement learning in computer vision: a comprehen-
sive survey. Artif Intell Rev. 2022:1–87.

 97. Samsami MR, Alimadad H. Distributed deep reinforcement learning: an overview. arXiv preprint arXiv:201111012.
2020.

 98. Nair A, Srinivasan P, Blackwell S, Alcicek C, Fearon R, De Maria A, et al. Massively parallel methods for deep rein-
forcement learning. arXiv Preprint arXiv:150704296. 2015.

 99. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D et al. Playing atari with deep reinforcement
learning. arXiv Preprint arXiv:13125602. 2013.

 100. Asynchronous methods for deep reinforcement learning. In: Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley
T, et al. editors. International Conference on Machine Learning. PMLR; 2016.

 101. Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T, et al. editors. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. International Conference on Machine Learning. PMLR; 2018.

 102. Heess N, TB D, Sriram S, Lemmon J, Merel J, Wayne G et al. Emergence of locomotion behaviours in rich environ-
ments. arXiv Preprint arXiv:170702286. 2017.

https://doi.org/10.1016/j.future.2023.05.032
https://doi.org/10.1016/j.future.2023.05.032

Page 21 of 21Dehghani and Yazdanparast Journal of Big Data (2023) 10:158

 103. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy optimization algorithms. arXiv Preprint
arXiv:170706347. 2017.

 104. Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, Van Hasselt H et al. Distributed prioritized experience
replay. arXiv preprint arXiv:180300933. 2018.

 105. Espeholt L, Marinier R, Stanczyk P, Wang K, Michalski M. Seed rl: scalable and efficient deep-rl with accelerated
central inference. arXiv Preprint arXiv:191006591. 2019.

 106. Hoffman MW, Shahriari B, Aslanides J, Barth-Maron G, Momchev N, Sinopalnikov D et al. Acme: a research frame-
work for distributed reinforcement learning. arXiv Preprint arXiv:200600979. 2020.

 107. Dai H, Wu J, Wang Y, Xu C. Towards scalable and efficient deep-RL in edge computing: a game-based partition
approach. J Parallel Distrib Comput. 2022;168:108–19.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	From distributed machine to distributed deep learning: a comprehensive survey
	Abstract
	Introduction
	Related works
	Distributed machine learning algorithms
	Distributed classification
	Distributed boosting
	Distributed SVM

	Distributed clustering
	Consensus-based algorithm
	Distributed k-means
	Distributed deep learning
	Data parallelism
	Model parallelism
	Pipelining parallelism
	Hybrid parallelization

	Distributed deep reinforcement learning

	Conclusions and research directions
	Acknowledgements
	References

