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Introduction
Deep neural networks (DNNs) are widely used in computer vision, natural language pro-
cessing, speech recognition, and other fields [1, 2]. The most state-of-the-art DNN mod-
els like ResNet [3] and EfficientNet [4] currently mainly rely on manual design based on 
a common standard dataset, such as ImageNet. However, DNN models usually do not 
show high performance in many specific field tasks. In order to design a DNN with good 
performance, it is necessary to have extensive professional knowledge in both the DNN 
and the problem field being studied, which may not necessarily be applicable to every 
interested user [5]. To address the above issues, Automatic DNN architecture design 
technology is an efficient solution that can meet the needs of tasks in different fields [6]. 
This method is expected to significantly reduce labor costs and improve model perfor-
mance, promoting the application of DNN in other fields.
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In critical and sensitive domains, such as medical diagnosis and autonomous driving, 
there is an increasing demand for high-precision model. A single model often exhibits 
different recognition abilities in different categories, which makes it difficult to meet the 
required accuracy [7]. With the advancement of hardware performance, the applica-
tion of large-scale ensemble models is becoming more widespread. The ensemble model 
improves the accuracy and generalization ability of the model by utilizing multiple 
models to comprehensively consider the prediction results through joint learning and 
decision-making [8]. However, designing and optimizing the ensemble model requires 
in-depth learning of professional knowledge and skills, including model selection and 
ensemble method design, which affects its application in other fields [9].

This paper combines automatic DNN architecture design technology and ensemble 
model technology to achieve improved DNN performance. Automatic DNN architec-
ture design technology can automatically search and generate DNN models that are 
more suitable for specific tasks and domain requirements. Once multiple proposal opti-
mized DNN architectures are obtained, ensemble model technology can synthesize the 
prediction results of these models to achieve higher accuracy. However, the high redun-
dancy and nonconvexity of the parameters lead to many local optimal solutions (LOSs) 
for the DNN. Also, both low-quality and high-quality LOSs all have the same local prop-
erties [10, 11]. DNN training is usually realized by the first-order local solver [12]. One 
disadvantage of the local solver is that the gradients in different directions are uniformly 
scaled and may converge to a bad LOS [13, 14], resulting in poor generalization abil-
ity or inability to converge [15]. For the poor robustness of the training DNN method, 
the performance of the automatically designed DNN architecture cannot be adequately 
evaluated.

To solve the above problems, this paper proposes a novel three-layer ensemble model, 
termed consensus particle swarm optimization-assisted trajectory unified and TRUST-
TECH ensemble model (CPSOTJUTT-EM). This model is based on automatic DNN 
architecture design technology, with CPSOTJUTT algorithm as the core. The bottom 
layer of CPSOTJUTT-EM achieves stable and fast generation of high-quality DNN 
architecture. Through this design, the experts of non-deep learning fields can also design 
the most suitable DNN framework for different domain requirements, effectively pro-
moting the application of deep learning in other fields. The middle layer utilizes a three-
stage method for high-precision and robust DNN training to obtain candidate optimized 
DNN models. The top layer achieves higher performance ensemble model by ensem-
ble high-quality DNN models. The ensemble model can fully leverage the performance 
advantages of high-quality sub-DNN models, improving the overall accuracy and gener-
alization ability of the model.

The main contributions of this paper are:

1) The CPSOTJUTT-EM can robustly and automatically design a high-quality DNN 
architecture according to the application field without extended expertise in DNNs.

2) The CPSOTJUTT-EM constructs an ensemble model consisting of a diverse set of 
high-quality classification engines so that the ensemble model takes full advantage of 
each sub-DNN to maximize recognition accuracy. The generalization ability of the 
ensemble model is significantly improved.
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3) The CPSOTJUTT methodology with a strong theoretical basis can robustly converge 
to high-quality LOSs from random initial points.

4) The CPSOTJUTT methodology, which consists of the consensus-based PSO, TJU 
methodology, and the TRUST-TECH methodology, fully utilizes the global view of 
the consensus-based PSO, the robust convergence ability of TJU methodology, and 
the search ability of the TRUST-TECH methodology for higher quality LOSs.

Original contributions and novelties

The architecture of the proposed CPSOTJUTT-EM is given in Fig. 1.
Bottom layer: Automatically designs high-quality DNN architectures. The 

CPSOTJUTT methodology trains these DNN architectures and selects high-quality 
DNN classification engines. In this layer, the consensus-based PSO is used to solve 
the sensitivity of training DNN to the initial value, which can converge quickly to the 
optimal stability region.

Middle layer: Explore a diverse set of high-quality DNN classification engines via 
the CPSOTJUTT methodology. The CPSOTJUTT methodology can robustly con-
verge to the LOS and search for better ones nearby while maintaining its global search 
ability.

Top layer: Take the high-quality classification engines in the middle layer as a 
hidden node of the ensemble model, and apply the CPSOTJUTT methodology to 
strengthen the training to find the optimal combination of classification engines to 
further improve the identification accuracy and generalization ability.

Fig. 1 The architecture of the CPSOTJUTT‑EM for power line inspection
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Related work
Evolutionary neural network

Several methodologies have been proposed to automatically design DNN architec-
ture. NeuroEvolution of Augmenting Topologies (NEAT) [16] represents early pro-
gress in the development of small-scale network architecture, which inspires the 
research of neuroevolution based on DNN. The NEAT model and co-evolution of 
modules are combined in CoDeepNEAT [17].

The evolutionary algorithm uses an intuitive mutation operator to add layer struc-
ture, which makes the framework complex for a small network [18]. It has made 
remarkable achievements in the CIFAR dataset. AmoebaNet-A improves the tour-
nament selection evolutionary algorithm by adding an age property that favors the 
younger genotypes and surpasses hand designs for the first time [19]. The Genetic 
CNN algorithm [20] is a neuroevolutionary algorithm that optimizes connections 
between convolutional layers using mutation and cross-evolution. The algorithm 
can meet the design requirements of the DNN model in some fields to some extent. 
CNN-GA [21] effectively addresses the image classification tasks by designing a new 
encoding strategy for the GA to encode arbitrary depths of CNNs. Auto-evolutionary 
CNN (AE-CNN) [5] provides effective local search and global search ability through a 
crossover operator and a mutation operator and can design high-quality DNN archi-
tectures in the case of limited computing resources. CorrNet is a novel correlation- 
based pruning (CFP) approach, which creates a feature selection scheme to obtain the 
pruning approaches. This approach achieves accuracy gain while saving a significant 
amount of computational costs [22].

Deep neural network training methods

The existing DNN training methods mainly adopt the first-order gradient method and 
its variants. The optimization algorithm based on a first-order gradient has linear effi-
ciency in time and memory complexity and has achieved great success. Momentum 
Stochastic Gradient Descent (SGD) [12] pursues fast and stable convergence and is 
widely used for its simplicity and intuitiveness. However, the gradients in different 
directions are scaled uniformly, causing poor convergence when training sparse data. 
Therefore, the acceleration of SGD has attracted extensive research. Recently, some 
adaptive first-order optimization methods have been proposed to achieve rapid con-
vergence. Adagrad [23] accelerates DNN training by dynamically adjusting the learn-
ing rate based on the gradient. RMSprop [24] is an adaptive first-order optimization 
method that discards remote gradients by using an exponentially declining average 
of squared gradients. This method has a much lower computational cost than SGD. 
Adam [25] combines the advantages of Adagrad and RMSprop, which scale the gra-
dient by the square root of the accumulative square gradient to achieve fast conver-
gence. Adam has become the default optimization algorithm for many DNNs due to 
its rapid convergence [26]. However, due to the sensitivity to initialization and hyper-
parameters, these optimization methods may converge to sub-optimal local optimal 
solutions, resulting in worse generalization ability [10].
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Deep neural network ensemble

The degree of DNN training has a significant impact on the accuracy and generali-
zation ability of image classification. Insufficient DNN training will result in the low 
accuracy of hard examples, and overtraining will result in the poor generalization 
ability of easy examples, especially for the class imbalanced dataset [27, 28]. Cas-
cade structure improves the recognition accuracy of a DNN, but high model capacity 
will lead to overfitting. The ensemble model of a DNN is the optimal combination 
of diverse high-quality sub-DNNs, which can fully exploit of the recognition ability 
of any sub-DNN [29]. Plantdiseasenet uses the majority voting ensemble model to 
detect plant pests in the early stage of disease, and the results show that the proposed 
model has reached or exceeded the latest result [30]. The ensemble model of a DNN 
can obtain better accuracy and generalization ability than each sub-DNN [27].

Power system inspection

As an indispensable infrastructure in modern society, the stable operation of the power 
system is crucial to the development of social economy and the normal conduct of peo-
ple’s lives. In order to ensure the safe and reliable operation of the power system, regular 
power system inspections are particularly important.

Power line insulator inspection is a regular assessment of the status of insulators on 
power transmission lines to ensure the stable and safe operation of the power system. 
Literature [31] proposes a power insulator inspection algorithm based on deep learning 
to eliminate the impact of complex power environments on detection accuracy. Power 
system substation inspection can promptly detect potential equipment failures and take 
maintenance measures to ensure the safe operation of the power grid. Literature [32] 
proposes a detection algorithm based on improved YOLO v5. A backbone with a unique 
attention mechanism was designed to extract more accurate feature maps. Solved the 
pain point of lack of detection accuracy in unmanned substations. Power line obstacle 
inspection can identify potential risks and take timely measures to ensure the normal 
operation of transmission lines. Literature [33] proposed an object detection algorithm 
based on R-CNN to ensure the safety of power lines.

The automatic DNN architecture design using CPSOTJUTT for power system inspec-
tion method proposed in this article improves the accuracy and generalization ability of 
power system inspection. Solved the problems faced by power system inspection, such 
as multiple inspection scenarios, low accuracy of general single models, and high dif-
ficulty in designing specialized models. In the future, we will conduct research on more 
advanced deep design network models such as deep learning with prior knowledge [34, 
35] to further improve the performance of the proposed methods.

The CPSOTJUTT methodology
The CPSOTJUTT methodology, which consists of the consensus-based PSO, TJU meth-
odology, and Trust-Tech methodology, can converge robustly to high-quality LOSs from 
random initial points. The CPSOTJUTT methodology is the core of CPSOTJUTT-EM 
and fully utilizes the global view of the consensus-based PSO, the robust convergence 
ability of the TJU methodology, and the search ability of the TRUST-TECH methodology 
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for higher quality LOSs. The pseudocode of the CPSOTJUTT methodology is shown in 
Algorithm 1.

The architecture of the CPSOTJUTT methodology is as follows:
Stage I: Exploration and Consensus: The positions of the DNN are updated by PSO 

until PSO is terminated when all the particles have reached a consensus. The three opti-
mal particles in the consensus region and the weight center point are also selected as the 
initial points of the next stage.

Stage II: Robust Convergence: We use TJU methodology and a local solver to robustly 
converge to a high-quality LOS from the representative particles selected in the previous 
stage.

Stage III: Search Optimal: TRUST-TECH methodology is applied to effectively jump 
out of the stability region of the SEP found in stage II, enter the stability region of neigh-
boring SEPs, and obtain multiple high-quality LOSs in a tier-by-tier search manner.

Algorithm1 Pseudocode of the CPSOTJUTT methodology.

1:
Initialize the particle swarm, best position pbest, and the 
global best position of the swarm gbest.

2: repeat
3: Update the position PK and velocity VK of the swarms. 
4: Update the pbest and gbest. 
5: If not consensus, then
6: Execute mini-batch k-means clustering the particles.
7 End If
8: until the consensus-based PSO is satisfied.

9:
The TJU methodology and local solver are used as the local 
solver to locate the LOSs.

10: Search the better LOSs by the TRUST-TECH methodology.
11: Output the high-quality sub-DNN.

CPSOTJUTT stage I: exploration and consensus

The DNN is a regularized version of a multi-layer perceptron with a multi-layer network 
structure, and its performance is usually evaluated by. The goal of optimal DNN training 
is to reduce cross-entropy (CE) loss function as much as possible, or even approach 0 
infinitely:

where x is the input data, C is the number of classification objects, tij is the one-hot value 
of the class, pij is the probability that sample i belongs to class j , and N is the size of the 
Mini-Batch.

In this stage, the global search ability of PSOs is used to assist the robust convergence 
of the local solver. To this end, we introduce a consensus-based PSO to locate optimal 
converge regions in the search space that contain high-quality LOSs.

All particles exchange information with the personal best position and the global best 
position at each step of the PSO. The update of the particle is the combination of the 
original position and velocity, which can be described as follows:

(1)h(x) = −
1

N

N
∑

i=1

C
∑

j=1

tij log(pij)
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where ω is the weight of the DNN. C1 , C2 are learning factors, respectively. R1 , R2 are 
random numbers distributed between 0 and 1. pbest is the personal best position, while 
gbest is the global best position.

The updated personal position is calculated by (3).

However, the PSO lacks a global view and fast convergence ability in the later stage 
of DNN training [36]. To solve the problem of the computational burden of a PSO, we 
adopt a consensus-based PSO.

The CPSO can locate optimal convergence regions in the search space that contains 
high-quality LOSs by exchanging information with the personal best position and the 
global best position [36, 37]. As shown in Fig. 2, all particles will reach a consensus state 
by converging into one or more regions.

We use mini-batch K-Means [38] to cluster all the particles into several groups at each 
fixed interval. The mini-batch k-means method can reduce the calculation order of mag-
nitude and has a better clustering performance in high-dimensional optimization prob-
lems. The following is the stopping criterion of the consensus-based PSO:

• In the subsequent 5 generations of CPSO, the members of particle groups did not 
change.

Numerical studies indicate that all particles have good global search ability in the 
early stage. With the exchange of information among all particles, the global search abil-
ity decreases gradually, while the local search ability increases. The PSO algorithm has 
global optimal particles and more diversity in the consensus state, with a lower compu-
tational cost. Thus, we select representative particles in each particle group as the initial 
point for the next stage of CPSOTJUTT.

CPSOTJUTT stage II: robust convergence

When stage I is completed, the methodology enters stage II, which is the robust con-
vergence stage, as shown in Fig. 3. At this stage, we use the representative particles 
selected in the previous stage as the initial points w0 and use the TJU methodology for 
robust convergence. The TJU methodology has fast and robust convergence during 

(2)
VK = ωVK−1 + C1R1(pbest − PK−1)

+C2R2(gbest − PK−1)

(3)PK = PK−1 + VK

Fig. 2 Process for CPSO to reach a consensus state
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the early phase but slows down in the late phase. Therefore, the local solver (such as 
SGD, Adam) is used to enhance convergence after the TJU methodology.

TJU constructs a dynamical system based on the DNN such that LOSs of the DNN 
is mapped into SEPs of the dynamical system. Then, by starting from the representa-
tive initial point selected in the previous stage, the ensuing trajectory will enter the 
stability region of the SEP. The following is the nonlinear system of (1):

where h is the loss of the DNN, w is the weight, x is the input data, and N is the size of 
the mini-batch.

The key of TJU methodology is to construct an effective dynamical system corre-
sponding to the nonlinear system (4) and solve for solutions of (1) via the dynamic 
trajectories of the constructed nonlinear dynamical system, which can be described 
as follows:

where ∇F(w) is the gradient of F(w) . When σ = 1 , this is the Focal Loss used by [39]. 
The system fully considers the gradient information and loss information of the deep 
neural network model, and mainly focuses training on a sparse set of hard examples.

We apply a technique called the pseudo-transient continuation method (PTC) to real-
ize fast calculation of the steady-state solution. This method can be explained as follows:

where w is the weight value, I is the unit matrix, d is the time step, and D is the Jacobian 
of dynamical system (5).

The training speed can be accelerated with the correction of the dynamical system 
search direction.

The PTC methodology can reliably compute a small-scale deep neural network 
model. To improve the scalability of the TJU methodology and train a large-scale 

(4)F(w, x) =











h(w, x1)

h(w, x1)

...

h(w, xM)











,w ∈ RN

(5)ẇ = −α · ∇F(w)T · F(w)

(6)w = w − (I
/

δ − D)−1ẇ

(7)δi = δi−1 ·
�(ẇn−1)�

2

�(ẇn)�
2

Fig. 3 TJU is used to robustly and accurately compute a LOS. A1 and A2 are stability regions of TJU and the 
local solver, respectively
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DNN model, the Block-Diagonal-Pseudo-Transient-Continuation (BD-PTC) method 
is proposed to find the search direction D (D is a 1 × n matrix) [40]:

where dt = (I/δ− Dt)
−1ẇ  is the corrected update direction. The st = D−1

t−1ẇt and 
yt= ẇt+1 − ẇt , θt ∈ Rn denote the parameter to be optimized, ẇt ∈ Rn is the dynamical 
system at θt , ηt denotes the step size, and tr denotes the trace operator. Diag(s2t ) is the 
diagonal matrix with diagonal elements from the vector st.

Take the last (Nth) iteration of the BD-PTC methodology as the initial point and apply 
a local solver to locate a LOS for problem (1).

The following describes the pseudocode of CPSOTJUTT Stage II:

CPSOTJUTT stage III: search optimal

The TRUST-TECH methodology can effectively jump out of the stability region of the 
SEP found in stage II, enter the stability region of neighboring SEPs, and obtain multiple 
SEPs in a tier-by-tier search manner. This stage has a strong theoretical basis [41].

An intuitive description of the TRUST-TECH methodology is shown in Fig. 4, where 
wi,j represents different SEPs, i represents the number of tiers of SEPs, and j represents 
the number of SEPs in this tier. The key steps of the TRUST-TECH methodology are 
detailed as follows:

(8)Dt+1 = Dt − ηt+1
sTt yt − sTt Dtst

tr(s4t )
Diag(s2t )
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Step 1 Starting from w0 , step outward in the direction of jumping out of this stability 
region until the exit point on the stability boundary is reached.
Step 2 Enter the adjacent stability region from the exit point and locate Tier-1 of the 
stability region.
Step 3 Locate multiple SEPs on Tier-1 by adjusting the direction of jumping out of w0.
Step 4 Repeat steps 1–3.

Note that the exit point on the stability boundary refers to the point where the loss value 
changes from ascending gradually to descending steadily, indicating that the trajectory has 
entered the stability region of another SEP. There is a non-empty intersection point set 
between the stability boundaries of each tier of SEPs, i.e., the exit point set.

Next, we will describe in detail how the trajectory moves during TRUST-TECH meth-
odology. First, we use a local solver to get a first (Tier-0) SEP w0 . Then we define a trainable 
search direction gi , and the parameter vector wi can be updated by the following equation:

where ρ1(i) ∈ (0, ρmax) is a learning rate away from w0 , increasing from 0 to ρmax.
When gi is fixed, the search direction of the parameter vector wi is fixed. However, in the 

face of high-dimensional large-scale models, the probability of finding the exit point along 
the fixed search direction is very low. Therefore, we adjust the direction gi by the following 
gradient descent equation:

where ρ2 is the learning rate for the adjustment, and ∇giF(wi) is the gradient of the loss 
function F(w, x) w.r.t. gi.

When the exit point is found or ρ1 increases to ρmax , the trajectory stops moving and 
the local solver is called up again to find a new (Tier-1) SEP from the exit point.

(9)wi = w0 + ρ1(i)gi

(10)gi + 1 = gi − ρ2 · ∇gi
F(wi)

Fig. 4 Schematic diagram of search path of the TRUST‑TECH methodology
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Theoretical basis
The stability region

The solution of the deep neural network (1) starts from we ∈ RN at t = 0 is called a tra-
jectory and denoted as φ(·,w0) . Define we ∈ RN as equilibrium point of (1) if ẇ|we = 0 . 
An equilibrium point is a degenerate trajectory. For every ǫ > 0 , there is a δ > 0 such 
that �w0 − we� < δ implies �φ(t,w0)− w0� < ǫ , t > 0 , then we is stable. A(we) is defined 
as the stability region of SEP we , and in this region, all trajectory converges to the we.

If the real part of the eigenvalue of the Jacobian matrix ∇F(we) is not 0, then the equi-
librium point we is termed hyperbolic [42]. Furthermore, the real parts of the eigenvalue 
of ∇F(we) have exactly k positive, and we is a type-k hyperbolic equilibrium point. A 
type-k equilibrium point is unstable for all k ≥ 1 . Given a type-k equilibrium point we , its 
stable manifold Ws and unstable manifold Wu are defined by:

Observe that Ws(we) = A(we) when we is a type-0 equilibrium point.
A comprehensive theoretical work in characterizing the stability region and the stabil-

ity boundary has been developed [42–45]. If the quotient gradient system (5) satisfies the 
following assumptions, then its stability boundary can be fully characterized.

A1) All the equilibrium points on the stability boundary are hyperbolic.
A2) The stable and unstable manifolds of equilibrium points on the stability bound-
ary satisfy the transversality condition.
A3) Every trajectory on the stability boundary approaches one of the equilibrium 
points as t → ∞.

Remark: Assumption A1) is a general property of quotient gradient system (3) and 
may be verified for a specific system by directly computing the eigenvalues of the corre-
sponding Jacobian matrix of the vector field. Assumption A2) is also a general property, 
but it is difficult to be check. Although assumption A3) is not a general property, it can 
be checked in many systems using the V-function or direct analysis.

Theorem 1 (Characterization of the Stability Boundary) [42]: Consider a nonlinear 
dynamical system (5) that satisfies assumptions A1) and A3). Let we

i  , i ≥ 1 be the equilib-
rium points on the stability boundary ∂A of a SEP, say ws.

Then, the stability boundary is completely characterized as follows:

(11)A(we) =

{

w ∈ Rn : lim
t→∞

ϕ(t,w) = we

}

(12)
Ws(we) =

{

w ∈ Rn : lim
t→∞

ϕ(t,w) = we

}

Wu(we) =

{

w ∈ Rn : lim
t→−∞

ϕ(t,w) = we

}

(13)∂A(ws) =
⋃

i≥1

Ws(we
i ).
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This theorem asserts that the stability boundary of a class of nonlinear dynamical sys-
tems satisfying assumptions A1) and A3) can be completely characterized and it equals 
the union of the stable manifolds of the equilibrium points on the stability boundary.

We note that in solving problem (1), the following sequence of unconstrained optimi-
zation problems are solved instead [46, 47]:

We define the following nonlinear dynamical system:

Two important properties of system (15) are to be explored in the following to com-
pute multiple LOSs of the general nonlinear optimization problem (1). These two prop-
erties are examined as follows.

Complete stability

Theorem 2 (Complete Stability) [43, Section IV]: Every trajectory of quotient gradient 
system (15) converges and all converge to an equilibrium point. In addition, almost every 
trajectory converges to a SEP of (15).

This theorem states that every trajectory converges to an equilibrium point, indicating 
that the system behavior is simple and does not allow complex trajectory behavior [45]. 
The trajectory must converge to an equilibrium point of (15) from an initial point.

Furthermore, every trajectory converges to SEPs except for the trajectory glow on the 
stable boundary, which converges to an unstable equilibrium point. In addition, we also 
need to prove that the trajectory of (15) converging to a SEP is equivalent to solving a 
LOS for problem (1). The next section determines this through the equivalence relation-
ship between the LOSs of (1) and the SEPs of (15).

Equivalence relations

Theorem  3 (Equivalence Relations): Consider the nonlinear optimization problem 
(1), which corresponds to the nonlinear dynamical system (15) and satisfies assumptions 
A1) and A2). Then, the following properties hold.

1) If w∗ is a local optimal solution of (1), then w∗ is a stable equilibrium point of system 
(15).

(14)min
w

F(w, x) = F(w, x) =











h(w, x1)

h(w, x2)

...

h(w, xM)











,w ∈ RN

(15)

ẇ = −α · ∇F(w)T · F(w)

= −α











∇wh(w, x1)

∇wh(w, x2)

...

∇wh(w, xM)











T









h(w, x1)

h(w, x2)

...

h(w, xM)











,w ∈ RN
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2) If w∗ is a stable equilibrium point of (15), w∗ is a local optimal solution of (1).

Proof: 1) Given the w∗ as a LOS, clearly ∇WF(w∗, x) = 0 , by (14). For system (15):

Since w∗ is a local optimal solution, there exists a vector d dT∇2
wwF(w

∗, x)d > 0 [48]. It 
needs to be proven that w∗ is a hyperbolic SEP. Consider the Jacobian of ∇wF  in (15):

Next, we show that the quadratic form J (w, x)=̇wT J (w∗, x),w > 0 , for ∀(w, x) �= 0 . Let

Clearly, J (w, x) = P(w, x).
By the above-verified claim, the quadratic form J (w, x) = wT J (w∗, x)w = P(w, x) , which 
shows all J (w∗, x) = P(w, x) > 0 for all w  = 0 . For J (w∗, x) is symmetric, J (w∗, x) is a 
positive definite square matrix, and the characteristic values of J (w∗, x) are all positive 
real numbers. Therefore, w∗ is a type-0 and the hyperbolic equilibrium point of (15), due 
to ∇w(−∇wF) = −J (w∗, x) , when w = w∗ . So, 1) is proved.

Proof: 2) First, we claim that w∗ is a feasible point of the problem (1), w∗ ∈ S. Given the 
SEP w∗ of (15), thus ∇wF(w

∗, x) = 0 . Then, w∗ is a LOS of (1), such that w∗ is a feasible 
point of (1).
w∗ is a (hyperbolic) SEP of (15). Therefore, w∗ is an isolated local minimum 
point of F(w, x) [43]. Then, define � ⊆ RN+M as a neighborhood of w∗ , such that 
F(w∗, x) < F(w, x) , for ∀(w, x) ⊆ � with w  = w∗ . A neighborhood Uw∗ ⊆ RN+M of w∗ 
exists such that:

Hence, there exists a neighborhood Uπ
w∗ ⊆ Uw∗ of w∗ . Or, let (wπ , x) ∈ Uπ

w∗ ∩ S ⊆ π . 
Then,

where wπ ∈ Uπ
w∗ ∩ S , wπ  = w∗ . Therefore w∗ is a local optimal solution for problem (1). 

Thus, assertion 2) is proved.

So far, the equivalence relationship between the LOSs of (1) and the SEPs of (15) 
has been proved. This is the key to ensuring the effectiveness of the CPSOTJUTT 
methodology.

(16)

ẇ = −α · ∇F(w)T · F(w)

= −α
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∇wh(w, x2)

...

∇wh(w, xM)











T









h(w, x1)

h(w, x2)

...

h(w, xM)











= 0,w ∈ RN

(17)J(w,x)=∇2
wwF(w,x)

(18)P(w, x) = wT ∇2
wwF(w

∗, x)w

(19)Uw∗ =̇{w; w ⊆ Uw∗} ⊆ �

(20)h(w∗) < h(wπ )
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CPSOTJUTT‑based ensemble model
This paper develops a three-layer ensemble model of CPSOTJUTT-EM for automati-
cally designing and training DNN architectures for power line inspection, as shown in 
Fig. 1. The pseudocode of CPSOTJUTT-EM is shown in Algorithm 3.

Algorithm 3 Pseudocode of the CPSOTJUTT-EM.

1:
Initialize the population, the number of individuals is N, 
generation is T, define the fitness function f(x), minimum 
is ε :

2: for j=1 to epoch do
3: Select the population.
4: Crossover, mutation operation.

5: Calculate the fitness function f(x). Search for the optimal 
solutions by CPSOTJUTT.

6: Update the evolutionary population.
7: If ∆f (x) < ε then
8: break
9: end for 

10: Output the optimal individual (sub-DNN).
11: Use the optimal particle to generate an ensemble model.
12: Train the ensemble model weights by CPSOTJUTT.

In this paper, the CPSOTJUTT-EM is developed to enhance the performance of 
automatically designed DNN architectures in two aspects:

1) Enhance the robustness of the DNN training method by applying the CPSOTJUTT 
to efficiently build multiple high-quality classification engines with different DNN 
architectures.

2) Improve the generalization ability through the ensemble model by applying the 
CPSOTJUTT methodology to build an effective ensemble of multiple members to 
achieve a higher accuracy and generalization ability in power line inspection.

Bottom layer: design the DNN architecture

In this layer, the genetic algorithm (GA) is used to design high-quality DNN archi-
tectures stably and quickly. Similar constructive strategies of DNNs have been widely 
studied and achieved satisfactory results [21]. We provide binary code representation 
of a DNN architecture for the GA method and automatically designed high-quality 

Fig. 5 Binary code representation of DNN architecture
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DNN architectures to serve as the fundamental DNN for the subsequent stages. The 
binary code representation of the DNN architecture is shown in Fig. 5.

The encoding area begins with the second convolutional layer and represents the con-
nection between the current and previous convolutional layers: 1 indicates that there is 
a connection, while 0 indicates that there is no connection. There is a fixed input node 
and an output node in each stage. Besides the convolutional layer, there are also batch 
normalization and ReLU, which are proven to play a positive role in DNN training. Fully 
connected parts are preset.

The model designed through automatic DNN architecture algorithm usually needs to 
be further customized according to the requirements of specific tasks. For classification 
model, it is usually necessary to add a fully connected layer at the end of the network, 
followed by a SoftMax layer, in order to output classification tasks. The fully connected 
layer is responsible for converting the feature maps extracted by the convolutional layer 
into the final classification results.

For object detection model, a common method is to use region proposal network 
(RPN) to generate candidate object regions, and then require a region of interest (RoI) 
pooling layer to extract fixed size feature representations from region proposals of differ-
ent sizes for input into classification and regression. On the basis of the automatic DNN 
architecture design algorithm, the RPN layer can be added at an appropriate location to 
achieve object detection.

However, the method of DNN training is very sensitive to the initial points, so the true 
capacity of the designed DNN architecture is difficult to verify by a single training. The 
CPSOTJUTT methodology proposed in this paper can quickly and robustly train and 
select the high-quality DNN architecture designed by the GA algorithm.

Middle layer: build diverse optimal DNN classification engines

In this layer, based on the optimal DNN architecture designed from the bottom layer 
and the corresponding initial guess w*, the CPSOTJUTT methodology proposed in this 
paper explores a set of diverse optimal DNN classification engines:

where w ∗ is the initial guess of the consensus state reached by CPSO in the bottom layer.
Stage II of the CPSOTJUTT methodology proposed in this paper quickly and robustly 

converges to the SEP (Tier-0) from w*. Then we use the TRUST-TECH methodology to 
jump out of the current region, enter the stability region of neighboring SEPs, and obtain 
multiple SEPs in a tier-by-tier search manner.

We apply the CPSOTJUTT methodology to train these DNN architectures to obtain 
high-quality DNN classification engines in the middle layer.

Top layer: the DNN‑based ensemble model

In this layer, diverse high-quality DNN classification engines from the middle layer are 
used as the hidden nodes of the ensemble model, and the CPSOTJUTT methodology 
is used for training to find the weight σ . The final output of the ensemble model is as 
follows:

(21)min F(w)|x
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where x is the input data, tic is the one-hot value of the class, σjc is the weight of the 
c-th classification of the j-th sub-DNN, and pjc is the probability that sample i belongs to 
class c by the j-th sub-DNN, N is the size of Mini-Batch, C is the number of classes, and 
M is the number of sub-DNN for the ensemble model.

The structure diagram of the classification ensemble model is shown in Fig. 6. In the fig-
ure, F is different feature extractor automatically designed by the automatic architecture 
algorithm, FC is the fully connected layer and SM is the SoftMax layer.

The ensemble function of the object detection ensemble model adopts the weighted 
bounding box fusion method. Assuming that the data of the bounding box is stored in set 
B . Bc contains a bounding box labeled c . Fc is the ensemble result of bounding boxes in Bc , 
represented as 

(

s, xtl , xbr , ytl , ybr
)

 . When the bounding box of the jth sub-DNN is added to 
Bc , the confidence level of the ensemble bounding box Fc is recalculated as:

where, N represents the total number of bounding boxes contained in Bc , and Ak is one 
of the bounding boxes, namely 

(

s, xtl , xbr , ytl , ybr
)

.
The coordinates of the ensemble bounding box are updated as follows:

(22)h(x) = −
1

N

N
�

i=1

C
�

c=1

tic log





M
�

j=1

σjcpjc





(22)Fc =

∑

Ak∈Bc
Ak(s)

s1 + s2 + · · · + sN

(23)
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�
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Fig. 6 Structure diagram of classification ensemble model
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where, s2 = Ak(s) is the confidence value of Ak.
The structural diagram of the object detection ensemble model is shown in Fig. 7.
As shown in Fig.  7, F is the backbone network automatically designed by the auto-

matic architecture algorithm, RPN is the Region Proposal Network (RPN), RoI is region 
of interest, N is the network block composed of convolutional layers, C is classification 
prediction, and B is boundary box prediction.

In this layer, the ensemble model composed of diverse high-quality DNN model 
achieves higher performance than single model in the middle layer. The ensemble model 
is an optimal combination of diverse high-quality DNN model, which can fully exploit 
the advantages of each sub-DNN, and further improve the overall accuracy and generali-
zation capability.

The execution process of the CPSOTJUTT-EM is relatively complex. In order to 
clearly display the execution status of each algorithm, we have created a flowchart, as 
shown in Fig. 8.

Experiment
With the increasing dependence of society on electricity, ensuring the continuous power 
supply of the power system has become an important component of power supply guar-
antee. Power system inspection is a key measure to ensure the stable and safe operation 
of the power system [49–51]. With the rapid development of information technology, 
new technologies such as unmanned aerial vehicle (UAV) inspection and robot inspec-
tion have gradually replaced traditional manual inspection method [52], bringing new 
opportunities for power system inspection. At the same time, deep learning (DL) has 
made rapid progress in computer vision technology, especially in the fields of power line 

Fig. 7 Structure diagram of object detection ensemble model
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object detection and defect recognition, where computer vision technology has been 
widely applied [53]. The application of deep learning technologies provides more effi-
cient and accurate methods for power system inspection, further improving the safety 
and reliability of power system operation [54, 55]. The examples of the power system 
inspection object are shown in Fig. 9.

In this paper, three self-made power system inspection datasets are independently 
developed for the three key areas of power system inspection, these datasets still meet 
the requirements for classification model testing and object detection model testing:

Power Line Insulator Inspection Dataset: Power line insulator inspection dataset 
(PLIID) made in this study consists of 60,000 color images of insulator defects, includ-
ing 4 classes of defects: ceramic insulator edge loss, ceramic insulator middle loss, glass 
insulator edge loss, glass insulator middle loss.

Power System Substation Inspection Dataset: Power system substation inspec-
tion dataset (PSSID) consists of images of internal equipment defects in power system 

Fig. 8 The flowchart of the CPSOTJUTT‑EM



Page 19 of 30Lv et al. Journal of Big Data          (2023) 10:150  

substations, including 9 classes of color images: suspended matter, component oil con-
tamination, bird nests, ground oil pollution, metal corrosion, meter inspection, oil seal 
damage, silicone discoloration, dial blurriness.

Power line obstacle inspection dataset: Power line obstacle inspection dataset (PLOID) 
is composed of images of obstacles along the power line, which contains 10 classes of 
color images: forklift, crane, wire foreign object, tipper, wildfires, smog, Cement pump 
trucks, tower cranes excavator and other construction machinery.

To evaluate the effectiveness of the proposed framework, we also conduct numerical 
experiments on public datasets CIFAR-10 and CIFAR-100, and discuss the proposed 
results.

Public dataset and server configuration

MNIST: The handwritten dataset, commonly known as MNIST, is a fundamental bench-
mark dataset extensively utilized in the field of machine learning and computer vision. It 
comprises a collection of grayscale images, each representing a handwritten digit from 0 
to 9. With a total of 70,000 examples, it is divided into a training set of 60,000 images and 
a testing set of 10,000 images.

CIFAR: CIFAR is a picture classification dataset that includes CIFAR-10 and CIFAR-
100. The CIFAR-10 dataset contains 60 k 32 × 32 color images divided into 10 classes, 
each with 6 k images. The CIFAR-100 dataset contains 60 k 32 × 32 color images divided 
into 100 classes, each with 600 images.

Server configuration: We use four servers to evaluate the model proposed in this 
paper: Intel CPU Core (2.67 GHz) and eight GeForce RTX 2082TI GPUs. The software 

Fig. 9 Examples of the power system inspection object
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framework is Pytorch, and the operating system is Linux Ubuntu 18.04. We also use 
python and its CPU plug-in for a test.

Convergence verification of CPSOTJUTT methodology

We train many initial points and use the filter-normalized random direction method to 
draw the landscape around the LOSs, as shown in Fig. 10. To see convergence regions, 
the results are shown as contour plots rather than surface plots.

In the experimental setup to understand the influence of initial points on convergence, 
we carefully adjusted the SGD method to train the lenet-5 network with a random initial 
point. The dataset is the handwritten dataset MNIST, and the experiment was repeated 
100 times, as shown in Fig. 11.

There are obvious boundaries according to different test accuracies of a DNN trained 
by the local solver and CPSOTJUTT methodology, as shown in Fig. 11. We have statis-
tics on the number of convergence regions with various test accuracies, and the time 
used for SGD is calculated at 20 epochs, and CPSOTJUTT is calculated at 20 epochs 
after reaching or over consensus, as shown in Table 1.

Figure 11 and Table 1 show that when SGD is applied to train the DNN, 18% of the 
initial points converge to the optimal convergence region, and each convergence region 
has obvious boundaries. The CPSOTJUTT methodology has better global convergence 
ability, and 83% of the initial points converge to the optimal convergence region. The 
CPSOTJUTT methodology with an over consensus state did not achieve better results 
while increasing the time cost.

Test results of the CPSOTJUTT‑EM on the CIFAR

To evaluate the effectiveness of our proposed CPSOTJUTT-EM model, we first tested 
the automatic architecture design algorithm. The experiment aims to verify the perfor-
mance of the proposed automatic architecture design algorithm in image classification 
tasks.

Fig. 10 2D visualization of the loss surface of DNN
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We selected some the peer competitors and divided them into three different cat-
egories. The first category covers the most advanced manually designed architectures 
(MD) DNN models, including ResNet [3], DenseNet [56], VGG [57]. Specifically, we 
used two different versions of ResNet in the experiment, namely ResNet-101 and 
ResNet-1202. The second category includes DNN architecture design algorithms with 
semi-automatic (SM) methods, such as Genetic CNN [20], Hierarchical Evolution 
[58], EAS [59], and Block QNN-S [60]. The third category covers methods for fully 
automated (FA) design methods, including large-scale evolution [18], CGP-CNN [61], 
NAS [59], and AE-CNN [21]. The experiment selected two widely used image classifi-
cation benchmark datasets, namely CIFAR10 and CIFAR100.

To maintain fair comparison, we followed the parameter settings commonly used by 
the peer competitors. The population size and the number of generations are all set to 
20, and the probabilities of crossover and mutation are set to 0.9 and 0.2, respectively. 
In addition, we set the parameters of the SGD optimizer, including momentum 0.9, 
learning rate 0.01 and d the learning rate is decayed by a factor of 0.0005, according to 
the conventions of competitors.

In this article, to evaluate the computational complexity, the indicator “GPU 
days” was used. The calculation method for GPU days is obtained by multiplying 
the number of GPU cards used by the number of days executed to find the optimal 

Fig. 11 Test results of a DNN trained by the local solver and the CPSOTJUTT methodology. a The well‑tuned 
SGD method. b The CPSOTJUTT method. c The CPSOTJUTT methodology with over consensus

Table 1 Statistics on the number of stability regions with various test accuracies

Accuracy < 0.65 [0.65,0.75) [0.75,0.85) [0.85,0.95) [0.95,1] Time

Frequency (Local solver) 15 19 12 36 18 17.7 h

Frequency of CPSOTJUTT 2 1 5 9 83 19.6 h

Frequency (Over consensus) 1 2 6 9 82 21.4 h
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architecture. We refer to the optimal model generated by the automatic architecture 
algorithm as CPGA-DNN. According to the experimental results, the performance of 
the proposed CPGA-DNN algorithm is superior to manually designed state-of-the-
art CNN models on the CIFAR10 and CIFAR100 datasets. The results are shown in 
Table 2, CIFAR10 and CIFAR100 represent the test error of the model on this dataset, 
unit: %.

Specifically, on the CIFAR10 and CIFAR100, compared to manually designed 
architectures, the CPGA-DNN exhibits lower test errors. Although the parameter 
size of CPGA-DNN on CIFAR10 is relatively large compared to ResNet-101 and 
DenseNet-40, the increase in computational complexity is not significant for exist-
ing hardware devices. Compared to semi-automatic competitors, CPGA-DNN exhib-
its superior performance on CIFAR10 and CIFAR100, surpassing algorithms such 
as Genetic CNN, EAS, and Block QGS-S. Although Hierarchical Evolution slightly 
leads CPGA-DNN on CIFAR10, CPGA-DNN only consumes 1/14 of the GPU days 
required for Hierarchical Evolution. In fully automated competitors, CPGA-DNN 
performs best on the CIFAR10 and CIFAR100 datasets, with better test error, num-
ber of parameters, and GPU days than other methods, including Large-scale Evolu-
tion, CGP-CNN, NAS, and AE-CNN. On the CIFAR10 and CIFAR100, the test errors 
of CPGA-DNN were 3.67% and 16.55%, respectively. These results demonstrate the 
superiority and efficiency of our proposed automatic architecture design algorithm 
in designing DNN architectures, providing a more reliable and efficient automation 
method for solving image classification problems.

The above experiments show that the capability of a DNN architecture may not 
be fully exhibited given that local solvers may converge to bad LOSs, and thus high-
quality DNN architectures are missed. We evaluate the robustness of CPSOTJUTT 
in automated DNN architecture design. And recorded the best network architecture 
(BNA), as shown in Table 3.

Table 2 Comparisons between the proposed algorithm and the state‑of‑the‑art peer competitors

Model CIFAR10 CIFAR100 #Parameters GPU days Categories

DenseNet‑40 (k = 12) 5.24 24.42 1.0 M – MD

ResNet‑101 6.43 25.16 1.7 M – MD

ResNet‑1202 7.93 27.82 10.2 M – MD

VGG 6.66 28.05 20.01 M – MD

Genetic CNN 7.1 29.05 – 17 SM

Hierarchical Evolution 3.63 – – 300 SM

EAS 4.23 – 23.4 M 10 SM

Block‑QGS‑S 4.38 20.65 6.1 M 90 SM

Large‑scale Evolution 5.4 – 5.4 M 2750 FA

Large‑scale Evolution – 23 40.3 2750 FA

CGP‑CNN 5.98 – 2.64 M 27 FA

NAS 6.01 – 2.5 M 22,400 FA

AE‑CNN 4.3 – 2 M 27 FA

AE‑CNN – 20.85 5.4 M 36 FA

CPGA‑DNN 3.76 – 1.56 M 22 FA

CPGA‑DNN – 17.35 4.67 34 FA
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Table  3 demonstrates that the proposed CPSOTJUTT can design higher-quality 
DNN architecture faster than the local solver. To explain more clearly each stage of 
the CPSOTJUTT, we design the following experiment:

Step 1: Converge quickly and robustly to the SEP (Tier-0) using stage II of the 
CPSOTJUTT methodology.
Step 2: Search for exit points on 10 paths, starting from the Tier-0 using the 
TRUST-TECH methodology.
Step 3: Converge quickly and robustly to the SEP (Tier-1) from each exit point 
using stage II of the CPSOTJUTT methodology.

The experimental results of the CPSOTJUTT are given in Table 4. The DNN archi-
tecture is the BNA selected in the first layer of the CPSOTJUTT-EM.

Table 3 Recognition test error (%) on the CIFAR‑10

Gen Local solver CPSOTJUTT 

Min% Max% Avg% Med% Min% Max% Avg% Med%

0 14.07 18.29 15.65 15.56 3.57 7.79 5.15 5.06

1 14.14 16.12 15 14.9 3.58 5.55 4.46 4.35

2 14.09 16.07 14.72 14.62 3.52 5.52 4.20 4.12

3 14.02 16.57 14.63 14.48 3.48 6.07 4.06 3.98

5 13.81 17.40 14.69 14.43 3.21 6.89 4.13 3.93

8 13.45 15.34 14.23 14.23 2.93 4.80 3.65 3.73

10 13.32 16.08 14.34 14.26 2.67 5.46 3.65 3.62

20 13.21 15.10 13.61 13.26 2.04 3.78 2.76 2.71

30 13.1 15.69 13.65 13.56 – – – –

50 12.96 14.74 13.5 13.23 – – – –

BNA 1‑01|0‑01‑100|0‑11‑101‑0001 1‑01|0‑01‑101|1‑01‑101‑0111

Table 4 Optima performances by CPSOTJUTT on CIFAR‑10 dataset

Optimal index Train error (%) Test error (%) Distance 
to Tier‑0

Tier‑0(ep 100) 2.54 2.85 0

Tier‑0(ep 200) 2.01 2.36 0.42

Tier‑1 (#1) 1.77 2.13 8.24

Tier‑1 (#2) 1.90 2.17 8.20

Tier‑1 (#3) 1.91 2.24 7.58

Tier‑1 (#4) 1.93 2.39 1.13

Tier‑1 (#5) 1.92 2.38 0.98

Tier‑1 (#6) 1.99 2.21 7.95

Tier‑1 (#7) 1.96 2.32 1.00

Tier‑1 (#8) 1.93 2.16 7.89

Tier‑1 (#9) 2.00 2.23 7.18

Tier‑1 (#10) 2.05 2.32 8.00

Best Percentage Improvement 0.77% 0.72% –
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Table 4 shows 10 search paths of Tier-1 by the CPSOTJUTT. The results show that a 
LOS better than Tier-0 can be obtained on each search path, and the best one (Tier-1 
(#1)) reduces the test error by 0.72% compared to Tier-0 (ep 100). Tier-0 is trained for 
200 epochs, and the majority of the Tier-1 train error and test error are lower than for 
Tier-0 (ep 200). The findings suggest that searching for greater quality LOSs at Tier-0 
with additional iterations is challenging.

To expand the search space, we further search Tier-2 starting with the best point of 
Tier-1(#1), as shown in Table 5.

As shown in Table 5, all Tier-2 solutions outperform Tier-1 with limited incremental 
time cost. The results show that the TRUST-TECH methodology can efficiently explore 
high-quality LOSs in the parameter space.

To evaluate the performance of CPSOTJUTT on a large dataset, the CIFAR-100 data-
set was used, and the results are given in Table 6, indicating the competitive capability of 
CPSOTJUTT.

Table 5 Optima performances by CPSOTJUTT (Tier‑2, starting from the best tier‑1 LOS (#1, 
according to the test error)) on the CIFAR‑10 dataset

Optimal index Train error (%) Test error (%) Distance to Tier‑0

Tier‑1(#1) 1.77 2.13 0

Tier‑0(ep 300) 1.46 2.1 7.3686

Tier‑2 (#1) 1.28 1.85 7.8153

Tier‑2 (#2) 1.23 1.87 8.3939

Tier‑2 (#3) 1.20 1.71 9.0559

Tier‑2 (#4) 1.17 1.79 6.5511

Tier‑2 (#5) 1.16 1.77 8.2235

Tier‑2 (#6) 1.26 1.75 8.8999

Tier‑2 (#7) 1.19 1.95 10.0292

Tier‑2 (#8) 1.17 1.83 7.7495

Tier‑2 (#9) 1.24 1.74 9.2371

Tier‑2 (#10) 1.22 1.89 8.4207

Table 6 Test results of CPSOTJUTT (Tier‑1) on CIFAR‑100

Optimal index CIFAR‑100

Test error (%) Distance to Tier‑0

Tier‑0 9.70 0

Tier‑1 (#1) 6.98 37.2742

Tier‑1 (#2) 5.99 36.0624

Tier‑1 (#3) 6.90 45.4467

Tier‑1 (#4) 6.01 40.8781

Tier‑1 (#5) 6.27 38.1602

Tier‑1 (#6) 5.98 35.5248

Tier‑1 (#7) 6.14 43.4156

Tier‑1 (#8) 6.43 44.1228

Tier‑1 (#9) 6.42 34.0974

Tier‑1 (#10) 6.95 37.9917

Tier‑1 (average) 6.25 –
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The above experiments show that CPSOTJUTT-EM achieves competitive results in 
testing on the CIFAR dataset. Further evaluations of the performance of CPSOTJUTT-
EM are given in later sections.

Testing results of the CPSOTJUTT on imbalanced PLOID dataset

We evaluate the ability of the CPSOTJUTT methodology to effectively handle imbal-
anced datasets in a real-world application for drone-based visual inspection of electric 
power transmission line corridors. Table 7 shows the results of a statistical analysis of 
the PLOID, which has a huge imbalance with the proportion of the largest and smallest 
classes being 38% and 2%, respectively. The imbalance of the PLOID dataset makes the 
classification task a big challenge.

As shown in Tables  8 and 9, we compared CPSOTJUTT with the most used SGD 
method: The weight decay and momentum of SGD are fixed as 0.0001 and 0.8, 
respectively.

Tables 8 and 9 shows the additional research on a local solver (SGD) and CPSOTJUTT 
in a different model. The experimental data show that CPSOTJUTT can quickly con-
verge to a high-quality LOS. In particular, the performance of the CPSOTJUTT is better, 

Table 7 The proportion of all classes of PLOID

Obstacle Label Number Proportion (%)

Forklift
Crane
Foreign body
Tipper
Other machinery

Forklift
Crane
DXYW
Tipper
QTSGJX

5228
30,617
12,885
4476
3076

6.34
38.27
16.1
5.59
3.85

Wildfire
Cement pump truck
Tower Crane
Excavator
Smog

Wildfire
CPT
TowerCrane
Excavator
Smog

2597
2053
9780
7541
1747

3.25
2.57
12.23
9.42
2.18

Table 8 Testing results of CPSOTJUTT (Tier‑1) on PLOID

Bold value indicates the lowest test error

Optimal index PLOID

Test error (%) Distance to Tier‑0

Tier‑0 3.17 7.6978

Tier‑1 (#1) 3.21 7.7448

Tier‑1 (#2) 3.21 7.3625

Tier‑1 (#3) 3.39 3.5845

Tier‑1 (#4) 3.37 3.5722

Tier‑1 (#5) 3.21 7.5635

Tier‑1 (#6) 3.37 3.5382

Tier‑1 (#7) 3.10 7.6426

Tier‑1 (#8) 3.23 7.2184

Tier‑1 (#9) 3.33 7.7385

Tier‑1 (#10) 3.56 7.3570

Tier‑1 (average) 3.30 –
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and the minimum error rate of the CPSOTJUTT is only 4.03%, which is 2.21% lower 
than that of the local solver for BNA-2. In order to test the optimization performance of 
CPSOTJUTT under different types of models, we chose ResNet-50 to test the test error 
on imbalanced datasets PLOID, as shown in Table 10.

Table  10 well demonstrates that the overall error rate of the CPSOTJUTT is lower 
than that of the local solver. The test error of CPSOTJUTT has a significant decline in 
the hard examples. In particular, the error rate of smog is 13.6% lower than the local 
solver. In general, CPSOTJUTT performs better performance in training DNN, espe-
cially in the case of an imbalanced dataset, which can greatly improve the accuracy of 
hard examples.

Performance test of classification models on three power system datasets

The proposed CPSOTJUTT-EM designs diverse high-quality DNN architectures and 
corresponding weights in the CIFAR and PILD datasets in the previous sections. In this 
section, we apply the CPSOTJUTT methodology to train the ensemble model of the 
above various DNN architectures, as shown in Table 11, the table shows the test error of 
the model on the corresponding dataset, unit: %.

We set up a comparative experiment using the DEns-VGG19 ensemble model 
and the proposed CPSOTJUTT-EM model. The experimental results show that the 
CPSOTJUTT methodology achieves a lower test error than the local solver in the train-
ing of DEns-VGG19, as well as a lower test error than the DEns-VGG19 model. The 
CPSOTJUTT-EM achieved lower test error in classification testing on both public data-
sets and three self-made power system inspection datasets.

Table 9 Optima performances by CPSOTJUTT on PLOID

MODEL Local Solver CPSOTJUTT 
Epochs Err (%) Epochs Err (%)

BNA‑1 20 9.45 14 6.15 (− 3.30)

BNA‑2 20 6.24 15 4.03 (− 2.21)

Table 10 The error rates of all classes of two training methods

Obstacle Error (%) (ResNet‑50)

Local Solver (SGD) CPSOTJUTT 

Forklift 9.4 7.5

Crane 2.2 1.2

DXYW 5.4 4.5

Tipper 9.8 6.3

QTSGJX 10.6 8.3

Wildfire 13.1 6.1

CPT 14.9 11.5

Tower Crane 6.9 1.1

Excavator 8.6

Smog 20.1 6.5
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Performance testing of object detection models on three power system datasets

In this section, we conduct performance tests on object detection model based on three 
self-made power system datasets: PSIID, PSSID, and PLOID. We chose classic object 
detection models, including YOLO v5, Faster R-CNN, Faster FPN, and Cascade R-CNN 
as benchmarks for comparison. We used the CPSOTJUTT-EM algorithm to generate 
an ensemble object detection model and selected the single model with the best accu-
racy from it, which is denoted as CPGA-DNN. The optimization of the model adopts the 
CPSOTIUTT three-stage optimization algorithm proposed in this article. The experi-
mental results are shown in Table 12.

From Table  12, it can be observed that the CPGA-DNN outperforms models such 
as YOLOv5, Faster R-CNN, and Faster FPN in object detection accuracy with only 
20–22  M parameters. Although there is a slight difference compared to the Cascade 
R-CNN, the parameter quantity of CPGA-DNN is much lower than that of Cascade 
R-CNN. The accuracy of the ensemble model generated by CPSOTJUTT-EM has sig-
nificantly improved compared to Cascade R-CNN and single model CPGA-DNN.

Conclusion
In this paper, a novel three-layer ensemble model (CPSOTJUTT-EM) for power line 
inspection is developed, which can automatically design DNN architectures quickly and 
stably without any DNN expertise. In the CIFAR and PLOID datasets, the test errors 

Table 11 Evaluation of the ensemble model. DEns‑NN: NN + Ensemble layer (the optimization 
method)

DEns‑VGG19 (Local solver) DEns‑VGG19 (CPSOTJUTT) CPSOTJUTT‑EM

CIFAR‑10 5.09 3.25 0.91

CIFAR‑100 18.04 11.4 5.98

PSIID 12.37 8.69 2.43

PSSID 17.50 12.68 3.56

PLOID 15.78 10.22 3.18

Table 12 Test results for different object detection model

Model PSIID PSSID PLOID #Parameters

mAP mAR mAP mAR mAP mAR

YOLOv5 0.554 0.590 0.574 0.607 0.565 0.593 42.6 M

Faster R‑CNN 0.656 0.702 0.633 0.658 0.621 0.672 40.23 M

Faster‑FPN 0.710 0.803 0.717 0.765 0.735 0.779 36.25 M

Cascade R‑CNN 0.793 0.868 0.802 0.832 0.837 0.871 256 M

CPGA‑DNN 0.763 0.833 – – – – 20.75 M

CPSOTJUTT‑EM 0.847 0.897 – – – – 132.6 M

CPGA‑DNN – – 0.742 0.802 – – 21.62 M

CPSOTJUTT‑EM – – 0.843 0.879 – – 139.7 M

CPGA‑DNN – – – – 0.827 0.856 20.67 M

CPSOTJUTT‑EM – – – – 0.892 0.917 129.5 M



Page 28 of 30Lv et al. Journal of Big Data          (2023) 10:150 

are reduced by 4.18%, 12.06%, and 12.6%, respectively, especially for hard examples in 
the PLOID dataset. The CPSOTJUTT methodology proposed in this paper has a strong 
global convergence ability: 83% of the initial points converge to the optimal convergence 
region, thereby improving the stability by 65%. The ensemble classification model and 
ensemble object detection model automatically generated by CPSOTJUTT-EM have 
achieved good results in PSIID, PSSID, and PLOID, indicating that the CPSOTJUTT-EM 
three-layer model can achieve high inspection accuracy in power system inspections.

In conclusion, the CPSOTJUTT-EM proposed in this paper can automatically design a 
high-quality ensemble model of DNN for power system inspection.
Acknowledgements
I would like to thank Mr. Chiang for his guidance on my research. His guidance and encouragement prompted me to 
write the whole work and complete it successfully. In the process of writing, he always made me have confidence in 
myself and guided me to many important publications that were quite helpful.

Author contributions
X‑lL: Conceptualization, Methodology, Software, Formal analysis, Writing—original draft. H‑DC: Writing—review & edit‑
ing, Project administration, Supervision.

Funding
Funding information is not available.

Availability of data and materials
No new data were generated or analyzed in support of this research.

Declarations

Ethics approval and consent to participate
This article does not involve animal or human experiments, and no ethics approval is required. And written informed 
consent was obtained from all participants.

Consent for publication
All authors gave their consent for publication.

Competing interests
The authors declare that they have no competing interests.

Received: 3 March 2023   Accepted: 17 September 2023

References
 1. Yang R, Zha X, Liu K, Xu S. A CNN model embedded with local feature knowledge and its application to time‑vary‑

ing signal classification. Neural Netw. 2021;142:564–72.
 2. Chen T, Wang N, Wang R, Zhao H, Zhang G. One‑stage CNN detector‑based benthonic organisms detection with 

limited training dataset. Neural Netw. 2021;144:247–59.
 3. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2016, pp. 770–778.
 4. Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks. International Conference on 

Machine Learning. PMLR, 2019.
 5. Sun Y, Xue B, Zhang M, Yen GG, Lv J. Automatically designing CNN architectures using the genetic algorithm for 

image classification. IEEE Trans Cybern. 2020;50(99):1–15.
 6. Stanley KO, Clune J, Lehman J, Miikkulainen R. Designing neural networks through neuroevolution. Nat Mach Intell. 

2019;1(1):24–35.
 7. Zheng Z, Li X. A novel vehicle lateral positioning methodology based on the integrated deep neural network. 

Expert Syst Appl. 2020;142: 112991.
 8. Ahmed S, Razib M, Alam MS, Alam MS, Huda MN. Ensemble approach for improving generalization ability of neural 

networks. 2013 International Conference on Informatics, Electronics and Vision (ICIEV). IEEE, 2013.
 9. Ganaie MA, Hu M, Malik AK, Tanveer M. Ensemble deep learning: a review. Eng Appl Artif Intell. 2022;115: 105151.
 10. Chaudhari P, Choromanska A, Soatto S, LeCun Y, Baldassi C, Borgs C, Chayes J, Sagun L, Zecchina R. Entropy‑SGD: 

biasing gradient descent into wide valleys. J Stat Mech Theory Exp. 2019;2019(12): 124018.
 11. Cheridito P, Jentzen A, Rossmannek F. Non‑convergence of stochastic gradient descent in the training of deep 

neural networks. J Complex. 2021;64: 101540.
 12. Yuan K, Ying B, Sayed AH. On the influence of momentum acceleration on online learning. J Mach Learn Res. 

2016;17(1):6602–67.



Page 29 of 30Lv et al. Journal of Big Data          (2023) 10:150  

 13. Arjevani Y, Carmon Y, Duchi JC, Foster DJ. Lower bounds for non‑convex stochastic optimization. Math Program. 
2022;199:165.

 14. Wilson AC, Roelofs R, Stern M. The marginal value of adaptive gradient methods in machine learning. Adv Neural Inf 
Proc Syst. 2017; 30.

 15. Luo L, Xiong Y, Liu Y, Sun X. Adaptive gradient methods with dynamic bound of learning rate. arXiv preprint arXiv: 
1902. 09843, 2019.

 16. Stanley KO, Miikkulainen R. Evolving neural networks through augmenting topologies. Evol Comput. 
2002;10(2):99–127.

 17. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, Raju B, Shahrzad H, Navruzyan A, Duffy N, Hodjat 
B. Evolving deep neural networks. in Artificial Intelligence in the Age of Neural Networks and Brain Computing. 
Elsevier, 2019, pp. 293–312.

 18. Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le QV, Kurakin A. Large‑scale evolution of image classifiers. in 
International Conference on Machine Learning. PMLR, 2017, pp. 2902–2911.

 19. Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image classifier architecture search. Proc AAAI Conf 
Artif Intell. 2019;33(01):4780–9.

 20. Xie L, Yuille A. Genetic CNN. in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 
1379–1388.

 21. Sun Y, Xue B, Zhang M, Yen GG. Completely automated cnn architecture design based on blocks. IEEE Trans Neural 
Netw Learn Syst. 2019;31(4):1242–54.

 22. Kumar A, Yin B, Shaikh AM, Ali M, Wei W. CorrNet: pearson correlation‑based pruning for efficient convolutional 
neural networks. Int J Mach Learn Cybern. 2022;13(12):3773–83.

 23. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach 
Learn Res. 2011; 12(7).

 24. Tieleman T, Hinton G. Lecture 6.5‑rmsprop: divide the gradient by a running average of its recent magnitude. COUR‑
SERA Neural Netw Mach Learn. 2012;4(2):26–31.

 25. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv: 1412. 6980, 2014.
 26. Reddi SJ, Kale S, Kumar S. On the convergence of adam and beyond. arXiv preprint arXiv: 1904. 09237. 2019.
 27. Yang J, Zeng X, Zhong S, Wu S. Effective neural network ensemble approach for improving generalization perfor‑

mance. IEEE Trans Neural Netw Learn Syst. 2013;24(6):878–87.
 28. Zhang S, Liu M, Yan J. The diversified ensemble neural network. Adv Neural Inf Process Syst. 2020;33:16001–11.
 29. Zhang YF, Chiang HD. Enhanced elite‑load: a novel CPSOATT methodology constructing short‑term load forecasting 

model for industrial applications. IEEE Trans Industr Inf. 2019;16(4):2325–34.
 30. Turkoglu M, Yanikolu B, Hanbay D. Plantdiseasenet: convolutional neural network ensemble for plant disease and 

pest detection. Signal Image and Video Processing. 2021;(9): 1–9.
 31. Wang Y, Wang J, Gao F, Hu P, Xu L, Zhang J, Yu Y, Xue J, Li J. Detection and recognition for fault insulator based on 

deep learning. 2018 11th International Congress on Image and Signal Processing, Biomedical Engineering and 
Informatics (CISP‑BMEI). IEEE, 2018.

 32. Dai G, Yuan Y, Huang W, Liu Q, Ju C. Unattended substation inspection algorithm based on improved YOLOv5. 2022 
IEEE International Conference on Real‑time Computing and Robotics (RCAR). IEEE, 2022.

 33. Zhang W, Liu X, Yuan J, Xu L, Sun H, Zhou J. RCNN‑based foreign object detection for securing power transmission 
lines (RCNN4SPTL). Procedia Comput Sci. 2019;147:331–7.

 34. Zhang J, Zhao Y, Shone F, Li Z, Frangi AF, Xie SQ, Zhang ZQ. Physics‑informed deep learning for musculoskeletal 
modeling: predicting muscle forces and joint kinematics from surface EMG. IEEE Trans Neural Syst Rehabil Eng. 
2022;31:484–93.

 35. Zhang J, Li Y, Xiao W, Zhang Z. Non‑iterative and fast deep learning: Multilayer extreme learning machines. J Franklin 
Inst. 2020;357(13):8925–55.

 36. Li S, Tan M, Tsang IW, Kwok JT‑Y. A hybrid PSO‑BFGS strategy for global optimization of multimodal functions. IEEE 
Trans Syst Man Cybern Part B (Cybernetics). 2011;41(4):1003–14.

 37. Houssein EH, Gad AG, Hussain K, Suganthan PN. Major advances in particle swarm optimization: theory, analysis, 
and application. Swarm Evol Comput. 2021;63: 100868.

 38. Sculley D. Web‑scale k‑means clustering. in Proceedings of the 19th International Conference on World Wide Web, 
2010, pp. 1177–1178.

 39. Lin T‑Y, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. in Proceedings of the IEEE Interna‑
tional Conference on Computer Vision, 2017, pp. 2980–2988.

 40. Zhu M, Nazareth JL, Wolkowicz H. The quasi‑cauchy relation and diagonal updating. SIAM J Optim. 
1999;9(4):1192–204.

 41. Hao Z, Chiang HD, Wang B. Trust‑tech‑based systematic search for multiple local optima in deep neural nets. IEEE 
Transactions on Neural Networks and Learning Systems, pp. 1–11, 2021.

 42. Chiang HD, Hirsch MW, Wu FF. Stability regions of nonlinear autonomous dynamical systems. IEEE Trans Autom 
Control. 1988;33(1):16–27.

 43. Chiang HD, Chu CC. A systematic search method for obtaining multiple local optimal solutions of nonlinear pro‑
gramming problems. Circ Syst I Fundamental Theory Appl IEEE Trans‑actions on. 1993;43(2):99–109.

 44. Chiang HD, Alberto LFC. Stability regions of nonlinear dynamical systems: theory, estimation, and applications. 
Cambridge University Press; 2015.

 45. Deng JJ, Chiang HD, Zhao TQ. Newton method and trajectory‑based method for solving power flow problems: 
nonlinear studies. Int J Bifurcation Chaos. 2015;25(6):591–484.

 46. Pillo GD, Grippo L. A new class of augmented lagrangians in nonlinear programming. SIAM J Control Optim. 
2006;17(5):618–28.

 47. Du X, Zhang L, Gao Y. A class of augmented lagrangians for equality constraints in nonlinear programming prob‑
lems. Appl Math Comput. 2006;172(1):644–63.

http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1904.09237


Page 30 of 30Lv et al. Journal of Big Data          (2023) 10:150 

 48. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural 
Inf Proc Syst. 2012; 25.

 49. Wang W, Peng W, Tong L, Tan X, Xin T. Study on sustainable development of power transmission system under ice 
disaster based on a new security early warning model. J Clean Prod. 2019;228:175–84.

 50. Glavic M. (Deep) Reinforcement learning for electric power system control and related problems: a short review and 
perspectives. Annu Rev Control. 2019;48:22–35.

 51. Qin X, Su Q, Huang SH. Extended warranty strategies for online shopping supply chain with competing suppliers 
considering component reliability. J Syst Sci Syst Eng. 2017;26(6):753–73.

 52. Santos T, Moreira M, Almeida J, Dias A, Martins A, Dinis J, Formiga J, Silva E. Plined: Vision‑based power lines detec‑
tion for unmanned aerial vehicles. in 2017 IEEE International Conference on Autonomous Robot Systems and 
Competitions (ICARSC). IEEE, 2017, pp. 253–259.

 53. Lan M, Zhang Y, Zhang L, Du B. Defect detection from uav images based on region‑based cnns. in 2018 IEEE Interna‑
tional Conference on Data Mining Workshops (ICDMW). IEEE, 2018, pp. 385–390.

 54. Wang D, Zhao G, Chen H, Liu Z, Deng L, Li G. Nonlinear tensor train format for deep neural network compression. 
Neural Netw. 2021;144:320–33.

 55. Aldahdooh A, Hamidouche W, Fezza SA. Adversarial example detection for DNN models: a review and experimental 
comparison. Artif Intell Rev. 2022;55:4403.

 56. Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. 2017.

 57. Simonyan K, Zisserman A. Very deep convolutional networks for large‑scale image recognition. arXiv preprint arXiv: 
1409. 1556. 2014.

 58. Liu H, Simonyan K, Vinyals O, Fernando C. Hierarchical representations for efficient architecture searc. arXiv preprint 
arXiv: 1711. 00436. 2017.

 59. Zoph B, Le QV. Neural architecture search with reinforcement learning. arXiv preprint arXiv: 1611. 01578. 2016.
 60. Zhong Z, Yan J, Wu W, Shao J. Practical block‑wise neural network architecture generation. Proceedings of the IEEE 

Conference on Computer Vision and Pattern recognition. 2018.
 61. Suganuma M, Shirakawa S, Nagao T. A genetic programming approach to designing convolutional neural network 

architectures. Proceedings of the Genetic and Evolutionary Computation Conference. 2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xian‑Long Lv received the B.S. degree and the M.S. degree in electrical engineering from the University 
of Jinan, Jinan, China, in 2015 and 2018, respectively. He is currently pursuing the Ph.D. degree in electri‑
cal engineering, the School of Electrical Engineering and Automation, Tianjin University, Tianjin, China. His 
research interests include nonlinear systems theory and global optimization methods and their applica‑
tions to machine learning, power systems, and computer vision.

Hsiao‑Dong Chiang (M’87–SM’91–F’97) is a professor in the School of Electrical and Computer Engi‑
neering at Cornell University in Ithaca, NY, USA. His research interests include nonlinear system theory, 
nonlinear computation and optimization, and their practical applications to electric power systems and to 
energy management systems. He and his research team have published more than 400 papers in refereed 
journals and conference proceedings. His publications earned an h‑index of 58. He holds 18 U.S. and over‑
seas patents and several consultant positions. He is the author of two books: Direct Methods for Stability 
Analysis of Electric Power Systems: Theoretical Foundations, BCU Methodologies, and Applications (Hobo‑
ken, NJ, USA: Wiley, 2011) and (with Luis F. C. Alberto) Stability Regions of Nonlinear Dynamical Systems: 
Theory, Estimation, and Applications (Cambridge, UK: Cambridge Univ. Press, 2015). He has served as an 
associate editor for several IEEE transactions and IEEE journals and as a board member for IEE Japan and is 
the founder of Bigwood Systems, Inc. and Global Optimal Technology, Inc. in Ithaca, NY, USA.

Na Dong received her Ph.D. degree in control theory and control application at Nankai University in 
2011. She is currently an associate professor in the School of Electrical and Information Engineering, Tianjin 
University, China. Her current research areas encompass intelligent control algorithms, heuristic optimiza‑
tion algorithm, neural networks, data‑driven control, deep learning, and image processing.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1611.01578

	Automatic DNN architecture design using CPSOTJUTT for power system inspection
	Abstract 
	Introduction
	Original contributions and novelties

	Related work
	Evolutionary neural network
	Deep neural network training methods
	Deep neural network ensemble
	Power system inspection

	The CPSOTJUTT methodology
	CPSOTJUTT stage I: exploration and consensus
	CPSOTJUTT stage II: robust convergence
	CPSOTJUTT stage III: search optimal

	Theoretical basis
	The stability region
	Complete stability
	Equivalence relations

	CPSOTJUTT-based ensemble model
	Bottom layer: design the DNN architecture
	Middle layer: build diverse optimal DNN classification engines
	Top layer: the DNN-based ensemble model

	Experiment
	Public dataset and server configuration
	Convergence verification of CPSOTJUTT methodology
	Test results of the CPSOTJUTT-EM on the CIFAR
	Testing results of the CPSOTJUTT on imbalanced PLOID dataset
	Performance test of classification models on three power system datasets
	Performance testing of object detection models on three power system datasets

	Conclusion
	Acknowledgements
	References


