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Introduction
In the context of Industry 4.0, smart industrial monitoring plays a pivotal role across 
various industries, particularly when coupled with real-time automated diagnosis using 
artificial intelligence (AI) [1]. Strip steel, a fundamental material utilized in diverse sec-
tors such as automobiles, military applications, tubes, appliances, refrigerators, washers 
and dryers, building materials, and electrical components, is susceptible to quality deg-
radation due to multiple factors including production technology and rolling equipment 
[2, 3]. For instance, rolled-in scale defects on steel surfaces result from the peeling of the 
oxide film during rolling, while scratches may be inflicted by the friction between the roll 
and surface. Implementing effective defect inspection strategies is crucial to ensure the 
safe functionality of components and to minimize raw material wastage. These defects 
can exhibit various characteristics, including single-point occurrences, continuous 
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patterns, periodic types such as lines, scratches, spots, and holes, with intermittent, hor-
izontal, and vertical distributions [4, 5].

Thus, conducting early inspections within the production pipeline can reduce produc-
tion costs in the final stages [6]. Several methods have been employed for surface defect 
detection, encompassing manual detection [7], morphological image detection [8], 
machine vision-based detection [9–11], and magnetic flux leakage detection [12].

Manual inspection often suffers from varying interpretations of defects, lead-
ing to inconsistencies in identifying defects of different shapes and sizes. This process 
is time-consuming, labor-intensive, and prone to inaccuracies. To address these chal-
lenges, computer vision-based techniques have been increasingly employed. Traditional 
approaches for defect detection in computer vision involve image processing techniques 
such as edge detection using Sobel filtering on grayscale images, combined with classi-
fication using multilayer perceptron and support vector machine (SVM) classifiers [13]. 
Early studies focused on morphological operations, handcrafted feature extraction, and 
utilization AI algorithms [14–17]. Notably, Song et al. proposed a method that utilizes 
adjacent evaluations to complete local binary patterns, demonstrating reasonable clas-
sification of metal surface defects even in the presence of Gaussian noise. However, the 
ambiguity and similarity among steel surface defects limits their detection.

More recently, the adoption of machine learning (ML) and deep learning (DL) models 
has demonstrated promise in detecting defects in steel surfaces. Although ML models 
can learn low-level features, they tend to overlook intricate details. The advancements 
in DL architectures have enabled automatic detection of defects with improved preci-
sion. However, the increased depth of DL models introduces challenges, such as reduced 
inference speed and the requirement for larger labeled datasets. Furthermore, the lack 
of large labeled datasets limits the suitability of deep architectures for surface defect 
detection.

The objective of this study is to overcome the limitations associated with industrial 
defect classification, such as a scarcity of samples representing each defect within a given 
dataset and the laborious process of curating a labeled dataset.

Contributions

This study presents advancements over previous state-of-the-art self-supervised learn-
ing methods applied in the domain of industrial steel defect detection. We explored 
memory-efficient and adaptable self-supervised learning frameworks and conducted a 
comparative analysis against baseline methods. The results surpassed those achieved by 
existing supervised learning approaches. The framework employed in this study utilizes 
existing metal surface defect datasets and investigates the effect of transferring learned 
representations to a specific defect detection task. These representations are derived 
from the mapping of input features created by the intermediate layer and projection 
head of the convolutional encoder. However, the detection and recognition of small and 
complex targets remain persistently challenging. Issues such as limited labeled samples, 
increased computational time, low accuracy, imbalanced dataset problems, and interfer-
ence from edge-lighting commonly arise. Metal surface defects often exhibit complex-
ity and task-specific characteristics, further exacerbating the scarcity of samples. Our 
hypothesis posits that the encoder can gain a classification advantage by leveraging 
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existing surface defect datasets containing diverse defect types and transferring the 
acquired representations to a specific defect detection task.

Overall, this study makes the following contributions:

• A straightforward framework incorporating contrastive learning representations and 
nearest-neighbor contrastive learning was presented for steel defect detection. This 
framework integrates an augmentation framework and a lightweight encoder. The 
representation learning process utilizes a large unlabeled dataset, while fine-tuning 
and classification tasks are performed using a smaller labeled dataset.

• In the experimental evaluation, multiple interchangeable lightweight encoders were 
tested and compared against baseline classification tasks. The performance of the 
model was compared with that of five state-of-the-art surface defect classification 
models.

The remaining sections of this paper are organized as follows: ("Related Works") sec-
tion discusses related studies pertaining to steel defect detection. ("Proposed Methodol-
ogy") section presents the proposed methodology, providing a detailed description of 
the self-supervised learning framework. In ("Experimental Results and Discussion") sec-
tion, the experimental results and analysis are presented. Finally, ("Conclusions") sec-
tion concludes the paper, outlining the limitations of the study, and offers directions for 
future research.

Related works
In recent years, researchers have explored various approaches, including traditional 
machine learning, deep learning, and adaptive learning-based methods, to steel surface 
defect detection using crack image datasets. Numerous studies have focused on apply-
ing basic computer vision-based machine learning (ML) models for steel surface defect 
detection (SSDD) using surface crack image datasets. For instance, in [18], a random for-
est (RF) classifier was employed for SSDD, accompanied by feature extraction methods 
such as gray-level co-occurrence matrix (GLCM), wavelet, and histogram of gradients 
(HOG). The performance of the model was evaluated using an SVM classifier with lim-
ited parameter variations. Another study by Bin et al. [19] proposed a machine vision 
model for SSDD that extracted invariant moment features from steel cracks. Further-
more, in [20], several ML algorithms, including SVM, K-nearest neighbors, Gaussian 
process, decision tree, RF, artificial neural network, naive Bayes, and AdaBoost were 
experimented with for rapid surface defect identification. However, advanced ML tech-
niques such as deep learning, transfer learning, and adaptive learning offer significant 
performance improvements. In the subsequent subsections, we summarize the state-
of-the-art techniques applied to these robust and advanced ML approaches. A concise 
overview of cutting-edge studies is provided in tabular form at the conclusion of this 
section.

Deep learning based methods

Furthermore, researchers have explored the application of Deep Convolutional Neural 
Network (CNN) architectures for steel surface defect detection (SDD) utilizing surface 
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crack image datasets. Božič et al. [21] employed an end-to-end training approach with 
a two-stage neural network for detecting various defects, including steep defects. A 
unique loss function was utilized to address the uncertainty associated with region-
based annotations and compared with precise pixel-level annotations. Similarly, Chi 
et  al. [22] employed a DCNN architecture for steel-crack detection, achieving nota-
bly higher accuracy in the experimental evaluation compared to other crack datasets. 
Despite claiming applicability for online steel prediction, their experiments did not con-
sider the computational complexity and training period.

Masci et al. [23] employed MaxPooling with a CNN for SSD and compared its perfor-
mance with traditional approaches. In another study [24], a DCC-Center Net architec-
ture was employed for SSD detection, where keypoint estimation was used to identify 
center points and regress defect properties. However, the model exhibited limitations in 
detecting obscure defects because of its segmentation method and network architecture. 
Furthermore, in [25], a domain-adaptation adaptive CNN was utilized for SSD, employ-
ing adaptive learning rates based on loss and weight. Although the proposed model 
demonstrated improved results compared to conventional CNN models, it was evalu-
ated using a small dataset.

Bhatt et  al. [26] conducted a review of DL-based techniques for steel surface defect 
detection (SSDD), focusing on classification and localization. Yang et al. [27] proposed 
a CNN model with multiple convolutional layers, each utilizing varying kernel sizes to 
enhance the receptive field. Benbarrad et al. [11] employed a CNN architecture on com-
pressed steel images for SSD classification, demonstrating comparable performance to 
that of the uncompressed images. Liu et al. [28] utilized a hybrid architecture combin-
ing long short-term memory (LSTM) and CNN, whereas Singh et al. [66] employed a 
ResNet101-SVM architecture for surface defect classification. For the automatic detec-
tion of small and complex steel defects, a deformable convolution network with multi-
scale feature fusion was applied [29]. However, due to the several steps involved in the 
model, its detection time was relatively higher compared to other models.

Konovalenko et  al. [30, 64] utilized a residual neural network (RNN), whereas Hao 
et  al. [31] employed a modified RNN with attention blocks for defect classification in 
strip steel. RNNs are computationally demanding, slower, and require larger amounts 
of data compared to CNNs. Zhou et  al. [32] proposed an effective training approach 
for defect detection, incorporating knowledge distillation, attention mechanisms, and 
feature fusion, achieving over 90% area under receiver operating characteristic (ROC) 
curve. Anvar et al. [33] conducted experiments with ShuffleDefectNet on the NEU metal 
surface defect dataset, achieving impressive generalization performance.

Hao et  al. [34] proposed DF-ResNeSt50, a split-attention network for SSDD, which 
demonstrated enhanced and optimized data augmentation capabilities. In another study 
[35], a Multi-SE-ResNet34 architecture incorporating squeeze convolution layers and 
excitation blocks was utilized for SSDD, achieving improved accuracy. However, the 
computational complexity of the network is high. Two neural networks, UNet and Xcep-
tion, were employed in [36] for steel defect detection, where UNet was used for seg-
mentation and Xception for classification. Xception, known for its depth-wise separable 
convolutions, introduces significant computational complexity. In [37], the RepVGG 
algorithm with spatial attention was applied to hot-rolled SSDD, showcasing improved 
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classification performance compared to ResNet, VGG, and MobileNet. Nevertheless, 
the model performs inadequately when detecting small-sized oxide scales on plates.

Anchor-free feature extraction using YOLO-V3 has been employed in steel defect 
detection, which reduced the computation time compared to state-of-the-art models. 
However, its detection accuracy reached only 70%, and it struggled to detect high-reso-
lution images with extremely small defects. More recently, CP-YOLOv3-dense [38] has 
been applied for SDD, utilizing multilayer convolutional features for predictions and 
demonstrating improved results compared to the YOLO-V3 model. Lightweight archi-
tectures such as Ghost-CBAM-YOLOv4 (GCB-Net) [39] and an improved YOLOv5-
based transformer (MSFT-YOLOv5) [9] have been employed for SSDD. Additionally, a 
lightweight YOLOv5 architecture with adaptive bounding box annotation is proposed 
in [40]. Although YOLO models exhibit higher detection accuracy, their performance is 
heavily reliant on image labeling, which is a time-consuming task.

Transfer learning based methods

In a recent study [41], ResNet50 deep architecture- a hybrid architecture combin-
ing ResNet50 and enhanced fast-region CNN [42]—has been utilized for detecting 
hot-rolled steel defects. However, these models exhibited a considerable number of 
false positives and high computational complexity. Wan et al. [43] employed a VGG19 
architecture with pretrained image weights, proposing an improved VGG-19 net-
work for steel surface screening and defect generalization. Additionally, Feng et al. [44] 
introduced a vision transformer model with a deep VGGNet architecture, achieving 
enhanced accuracy. Note that VGG architectures are computationally demanding owing 
to their large number of trainable parameters.

In another study [45], a TL-SDD model was employed, utilizing the transfer of com-
mon defect class knowledge to detect rare defects. However, the model was evaluated 
using only one rare type of defect. In [46], a transfer learning-based U-Net, composed 
of ResNet and DenseNet encoders, was applied to SDD with random initialization and 
image weights. Unfavorably, this model demonstrated unsatisfactory performance for 
rare and complex defects. Waqas et  al. [63] employed seven pretrained CNN archi-
tectures for crack detection: GoogLeNet, MobileNet-V2, Inception-V3, ResNet18, 
ResNet50, ResNet101, and ShuffleNet. Although Inception-V3 outperformed the other 
models, it achieved an overall accuracy of 88.5% with 24 M trainable parameters.

Adaptive learning based methods

The challenges associated with routine annotation and the associated costs remain 
unaddressed in DL/DTL architectures. Therefore, the adoption of semi-supervised 
learning techniques becomes imperative. Self-supervised learning develops a net-
work to learn from a large volume of unlabeled data, enabling it to recognize cru-
cial patterns before fine-tuning with a fraction of labeled data. Mayuravaani et  al. 
[47] proposed a semi-supervised learning technique utilizing a CNN to predict the 
weights of unlabeled data. In the subsequent step, the predicted labels, combined 
with labeled data, were employed to train their architectures. The unlabeled data 
underwent training using the contractive autoencoder (CAE), followed by the uti-
lization of a semi-supervised generative adversarial network (GAN) to train the 
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network. In another study [48], an improved semi-supervised multitask GAN 
(iSSMT-GAN) has been introduced for defect detection, avoiding issues such as 
gradient disappearance or overfitting while generating high-quality image features. 
Although the model demonstrated enhanced accuracy compared to other state-of-
the-art DL models, its validation was limited to a surface defect dataset.

Zhang et al. [49] proposed CADN, a weakly supervised learning method for sur-
face detection that simultaneously detects defects and classifies images, utilizing 
a knowledge distillation strategy to expedite the training process. However, in this 
particular model, a lighter version of CADN was employed for knowledge distilla-
tion. In ref. [50], a two-layer DL model was employed for SSDD, with one layer dedi-
cated to pixel-level segmentation and the other for image label classification. This 
model was trained using a combination of fully (pixel-level) and weakly (image-level) 
labeled data. To enhance the awareness of the network toward subtle anomalies, a 
saliency map-guided defect segmentation technique was employed in conjunction 
with self-supervised learning [51]. Zhao et  al. [52] introduced a feature-attention 
convolution module combined with a few-shot learning approach. The module 
effectively captured long-range relationships between features, leading to improved 
performance across 5-way 1-shot and 5-way 5-shot tasks.

Hu et  al. applied an efficient CNN model with object level attention mechanism 
for defect detection on radiography images [69]. Although the model works with 
small dataset, fine-tuning the hyper-parameters of CNN varies experiment to exper-
iment and the radiographic images with low resolution are not sufficient for detect-
ing small surface defects. In ref. [70], Lou et al. applied cross-attention transformer 
encoder-decode network (CAT-EDNet) for strip steel surface defect detection. 
The model adaptively allocates the aggregation weights that represent differenti-
ated channel-wise information entropy values. Although the model maintains the 
details of defects boundaries in noise scenario, inference time is still an issue with 
this model to meet the real time defect detection. In ref. [71], a multi-label defect 
classification method is proposed with a novel self-purification module (SPM) con-
sisting of intraclass purification (ICP) and interclass decorrelation (ICD). The ICP 
purify the features from the task-aware information and ICD eliminates the cross-
correlation and defect-irrelevant components. The model is computational burden 
due to its multiple labels.

Several state-of-the-art representation learning frameworks incorporate memory 
mechanisms to retrieve representations. One such framework is contrastive multi-
view coding (CMC), which learns representations by maximizing the shared infor-
mation between two views [53]. However, this approach is considered inefficient 
as the memory bank requires periodic updates. Another approach, autoregressive 
contrastive predictive coding (CPC), utilizes an encoder trained using the noise 
contrastive estimation loss [54]. Unsupervised learning with momentum contrast 
is based on the functions of the momentum encoder [55], comparing an encoded 
query image to multiple key images to maximize mutual information. In compari-
son, a simple framework for contrastive learning and nearest-neighbor self-super-
vised contrastive learning demonstrated superior results compared to CPC, MOCO, 
and CMC Table 1.



Page 7 of 24Zabin et al. Journal of Big Data          (2023) 10:145  

Proposed methodology
In this section, we provide a detailed description of the dataset used in our study, 
including the unlabeled dataset employed for self-supervised learning and the labeled 
dataset utilized for fine-tuning.

Furthermore, we explain the functioning of the augmentation pipeline with the help 
of sample figures. We then delve into the contrastive loss function employed in our 
framework. Finally, we present the specifics of the base encoders used as classifiers 
for self-supervised representation learning. A block diagram illustrating the utiliza-
tion of contrastive self-supervised representation learning for steel crack classifica-
tion is depicted in Fig. 1.

Table 1 Summary of the state‑of‑the‑art defect classification papers

Category Objectives and features Limitations

Machine Learning [18–20] Surface defect classification; hand‑
crafted feature extraction

Extracted features are sensitive to 
noise and variability, computationally 
intensive

Deep Learning [32, 33], Lightweight architecture for defect 
detection; transfer of valuable 
defect features to student model, 
handle complex and varied defect 
patterns extracted using evolving 
convolutional architectures

Requiring large volumes of labeled 
examples, overfitting and poor 
generalization on rare classes, does 
not aid detection of rare and newer 
defects

TL‑based methods [9, 28, 43, 44, 46] Use of small dataset, saves training 
period; usage of prior knowledge 
towards target domain

If source and target tasks are not 
adequately representative, they 
become redundant; negative transfer

Adaptive Learning [50, 52, 53, 55, 
57]

Defect detection with limited 
samples; process unlabeled data 
to obtain useful defect representa‑
tions

Poor results for rare surface defects, 
computational complexity issue for 
real‑time monitoring

Fig. 1 Detailed methodology of the model with contrastive self‑supervised representation learning and 
fine‑tuning
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Dataset

The self-supervised representation learning phase involved three public datasets: Sever-
stal Steel (SS) Defect, SD Saliency 900, and GC-10 DET. The SS dataset captured defect 
classes using a high-frequency camera and consisted of four defect classes, as illustrated 
in Fig. 2. Among these datasets, the SS dataset was the largest, containing 18,076 images 
of defective and non-defective steel. Defects exhibited varying shapes, sizes, and appear-
ances. The SD-Saliency-900 dataset comprised three defect classes: inclusions, patches, 
and scratches. Sample defects from the SD-Saliency-900 dataset are portrayed in Fig. 3. 
GC-10 DET is a comprehensive metal defect image dataset that encompasses ten dif-
ferent categories of defects. Within the GC-10 DET dataset, a few images exhibited 

Fig. 2 Sample images of the Severstal steel dataset, (a) Type 1, (b) Type 2, (c) Type 3, and (d) Type 4, 
respectively

Fig. 3 Sample images of SD‑Saliency‑900 dataset (a) inclusion, (b) patches, and (c) scratches, respectively
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multiple types of defects, rendering them suitable for localization tasks and representa-
tion learning. The NEU metal surface defect dataset comprises six defect types, namely 
rolled-in scales, patches, crazing, pitted surfaces, inclusions, and scratches.

For the experimental evaluation and fine-tuning, we utilized the NEU metal surface 
defect dataset. Figure  4 showcases sample images from this dataset, which comprised 
approximately 1,800 grayscale images. During the pretraining phase, a combined data-
set of 21,222 strip steel defect images from three public datasets, covering 16 types of 
defects, was employed.

Augmentation pipeline

The stochastic nature of the data augmentation pipeline, as depicted in Fig. 1, played a 
significant role in the training process. The selection of data augmentation techniques 
had a substantial impact on the training outcomes.

The pipeline involved random flipping and random cropping of images. Additionally, 
random color distortions were applied by manipulating the color spaces. Figure 5 illus-
trates a selection of randomly augmented images utilized in the simple contrastive repre-
sentation learning framework. The nearest neighbor representation learning framework 
utilized common augmentation techniques such as random cropping and flipping.

Contrastive loss

Contrastive loss was originally proposed by Hadsell et al. [56] in the context of dimen-
sionality reduction. The general form of the contrastive loss function is expressed as,

Fig. 4 Sample images of NEU metal surface defect dataset: (a) crazing, (b) inclusion, (c) patches, (d) pitted 
surface, (e) rolled‑in scale, and (f) scratches
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where X1 and X2 represent two images that are either similar or dissimilar. The term Dw 
denotes the similarity between two data points, LS and LD representing the loss func-
tions for the similar and dissimilar cases. In our framework, we employed a simple con-
trastive learning approach that utilizes a specific instance of contrastive loss known as 
the normalized temperature-scaled cross-entropy loss (NT-Xent). The initial step of the 
loss function involves calculating the cosine similarity between two augmented images 
in a pair, denoted by si and sj . The variable temperature, t, allows for similarities within a 
certain range, typically from − 1 to 1.

For each minibatch, the similarities between augmented pair are computed using 
Eq. 2, where zi and zj represent a pair of outputs from the projection head g, as depicted 
in Fig.  6. These similarities are then passed through a Softmax function, yielding the 
probability of the pairs being similar.

The loss function for positive pairs of augmented images was calculated by taking the 
negative logarithm of the Softmax function, as.

where N  denotes the minibatch size. The overall loss for all pairs in the minibatch was 
calculated using the equation expressed in Eq. 4, where N denotes the minibatch size.

(1)L(W , (Y ,X1,X2)) = (1− Y )LS

(
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w

)

+ YLD
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∣
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∣

∣
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S2Nk=1l[k!=i]exp
(
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)
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SNk=1[l(2k − 1, 2k)+ l(2k , 2k − 1)]

Fig. 5 a Random color distortions and (b) flipped image and color distortions added on (a)



Page 11 of 24Zabin et al. Journal of Big Data          (2023) 10:145  

Self‑supervised learning frameworks

In their work, Chen et  al. [57] proposed a straightforward framework for contrastive 
learning representations, utilizing random cropping with resizing, random color distor-
tions, and Gaussian blurring to transform unlabeled images. Herein, we implemented an 
augmentation sequence to generate augmented images. Thereafter, these images were 
used to extract representations using various encoders, such as a stack of convolutional 
layers, RNNs, ShuffleNet, or SqueezeNet, denoted as f  in Fig. 6. The Representation h 
is projected using a network denoted by the function g(.). The projection head aided in 
mapping the representations to a vector space, typically consisting of a nonlinear hid-
den layer that generated the representations z. At this stage, the NT-Xent loss function 
is applied, considering the similarities between pairs. The resulting pretrained network 
can then be utilized to transfer the knowledge of the learned representations. In our 
case, encoder representations were employed for transfer learning. Figure 1 provides an 
abstract overview of the framework.

Dwibedi et al. [58] introduced nearest-neighbor contrastive learning as a representa-
tion learning framework. Unlike using augmented variations, this framework maximizes 
similarity by considering different images from the same instance or across samples. 
An encoder is employed to sample the nearest neighbors and form a support set. This 
support set is constructed in a latent space, where the samples are treated as positive 
examples, and the embeddings are continually updated. In contrast, SimCLR focuses 
on maximizing similarity between multiple views of the same image. The support set 
is represented as a two-dimensional (2D) matrix, with one dimension representing the 
queue size and the other dimension representing the embedding size. Note that the 
effectiveness of generalization heavily depends on the chosen augmentation sequence. 
Thus, representation learning using this framework is highly sensitive to the choice of 
augmentation techniques.

The nearest-neighbor contrastive learning technique utilizes a loss function based 
on noise contrastive estimation (NCE) [59], known as Contrastive Predictive Coding 

Fig. 6 Simple framework for contrastive learning representations
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(CPC), which was proposed by Van den Oord et al. [54]. In essence, the InfoNCE loss 
brings positive pairs closer together in the embedding space while simultaneously learn-
ing the differences between negative pairs. The following equation represents the ver-
sion of InfoNCE loss employed by NNCLR:

where NN (zi,Q) represents the l2 norms of z and element q in the support set. This 
equation calculates the nearest-neighbor relationship as follows:

The encoders utilized in the experiments varied from simple convolutional encoders 
to more efficient and lightweight CNNs suitable for defect detection. A basic convolu-
tional encoder consisting of four 2D convolutional layers with 128 filters was stacked. 
The resulting array was then passed through a dense layer of 128 units, using the recti-
fied linear unit activation function. To address potential issues of vanishing gradients 
in deeper architectures, the number of convolutional layers was increased, and stand-
ard skip connections were added to provide alternative paths for backpropagation. This 
technique, known as skip-ConvNet, is depicted in Fig. 7, illustrating the architecture of 
skip-ConvNet and the lightweight convolutional encoder.

SqueezeNet, proposed by Iandola et al. [60], achieved results comparable to AlexNet 
but with fewer parameters. It is a compact network with a fire module that serves two 
functions. First, the 1 × 1 convolutional filters squeeze the feature maps, and the out-
put is fed into expanding layers, which consist of convolutional layers with 3 × 3 filters. 

(5)LNNCLRi = −log
exp

(

NN (zi,Q).
z+i
t

)

Snk=1exp
(

NN (zk ,Q).
z+i
t

) ,

(6)NN (z,Q) = argmin||z − q||2.

Fig. 7 Layers information: a Convnet with skip connections; b Convolutional neural network
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ShuffleNet, proposed by Zhang et al. [61], is a computationally efficient CNN originally 
composed of four stages, as depicted in Fig. 8b. Inspired by the bottleneck units of resid-
ual networks, it incorporates ShuffleNet units in each stage, as depicted in Fig.  8a, b. 
ShuffleNet-v2, introduced by Ma et  al. [62], demonstrated that dependency on group 
convolutions can reduce computation speed. ShuffleNet-v2 utilizes channel-split oper-
ations, splitting feature channels into two branches. After convolution operations, the 
channel branches are concatenated.

The channel shuffle operation facilitates the exchange of information among feature 
channels. In this study, ShuffleNet-v2 basic units and down-sampling units were utilized 
as building blocks in three stages. In the initial stage, the input passed through a convo-
lutional layer with a kernel size of three. A max-pooling layer with a kernel size of three 
and a stride of two was applied. The building blocks of ShuffleNet, represented as Units 
(a) and (b) in Fig. 8, were repeated twice in stages 2 and 3.

For the SimCLR and NNCLR frameworks, images were resized to 128 × 800 and 
200 × 500 pixels, respectively. All experiments were conducted and trained on a T4 GPU 
system with 52 GB of RAM. The learning rate was set to 0.0001 with a batch size of 32. 
The network was trained using the Adam optimizer. Subsequently, the networks were 
trained for 100 epochs.

Experimental results and discussion
The experimental results obtained using the proposed method are described in the fol-
lowing subsections. To evaluate the model performance, we trained the best-performing 
architectures using similar parameters without self-supervised contrastive pretrain-
ing. In this section, we measure the accuracy, precision, recall, and F1 scores for all the 
architectures. Additionally, we discuss the validation accuracy, loss curves, and overall 
outcomes. Accuracy and F1 scores are essential metrics for binary and multiclass clas-
sification problems. Accuracy represents the percentage of correctly predicted labels out 
of the total number of samples, which is calculated as follows:

Fig. 8 ShuffleNet architecture that includes basic building blocks depicted in (a, b); c high‑level illustration of 
the stages of ShuffleNet
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Precision is the ratio of correctly identified positive cases to all predicted positive 
cases:

Recall measures true positives (TP) from all actual positive cases:

where TP stands for true positive, TN is for true negative, FP is for false positive, and FN 
is for false negative.

The F1-score is a reliable metric in practical scenarios with imbalanced class distribu-
tions, defined as the harmonic mean of precision and recall:

The area under the curve and receiver operating characteristic (AUC–ROC) metrics 
demonstrate the capability of the model to differentiate among classes. The ROC plots 
sensitivity (or recall) against the false-positive rate, representing a probability distribu-
tion curve. A high sensitivity at a minimal false-positive rate indicates good discrimina-
tive power. Models with higher generalization ability have a greater area under the ROC 
curve.

Simple framework for contrastive representation learning

The encoders were pretrained on a large dataset comprising 16 types of defects for 100 
epochs, optimized using the Adam optimizer. Callbacks such as Early Stopping with 
a patience set to 15 epochs were used to train the models for the optimal number of 
epochs and prevent overfitting. Two different losses, contrastive and linear probe losses, 
were used to evaluate the performance of the model. Contrastive accuracy indicated the 
proportion of cases in which the original images were similar to their altered versions in 
a batch of samples containing augmented images. The quality of the representations was 
evaluated using linear probing accuracy and probing loss in each epoch. Linear probe 
metrics were computed by using a classification layer on top of the frozen encoder dur-
ing the pretraining phase. The proposed approach utilized a lightweight deployable DL 
architecture as an encoder suitable for resource-constrained settings.

To prevent overgeneralization during fine-tuning tasks, we employed validation loss-
based early stopping as a callback metric. Contrast accuracy and loss were monitored in 
this study.

Several DL architectures suffer from overgeneralization, high variance, and 
resource constraints when dealing with small target defects. In contrast, lightweight 
CNNs enable more efficient cross-server communication during the training process, 

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

(10)F1− Score = 2×
Precision ∗ Recall

Precision+ Recall
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making them suitable for small defect datasets. The selected encoders require less 
bandwidth when exporting the models to different hardware.

During the pretraining stage, the simplified ConvNet encoder demonstrated a con-
trastive accuracy of 91%, whereas the three-stage ShuffleNet achieved an accuracy 
of 86%. On top of the pretrained encoder, a dense layer with six units and Softmax 
activation applied. The results of fine-tuning using different encoders are summarized 
in Table  2. ConvNet and Skip-ConvNet achieved accuracies of 97.78% and 97.41%, 
respectively, with the latter having approximately one-sixth of the parameters. How-
ever, fire modules in SqueezeNets exhibited certain drawbacks such as low accuracy 
and high complexity, despite comprising lower number of architectural parameters. 
The fire module combines 1 × 1 and 3 × 3 kernels, resulting in smaller receptive fields 
compared to architectures with stacked 3 × 3 convolutional layers. Deep convolu-
tional networks such as ResNet50 can introduce high variance and mild overfitting 
for datasets with small sample sizes, while incorporating more model parameters. 
After pretraining, ResNet50 achieved an accuracy of 91.11% on the NEU metal defect 
dataset.

ShuffleNet significantly improves the framework performance owing to its channel 
shuffle mechanism and group convolutions. The network was customized to achieve 
optimal complexity for the framework, resulting in a half the number compared to 
Skip-ConvNet. ConvNet achieved an accuracy of 97.78% by using stacked convolu-
tional layers with 3 × 3 kernels, allowing gradual abstraction of the input image and 
extraction of low-level features. The network avoids overgeneralization, primarily 
because of its smaller depth and pooling layers. By omitting pooling layers, ConvNet 
captures the entire feature space, including both high- and low-level features, for the 
pretraining and classification tasks. However, ShuffleNet demonstrate superior effi-
ciency and effectiveness with fewer model parameters, albeit with a slightly lower 
accuracy. The encoders were pretrained on the unlabeled pretraining dataset and then 
fine-tuned on the NEU metal surface defect dataset. The results achieved by different 
encoders on the target dataset after self-supervised pretraining are summarized in 
Table  2. For comparison, we conducted experiments using the three base encoders 
as standalone classifiers and a simple augmentation pipeline, treating them as base-
lines for downstream classification tasks. In principle, we aimed to evaluate whether 
the encoders would yield lower accuracy without the self-supervised pretraining 
framework.

Table 2 Self‑supervised pretraining and finetuning using SimCLR framework

Encoders Accuracy (%) F1‑score Parameters

SqueezeNet 88.89 0.88 0.13 M

ResNet50 91.11 0.91 49.80 M

ShuffleNet 97.04 0.97 0.41 M

Skip‑ConvNet 97.41 0.97 0.92 M

ConvNet 97.78 0.98 6.01 M
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Therefore, the hyperparameters of the encoders remained unchanged. The baseline 
classification results listed in Table 3 displayed a marginal but significant decrease in 
test accuracy for the networks.

The confusion matrix for the fine-tuned ConvNet encoder, pretrained using the 
SimCLR framework, is illustrated in Fig. 9. Four out of six classes were correctly clas-
sified, with no false positives, whereas the remaining two classes had three to four 
false positives. Validation loss and accuracy curves for the baseline, pretraining, 

Table 3 Baseline Classification Results

Encoders Accuracy (%) F1‑score

ConvNet 91.00 0.91

Skip‑ConvNet 92.00 0.92

ShuffleNet 94.81 0.95

Fig. 9 Confusion matrix of simple convolutional encoder

Fig. 10 Validation accuracy curve of convolutional encoder: baseline, pretraining, and downstream/
finetuning
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and fine-tuning of the ConvNet encoder are illustrated in Figs.  10 and 11, respec-
tively. After training on the pretraining dataset, the encoders exhibited a classifica-
tion advantage. The pretrained ConvNet reached a higher validation accuracy faster 
compared to its baseline counterpart. The encoder achieved a lower validation loss 
due to the self-supervised pretraining, as illustrated in Fig.  11. Early Stopping with 
a patience value of 15 was used as a callback, resulting in the models converging at 
different epoch numbers. We used the early stopping function to reduce the model-
overfitting and training time.

As an assessment of the practical reliability of the model, the ROC curves for the 
six defect types are plotted in Fig.  12, wherein the dotted boundary represents the 
diagonal in which the false positive rate equals the true positive rate. In principle, the 
performance of the classifier is indicated by the proximity of a curve to the diagonal 
(i.e., distance to the diagonal), based on which the pretrained classifier exhibited an 
extremely high true positive rate.

Fig. 11 Validation loss curve of ConvNet: baseline, pretraining, and downstream/finetuning

Fig. 12 ROC curves for the six defect classes generated from the ConvNet
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The convolutional architectures demonstrated reduced training time per step. 
ResNet50 took 55 ms per step due to its depth, while the squeeze net, with nine fire 
modules, had a longer training time of 35 ms per step compared to the convolutional 
encoder, skip ConvNet, and Shufflenet.

A simple CNN consists of convolutional operations, pooling, and fully connected 
layers. The proposed ConvNet includes a total of convolutional and fully connected 
layers. The total number of parameters for the four stacked convolutional layers can 
be represented as 4 × k ×

(

f × f × c + 1
)

 , where f  , c , and k denote the filter size, 
number of channels, and number of filters, respectively. The fully connected layer 
adds additional parameters. In the case of skip-Convnet, additive skip connections 
n× n introduce parameters in addition to the convolutional layers, where n repre-
sents the dimension of the matrix.

ResNet50 has 23.521 million trainable parameters, as reported in the literature. 
Therefore, shallower models exhibited significantly reduced training times, ranging 
from 8 to 10 ms per step.

Nearest neighbor contrastive learning of representations

The support set is a priority queue updated by removing old embeddings and intro-
ducing new representations. Table  4 summarizes the effect of self-supervised pre-
training, depicting an improvement in test accuracy compared to the baseline results 
presented in Table 2.

The framework yielded optimal results with a queue size of 93,000 the Ima-
geNet2012 dataset, which contained over one million images and required a large 
embedding space. However, in the experiments, a queue size of 10,000 was deter-
mined to be optimal for a simple ConvNet, and this size was used in the subsequent 
experiments.

Figure  13 provides the details of the confusion matrix for SkipConvNet using the 
NNCLR framework for different classes of defects. Similar to the SimCLR framework, 
the Inclusion (In) and Scratch (Sc) classes, each with three to four false positives, 
whereas the Split Surface (Ps) class contains only one false positive. Figure 14 displays 
a comparative reduction in validation loss after self-supervised pretraining. Interest-
ingly, fine-tuning a pretrained encoder with the NNCLR framework exhibited trends 
similar to those observed with the SimCLR framework. As depicted in  Fig.  13 and 
Fig.  15, the confusion matrix and ROC curve indicated a fair generalization ability 
for all classes. In this setting, the Inclusion class achieved an AUC of 0.97, which was 
slightly reduced in comparison to its previous value.

Table 4 Results of different base‑encoders using the NNCLR framework

Encoders Accuracy (%) F1‑score Parameters

Simple ConvNet 95.56 0.96 5.85 M

Skip‑ConvNet 97.04 0.97 0.92 M

ShuffleNet 95.92 0.96 0.40 M
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Fig. 13 Resulting confusion matrix of Skip‑ConvNet architecture

Fig. 14 Validation loss curve displaying a reduction in validation loss for a smaller number of epochs

Fig. 15 ROC curve for skip‑ConvNet architecture
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Comparative analysis with surface defect classification methods

The networks were trained using a learning rate of 0.001 and different numbers of 
epochs to achieve optimal results. Basic augmentation techniques such as random 
cropping and rotation were applied. The models were initialized ImageNet weights 
and trained using RMSprop optimization. Increasing the number of layers in a net-
work can potentially improve its generalization capability by optimizing more param-
eters. However, lightweight models are more preferred for smaller datasets, as they 
can avoid overfitting and reduce computational resource requirements. Nonethe-
less, the convolutional encoders pretrained on separate defect datasets without labels 
delivered favorable performance on the NEU metal surface defect dataset.

The results of the supervised approaches are summarized in Table 5. Models with 
varying complexities were selected for comparison with the self-supervised models. 
Zeeshan et  al. utilized the VGG-19 architecture, which exhibited the highest num-
ber of trainable parameters among the models, leading to lower generalization ability. 
Qayyum et  al. employed the InceptionV3 architecture for steel crack identification, 
demonstrating superior model adaptation and higher accuracy. Konovalenko et  al. 
utilized the deep residual network ResNet152, which achieved moderate performance 
with over 86% accuracy compared to the other models.

Liu et al. and Singh et al. [28, 66] employed hybrid architectures for SSD. Although 
these architectures successfully extracted dominant features for other applications, 
they achieved approximately 70% accuracy for our dataset. This might be attributed 
to the insufficiency of labeled data and the similarity of extracted features among dif-
ferent surface defects.

In ref. [68], Smith et  al. used a vision transformer-based encoder-decoder model 
called AnoViT proposed by Lee et al. [67]. for surface defect detection. It has 13.97 M 
trainable parameters. The model additionally can learn the global relationship 
between image patches that is capable of both image fault detection and localization. 
The AnoViT constructs a feature map maintaining the existing location information 
of individual patches by embedding all patches passed through multiple self-attention 
layers. For the NEU-CLS dataset, the model has exhibited an average 93% of accuracy, 
which is comparatively higher than other state-of-art models.

Table 5 Comparison of proposed model with the state‑of‑art deep learning models using the NEU‑
CLS dataset

Model Architectures Trainable 
parameters

Accuracy (%) F1‑score

Qayyum et al. [63] InceptionV3 24 M 92.96 0.93

Konovalenko et al. [64] ResNet152 60 M 86.29 0.86

Zeeshan et al. [65] VGG19 138 M 61.85 0.55

Singh et al. [66] ResNet101‑SVM 44.5 M 70.23 0.70

Liu et. al. [28] CNN‑LSTM 1.2 M 67.5 0.68

Lee et. al [67] AnoViT 13.97 M 93.0 0.93

Proposed SimCLR‑Skip‑ConvNet 0.9 M 97.41 0.97
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Conclusions
This study adopted a state-of-the-art self-supervised contrastive learning framework for 
defect detection on industrial metal surfaces. While the original framework employed 
ResNet-50 as the base encoder, our experiments employed lightweight convolutional 
encoders to address the challenges of limited training data on new and rare defect types.

However, the proposed framework presents a few concerns such as sensitivity to 
the opted augmentation techniques and the potential performance improvement with 
extremely large batch sizes, as discussed in this study. Nonetheless, the proposed model 
demonstrated high generalization capability with reasonable batch sizes and a relatively 
small dataset. In particular, self-supervised representation learning proves advantageous 
in the fine-tuning task, with SimCLR on Simple ConvNet achieving 97.78% accuracy 
and NNCLR on Skip-ConvNet achieving 97.04% accuracy. Thus, this study establishes 
that pretraining lightweight architectures using contrastive learning frameworks can 
produce near-gold standard results when fine-tuned for steel surface-defect classifica-
tion. The limitations of this study include specific types of the considered defect, which 
may impact the generalization of the model to other scenarios. Thus, further research 
is required to explore its performance on a wider range of defect classes and real-world 
production environments. In future research, the model can be tested by implementing 
a conceptual model within an IoT framework in an industrial setting.
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