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Abstract 

Purposes: Cancer mRNA vaccines are a promising strategy and a hot topic in cancer 
immunotherapy. However, mRNA vaccines for breast cancer (BRCA) remain undevel-
oped. This study aimed to identify potential tumor antigens for mRNA vaccine develop-
ment and a population with BRCA suitable for vaccination.

Methods: Gene expression profiles and the clinical information of the TCGA-BRCA (the 
Cancer Genome Atlas Breast Cancer) and METABRIC (Molecular Taxonomy of Breast 
Cancer International Consortium) cohorts were downloaded from the TCGA and cBio-
Portal databases, respectively. cBioPortal was used to identify mutant genes. DEG 
(differentially expressed gene) identification and survival analysis were performed 
with the GEPIA2 tool. ssGSEA (single-sample gene set enrichment analysis) was applied 
to estimate abundances of 28 immune cells for each sample. An unsupervised con-
sensus clustering algorithm was used to identify ISs (immune subtypes). A graph 
learning-based dimensionality reduction analysis algorithm was utilized to construct 
an immune landscape. WGCNA (weighted correlation network analysis) was performed 
to identify immune gene modules.

Results: Four potential tumor antigens, i.e., SLC7A5, CHPF, CCNE1, and CENPW, associ-
ated with poor prognosis and APCs (antigen-presenting cells) among overexpressed 
and mutated genes were identified in BRCA. Two ISs (IS1-2) characterized by distinct 
clinical, immune cell infiltration, and molecular features were observed in both the 
TCGA-BRCA and METABRIC cohorts. BRCA patients with IS2 tumors related to poor 
prognosis had an immune "hot" phenotype, while those patients with IS1 tumors 
related to superior prognosis had an immune "cold" phenotype. Distinct IS tumors 
were observed in different ICD (immunogenic cell death modulator) and ICP (immune 
checkpoint) expression profiles. The immune landscape showed an immune distribu-
tion in BRCA patients. Additionally, we identified 2 immune gene modules with differ-
ent biological functions.

Conclusions: SLC7A5, CHPF, CCNE1, and CENPW are the potential tumor antigens 
for mRNA vaccine development with BRCA. Patients with IS2 tumors are a suitable 
population for mRNA vaccination. This study provides a new insight into mRNA vaccine 
development, population selection for vaccination, and prognosis prediction.
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Introduction
Breast cancer (BRCA) has become the first leading cause of cancer incidence with 
more than 2.3 million new cases, accounting for 11.7% of global cancer cases in 
2020 [1]. Traditional treatments, including surgical resection, chemotherapy, and 
radiotherapy have greatly prolonged the survival time of early-stage BRCA patients 
in recent decades. However, the 5-year survival rate of BRCA patients with dis-
tant metastasis remains at 30% (https:// seer. cancer. gov/ statf acts/ html/ breast. html). 
Hence, there is an urgent need to find new strategies for improving the therapeutic 
condition of BRCA.

Cancer immunotherapies eliminate cancer by boosting the host’s antitumor 
response and reshaping the tumor microenvironment (TME). Among them, cancer 
vaccines have attracted much attention from oncologists owing to prevention and 
safety. Cancer vaccines are mainly classified into four categories including tumor cell, 
dendritic cell, DNA, and RNA vaccines, according to their antigen form [2, 3]. Vac-
cines carrying tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs) 
that can be recognized, processed, and presented by antigen-presenting cells (APCs) 
before activating autologous immune cells to induce antitumor effects [4, 5]. Coupled 
with the clinical successes of mRNA vaccines against the coronavirus disease-2019 
(COVID-19) pandemic, cancer mRNA vaccines have again become a hot topic in the 
cancer therapy field. Compared to other types of cancer vaccines, mRNA vaccines 
have following major advantages: (1) mRNA vaccines do not provoke insertional 
mutations because they cannot integrate into the genome [3]. (2) They have a short 
half-life in vivo since they can be degraded by cellular RNases, which means a favora-
ble safety profile [6]. (3) They can be manufactured cost-effectively and rapidly under 
a standardized process, which implies a strong responsiveness to public health emer-
gencies [7]. To date, over 50 mRNA vaccines have been used to combat blood cancers, 
melanoma, glioblastoma, and prostate cancer in clinical trials (https:// clini caltr ials. 
gov/). However, an mRNA vaccine against BRCA has not been developed, and the 
population suitable for vaccination remains unclear.

This study intended to identify potential tumor antigens for mRNA vaccine devel-
opment and to construct an immune landscape for selection of a suitable population 
for vaccination. As shown in the Fig. 1, we identified 4 potential tumor antigens, i.e., 
SLC7A5, CHPF, CCNE1, and CENPW, associated with poor prognosis and APCs 
among overexpressed and mutated genes in BRCA. Two immune subtypes (ISs) and 
two immune gene modules were recognized through the consensus clustering algo-
rithm and weighted correlation network analysis (WGCNA), respectively. Each IS was 
observed to have distinct clinical, immune cell infiltration, and molecular characteris-
tics. We also constructed the immune landscape for BRCA by a graph learning-based 
dimensionality reduction analysis to reveal the immune-related gene distribution in 
individual patients. Overall, our study revealed 4 potential tumor antigens for mRNA 
vaccine development and found that BRCA patients with IS2 tumors are suitable for 
vaccination.

https://seer.cancer.gov/statfacts/html/breast.html
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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Materials and methods
Online tool analyses

To identify tumor antigens and their relationships with OS and RFS, we performed 
mutation analysis, DEG (differentially expressed gene) analysis, and survival analy-
sis through the online tools cBioPortal tool (cBio Cancer Genomics Portal website, 
https:// www. cbiop ortal. org/) [8] and GEPIA 2 [9] (Gene Expression Profiling Interac-
tive Analysis version 2, http:// gepia2. cancer- pku. cn/# index), respectively. Data visu-
alization was also performed using those online tools.

cBioPortal tool

In the present study, the cBioPortal tool was used to visualize genetic alterations 
and to screen mutant genes. The cBioPortal tool integrates multidimensional can-
cer genomics datasets from multiple cohorts, including the METABRIC (Molecular 
Taxonomy of Breast Cancer International Consortium) and TCGA-BRCA (the Can-
cer Genome Atlas Breast Cancer) cohorts. In the present study, we pitched on Breast 
Cancer (METABRIC, Nature 2012 & Nat Commun 2016; 2509 tumor samples with 
548 matched normal samples) and Breast Invasive Carcinoma (TCGA, PanCancer 
Atlas; 1084 tumor samples) datasets in cBioPortal for analyses. The cBioPortal tool 

Fig. 1 Workflow of this study

https://www.cbioportal.org/
http://gepia2.cancer-pku.cn/#index
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automatically mapped 3367 tumor samples with mutation information for gene muta-
tion analysis and 1068 tumor samples with fraction gene altered (FGA) information 
for FGA analysis.

GEPIA2 tool

We used the "differential genes" module of the GEPIA2 tool to identify DEGs. The 
GEPIA2 tool included the RNA-seq data with survival information for 1085 tumor 
samples and 112 matched normal samples from the TCGA-BRCA cohort. The "dif-
ferential genes" module utilizes the analysis of variance (ANOVA) with parameters set 
to |log2FC| value > 1 and q < 0.01 to identify DEGs. Additionally, the "survival analysis" 
module of GEPIA2 was used to evaluate the prognostic value of the DEGs. This module 
uses Kaplan‒Meier curves with log-rank tests and median cutoff DEG profiles to evalu-
ate the relationships between DEGs and overall survival (OS) as well as relapse-free sur-
vival (RFS). A P < 0.05 was regarded as statistically significant.

Offline analyses

To identify the population suitable for mRNA vaccination, we used the R software (ver-
sion 4.0.2, https:// mirro rs. tuna. tsing hua. edu. cn/ CRAN/) to perform data analyses and 
visualization using the downloaded data offline.

Data accession and processing

RNA-seq data and clinical information of BRCA patients in the TCGA-BRCA cohort 
and METABRIC cohort were downloaded from the TCGA (https:// portal. gdc. cancer. 
gov) database and the cBioPortal website, respectively [10]. For further analysis, we 
excluded samples with absent or vague survival information. A total of 1110 TCGA-
BRCA and 1904 METABRIC samples were included in this study (the clinical character-
istics of the cohorts are shown in Additional file 2: Text). The batch effect before merging 
different expression matrices was removed by the comBat function with the SVA R 
package [11] (for more details, see Additional file 2: Fig. S1), and the merged cohort was 
termed the meta-BRCA cohort. The somatic mutation information of TCGA-BRCA 
samples detected by WES (whole-exon sequence) was downloaded from TCGA data-
base for TMB (tumor mutation burden) calculation. The somatic mutation information 
was preprocessed by TCGA database with the VarScan 2 method.

Immune cell abundance estimation

We used single-sample gene set enrichment analysis (ssGSEA) of the GSVA R package to 
estimate the relative immune cell abundance of each sample with the meta-BRCA cohort 
[12] based on its mRNA expression profiles according to a given immune cell gene set 
[13]. In this study, we systematically retrieved the literature and adopted an immune cell 
gene set proposed by Beibei Ru et al. [14]. This gene set consists of 742 genes represent-
ing 28 immune cells (for more details, see Additional file 1: File S1). The estimate R pack-
age was used to evaluate tumor purity [15]. Pearson’s correlation analysis was used to 
examine the relationships between mRNA expression profiles and B-cell, APC (antigen-
presenting cell) infiltration, and tumor purity in the meta-BRCA cohort. A P < 0.05 was 
regarded as statistically significant.

https://mirrors.tuna.tsinghua.edu.cn/CRAN/
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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Identification of ISs

First, we downloaded immune-related genes from the Immunology Database and 
Analysis Portal (ImmPort, https:// www. immpo rt. org/ shared/ genel ists) database. These 
immune-related genes are involved in various immune processes, such as antigen 
presentation, production of cytokines, activation of interleukin receptors, and so on. 
Through R software, we extracted 1203 immune-related genes of the gene expression 
profiles of the meta-BRCA cohort (for more details, see Additional file 1: File S2). Based 
on those 1203 immune-related genes, we performed unsupervised consensus clustering 
to identify ISs (immune subtypes) by the ConsensusClusterPlus R package [16]. A total 
of 1000 bootstraps with 80% item resampling in each bootstrap were used to ensure clas-
sification stability. A consensus heatmap and relative change in area under a cumulative 
distribution function were used to determine the optimal number of clusters.

Somatic genetic variation analysis and CYT score calculation

To determine the TMB, the maftools R package [17] was used to count the total number 
of non-synonymous mutations in the TCGA-BRCA cohort and the total number of non-
synonymous mutations in the METABRIC were directly downloaded from the cBioPro-
tal website. After we merged the TMB information of those 2 cohorts, the Wilcoxon test 
was used to compare the mutation count and TMB between distinct ISs, and a P < 0.05 
was considered to be statistically significant. We utilized the oncoplot function of the 
maftools R package to visualize the top 10 highest mutated genes between distinct ISs. 
This process was performed using the TCGA-BRCA cohort because of a lack of detailed 
mutation information for a single gene on the cBioProtal website. To detect the magni-
tude of the antitumor response with distinct ISs, a cytolytic activity score (CYT) was cal-
culated by the geometrical mean of PRF1 and GZMA mRNA expression profiles for the 
meta-BRCA cohort [18]. The data were compared by Student’s t test, and P < 0.05 was 
considered statistically significant.

Construction of the BRCA immune landscape

To further uncover the IS distribution with individual patients, we performed graph 
learning-based dimensionality reduction analysis through discriminative dimensional-
ity reduction with tree (DDRTree) based on the 1203 immune-related gene expression 
profiles in the meta-BRCA cohort. The plot cell trajectory function of the monocle R 
package [19] was used to visualize the immune landscape. We also extended this analysis 
to reveal the intrinsic IS distribution in individual patients. Similarly, the DDRTree and 
plot cell trajectory functions were used to perform dimensionality reduction and to visu-
alize the immune landscape, respectively.

Construction and GO functional annotation of IS‑associated gene modules

To recognize IS-associated gene modules, we performed WGCNA based on the 1203 
immune-related gene expression profiles using the meta-BRCA cohort via the WGCNA 
R package [20]. We first converted the representation matrix to an adjacency matrix and 
then to a topological matrix. We used a stepwise method with a minimum of 30 genes 
for each network following a standard dynamic shear tree to construct a weighted coex-
pression network. The soft threshold power was set to 2 using the scale-free topology 

https://www.immport.org/shared/genelists
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criterion to develop a weighted adjacency matrix. The coexpression modules were rec-
ognized by a bottom-up algorithm with a dynamic tree-cut method. Close modules were 
merged with a standard of height = 0.25, deep split = 2, and min module size = 30. Mod-
ule eigengenes (MEs) were calculated to quantify modular similarity. Moreover, Gene 
Ontology (GO) functional annotations were used to explore the genetic functions of the 
gene modules via the clusterProfiler R package [21], including biological processes (BP) 
and molecular functions (MF), and cellular components (CC) analyses. A Benjamini‒
Hochberg (BH) adjusted P < 0.05 was regarded as statistically significant.

Statistical analysis

In the present study, P < 0.05 was considered to be statistically significant. A log-rank 
test was utilized to compare OS and RFS with specific groups by the survmier R pack-
age [22]. The chi-square test was used to examine categorical data. The Wilcoxon test 
was used to compare the nonnormally distributed data. Comparison of the normally dis-
tributed data was performed by Student’s t test. Pearson’s correlation analysis was per-
formed to compare the relationship between two continuous variables.

Results
Identification of potential tumor antigens in BRCA 

To identify potential antigens of BRCA, we first performed a DEG analysis between the 
tumor and normal tissues. A total of 1418 upregulated genes among 3556 DEGs were 
identified (for more details, see Additional file  1: File S3). Figure  2a shows a chromo-
somal distribution of those DEGs. Second, the mutational analysis screened 16,494 
mutated genes that potentially encode TAAs (for more details, see Additional file 1: File 
S4). Figure 2b and c indicates that most BRCA patients had low mutation counts (num-
ber of mutational events per case) and FGA (% of copy number altered chromosome 
regions out of measured regions per case), suggesting low immunogenicity for BRCA. 
Figure 2d, e show the top 10 most frequently mutated genes in terms of mutation counts 
and altered genome fractions, respectively. ACR , ADM2, CHKB, CHKB-CPT1B, CHKB-
DT, CPT1B, DENND6B, DNAJB6, DNAJB6-AS1, and HDAC10 were the top 10 most 
frequently mutated genes in terms of mutation count (Fig. 2d). TP53, SCFD2, ARAP3, 
PCDHB12, HK3, OC90, PIK3CA, LINC02584, LPO, and ANO1 were the top 10 most fre-
quently mutated genes in the altered genome fraction analysis (Fig. 2e). In total, we iden-
tified 993 upregulated and frequently mutated tumor-associated genes (for more details, 
see Additional file 1: File S5).

Relationships among potential tumor antigens with BRCA prognosis, APC abundance 

and tumor purity

We filtered the prognostic genes among the 993 tumor-associated genes as poten-
tial TAAs for developing mRNA vaccines. As depicted in Fig.  3a, there were 10 
potential TAAs in 27 OS-related genes that correlated to RFS. Among them, 4 
TAAs were related to worse prognoses, i.e., SLC7A5 (solute carrier family 7 mem-
ber 5; log-rank test; P = 0.0053, Fig.  3b), CHPF (chondroitin polymerizing factor; 
log-rank test; P = 0.0032, Fig.  3c), CCNE1 (G1/S-specific cyclin-E1; log-rank test; 
P = 0.0029, Fig.  3d), and CENPW (centromere protein W; log-rank test; P = 0.02, 
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Fig.  3e). The other 6 genes were related to better prognoses, i.e., CXCL9 (C-X-C 
motif chemokine; log-rank test; P = 0.0054, Additional file 2: Fig. S2a), SKAP1 (src 
kinase-associated phosphoprotein 1; log-rank test; P = 0.0049, Additional file 2: Fig. 
S2b), SERPINA1(alpha-1-antiproteinase; log-rank test; P = 0.0017, Additional file 2: 

Fig. 2 Identification of potential tumor antigens in BRCA. a Chromosomal distribution of differentially 
expressed genes in BRCA. Sample counts in mutation count (number of mutational events per case) groups 
(b) and genome fraction altered (% of copy number altered chromosome regions out of measured regions 
per case) groups (c). Genes with the top 10 highest frequencies in mutation count groups (d) and in altered 
genome fraction groups (e). The colors of the bar represent the group terms and the heights of the bar 
represent the frequency of each group
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Fig. S2c), ZMYND10 (zinc finger MYND domain-containing protein 10; log-rank 
test; P = 0.049, Additional file  2: Fig. S2d), RSPH1 (radial spoke head 1 homolog; 
log-rank test; P = 0.021, Additional file  2: Fig. S2e), and TMEM119B (transmem-
brane protein 119; log-rank test; P = 0.012, Additional file 2: Fig. S2f ). In the present 
study, proteins encoded by the 4 above poor-prognostic genes were considered to be 
potential tumor antigens for mRNA vaccine development. Furthermore, the expres-
sion profiles of CENPW, SLC7A5, CHPF, and CCNE1 were positively associated with 
activated B-cell and APCs (activated dendritic cell and macrophage) abundance, but 
negatively with tumor purity (Pearson’s correlation analysis; Fig. 4a–d). These find-
ings indicate that these 4 potential tumor antigens (for more details, see Additional 
file  2: Table  S1) may be directly processed and presented by APCs to T cells and 
recognized by B cells to trigger an antitumor response, reducing the tumor purity to 
prolong the survival time of BRCA patients. Hence, these 4 potential tumor antigens 
are promising candidates for developing mRNA vaccines against BRCA.

Fig. 3 Identification of prognosis-related tumor antigens in BRCA. a In total, of 993 TAAs, 10 antigens were 
related to OS and RFS. Kaplan‒Meier curves showing the relationships between OS and b SLC7A5, c CHPF, d 
CCNE1, and e CENPW expression
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Identification of potential ISs in BRCA 

To detect a suitable population for vaccination, we identified the potential ISs 
to mirror the immune status and microenvironment of BRCA. Based on the 1203 
immune-related gene expression profiles in the meta-BRCA cohort, an unsuper-
vised consensus clustering method was used to identify ISs. According to the track-
ing plot (Fig. 5a), function delta area (Fig. 5b), cumulative distribution (Fig. 5c), and 
consensus matrix (Fig. 5d) plots, k = 2 was the best option for ensuring stable clus-
tering. Finally, we obtained 2 ISs termed IS1 and IS2. IS1 tumors were associated 
with better OS (log-rank test; P = 0.0073, Fig. 5e) and RFS (log-rank test; P < 0.0001, 
Fig.  5f ). These 2 ISs were almost irregularly distributed across the distinct tumor-
node-metastasis-stage (TNMS) stages. However, compared with T2, IS1 was sig-
nificantly more distributed in T1 than IS2 (71% IS1 versus 29% IS2 in T1; 62% IS1 
versus 38% IS2 in T2; Wilcoxon test; P = 0.012, Fig. 5g). Compared with N0, IS1 was 
significantly more distributed in N1 than IS2 (62% IS1 versus 38% IS2 in T1; 72% IS1 
versus 28% IS2 in T2; Wilcoxon test; P = 0.007, Fig. 5g). Overall, the ISs we identi-
fied can be used to predict the prognosis of BRCA patients, which is independent of 
TNMS stage.

Fig. 4 Identification of APCs and tumor purity-associated tumor antigens in BRCA. Correlations between 
a CENPW, b SLC7A5, c CHPF, and d CCNE1 expression and activated B-cells, activated dendritic cells, 
macrophage infiltration, and tumor purity
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Relationships between ISs and TMB, CYT score, and potential tumor antigens

Higher TMB and CYT scores are related to stronger anticancer immunity [18]. There-
fore, we compared TMB and CYT scores for each patient in the meta-BRCA cohort. 
As depicted in Fig.  6a, b, both mutation counts (Wilcoxon test; P < 0.0001, Fig.  6a) 
and the TMB (Wilcoxon test; P < 0.0001, Fig.  6b) of patients with IS2 tumors were 
markedly higher than those of patients with IS1 tumors. Interestingly, BRCA patients 
with IS2 tumors also had significantly higher CYT scores than those patients with 
IS1 tumors (Student’s t test; P < 0.0001, Fig. 6c). Figure 6d shows the top 10 most fre-
quently mutated genes in each IS. In addition, the mRNA expression profiles of these 
4 potential tumor antigens were higher in patients with IS2 tumors than in patients 

Fig. 5 Identification of ISs in BRCA. a Tracking plot showing the stability of classification with subtype 
numbers. b Scree plot showing the relative change in the area under cumulative distribution function 
(CDF) curve with subtype numbers. c CDF plot showing the CDF with different subtype numbers. d Sample 
clustering heatmap with 2 divisions of the meta-BRCA cohort. (e) Kaplan‒Meier curve with log-rank test 
showing OS of ISs in the meta-BRCA cohort. f Kaplan‒Meier curve with log-rank test showing RFS of ISs in 
the METABRIC cohort. g Association of ISs with pathological M, T, N, S stage in the TCGA-BRCA cohort. NA not 
applicable, * p < 0.05, ** p < 0.01
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with IS1 tumors (Student’s t test; Fig. 6e). These findings indicate that the ISs we iden-
tified can be used to predict the mutation status and cytolytic activity of BRCA.

Associations between ISs and immune modulators

Immunogenic cell death modulators (ICDs) and immune checkpoints (ICPs) play vital 
roles in cancer immunity [23, 24]. To study the associations between ISs and immune 
modulators, we analyzed the mRNA expression profiles of the immune modulators 
with distinct ISs in the TCGA-BRCA and METABRIC cohorts. Nineteen ICD-related 
genes, including ANXA1, CALR, CXCL10, EIF2A, EIF2AK1, EIF2AK2, EIF2AK3, FPR1, 
HGF, HMGB1, IFNAR1, IFNAR2, IFNE LRP1, MET, P2RX7, P2RY2, PANX1, and TLR3, 
were compared in both cohorts, of which 18 (95%) genes in the TCGA-BRCA cohort 
(Fig.  7a) and 13 (68%) genes in the METABRIC cohort (Fig.  7b) were differentially 
expressed between IS1 and IS2 tumors. Among those genes, ANXA1, CALR, CXCL10, 
EIF2AK2, FPR1, HMGB1, IFNAR2, MET, and PANX1 were statistically overexpressed 
in IS2 tumors, but EIF2A, EIF2AK1, and TLR3 were significantly underexpressed in IS2 
tumors (Wilcoxon test; Fig. 7a, b). Forty ICP-related genes including ADORA2A, BTLA, 

Fig. 6 Associations between ISs and the tumor mutation count, TMB, and CYT score. a The mutation number 
in IS1-IS2 BRCA. b The TMB in IS1-2 with BRCA. c The CYT score in IS1-2 with BRCA. d Top 10 most frequently 
mutated genes in IS1-2 BRCA. E Relationships between ISs and expression of 4 potential tumor antigens
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CD160, CD200, CD200R1, CD244, CD27, CD274, CD276, CD28, CD40, CD40LG, CD44, 
CD48, CD70, CD80, CD86, CTLA4, ICOS, ICOSLG, LAG3, LAIR1, LGALS9, NRP1, 
PDCD1, PDCD1LG2, TIGIT, TMIGD2, TNFRSF14, TNFRSF18, TNFRSF25, TNFRSF4, 
TNFRSF8, TNFRSF9, TNFSF14, TNFSF15, TNFSF18, TNFSF4, TNFSF9, and VTCN1, 
were detected in both cohorts, of which 27 (67.5%) genes in the TCGA-BRCA cohort 
(Fig.  7c) and 35 (87.5%) genes in the METABRIC cohort (Fig.  7d) were differentially 
expressed between IS1 and IS2 tumors. Among those genes, BTLA, CD200, CD200R1, 
CD244, CD27, CD28, CD40, CD40LG, CD48, CD70, CD80, CD86, CTLA4, ICOS, 
ICOSLG, LAG3, LAIR1, LGALS9, PDCD1, PDCD1LG, TIGIT, TMIGD2, TNFRSF25, 
TNFRSF4, TNFRSF9, TNFSF14, TNFSF18, and TNFSF9 were significantly upregulated 
in IS2 tumors in both cohorts, while RNP1 was downregulated in IS2 tumors with the 
TCGA-BRCA cohort (Wilcoxon test; Fig. 7c, d). Therefore, the ISs we identified can mir-
ror the mRNA expression profile of ICDs and ICPs.

Immune cellular characteristics of ISs

Tumor immune cell infiltration status determines response to mRNA vaccines to a large 
extent. Therefore, we further characterized the tumor immune cell components of the 
IS1-2 tumors by estimating the relative abundances of 28 immune cell types in both the 
TCGA-BRCA and METABRIC cohorts. Figure  8a comprehensively depicts the whole 
landscape of 28 immune cell relative abundances of IS1-2 tumors in both cohorts. IS2 
tumors were observed to have a greater immune cellular distribution than IS1 tumors 
in both cohorts. In the TCGA-BRCA cohort, almost all of those 28 immune cells, except 

Fig. 7 Comparisons of ICDs and ICPs in IS1-2 in the TCGA-BRCA and METABRIC cohorts. a Differentially 
expressed ICDs in IS1-2 in the TCGA-BRCA cohort. b Differentially expressed ICDs in IS1-2 in the METABRIC 
cohort. c Differentially expressed ICPs in IS1-2 in the TCGA-BRCA cohort. d Differentially expressed ICPs in 
IS1-2 in the METABRIC cohort. ns not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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for CD56 bright natural killer cells, eosinophils, mast cells, memory B cells, and plasma-
cytoid dendritic cells, were significantly differentially infiltrated in distinct ISs. Only the 
central memory CD8 cells more sparsely infiltrated the IS2 tumors than the IS1 tumors 
among these 28 immune cells (Wilcoxon test; Fig. 8b). In the METABRIC cohort, only 
eosinophils, mast cells, memory B cells, and plasmacytoid dendritic cells remained unre-
markably differentially infiltrated in distinct ISs (Wilcoxon test; Fig. 8c). In line with the 
TCGA-BRCA cohort results, only CD56 bright natural killer cells and central memory 
CD8 cells were more sparsely infiltrated the IS2 tumors than IS1 tumors. Overall, the IS2 
tumors were distributed with more immune cells characterizing an immune "hot" phe-
notype. In contrast, IS1 tumors infiltrated sparse immune cells, indicating an immune 
"cold" phenotype.

The immune landscape of BRCA 

To further visualize the immune distribution of individual patients, we constructed an 
immune landscape of BRCA through graph learning-based dimensionality reduction 
analysis. Patients with IS1 tumors and IS2 tumors distributed in opposite directions 
on the immune landscape (Fig. 9a). We also observed that the PC (principal compo-
nent) 1 correlated negatively with all immune cells, especially type 1 T helper cells, 
T follicular helper cells, and natural killer T cells but that PC2 was only negatively 
linked to 9 immune cells, including type 17  T helper cells, neutrophils, monocytes, 
immature B cells, activated dendritic cells, CD56 dim natural killer cells, activated 

Fig. 8 Immune cellular characteristics of ISs. a Heatmap showing 28 immune cell densities in IS1-2 in the 
METABRIC and TCGA-BRCA cohorts. b Comparisons of 28 immune cell densities in IS1-2 with the TCGA-BRCA 
cohort. c Comparisons of 28 immune cell densities in IS1-2 with the METABRIC cohort. ns not significant, * 
p < 0.05, ** p < 0.01, **** p < 0.0001
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CD8 T cells, activated CD4 cells, and activated B cells. In addition, PC2 was positively 
related to type 1 helper cells, T follicular helper cells, regulator T cells, plasmacytoid 
dendritic cells, natural killer cells, memory B cells, mast cells, macrophages, imma-
ture dendritic cells, eosinophil cells, effector memory CD8 T cells, central memory 
CD4 T cells, central memory CD8 T cells, and CD56 bright natural killer cells (Pear-
son’s correlation analysis; Fig. 9b). Furthermore, we found the intracluster heteroge-
neity of ISs in the immune landscape. We further divided IS1 into IS1A-B and divided 
IS2 into IS2A-B according to the patient’s location on the immune landscape (Fig. 9c). 
These intraclusters also exhibited distinct immune cellular infiltrating characteristics. 
Almost all immune cells, except for CD56 dim natural killer cells, showed remarkably 
different abundances between IS1A and IS1B tumors. Of note, the IS1A tumors were 
relatively infiltrated with sparse immune cells, except for monocytes and neutrophils 
(Wilcoxon test; Fig. 9d). Similarly, most immune cells, except for CD56 bright natural 
killer cells and central memory CD8 T cells, significantly differentially infiltrated the 
IS2A and IS2B tumors. All immune cells infiltrated the IS2B tumors relatively sparsely 

Fig. 9 Construction of the immune cell-infiltrating landscape of BRCA. a The immune cell-infiltrating 
landscape of BRCA. Each point represents a sample, and the specific colors represent specific ISs. The X-axis 
represents the principal component 1 (PC1), and the Y-axis represents the principal component 2 (PC2). b 
Association between 28 immune cell densities and PC1 and PC2. c Immune cell-infiltrating subset landscape 
of BRCA. d Comparisons of 28 immune cell densities between IS1A and IS1B. e Comparisons of 28 immune 
cell densities between IS2A and IS2B. f Immune landscape of samples from three extreme locations and g 
their prognoses. ns not significant, * p < 0.05, ** p < 0.01, **** p < 0.0001
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compared with IS2A tumors (Wilcoxon test; Fig.  9e). Moreover, we also observed 
prolonged survival times in Cluster 3 patients compared with Cluster 1 and Cluster 
2 patients in the immune landscape (log-rank test; P = 0.047, Fig. 9f, g). These find-
ings suggested that the location of patients in the immune landscape can predict their 
prognosis. Overall, the immune landscape can not only effectively reflect the immune 
cell infiltration status of BRCA patients but can also predict their prognosis.

Construction IS‑associated gene modules of BRCA 

IS-associated gene modules were constructed by the WGCNA algorithm with a soft 
threshold of 2 for a scale-free network (Fig.  10a, b). We obtained 2 coexpression 
modules with a total of 458 genes, of which 132 clustered into the blue module and 
326 into the turquoise module. The remaining 745 genes are marked in gray without 
being clustered into any module according to the documentation of the WGCNA R 
package which was not displayed in the graph in Fig. 10c (for more details, see Addi-
tional file 1: File S6). We also analyzed the IS distribution in the module eigengenes 
of those 2 modules. The module eigengenes of the IS1 tumor were significantly higher 
than those of the IS2 tumor in the blue module, while this trend was opposite in the 
turquoise module (Wilcoxon test; P < 0.0001, Fig.  10d). Thus, we hypothesized that 
these 2 modules may be related to distinct biological functions. To further validate 
this issue, we performed GO functional annotations for these 2 modules. We found 
that the blue module refers more to signaling transformations, for example, positive 
regulation of phosphatidylinositol 3-kinase signaling in GO BP analysis and trans-
forming growth factor beta-activated receptor activity in GO MF analysis (Fig. 11a). 
The turquoise module was related to immune related functions, such as the positive 
regulation of T-cell proliferation in GO BP analysis and MHC class II protein com-
plex in GO CC analysis (Fig.  11b). Moreover, the turquoise module (Pearson’s cor-
relation analysis; correlation coefficient = −  0.92, P = 2.2e−16, Fig.  11d) was more 
closely related to the immune landscape than the blue module (Pearson’s correlation 
analysis; correlation coefficient = − 0.34, P = 2.2e−16, Fig. 11c). In addition, prognos-
tic analyses of those 2 modules revealed that only the turquoise module was related to 
OS (log-rank test; P = 0.22, Fig. 11e; P = 0.011, Fig. 11f ). The therapeutic potential of 
mRNA vaccines in BRCA patients was largely determined by the immune functions 
of highly expressed genes. Therefore, an mRNA vaccine might be suitable for BRCA 

Fig. 10 Construction of immune gene coexpression modules of BRCA. a The scale-fit index for soft threshold 
powers. b The mean connectivity for soft threshold powers. c A dendrogram of 1203 immune genetic 
clusters based on a dissimilarity measure (1-TOM). d Comparisons of feature vectors with each module with 
BRCA 
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patients with highly expressed genes in the turquoise module. The turquoise module 
can also be used to predict the prognosis of BRCA patients.

Discussion
BRCA is one of the most commonly diagnosed malignancies, with a high level of bio-
logical and prognostic heterogeneity. Although various treatments can prolong sur-
vival time, the prognoses of relapsing and metastatic patients remain unsatisfactory. 
Proteins encoded by mutated genes differ from wild-type proteins and can be recog-
nized by immune cells to remove cancer cells and act as tumor antigens [25]. In gen-
eral, the immune response can lead to reduction or loss of those tumor antigens and 

Fig. 11 Identification of immune hub genes with immune gene modules in BRCA. a Dot plot showing 
GO functional annotations with the blue module. b Dot plot showing GO functional annotations with the 
turquoise module. c Correlation between the blue module feature vector and PC1 in the immune landscape. 
d Correlation between the turquoise module feature vector and PC1 in the immune landscape. e Kaplan‒
Meier curve showing the prognostic value of the blue module feature vector. f Kaplan‒Meier curve showing 
the prognostic value of the turquoise module feature vector
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induce immune escape [26]. Moreover, the immunogenicity of those tumor antigens can 
be reduced by coated substances, such as salivary mucopolysaccharides [27]. Therefore, 
amplification of tumor antigens with exogenous mRNA vaccines to reactivate the host 
antitumor response is a good strategy.

In this study, we identified 4 potential tumor antigens, i.e., SLC7A5, CHPF, CCNE1, 
and CENPW, for mRNA vaccine development in BRCA. They were not only negatively 
related to survival time and tumor purity but also positively related to APCs and B-cell 
infiltration. Although no experiments have directly indicated that these molecules 
can serve as tumor antigens in  vitro or in  vivo, an increasing number of studies have 
reported their vital roles in BRCA progression, prognosis, and treatment. For example, 
SLC7A5 is an amino acid transporter for the uptake of leucine in cells, which is critical 
for metabolic activation and cellular functions [28]. Engineering chimeric antigen recep-
tor (CAR)-T cells to overexpress SLC7A5 can enhance CAR-T -cell recognition of tumor 
cells [29]. CHPF promotes breast carcinoma cell proliferation, invasion, and migration 
via upstream TGF- β1/SMAD3 and JNK axis activation [30]. CHPF can also promote 
malignancy in BRCA by reshaping the TME [31]. CCNE1 is an important cyclin protein 
that is related to worse clinical outcomes in BRCA patients [32]. Targeting CCNE1, a 
cyclin-dependent kinase (CDK) 4/6 inhibitor (palbociclib) was developed to block cell 
cycle progression to reduce tumor cell proliferation in BRCA [33]. CENPW is associated 
with worse prognosis in BRCA, and knocking down CENPW can inhibit the prolifera-
tion and migration of BRCA cells [34]. Liu et al. [35] also identified three potential tumor 
antigens, i.e., CD74, IRF1, and PSME2, for mRNA vaccine development in BRCA. Con-
trary to our findings, all of those tumor antigens were related to better prognosis. The 
immune response triggered by those tumor antigens may result in their downregulation 
to the original levels and in turn shorten the survival time of BRCA patients, which is the 
opposite of the aim of vaccination. Therefore, the 4 worse prognostic potential tumor 
antigens we identified can provide a credible guide to mRNA vaccine development.

Since a limited portion of BRCA patients with specific ISs can benefit from mRNA 
vaccines [36, 37], we divided BRCA patients into 2 ISs via an unsupervised consensus 
clustering algorithm based on immune-related genes for segmenting the appropriate 
population for vaccination. BRCA patients with IS1-2 in both the TCGA-BRCA and 
METABRIC cohorts were observed to have different prognostic, clinical, molecular, and 
immune cell infiltrating characteristics, which indicates a different clinical response to 
a mRNA vaccine. In the present study, BRCA patients with IS1 tumors characterized 
by sparse immune cell infiltration had better prognosis than those with IS2 tumors 
characterized by abundant immune cell infiltration, in line with our previous study 
[38]. Therefore, the dominance of the immune-suppressive environment or stimulatory 
environment is the decisive factor for prognosis [39]. IS2 tumors still had higher TMB 
and mutation numbers, which implies a greater heterogeneity and was easier recogni-
tion by immune cells. IS2 tumors were characterized by more infrequent TP53 and less 
infrequent PIK3CA mutations than IS1 tumors. BRCA patients with mutant TP53 and 
PIK3CA have poor prognosis, consistent with our study [40–42]. Additionally, a higher 
CYT score for the IS2 tumors implies that more tumor cells were attacked by immune 
cells. IS2 tumors also displayed higher expression of ICPs and ICDs than IS1 tumors in 
both the TCGA-BRCA and METABRIC cohorts, which suggests that patients with IS2 
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tumors will benefit more from both immune checkpoint inhibitor and mRNA vaccine 
treatments. Therefore, we propose that BRCA patients with IS2 tumors are more suit-
able for mRNA vaccination than those with IS1 tumors. Patients with IS2 tumors who 
receive treatments combing immune checkpoint inhibitors with mRNA vaccination may 
obtain better curative effects.

To date, many studies have identified tumor categories based on various aspects of 
tumor biology. BRCA is commonly classified into three main subtypes according to 
the status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2), guiding the choice of medical treatments, including 
endocrine and anti-HER2 therapies [43]. However, those categories do not guide the 
mRNA vaccination since they cannot represent the complex TME in BRCA. Therefore, 
we did not investigate the distribution of ISs in those categories. Thorsson et al. divided 
33 cancer types into six ISs (C1-6) based on the TME and prognosis [44]. We found that 
the major C1 (wound healing) and C2 (INF-γ dominant) categories characterized by 
abundant immune cell infiltration and favorable prognoses were clustered as IS2 tumors 
but that the C4 (lymphocyte depleted) and C6 (TGF-β dominant) categories with sparse 
immune cell infiltration and worse prognoses were clustered as IS1 tumors. Contrary to 
their prognostic roles, BRCA patients with IS1 tumors tended to have better prognosis 
than patients with IS2 tumors. Therefore, our division of the TME is different from pre-
vious classifications and provides a useful complement to classification of the TME. To 
further reveal the intracluster heterogeneity of ISs, we performed graph learning-based 
dimensionality reduction of immune-related gene profiles according to previous studies 
[45, 46]. We observed that patients distributed in three different directions on the graph 
have different prognoses. Comparison of intraclusters revealed that almost all immune 
cells infiltrated IS1B and IS2A more abundantly than IS1A and IS2B, which indicates 
that BRCA patients accepting mRNA vaccine treatments with distinct intraclusters of 
ISs may still have different responses and clinical outcomes. Thus, a more precise meth-
odology for defining the TME is still needed in future studies.

Our study also has several limitations. First, we only identified the potential tumor 
antigens based on RNA-seq data without validation of their response because no clini-
cal data for mRNA vaccine use in BRCA have been published thus far. Second, further 
applications of ISs in clinical practice are difficult since the gene expression profile for a 
patient should be used. Further in vivo and vitro studies are needed in this field.

Conclusions
In conclusion, SLC7A5, CHPF, CCNE1, and CENPW are potential tumor antigens for 
mRNA vaccine development. BRCA patients with IS2 tumors may benefit from vacci-
nation. Our study provides a foundation for mRNA vaccine development, population 
selection for vaccination, and prognosis prediction.
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