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Abstract 

As a means of building explainable machine learning models for Big Data, we apply 
a novel ensemble supervised feature selection technique. The technique is applied 
to publicly available insurance claims data from the United States public health insur-
ance program, Medicare. We approach Medicare insurance fraud detection as a super-
vised machine learning task of anomaly detection through the classification of highly 
imbalanced Big Data. Our objectives for feature selection are to increase efficiency 
in model training, and to develop more explainable machine learning models for fraud 
detection. Using two Big Data datasets derived from two different sources of insurance 
claims data, we demonstrate how our feature selection technique reduces the dimen-
sionality of the datasets by approximately 87.5% without compromising performance. 
Moreover, the reduction in dimensionality results in machine learning models that are 
easier to explain, and less prone to overfitting. Therefore, our primary contribution 
of the exposition of our novel feature selection technique leads to a further contribu-
tion to the application domain of automated Medicare insurance fraud detection. We 
utilize our feature selection technique to provide an explanation of our fraud detection 
models in terms of the definitions of the selected features. The ensemble supervised 
feature selection technique we present is flexible in that any collection of machine 
learning algorithms that maintain a list of feature importance values may be used. 
Therefore, researchers may easily employ variations of the technique we present.

Keywords: Big Data, Class imbalance, Explainable machine learning models, Ensemble 
supervised feature selection, Medicare fraud detection

Introduction
Highly dimensional Big Data can be a challenge to work with, since brute-force 
approaches are not practical. For example, in the process of feature selection, with 
smaller datasets that have a few attributes, one may simply try all possible combinations 
of features, build a model with each combination, and select the model that performs 
the best. This approach quickly becomes impractical, especially as the number of fea-
tures in the dataset grows. Put another way, high dimensionality may cause issues with 
machine learning model performance such as a diminished capacity to generalize and 
longer training times. Hence, feature selection techniques are a popular topic of research 
in machine learning for Big Data application domains. For more information on features 
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selection techniques, please see [1]. Another benefit of applying feature selection to the 
modeling process is that it yields more explainable models. Models with fewer features 
are easier to explain, since, at the very least, there are fewer factors to consider when 
theorizing about their effect on the dependent variable. In this study, we describe and 
apply an ensemble of supervised feature selection techniques. To the best of our knowl-
edge, we discovered this feature selection technique, and we are certainly the first to 
apply it to the Medicare insurance fraud detection application domain. We show that 
our technique outperforms the baseline scenario of building models that use all features.

We apply our feature selection technique to build machine learning models for the 
automated detection of Medicare insurance fraud. Medicare is a public health insur-
ance program in the United States. It is primarily tasked to insure individuals aged 65 
and older. The Centers for Medicare and Medicaid Services (CMS) [2], is the institu-
tion responsible for overseeing the Medicare program. The CMS encourages research by 
maintaining publicly accessible repositories of Medicare insurance claims data. Records 
in the claims data have dozens of attributes. Therefore, feature selection is an appropri-
ate subject of research that involves this data.

The principal sources of data for our investigation are two Medicare Plans, Medicare 
Part B, which covers treatments and procedures, and Medicare Part D, which covers 
prescription medications. The size and the rate at which these datasets grow reflects the 
flow of insurance claims submitted to CMS by healthcare providers. At present, fraudu-
lent claims can go unnoticed, enabling dishonest providers to exploit the system. Even 
if only a small percentage of claims are fraudulent, the substantial volume of claims still 
translates to large amounts of money. In 2019, approximately three billion dollars were 
reclaimed from fraudulent activities by the Department of Justice [3]. However, the total 
amount lost to fraud remains uncertain as the CMS reports “improper payments,” which 
encompasses both fraudulent and mistaken payments [4]. In 2019, the CMS reported 
about $100 billion in improper payments. For more details on the characteristics of 
criminal Medicare fraud activity, please see [5].

Not only is the data provided by CMS highly dimensional, in the sense that it has many 
attributes, but also it contains many records, since on the order of millions of records 
are added annually. An effective feature selection technique is therefore highly desirable, 
since that reduces the overall size of the data that must be processed.

Automated, reliable fraud detection could help the CMS estimate the proportion of 
improper payments due to fraud, providing a solid foundation for law enforcement 
to recuperate stolen funds. Our interest in the Medicare fraud detection application 
domain is focused on employing machine learning techniques to detect Medicare fraud, 
contributing towards the overall aim of automated Medicare fraud detection. Enhancing 
fraud detection capabilities could lead to the more efficient use of government funds, 
and potentially lower taxes as a result of reduced program costs. At the same time, we 
would like to be able to prove that the fraud detection process is fair, something that can 
only be accomplished with explainable machine learning models. Models with fewer fea-
tures are more explainable. Therefore, the feature selection technique we present here is 
a method for building more explainable models.

In order to show our technique is viable and should be the subject of ongoing research, 
we compare the performance of models built after applying our feature selection 
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technique to the performance of models built with all features of the datasets. We show 
that the models we build on datasets where the feature selection technique is applied 
to outperform models built with all features. Therefore, this exposition of our feature 
selection technique constitutes a contribution to the field of machine learning applied 
to highly imbalanced Big Data, that future researchers can employ to reduce the size of 
the datasets they work with, and achieve more explainable models. In order to show the 
effectiveness and benefits of our feature selection technique, we have devised a study 
with the following sections: a survey of related work, a discussion of the datasets used, 
a discussion of the machine learning algorithms used, a description of our experimental 
methodology, including the feature selection technique, presentation of results, statisti-
cal analysis, and conclusions.

Related work
We explore the extensive research conducted in the field of machine learning on the 
subject of feature selection, with an emphasis on their applications in fraud detection. 
Although the body of work specifically addressing Medicare fraud detection is some-
what limited, we have incorporated studies examining other forms of fraud detection 
for a comprehensive understanding. The methodologies employed in these studies on 
fraud detection apply to the task of Medicare fraud detection. Although there are related 
studies, we find our study stands apart for its exposition of a novel feature selection tech-
nique, and its use of statistical analysis to prove the benefits of applying the technique.

Mayaki and Riveill [6] compile CMS data from the years 2017 to 2019, and label it with 
the List of Excluded Individuals and Entities (LEIE) [7] to form a dataset for supervised 
machine learning. They then build a model for detecting Medicare fraud in their dataset, 
which they named “Multiple Inputs Neural Network Auto-Encoder” (MINN-AE). The 
auto-encoder component of MINN-AE is a Long-Short Term Memory (LSTM). Auto-
encoders have been successfully employed in other application domains involving the 
classification of highly imbalanced data [8]. Mayaki and Riveill measure the effectiveness 
of MINN-AE against Logistic Regression, Random Forest, Gradient Boosting, XGBoost, 
and five other artificial neural network models. The evaluation metrics reported in the 
study include precision, AUC, Area Under the Precision Recall Curve (AUPRC) [9], 
and geometric mean. In alignment with our views on AUC versus AUPRC, Mayaki and 
Riveill write about the usefulness of AUPRC when compared to AUC for datasets that 
are highly imbalanced. Their findings demonstrate that MINN-AE surpassed the perfor-
mance of the other nine models. Despite this, the authors neglected to provide detailed 
information about the experimental dataset, including the count of instances and fea-
tures. Moreover, unlike our study, Mayaki and Riveill do not discuss a feature selection 
technique.

Waspada et  al. [10] apply a supervised feature selection technique, Random Forest, 
to rank the features in the Kaggle Credit Card Fraud Detection Dataset [11]. This data-
set is similar to the Medicare Part B and Part D datasets that we use here because it 
is highly imbalanced. They carry out experiments with many factors. In the combina-
tion that yields the best results, they report that the top five features yield the best per-
formance. Waspada et al. report results in terms of several metrics, including AUPRC. 
We agree with their conclusion that AUPRC is a more reliable metric for evaluating the 
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classification of highly imbalanced big data. However, in the multifactorial experiments 
that Waspada et al. conduct, we do not find a report of a statistical analysis performed to 
determine the significance of the effects of the factors. In our study we conduct a statisti-
cal analysis of the impact of our feature selection technique on experimental outcomes 
to give a clear idea of how varying the number of features used in experiments effects 
classification scores. Similar to Waspada et  al., we use a supervised feature selection 
technique. However, ours is an ensemble feature selection technique, and we present a 
novel method for combining multiple supervised feature selection techniques. For an 
overview of ensemble feature selection methods, please refer to [12].

In their research, Sailaja et  al. [13] perform experiments with CMS Medicare data 
from 2012–2015. They label the data with the LEIE. From the CMS and LEIE data, they 
compile a dataset with 37,147,213 instances and nine features. Their final dataset con-
tains 3,331 instances marked as fraudulent. Therefore, their dataset exhibits a high class 
imbalance, with 0.008967% of instances being fraudulent. The machine learning algo-
rithms Sailaja et al. use are Decision Tree, Support Vector machine (SVM), and Logis-
tic Regression. They report that Decision Tree outperformed both SVM and Logistic 
Regression models in overall effectiveness. Moreover, it was found that Decision Tree 
worked best with an 80:20 class distribution when Random Undersampling was applied 
to address the class imbalance in their dataset. Sailaja et  al. use Area Under Receiver 
Operating Characteristic Curve (AUC) [14] as the metric to evaluate the results of their 
experiments. Over the course of our research, we have found that AUC is a mislead-
ing metric for evaluating the results of classification experiments involving highly imbal-
anced big data [10].

Gupta et al. [15] conducted a comparative study aimed at detecting fraudulent cases in 
Indian health insurance claims data. They observed that certain features within the data-
set showed strong correlations with each other. To tackle this, they removed one fea-
ture from each correlated pair and used the remaining subset for fraud detection. Gupta 
et al.’s feature selection technique is not an ensemble technique, such as the one we pre-
sent in our study. While removing correlated features is a sensible step for preparing 
a dataset for classification, calculating feature correlation does not provide one with a 
ranking of the features in a dataset that enables one to intelligently remove features from 
a dataset. Our study provides an exposition of an ensemble feature selection technique, 
which is flexible and extensible in the sense that any technique that provides a ranking of 
features can be incorporated in it. Furthermore, since it provides an ordered list of fea-
tures as a result, one may leverage it to control the size of the feature set for experiments. 
Feature correlation does not provide a sense of what features may be removed without 
impacting performance, whereas a ranking informs one of which features are less impor-
tant, and hence may be discarded without negatively effecting classification scores.

Herland et al. [16] focus on the detection of Medicare fraud with the use of datasets 
derived from the CMS’s publicly available data. They use Medicare Physician & Other 
Practitioners—by Provider and Service (Part B) [17] data from the years 2012–2015, 
Medicare Part D Prescribers—by Provider and Drug (Part D) [18] data from the years 
2013–2015, and data from a third part of Medicare, known as Medicare Durable Medi-
cal Equipment, Devices & Supplies—by Referring Provider and Service (DMEPOS) [19] 
from the years. 2013–2015. Furthermore, Herland et al. compile a fourth dataset, known 
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as the Combined dataset, by merging the Part B, Part D, and DMEPOS datasets. All 
four of the datasets are documented as highly imbalanced in their study. They provide 
details on the data processing methods for each of the four datasets, and they demon-
strate how to label the datasets with the LEIE. Herland et al. build classification models 
with Logistic Regression, Random Forest, and Gradient Boosting classifiers for all four 
datasets. Their results show that the Combined dataset, when used with Logistic Regres-
sion, yields the best overall performance in detecting fraud. A key distinguishing factor 
between our studies is that Herland et al. do not employ feature selection techniques. 
Moreover, we only find results reported in terms of AUC, which, as mentioned previ-
ously, we find to be a misleading metric for classifying imbalanced Big Data.

Our review of related work leads us to the conclusion that the documentation of our 
work in the form of a study represents a contribution. We are the first to present the 
application of a new feature selection technique in the Medicare insurance fraud detec-
tion application domain. Moreover, we are the first to offer an explanation of our model’s 
results in terms of the reduced feature set that results in applying our ensemble super-
vised feature selection technique.

Datasets
The datasets in this study are compiled from information provided by the CMS and the 
United States Office of Inspector General (OIG). First, we discuss characteristics of the 
CMS Medicare data. Next, we discuss how we aggregate it, as a preprocessing step. Later 
we describe the labeling process, which involves the data from the OIG. We utilize two 
primary sources for data from the CMS in our study. They are both Medicare Health 
insurance plans. One plan is known as Part D, and the other is known as Part B. In the 
context of health insurance, a plan is simply the agreement between the insurer and the 
insured as to what things are covered under the insurance policy. Part D covers prescrip-
tion medications, and Part B covers treatments and procedures. CMS makes different 
raw data available for both programs, however, we use the same technique to compile 
both sources into datasets suitable for supervised machine learning. This technique also 
involves a third source of data, from the United States Office of Inspector General which 
we use for labeling. The third source is the List of Excluded Individuals and Entities 
(LEIE) [7]. The datasets used in this study are compiled in the manner described in [20].

We obtain the Part D and Part B data from on-line sources. The CMS website offers 
a user interface as well as an application programming interface for examining these 
datasets, and to carry out rudimentary exploration of data. We acquired the Medicare 
datasets from the CMS site in a comma-separated format files as the basis for our data-
sets. The datasets are available to the public, for download. We use data spanning the 
years 2013–2019. The CMS provides supplementary documentation that explains the 
Medicare data. We utilize publicly available, CMS-provided methodology documents 
detailing their data gathering and processing methods. We also use CMS-provided data 
dictionaries that explain all accessible attributes [21–24].

We use two sources for the Part D data. The first is Medicare Part D Prescribers—by 
Provider and Drug [18], and the second is Medicare Part D Prescribers—by Provider 
[25]. The key difference between the two sources is the level of specificity of the data. 
The first source, Medicare Part D Prescribers—by Provider and Drug has a record for 
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every combination of health care provider, medication that the health care provider 
prescribes, and year. We refer to this as the “provider-drug-level Part D data”. The 
second source, Medicare Part D Prescribers—by Provider is less specific. It contains 
a record for each provider for each year. We refer to this as the “provider-level Part D 
data”.

The provider-drug-level Part D data has 22 attributes. Not all of these attributes are 
relevant for machine learning. These are attributes related to the provider’s name and 
address. We eschew these attributes since they could form a unique identifier that a 
machine learning model could memorize instead of properly generalizing the data. 
We retain one identifier, the provider’s national provider identifier (NPI), which we 
use later for labeling purposes. The provider-drug-level Part D data has two categori-
cal features, that identify the type of medication prescribed. During the aggregation 
phase of our dataset compilation, we discard these categorical features. Another fea-
ture which is ultimately discarded, but useful for processing is the year in which the 
claim was made. We use this feature for aggregating the Part D provider-drug-level 
data by year, but we do not use it as an attribute for supervised machine learning. 
Since it is at the provider level, when we aggregate records, we retain a categorical 
feature for the provider type. Numeric features in the provider-drug-level part D data 
are readily useful for supervised machine learning. These include data on the total 
volume and frequency of prescriptions a provider submits claims for, the number of 
patients, as well as the total cost of the claims. Furthermore, there are similar, addi-
tional features for patients aged 65 and over. There are approximately 174 million 
records in the collection of provider-drug-level Part D data files.

The provider-level Part D data contains 51 additional attributes pertaining to claim 
the provider submits to Medicare, across all the medications the provider prescribes 
for the year. They are listed in Table 1. The feature descriptions we provide here are 
from the provider-level Part D data dictionary [24]. The provider-level Part D data has 
ten features of summary statistics about the beneficiaries of the claims the provider 
submits. There is also an average beneficiary risk score. The score is calculated with 
a model that adjusts risk based on hierarchical condition categories (HCC). As per 
CMS’s methodology, beneficiaries possessing risk scores higher than the average of 
HCC score of 1.08 are projected to have Medicare spending that exceeds the average. 
The provider-level Part D data also has features for the total number of claims, total 
number of 30-day prescription orders, total drug cost, total day’s supply dispensed, 
and the total number of beneficiaries seen, in the form of subtotals within various 
categories of claims. The categories are Low-Income Subsidy (LIS) claim, Medicare 
Advantage Prescription Drug Plan (MAPD) coverage claims, and Medicare Prescrip-
tion Drug Plan (PDP) claims. The statistics are also divided by several drug categories, 
including claims for opiate drugs, long-acting (LA) opiate drugs, antibiotic drugs, and 
anti-psychotic drugs.

We also have two sources for the Part B data, that differ in specificity just as the 
sources of the Part D data. The first source of the Part B data, which we refer to as the 
“provider-service-level Part B data” is Medicare Physician & Other Practitioners—by 
Provider and Service [17]. The second source, which we refer to as the “provider-level 
Part B data” is Medicare Physician & Other Practitioners—by Provider   [22]. The 
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Table 1 Provider-level Part D features, descriptions copied from [24]

Feature Description

GE65_Tot_Clms The number of Medicare Part D claims for beneficiaries age 65 and older

GE65_Tot_30day_Fills The number of Medicare Part D standardized 30-day fills for beneficiaries 
age 65 and older

GE65_Tot_Drug_Cst The aggregate total drug cost paid for all associated claims for beneficiaries 
age 65 and older

GE65_Tot_Day_Suply The aggregate number of day’s supply for which this drug was dispensed, 
for beneficiaries age 65 and older

GE65_Tot_Benes The total number of unique Medicare Part D beneficiaries age 65 and older 
with at least one claim for the drug

Brnd_Tot_Clms Total claims of brand-name drugs, including refills

Brnd_Tot_Drug_Cst Aggregate drug cost paid for brand-name drugs

Gnrc_Tot_Clms Total claims of generic drugs, including refills

Gnrc_Tot_Drug_Cst Aggregate cost paid for generic drugs

Othr_Tot_Clms Total claims of other drugs, including refills. A drug is classified as “other” 
using any FDA approval categories not included in the brand or generic 
definitions

Othr_Tot_Drug_Cst Aggregate cost paid for all other drugs not classified as brand or generic

MAPD_Tot_Clms The number of claims for beneficiaries covered by (Medicare Advantage 
plan that includes Medicare Part (MDAPD)

MAPD_Tot_Drug_Cst Aggregate cost paid for claims filled by beneficiaries in MAPD plans

PDP_Tot_Clms The number of claims for beneficiaries covered by standalone Prescription 
Drug Plans (PDPs)

PDP_Tot_Drug_Cst Aggregate drug cost paid for claims filled by beneficiaries in standalone 
PDPs

LIS_Tot_Clms Total number of claims from this prescriber, including refills, for beneficiaries 
with a Part D low-income subsidy (LIS)

LIS_Drug_Cst Aggregate drug cost paid for claims for beneficiaries with a Part D low-
income subsidy

NonLIS_Tot_Clms Total number of claims from this prescriber, including refills, for beneficiaries 
without a Part D low-income subsidy

NonLIS_Drug_Cst Aggregate drug cost paid for claims for beneficiaries without a Part D low-
income subsidy

Opioid_Tot_Clms Total claims of opioid drugs, including refills

Opioid_Tot_Drug_Cst Aggregate cost paid for opioid drugs

Opioid_Tot_Suply The aggregate number of day’s supply for opioid drugs

Opioid_Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one 
opioid claim

Opioid_Prscrbr_Rate The percent of the Tot_Clms represented by the Opioid_Tot_Clms

Opioid_LA_Tot_Clms The aggregate number of day’s supply for long-acting (LA) opioid drugs

Opioid_LA_Tot_Drug_Cst Aggregate cost paid for long-acting opioid drugs

Opioid_LA_Tot_Suply The aggregate number of day’s supply for long-acting opioid drugs

Opioid_LA_Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one 
long-acting opioid claim

Opioid_LA_Prscrbr_Rate The percent of the Opioid_Tot_Clms represented by the Opioid_LA_Tot_
Clms

Antbtc_Tot_Clms Total claims of antibiotic drugs, including refills

Antbtc_Tot_Drug_Cst Aggregate cost paid for antibiotic drugs

Antbtc_Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one 
antibiotic claim

Antpsyct_GE65_Tot_Clms Total claims of antipsychotic drugs, including refills, for beneficiaries age 65 
and older

Antpsyct_GE65_Tot_Drug_Cst Aggregate cost paid for antipsychotic drugs for beneficiaries age 65 and 
older

Antpsyct_GE65_Bene_Suprsn_Flag A flag indicating the reason the Antpsyct_GE65_Tot_Benes variable is sup-
pressed
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provider-service-level part B data contains one record, for each year, for each spe-
cific treatment or procedure that the provider submits claims to Medicare for. The 
provider-level part B data has records that contain information about the provider’s 
activity over all claims for all treatments and procedures for a year.

The provider-service-level Part B data has 29 features, but as is the case with the Part 
D data, many of the attributes are provider demographic data, which we do not use for 
modeling purposes. It also has categorical data that describes the treatment or proce-
dure rendered to the patient, which we do not include in the final datasets, since we 
aggregate at the provider level. On the other hand, we utilize categorical features at the 
provider level for place of service, provider gender, and provider type. The provider-
service-level Part B data also includes numeric data on claims submitted for treatments 
and procedures. There are features for the total number of times the service is provided, 
the total number of patients the service is provided to, the daily number of beneficiaries 
treated, the average amount the provider charges for the service, and data on the aver-
age amounts Medicare pays for the service. The provider-service-level Part B data has 
approximately 68 million records.

The provider-level Part B data has 47 features. They are listed in Table  2. The sim-
plest group of attributes in the provider-level Part B data has data on the total number 
of patients treated, by age. Therefore, there are four features, one for patients under 65, 
one for patients aged 65–75, and one for patients aged 75–84, and one for patients aged 
85 and over. There is a final age-related feature that has the average number of patients 
in each age group. There are seven features which pertain to claims the provider sends 
to Medicare for all treatments and procedures that the provider renders to their patients 
for the year. These features contain data on the total number of distinct procedures, total 
number of patients treated, and the sum of money the provider has billed Medicare for, 
for the year. The seven features also include the amount Medicare is allowed to pay a 
provider, and the amount Medicare actually paid the provider. Finally, there is a feature 
for a standardized total payment amount. The standardized total Medicare payment 
amount is calculated by adjusting for geographic differences in costs, making it easier 

Table 1 (continued)

Feature Description

Antpsyct_GE65_Tot_Benes The total number of unique Medicare Part D beneficiaries age 65 and older 
with at least one antipsychotic claim

Bene_Avg_Age Average age of beneficiaries

Bene_Age_LT_65_Cnt Number of beneficiaries under the age of 65

Bene_Age_65_74_Cnt Number of beneficiaries between the ages of 65 and 74

Bene_Age_75_84_Cnt Number of beneficiaries between the ages of 75 and 84

Bene_Age_GT_84_Cnt Number of beneficiaries over the age of 84

Bene_Feml_Cnt Number of female beneficiaries

Bene_Male_Cnt Number of male beneficiaries

Bene_Dual_Cnt Number of Medicare beneficiaries qualified to receive Medicare and Medic-
aid benefits

Bene_Ndual_Cnt Number of Medicare beneficiaries qualified to receive Medicare only 
benefits

Bene_Avg_Risk_Scre Average Hierarchical Condition Category (HCC) risk score of beneficiaries



Page 9 of 31Hancock et al. Journal of Big Data          (2023) 10:154  

Table 2 Provider level Part B features, descriptions copied from [21]

Tot_HCPCS_Cds Total number of unique HCPCS codes

Tot_Benes Total Medicare beneficiaries receiving services from the provider

Tot_Srvcs Total provider services

Tot_Sbmtd_Chrg The total charges that the provider submitted for all services

Tot_Mdcr_Alowd_Amt The Medicare allowed amount for all provider services

Tot_Mdcr_Pymt_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for all the provider’s line item service

Tot_Mdcr_Stdzd_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for the line item service and after standardization of the Medicare 
payment has been applied

Drug_Tot_HCPCS_Cds Total number of HCPCS codes for drug services

Drug_Tot_Benes Total Medicare beneficiaries receiving drug services

Drug_Tot_Srvcs Total drug services

Drug_Sbmtd_Chrg The total charges that the provider submitted for drug services

Drug_Mdcr_Alowd_Amt The Medicare allowed amount for drug services

Drug_Mdcr_Pymt_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for all the provider’s line item drug services

Drug_Mdcr_Stdzd_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for the line item drug service

Med_Tot_HCPCS_Cds Total number of HCPCS codes associated with medical services

Med_Tot_Benes Total Medicare beneficiaries receiving medical services

Med_Tot_Srvcs Total medical services

Med_Sbmtd_Chrg The total charges that the provider submitted for medical services

Med_Mdcr_Alowd_Amt The Medicare allowed amount for medical services

Med_Mdcr_Pymt_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for all of the provider’s line item medical services

Med_Mdcr_Stdzd_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for the line item medical service

Bene_Avg_Age Average age of beneficiaries. Beneficiary age is calculated at the end of the calendar 
year or at the time of death

Bene_Age_LT_65_Cnt Number of beneficiaries under the age of 65. Beneficiary age is calculated at the end 
of the calendar year or at the time of death

Bene_Age_65_74_Cnt Number of beneficiaries between the ages of 65 and 74. Beneficiary age is calculated 
at the end of the calendar year or at the time of death

Bene_Age_75_84_Cnt Number of beneficiaries between the ages of 75 and 84

Bene_Age_GT_84_Cnt Number of beneficiaries over the age of 84. Beneficiary age is calculated at the end of 
the calendar year or at the time of death

Bene_Feml_Cnt Number of female beneficiaries

Bene_Male_Cnt Number of male beneficiaries

Bene_Dual_Cnt Number of Medicare beneficiaries qualified to receive Medicare and Medicaid ben-
efits

Bene_Ndual_Cnt Number of Medicare beneficiaries qualified to receive Medicare only benefits

Bene_CC_AF_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for atrial fibril-
lation

Bene_CC_Alzhmr_Pct Percent of beneficiaries meeting the Chronic Conditions Data Warehouse (CCW) 
chronic condition algorithm for Alzheimer’s, related disorders, or dementia

Bene_CC_Asthma_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for Asthma

Bene_CC_Cncr_Pct Percent of beneficiaries meeting the CCW chronic condition algorithms for cancer

Bene_CC_CHF_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for heart 
failure

Bene_CC_CKD_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for chronic 
kidney disease

Bene_CC_COPD_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for chronic 
obstructive pulmonary disease

Bene_CC_Dprssn_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for depression
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to compare prices across regions. The provider-level Part B data has another 14 features 
that are the result of splitting these seven features into two groups: one group for med-
ication-related services, and the second for all other services. There are features for the 
total number of male, and female patients. The provider-level Part B data has another 
18 features for the percentages of patients with certain chronic conditions. Alzheimer’s, 
kidney disease, and asthma are all examples of chronic conditions. There is also a feature 
for the HCC risk score that has the same definition as in the provider-level Part D data.

For both the Part B and Part D data, our approach is to aggregate data from the first 
source at the drug/service level, and then enrich the aggregated data with the data from 
the second source that is at the provider level. For the provider-service-level Part B data, 
we retain the features for the provider type, place of service, and provider gender, since 
they are provider-level features. We discard features related to specific services, such as 
the Healthcare Common Procedure Coding System (HCPCS) code. We then take the 
remaining numeric features and for each of them, we calculate six summary statistics, 
sum, mean, median, minimum, maximum, and standard deviation, using all records for 
the provider, for the year. The final base features for the Part D data are listed in Table 3. 
For every one of the features listed in Table 3, except Prscbr_Type, there are six features 
calculated from summary statistics. Table 4 is similar to Table 3, but for the Part B data. 
For the features listed in Table  4, there are six features of descriptive statistics in the 

Table 2 (continued)

Bene_CC_Dbts_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for diabetes

Bene_CC_Hyplpdma_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for hyperlipi-
demia

Bene_CC_Hyprtnsn_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for hyperten-
sion

Bene_CC_IHD_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for ischemic 
heart disease

Bene_CC_Opo_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for osteopo-
rosis

Bene_CC_RAOA_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for rheuma-
toid arthritis/osteoarthritis

Bene_CC_Sz_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for schizo-
phrenia and other psychotic disorders

Bene_cc_strok_pct Percent of beneficiaries meeting the CCW chronic condition algorithm for stroke

Bene_Avg_Risk_Scre Average Hierarchical Condition Category (HCC) risk score of beneficiaries

Table 3 Prescription-level Part D base features, descriptions copied from [23]

Feature Description

Prscrbr_Type The Medicare specialty code, describes the type of practice

Tot_Clms The number of Medicare Part D claims this includes original prescriptions and refills

Tot_30day_Fills The aggregate number of Medicare Part D standardized 30-day fills

Tot_Day_Suply The aggregate number of day’s supply for which this drug was dispensed

Tot_Drug_Cst The aggregate drug cost paid for all associated claims

Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one claim for the drug
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actual dataset, except for the Rndrng_Prvdr_Type, Place_Of_Srvc, and Rndrng_Prvdr_
Gndr features.

We aggregate the provider-drug-level Part D data almost exactly as we do for the 
provider-service-level part B data. The provider-drug-level Part D data does not have 
attributes for the provider gender, or place of service. However, it has a feature for 
provider type, so we retain that since it is at the provider level. We then utilize the 
numeric features in the same manner as the provider-service-level Part B data, calcu-
lating the six descriptive statistics for each numeric feature, at the level of every pro-
vider for the year. Aggregation reduces the size of the Part B and Part D datasets. The 
aggregated Part D data has approximately 6.3 million instances, and the aggregated 
Part B data has approximately 8.7 million instances.

Next we enrich both the Part D and the Part B data by joining them to the provider 
level datasets. This means we join the aggregated Part D data to the provider-level 
Part D data by NPI, and we join the aggregated Part B data to the provider-level Part 
B data, also by NPI. The joining process yields an unlabeled dataset. “Joining data by 
NPI” means that we add a record to our unlabeled Part D dataset if, and only if, a 
record exists in the aggregated Part D data and the provider-level Part D data with 
the same NPI and year values. The same rule applies for our unlabeled Part B data-
set as well. The unlabeled Part B dataset is exactly the same size as the aggregated 
Part B dataset. However, the unlabeled Part D dataset has about one million fewer 
records than the aggregated Part D dataset. This is due to a lack of provider level Part 
D records for some providers and some years. The unlabeled Part B dataset has 82 
attributes, and the unlabeled part D dataset has 80 attributes.

As a last step in compiling the Part B and Part D datasets, we label them with 
records from the LEIE. We adopt a uniform approach to labeling the two datasets. 
The LEIE is released on a monthly schedule by the OIG. When a healthcare provider 
is listed in the LEIE, it may denote a conviction for actions that prohibits them from 
filing insurance claims with Medicare. The LEIE, Part B, and Part D data sources all 
share a common element, the NPI. There are different types of exclusions that apply 
to providers that are on the LEIE. We use the same exclusion types as fraud indicators 
that Bauder and Khoshgoftaar use in [27]. When a provider is listed in the LEIE for 
any of these types of exclusions, we mark all associated records dated before the end 
of the exclusion period from as fraudulent.

Table 4 Service-level Part B base features, descriptions copied from [26]

Rndrng_Prvdr_Type Derived from the provider specialty code reported on the claim

Place_Of_Srvc Identifies whether the place of service submitted on the claims is a facility

Rndrng_Prvdr_Gndr The provider’s gender

Tot_Srvcs Number of services provided; note that the metrics used to count the 
number provided can vary from service to service

Tot_Benes Number of distinct Medicare beneficiaries receiving the service

Tot_Bene_Day_Srvcs Number of distinct Medicare beneficiary/per day services

Avg_Sbmtd_Chrg Average of the charges that the provider submitted for the service

Avg_Mdcr_Pymt_Amt Average amount that Medicare paid after deductible and coinsurance 
amounts have been deducted for the line item service
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The data from Part B and Part D covers entire calendar years, while exclusion peri-
ods end at specific months. For this reason, we approximate the end of an exclusion 
period to the closest year. When an exclusion period concludes, the healthcare pro-
vider in question is expunged from the LEIE, allowing them to once again file claims 
with Medicare. Consequently, any data related to claims made by the provider after 
the expiration of the exclusion period is considered non-fraudulent. Compiling a 
dataset encompassing all available years will not include records of providers previ-
ously listed in the LEIE, as the current LEIE will not include such records. As such, 
tools like the Internet Archive Tool1 should be utilized to access earlier versions of 
the LEIE and label the older records in the CMS data accordingly. Table 5 summarizes 
the outcome of the labeling process for the Part B and Part D datasets.

Algorithms
For reproducible results, we utilize five well-known, open-source ensemble learn-
ing methods for our classification tasks, and one linear algorithm. As stated above, the 
ensemble algorithms are XGBoost [28], LightGBM [29], Extremely Randomized Trees 
(ET) [30], Random Forest [31], and CatBoost [32]. The linear algorithm is Logistic 
Regression [33]. For feature selection, we use the five ensemble methods, as well as Deci-
sion Tree [34]. Here we review the key attributes of all machine learning algorithms used 
in this study.

The first algorithm we discuss is Decision Tree, since all the ensemble techniques we 
use rely on it, and it is used in our ensemble feature selection technique as well. More 
specifically, we use Decision Trees for binary classification. A Decision Tree is built in 
an iterative fashion. To start, the Decision Tree consists of a single rule that separates 
a dataset in two classes based on the value of a single attribute in relation to a thresh-
old value, known as a “split”. This is because we can visualize the rule as a node, with 
two edges emanating from it. One edge ends at a node that represents a classification of 
the instance as member of one class, and the other edge ends at a node that represents 
the alternative classification. Nodes that represent classifications are called leaf nodes. 
As a Decision Tree is built, one repeatedly splits the paths to the leaf nodes by adding 
more rules. This can be visualized as adding more steps along additional paths to the leaf 
nodes, and leaf nodes being duplicated to accommodate the increasing number of paths. 
Decision rules are added based on their capacity to segregate the data into subsets that 
exhibit greater homogeneity in relation to the target variable. Put another way, those fea-
tures that lead to splits significantly enhancing the reduction of impurity (for instance, 

Table 5 Summary of Part B and Part D datasets

Dataset Instance Count Fraudulent Ratio 
fraudulent 
(%)

Part D 5,344,106 3700 0.0693

Part B 8,669,497 3954 0.0456

1 http:// archi ve. org/ web.

http://archive.org/web
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via Gini impurity or entropy measures) are deemed more critical for models based on 
Decision Trees.

The ensemble algorithms in our study belong to two families: Bagging and Gradient 
Boosted Decision Trees (GBDTs). ET and Random Forest are part of the Bagging family, 
while CatBoost, XGBoost, and LightGBM are representatives of the Gradient Boosted 
Decision Trees family. The rationale behind using methods that incorporate diverse 
underlying techniques is to demonstrate that our findings are not confined to a single 
algorithmic type. Both Bagging and Gradient Boosted Decision Trees embody distinct 
strategies for leveraging a set of learners for classification tasks. We employ Logistic 
Regression as a baseline to determine whether the computing overhead of the ensemble 
techniques yields better performance. Here we provide an overview of these algorithms.

The GBDT classifiers in our study are derived from the Gradient Boosted Machine 
algorithm, first introduced by Friedman [35]. Previous research shows GBDTs yield 
successful results in the Medicare fraud detection application domain [36]. Friedman’s 
technique is an ensemble technique. It proceeds in an iterative fashion. This method 
starts with one learner that provides an initial set of predictions ŷ for the dependent 
variable y . The discrepancies, or residuals, between these predictions ŷ and the actual 
values y form a vector y − ŷ . This vector can be regarded as a new dependent variable 
which we can estimate using the original independent variables with a second learner. 
Subsequently, the combined output of the two models will offer a more precise predic-
tion of the dependent variable compared to the first model’s outputs. This process can 
be extended with the addition of more learners to the ensemble, with each new learner 
trained to predict the residuals of the current ensemble. Consequently, every additional 
learner enhances the estimation of the dependent variable. XGBoost, LightGBM, and 
CatBoost are all advanced adaptations of Friedman’s initial idea. Since they all utilize 
Decision Trees, we refer to them as Gradient Boosted Decision Trees (GBDTs).

XGBoost was the earliest of the three GBDTs we use. It was released by Chen and 
Guestrin in 2016. Earlier research proves XGBoost is a good choice of classifier for clas-
sifying imbalanced Big Data [37]. XGBoost adds several features to the standard GBDT 
technique. XGBoost incorporates an improved loss function during the training phase, 
which includes an additional regularization term to mitigate overfitting. XGBoost 
enhances the calculation of splits in the ensemble of Decision Trees that it uses. Chen 
and Guestrin introduced an “approximate algorithm” that estimates optimal split values. 
The approximate algorithm is useful in situations where the complete dataset cannot fit 
into main memory. The approximate algorithm is also advantageous in distributed envi-
ronments. Finally, XGBoost brings another advancement in the form of an algorithm for 
determining splits that works effectively with sparse data. Sparse data typically exhibits 
near-constant values with sporadic deviations. XGBoost’s “sparsity aware split finding” 
feature allows it to effectively exploit sparse data to efficiently construct its constituent 
Decision Trees.

LightGBM is the second GBDT used in our study. Ke et al. published the foundational 
paper on LightGBM in 2017 [29]. Their aim was to develop a GBDT implementation that 
offered performance on par with XGBoost, but with lower resource consumption. To 
realize this goal, Ke et al. introduced two key improvements to the GBDT approach. The 
first is Exclusive Feature Bundling (EFB). EFB is a method for reducing the dimensions 
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of a dataset by merging two attributes into one. It proves particularly effective for sparse 
data. If two attributes of a dataset display sparsity and the infrequent values of both 
attributes occur in mutually exclusive rows, they can be safely merged into a single fea-
ture with minimal loss of information. EFB lowers the number of the dataset’s dimen-
sions, subsequently reducing training time. The second improvement LightGBM brings 
to the GBDT method is known as Gradient-based One-Side Sampling (GOSS). GOSS is 
a strategy for sensibly reducing the number of training instances when fitting Decision 
Trees. It chooses instances for training based on how much they add to the loss func-
tion. The loss function must be an aggregate function, which is computed as part of fit-
ting the GBDT ensemble to the training data. If an instance contributes greater than an 
adjustable threshold value to the model’s loss, it is retained for further iterations of the 
fitting process. Conversely, instances that contribute less than the threshold value are 
discarded. Through GOSS and EFB, Ke et al. have crafted a GBDT implementation that 
requires fewer computational resources.

One more GBDT implementation used in our study is CatBoost, introduced by Prok-
horenkova et al. in 2018 [32]. A recent study on CatBoost’s applications across various 
domains can be found in [38]. One objective expressed in the seminal paper on CatBoost 
is the mitigation of overfitting, with two strategies employed to meet the objective. The 
first strategy, called Ordered Boosting, pertains to the selection of training instances 
used to fit Decision Trees in CatBoost’s ensemble. In order to add a Decision Tree to the 
GBDT ensemble, there are two steps: first, fitting the candidate Decision Trees to the 
dependent variable in the training data, and then, evaluating these trees to select the one 
that most effectively enhances the ensemble’s overall performance. In Ordered Boost-
ing, it is ensured that the training instances used to fit the Decision Tree are not used to 
evaluate it for inclusion into the ensemble. This prevents the ensemble from overfitting 
to the training data.

The second overfitting protection in CatBoost involves its Ordered Target Statistics 
method for encoding categorical features. Ordered Target Statistics stems from the 
idea of target encoding. To use target encoding for a categorical feature, the encoded 
value of a feature is set to the mean value of the dependent variable that it co-occurs 
with. However, this encoding strategy could lead to what Prokhorenkova et al. refer to 
as “target leakage”. To explain target leakage, we consider the scenario where one value 
of the encoded feature co-occurs with different dependent variable values. If the feature 
is encoded with target encoding, it may not be a useful predictor of the dependent vari-
able since it carries information about the specific value of the target that it co-occurs 
with. To mitigate target leakage, the Ordered Target Statistics technique guarantees 
that the encoded value for a categorical feature of a given instance is derived from other 
instances. In other words, the encoded value of a categorical feature cannot be calcu-
lated from the specific label it appears with. This precludes the possibility of the encoded 
feature value of the instance being directly related to the value of the dependent variable. 
Hence, Ordered Target Statistics is CatBoost’s second protection against overfitting.

Breiman introduced the concept of Bagging in the domain of machine learning in a 
1996 paper [39]. Breiman describes the versatility of Bagging in both classification and 
regression contexts. As our research revolves around binary classification, our focus 
is on Breiman’s ideas about Bagging applied to binary classification. Bagging involves 
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fitting multiple instances of a machine learning algorithm to multiple bootstrap sam-
ples of the training data, thereby generating an ensemble of learners. A bootstrap sample 
is derived from the original training data by sampling with replacement [40]. Moreo-
ver, the machine learning algorithms are allowed to be so-called, “weak” learners, in the 
sense that the Bagging technique may still be effective even when one of the learners on 
their own would yield unacceptably poor performance. Once the learners are fit to these 
bootstrap samples, each of them classifies instances of the test data. The final classifi-
cation output is the class identified by the majority of the ensemble learners. Bagging’s 
potential to enhance classification performance centers on probabilistic reasoning. 
Consider a scenario where a weak learner correctly classifies more often than it makes 
errors. In such a case, the probability of the majority of weak learners in an ensemble 
making the right classification grows as the number of these weak learners is increased. 
Consequently, if we consider the classification result to be the category selected by the 
majority of the weak learners, Bagging yields better results as the size of the ensemble 
grows.

The first member of the bagging family we use is Random Forest, which was intro-
duced by Breiman [31]. Random Forest builds upon the Bagging principle with an 
added improvement. It applies Bagging to Decision Trees, but includes a modification. 
To understand this modification, we first need to define what a “split” signifies within 
the scope of Decision Trees. The non-leaf nodes of a Decision Tree contain rules that 
dictate which node should be visited next. This rule is formed based on a comparison 
between a numerical value, termed as the split, and the current value of one of the data-
set’s independent attributes. Therefore, the process of training a Decision Tree-based 
model largely revolves around determining the best values for these splits. Random For-
est enhances the Bagging technique by randomly selecting a subset of the features when 
deciding the most suitable value for a split.

Another classifier that we utilize from the Bagging family of machine learning algo-
rithms is the Extremely Randomized Trees (ET) classifier [30]. ET extends the concept 
of Random Forest by selecting values for Decision Tree splits at random. In contrast, 
Random Forest and other Decision Tree-based learners typically calculate splits accord-
ing to some deterministic logic. For instance, the optimal value for a split could be deter-
mined based on a specific metric evaluating how effectively the split rule segregates the 
training data into subsets with identical labels. However, ET departs from this determin-
istic approach and opts for a random selection of split values. Interestingly, our findings 
indicate that this seemingly random selection strategy in ET often yields effective per-
formance when it comes to classifying highly imbalanced Big Data, particularly in the 
context of Medicare fraud detection.

The last classifier left to discuss is Logistic Regression [33]. Logistic Regression is a 
method that fits a sigmoid function to a dataset by setting the parameters of the sig-
moid function to the maximum likelihood estimate of their value, given the training 
data. A Logistic Regression model has on the order of one parameter for each inde-
pendent variable, which in many cases makes it simpler than the ensemble methods we 
discussed above. Since the value of a split is a parameter of a Decision Tree, ensemble 
techniques that result in large collections of tall and wide Decision Trees would have far 
more parameters than a Logistic Regression model. We include Logistic Regression in 
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our study as a check to ensure that a simple model would suffice to carry out automated 
Medicare fraud detection.

Hyperparameter settings

In our experiments, we have adopted the identical hyperparameter configurations that 
were used in the tests detailed in [41] for the classifiers. Preliminary trials for the afore-
mentioned study indicated that these hyperparameter configurations exhibit robust 
performance in classifying highly imbalanced data, without showing tendencies of over-
fitting when determining the best classification thresholds based on multiple metrics. 
These metrics include f-Measure [42], geometric mean of true positive rate and true 
negative rate [43], Matthews Correlation Coefficient (MCC) [44], and precision [45].

Table 6 includes hyperparameter settings that were adjusted from their default values. 
Besides the settings outlined in Table 6, we have also fixed random number generator 
seeds for all classifiers to ensure the reproducibility of the results. All remaining settings 
are kept at their default settings. Furthermore, we have not made any changes to the 
hyperparameter settings for Logistic Regression and Decision Tree.

This concludes the discussion of the seven types of machine learning algorithms used 
in this study. Most of the models discussed are used in both feature selection, and clas-
sification. These are Random Forest, ET, XGBoost, CatBoost, and LightGBM. We use 
Logistic Regression for classification only, and we use Decision Tree for feature selec-
tion, only.

Methodology
Our study has two main methodologies. We employ one methodology for ensemble fea-
ture selection, and a second one for Medicare Fraud detection. To the best of our knowl-
edge, the ensemble feature selection technique is novel. First, we provide a description of 
the ensemble feature selection technique. Then, we explain how we approach Medicare 
Fraud detection as a supervised machine learning classification task.

Ensemble feature selection

Here we describe our novel ensemble feature selection technique. A synopsis of our 
technique is that it is an efficient means to intelligently leverage the built-in feature 
importance functionality of multiple machine learning algorithms.

Table 6 Hyperparameter settings used in experiments

a Setting selects Graphics Processing Unit GPU) implementation of the classifier

Classifier Parameter name Parameter setting

CatBoost task_type ‘GPU’a

max_ctr_complexity 1

max_depth 5

ET max_depth 8

XGBoost max_depth 3

tree_method ‘gpu_hist’a

LightGBM max_depth 4

Random Forest max_depth 4
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Our technique begins with the selection of a collection of supervised machine learn-
ing algorithms. In the context of our technique for ensemble feature selection, we call 
a supervised machine learning algorithm a ranker. For our study, we employ six rank-
ers: CatBoost, XGBoost, Random Forest, ET, LightGBM, and Decision Tree [34]. These 
algorithms are a convenient choice since they all maintain a built-in list of feature impor-
tance values during the model fitting phase of supervised machine learning. Each algo-
rithm’s implementation may have a unique method for calculating feature importance. 
For example, a Decision Tree implementation may assign a feature its importance value 
based on the change in Gini Impurity [45], or Shannon Entropy [46], that is obtained by 
splitting the training data into subsets based on some criteria related to the feature. This 
is because a Decision Tree implementation could employ either Gini Impurity change or 
Shannon Entropy change as a splitting criteria during model training. Therefore, these 
statistics are readily available to return to the user as feature importance values. Once 
fitting is completed, one may access the ordered list of features, ranked according to 
their importance to the algorithm. Since we use six rankers, we have six ordered lists of 
features. We refer to an ordered list of features as a ranking.

The novelty of our feature selection technique is the method by which we combine 
the rankings. Our approach is to assign each feature the median value of its rank in each 
ranking. We use the median rank for several reasons. First, the median robust to outli-
ers. Therefore, if one ranker assigns a rank r to a feature that is much different from the 
rank the other rankers assign, the median value will be the same if r were above or below 
ranks assigned by other rankers, regardless of how extreme it is. Therefore, using the 
median rank of a feature helps prevent a single ranker from exerting too much influence 
on the final rank assigned by the ensemble. Another reason we use the median value of 
a feature’s rank is that it preserves information. If all rankers agree that a feature has a 
particular ranking, then the median rank will also be that value. This is an advantage 
over a majority rules approach to combining rankings, where we select features based on 
the number of rankers that agree that the feature is among the highest n ranked features. 
Such an approach loses the relative position of features in the final ranking. Since select-
ing the median rank of a feature can preserve information about the ranks assigned to it, 
the outcome leads to more explainable models.

Assigning each feature the median value of its positions in all of the rankings results 
in an ordered list of features. In order to complete the feature selection process, one 
decides on a number of features to retain by selecting the first n features in the ordered 
list, where n is an integer between one and the number of features in the dataset. Algo-
rithm 1 below is a formal description of our ensemble feature selection technique.
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We choose to make the return value of Algorithm 1 the ordered list of features R 
to emphasize that one may then use first n elements of R to select n features. We do 
this to make it clear that our ensemble feature selection technique has an applica-
tion for building explainable models. We recommend using statistical analysis such as 
Analysis of Variance (ANOVA) [47] tests, and Tukey’s Honestly Significant Difference 
(HSD) [48] tests, to find the minimum value of the number of features n that we can 
build a model with, that yields performance similar to, or better than using all fea-
tures. Then this minimal subset is the one we use to explain a model’s behavior.

We refer to the output of the feature selection technique by the number of features 
selected. We define a “feature set” as a group of features identified by a feature selec-
tion technique. Therefore, for the Part D data, we have feature sets 7a, 7b, 8, 9, 10, 15, 
20, 25, 30 and 80. Feature sets 7a and 7b arose from the fact that, in the Part D rank-
ing, we have two features that share a median rank of 7. Furthermore, we decided to 
assess the performance of models built with fewer than 10 features, since we found 
that models built with ten features of the Part D data outperformed models built with 
all features. We did not see a similar trend in AUPRC scores from experiments with 
the Part B data. Hence, it was not necessary to continue with smaller feature sets for 
experiments with the Part B data. Therefore, for the Part B data we have feature sets 
10, 15, 20, 25, 30, and 82. The trend in rising AUPRC scores for experiments with 10 
features from the Part D was possibly

because classification results for experiments on the Part B data with 10 features 
were not as strong as the results for experiments on the Part D data with 10 features. 
In the next section, we document how the application of our feature selection tech-
nique is used to build explainable models for Medicare fraud detection.
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Classification

Our classification methodology is where all the various components of this study come 
together. Earlier we describe our technique for compiling the Part B and Part D datasets. 
Part of the description includes the labeling process. Since we have a labeled dataset, it 
is possible to apply popular machine learning algorithms to classify it. In our discussion 
of supervised feature selection, we explain how we obtain many datasets by selecting 
different numbers of features based on their median rank, derived from multiple feature 
importance lists. This results in ten Part D feature sets, and six Part B feature sets. In 
our discussion on machine learning algorithms above, we mention that we use six algo-
rithms for classification. We use all combinations of feature sets and algorithms to clas-
sify the Part B and Part D data.

For every pair of classifier and feature set, we conduct fivefold cross validation [49]. 
This yields five Area Under the Receiver Operating Characteristic Curve (AUC) [14] 
and five Area Under the Precision Recall Curve (AUPRC) [9] values, which we record as 
experimental outcomes. Since we are dealing with imbalanced data, we consider AUPRC 
to be a more robust metric when it comes to evaluating the performance of classifiers. 
However, we include AUC as well, since it is a secondary, threshold-agnostic classifi-
cation metric. In order to mitigate the effects of random chance on experimental out-
comes, and to obtain a sufficient number of results for statistical analysis, we repeat 
fivefold cross validation ten times. Different random number generator seeds are used 
in order to ensure our machine learning algorithms run under different initial conditions 
every time. This results in fifty AUC and AUPRC values for each combination of classi-
fier and feature set. Since we have six feature sets of Part B data, and six classifiers, we 
have a total of 1800 AUC and AUPRC values in the set of experimental outcomes. For 
experiments with the Part D data, we have ten feature sets, and therefore, 3000 AUC and 
AUPRC values in the set of experimental outcomes.

All the software used in our experiments is open-source, and therefore publicly avail-
able for free. Every classification experiment is run as a Python program [50]. We use 
the scikit-learn [51] library to handle fivefold cross validation, and its implementations 
of the Decision Tree, Random Forest, ET and Logistic Regression classifiers. CatBoost, 
XGBoost, and LightGBM are available as individual libraries. A program written in the R 
language is used to perform the analysis of variance (ANOVA) [47] and Tukey’s Honestly 
Significant Difference (HSD) [48] tests.

All of our experiments are carried out as batch operations on a distributed computing 
platform. Each node on this platform is equipped with an Intel Xeon Central Process-
ing Unit (CPU), which comes with 16 cores, along with 256 GB of RAM per CPU and 
Nvidia V100 Graphics Processing Units (GPUs). The resources available on a single node 
are sufficient to conduct any of the experiments discussed in this study. Now that we 
have elucidated our methods, we move on to discuss the results they produce.

Results
Our primary metric for gauging performance is AUPRC. In their study [52], Calvert and 
Khoshgoftaar show that AUC on its own may be a misleading metric to gauge experi-
mental outcomes, due to the fact that it does not align with results in terms of several 
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other metrics in their study. Here we present experimental outcomes in tabular form. 
Tables 7 and 8 contain the mean AUPRC scores for each combination of classifier and 
feature set. For each combination of classifier and feature set, we perform ten itera-
tions of fivefold cross validation. Therefore, each AUPRC score is the mean value of 50 
recorded AUPRC scores.

Tables 9 and 10 are similar to Tables 7 and 8, but they contain AUC scores instead of 
AUPRC scores. In our opinion, it is more difficult to see a trend in the data in Tables 9 
and 10 than Tables 7 and 8. Furthermore, we conjecture the cause for this is the fact 
that the AUC metric is calculated from the receiver operating characteristic (ROC) 
curve. The ROC curve is a plot of true positive and false positive rates. In a large, 
imbalanced dataset a model can have a low false positive rate, but still incorrectly 
classify a large fraction of the positive class. This is because the false positive rate is 
calculated as FP

FP+TN
 , where FP is the number of false positives and TN is the number 

Table 7 Mean AUPRC values by classifier and number of features for ten iterations of fivefold cross 
validation, for classifying the Medicare Part D data (Part 1)

Features classifier 7a 7b 8 9 10

CatBoost 0.7575 0.7582 0.7570 0.7558 0.7585

ET 0.5941 0.5171 0.5585 0.6006 0.5878

LightGBM 0.4548 0.4533 0.4689 0.5116 0.5529

Logistic Regression 0.3468 0.3368 0.3497 0.3482 0.3537

Random Forest 0.5873 0.4937 0.5927 0.5393 0.5903

XGBoost 0.7533 0.7539 0.7533 0.7514 0.7571

Table 8 Mean AUPRC values by classifier and number of features for ten iterations of fivefold cross 
validation, for classifying the Medicare Part D data (Part 2)

Features classifier 15 20 25 30 82

CatBoost 0.8016 0.7953 0.7962 0.7949 0.7797

ET 0.4954 0.4647 0.4605 0.4391 0.3275

LightGBM 0.4447 0.4661 0.4603 0.4841 0.4982

Logistic Regression 0.3669 0.3536 0.3519 0.2939 0.3047

Random Forest 0.6097 0.5398 0.5519 0.5249 0.2429

XGBoost 0.7889 0.7448 0.7589 0.7548 0.7376

Table 9 Mean AUC values by classifier and number of features for ten iterations of fivefold cross 
validation, for classifying the Medicare Part D data (Part 1)

Features classifier 7a 7b 8 9 10

CatBoost 0.9223 0.9231 0.9228 0.9293 0.9383

ET 0.8541 0.8415 0.8448 0.8614 0.8574

LightGBM 0.7541 0.7449 0.7730 0.7904 0.8298

Logistic Regression 0.8850 0.8698 0.8816 0.8832 0.8869

Random Forest 0.8340 0.8222 0.8384 0.8244 0.8332

XGBoost 0.9276 0.9282 0.9278 0.9346 0.9408
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of true negatives. When TN is extremely large relative to the number of instances of 
the positive class, the false positive rate calculation may be overwhelmed by the TN 
factor. The AUPRC metric does not suffer this drawback since it involves precision in 
place of the false positive rate, and precision does not involve instances of the nega-
tive class. Therefore, the AUPRC metric may reveal the effect of a factor in a set of 
experiments on the classification of imbalanced Big Data. The visibility of the trend 
in AUPRC scores in Tables 7 and 8 is a testament to the advantage of using AUPRC to 
evaluate results in the classification of imbalanced Big Data.

Table 11 is similar to Tables 7 and 8, but for the Part B data. We detect a trend in 
Table 11, similar to the trend we see in Tables 7 and 8. AUPRC scores are generally 
higher for models built with fewer features than for models built with the maximum 
number of features.

Table 10 Mean AUC values by classifier and number of features for ten iterations of fivefold cross 
validation, for classifying the Medicare Part D data (Part 2)

Features classifier 15 20 25 30 82

CatBoost 0.9436 0.9560 0.9567 0.9588 0.9587

ET 0.8294 0.8323 0.8352 0.8429 0.8116

LightGBM 0.7505 0.7929 0.7913 0.8311 0.8455

Logistic Regression 0.9006 0.9143 0.9133 0.8620 0.8536

Random Forest 0.8315 0.8288 0.8316 0.8496 0.7909

XGBoost 0.9472 0.9390 0.9447 0.9449 0.9426

Table 11 Mean AUPRC values by classifier and number of features for ten iterations of fivefold cross 
validation, for classifying the Medicare Part B data

Features classifier 10 15 20 25 30 80

CatBoost 0.6581 0.6792 0.7069 0.7009 0.7016 0.6817

ET 0.0400 0.0462 0.0443 0.0524 0.0424 0.0433

LightGBM 0.3939 0.3830 0.4261 0.4589 0.4293 0.4146

Logistic Regression 0.0093 0.0326 0.0338 0.0065 0.0064 0.0103

Random Forest 0.4356 0.3990 0.3736 0.3800 0.3395 0.2462

XGBoost 0.6611 0.6715 0.6995 0.6956 0.6955 0.6886

Table 12 Mean AUC values by classifier and number of features for ten iterations of fivefold cross 
validation, for classifying the Medicare Part B data

Features classifier 10 15 20 25 30 80

CatBoost 0.9346 0.9409 0.9493 0.9537 0.9539 0.9569

ET 0.7907 0.8080 0.8122 0.8255 0.8214 0.8409

LightGBM 0.8300 0.8176 0.8412 0.8679 0.8643 0.8477

Logistic Regression 0.8349 0.8207 0.8240 0.7874 0.7896 0.8166

Random Forest 0.8096 0.8245 0.8374 0.8525 0.8476 0.8643

XGBoost 0.9375 0.9399 0.9493 0.9521 0.9529 0.9561
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Also, as the case with the Part D Data, the AUC scores in Table  12 do not show as 
clear of a trend in the effect of features used. We find it difficult to distinguish which 
feature set out of 25, 30 and 80 yields the best performance. In our opinion, the results in 
Tables 9, 10, and 12 show that AUC is a less suitable metric for evaluating the classifica-
tion of imbalanced Big Data, since trends are more difficult to detect. Put another way, 
we find that AUC yields ambiguous results.

Statistical analysis
Here we move on to use statistical methods to process the data presented in the results 
in a way that allows us to make definitive conclusions as to the effect of the feature selec-
tion, and classifier factors in our experiments.

Two factor ANOVA for feature selection experiments with Part D data analysis of results 

in terms of AUPRC

The first statistical method we use is an ANOVA test to determine whether the classi-
fier and number of features factors have a significant impact on experiments involving 
the Part D data. The result of the ANOVA test is in Table 13. The Pr(> F) , or p-values, 
in Table 13 are practically 0, so we conclude that both factors have a significant effect. 
In the ANOVA tables that follow, the term “Features” indicates the treatment of the 
number of features in the dataset as a factor in the experimental design. For example, 
in Table 13, there are ten possible values for the number of features used in the datasets, 
therefore, nine degrees of freedom (Df) for the “Features” factor.

Since we conclude that both the classifier and number of features have a have signifi-
cant effect on experimental outcomes, we conduct an HSD test to rank the levels of the 
factors in terms of their impact. The result of the HSD test is the assignment of levels of 
the factor to groups. The alphabetical order of the group label corresponds to the level of 
performance, or rank, of the group.

Table 14 contains the result of the HSD test that we use to rank the impact of feature 
selection. Averaged across the performance of all the classifiers, 10 features yields the 

Table 13 ANOVA for Features and Classifier as factors of performance in terms of AUPRC

a Indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 9 2.97 0.33 47.15 a

Classifier 5 71.64 14.33 2050.15 a

Residuals 2985 20.86 0.01

Table 14 HSD test groupings after ANOVA of AUPRC for the Features factor

Group a consists of: 10

Group ab consists of: 15, 9, 7a, 8

Group bc consists of: 25, 20

Group c consists of: 7b, 30

Group d consists of: 82
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best performance. In Table 14, group ‘a’ is associated with the highest AUPRC scores, 
group ‘ab’ with scores in a range overlapping groups ‘a’ and ‘ab’, group ‘ab’ is associated 
with scores overlapping both groups ‘a’ and ‘bc’, and so on. Put another way, groups in 
the HSD test result correspond with their rank in alphabetical order.

Table  15 contains the HSD result for the effect of the choice classifier on AUPRC 
scores in our experiments with the Part D data. The pattern apparent in the test result 
is that the Gradient Boosted Decision Tree algorithms CatBoost and XGBoost do the 
best, followed by the Bagging algorithms, Random Forest and ET, followed by the linear 
method of Logistic Regression. The rank of LightGBM is an exception to the pattern.

Two factor ANOVA for feature selection experiments with Part D data analysis of results 

in terms of AUC 

Next, we include ANOVA and HSD test results similar to those in Tables 13, 14, and 
15. The difference is that, for the results in Tables  16, 17, and 18, we use the AUC 
scores recorded in experimental outcomes as opposed to the AUPRC scores. The 
ANOVA test result recorded in Table 16 shows that the Pr(>F) values are practically 
zero, which means that both the classifier and the number of features used have a sig-
nificant impact on the AUC scores we record as experimental outcomes.

Table 15 HSD test groupings after ANOVA of AUPRC for the Classifier factor

Group a consists of: CatBoost

Group b consists of: XGBoost

Group c consists of: Random Forest

Group d consists of: ET

Group e consists of: LightGBM

Group f consists of: Logistic Regression

Table 16 ANOVA for Features and Classifier as factors of performance in terms of AUC 

a Indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 9 0.21 0.02 10.43 a

Classifier 5 9.38 1.88 833.75 a

Residuals 2985 6.71 0.00

Table 17 HSD test groupings after ANOVA of AUC for the Features factor

Group a consists of: ‘30’

Group ab consists of: ‘10’

Group abc consists of: ‘25’, ‘20’

Group abcd consists of: ‘9’

Group bcde consists of: ‘82’, ‘15’

Group cde consists of: ‘8’

Group de consists of: ‘7a’

Group e consists of: ‘7b’
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Although the ANOVA test result in Table 16 implies that both the classifier and num-
ber of features have a significant impact on experimental outcomes, the HSD test result 
in Table 17 accentuates the difficulty one may encounter when using AUC to gauge the 
performance of models when working with imbalanced Big Data. It is more difficult to 
identify the best choice since all factors are members of some interval that overlaps with 
other intervals.

The HSD results for the effect of the choice of classifier on AUC scores are more inter-
pretable. However, they serve to further illustrate difficulties one may encounter when 
using AUC to gauge the performance of a model. Here we see that the more biased 
Logistic Regression model is ranked above Random Forest and ET. The HSD test result 
for performance of the classifier in terms of AUPRC in Table 15 disagrees with this rank-
ing. We speculate this is due to class imbalance. In particular, we conjecture that the 
higher rank of Logistic Regression in Table 18 versus Table 15 is due to the overwhelm-
ing number of instances in the negative class in the Part D data, and how the false posi-
tive rate is used to calculate the AUC score versus how Precision is used to calculate the 
AUPRC score.

Two factor ANOVA for Supervised feature selection experiments with Part B data analysis 

of results in terms of AUPRC

Now we move on to present a statistical analysis of results of experiments conducted 
with the Part B data. The result of the ANOVA test in Table 19 shows that both the clas-
sifier and the number of features have a significant impact on AUPRC scores. Therefore, 
we conduct further HSD tests to rank levels of the factors according to their impact on 
AUPRC scores.

Table 18 HSD test groupings after ANOVA of AUC for the Classifier factor

Group a consists of: CatBoost, XGBoost

Group b consists of: Logistic Regression

Group c consists of: ET

Group d consists of: Random Forest

Group e consists of: LightGBM

Table 19 ANOVA for Features and Classifier as factors of performance in terms of AUPRC

a Indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 5 0.24 0.05 13.16 a

Classifier 5 130.10 26.02 7242.04 a

Residuals 1789 6.43 0.00

Table 20 HSD test groupings after ANOVA of AUPRC for the Features factor

Group a consists of: 25, 20, 30, 15, 10

Group b consists of: 80
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The HSD test result in Table 20 indicates a different effect of supervised feature selec-
tion than what we find previously in the Part D data. In Table 20, it is clear that apply-
ing supervised feature selection yields better performance in terms of AUPRC, than not 
using supervised feature selection. However, the number of features used is not signifi-
cant. Therefore, we are free to select the number of features that is most convenient. 
Since feature set 10 is the smallest, in terms of the size of the data, we would select that. 
This is because in our experience machine learning algorithms run to completion more 
quickly with smaller datasets.

The trend of classifier performance we observed for the Part B data in Table  21 is 
slightly more clear in the outcome of the HSD test recorded in Table 17, since LightGBM 
is ranked directly under CatBoost and XGBoost. Thus, the ranking in Table 21 shows 
that the Gradient Boosted Decision Tree algorithms CatBoost, LightGBM, and XGBoost 
yield the best performance, followed by the Bagging technique algorithms Random For-
est and ET, and finally the linear technique, Logistic Regression.

Two factor ANOVA for Supervised feature selection experiments with Part B data analysis 

of results in terms of AUC 

Just as we do for the Part D data, here we conduct an analysis of the performance of the 
AUC score results of experiments involving the Part B data. As in the other cases, the 
outcome of the ANOVA test documented in Table 22, for the significance of the effect of 
the classifier and number of features factors on experimental outcomes, shows that both 

Table 21 HSD test groupings after ANOVA of AUPRC for the Classifier factor

Group a consists of: CatBoost, XGBoost

Group b consists of: LightGBM

Group c consists of: Random Forest

Group d consists of: ET

Group e consists of: Logistic Regression

Table 22 ANOVA for Features and Classifier as factors of performance in terms of AUC 

a Indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 5 0.13 0.03 23.51 a

Classifier 5 5.99 1.20 1111.70 a

Residuals 1789 1.93 0.00

Table 23 HSD test groupings after ANOVA of AUC for the Features factor

Group a consists of: 80

Group ab consists of: 25, 30

Group b consists of: 20

Group c consists of: 15, 10
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factors have a significant impact. Therefore, we do additional HSD tests to rank the fac-
tors in terms of their impact.

The HSD test result in Table  23 highlights the misleading nature of the AUC score. 
The outcome of the HSD test implies that feature sets 25, 30, and 80 all yield overlap-
ping AUC scores. This is true because the AUC score involves the false positive rate, as 
opposed to the AUPRC score, which involves precision, and therefore the fraction of the 
positive class correctly identified, instead. We conjecture that for many threshold val-
ues, models built with feature set 80 have lower false positive rates, and lower precision 
scores, and the differences in rankings of feature sets is evidence of that.

The HSD results in Table 24 are a case where we find AUC not to be so misleading. 
The results align with the trend we see in other HSD results. The trend is that the GBDT 
algorithms are ranked highest, followed by the Bagging methods, and finally the linear 
technique.

Model interpretability from feature selection and statistical analysis
Results of the statistical tests above enable an explanation of how the models used in 
this study accomplish Medicare fraud detection. Specifically, the HSD test results for the 
effect of the feature set (number of features) on the mean AUPRC scores for classify-
ing both the Part B and Part D data tell us which subset of features can be used to build 
models that yield performance similar to, or better than, using all features. Of particular 
interest is the smallest such number of features. We conclude that the smallest set of 
features that yields performance similar to using all features explains the information a 
model uses to do a machine learning task. In our case the machine learning task is Medi-
care Fraud detection.

The results of our experiments with Part B data show that the model’s generalization 
was improved with the use of 10 features, compared to using all 80 features, based on 
AUPRC scores. All 10 features are listed in Table 25.

Table 24 HSD test groupings after ANOVA of AUC for the Classifier factor

Group a consists of: CatBoost, XGBoost

Group b consists of: LightGBM, Random Forest

Group c consists of: ET, Logistic Regression

Table 25 Medicare Part B 10 most important features

Tot_Srvcs

Avg_Mdcr_Pymt_Amt_sum

Avg_Mdcr_Pymt_Amt_max

Tot_Bene_Day_Srvcs_sum

Avg_Sbmtd_Chrg_sum

Tot_Benes_sum

Tot_Mdcr_Pymt_Amt

Rndrng_Prvdr_Type

Tot_Srvcs_sum

Avg_Mdcr_Pymt_Amt_min
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Looking at these 10 features for possible causal inferences can provide information 
on why fraud may have occurred and what features to focus on for particular fraudu-
lent activities. Note that there are several engineered features with suffixes such as 
“_sum” or“_std” which are lumped in with their base feature. For this analysis we dis-
card those features, and focus on the remaining six features. From these, there are 
some potential causal interpretations in relation to fraudulent activities.

• Tot_Srvcs represents the number of services provided, which can vary by pro-
vider. A higher value of Tot_Srvcs could indicate fraudulent activities like unnec-
essary procedures or services.

• Avg_Mdcr_Pymt_Amt depicts the average amount that Medicare paid after 
deductible and coinsurance amounts have been deducted for each service item. A 
higher value could indicate that a provider is charging more than what is typical 
for a service—possible fraud.

• Tot_Bene_Day_Srvcs denotes the number of distinct Medicare beneficiary per day 
services. This metric removes double counting from the line service variable for an 
occurrence of a unique service. A higher value could imply that a provider is deliv-
ering unnecessary services or performing services more frequently than required.

• Avg_Sbmtd_Chrg represents the average of the charges that the provider submit-
ted for a service. A higher value could suggest that a provider is charging more 
than what is typical for a service—pointing toward possible fraud.

• Tot_Benes represents the number of distinct Medicare beneficiaries receiving the 
service for each Rndrng_NPI, HCPCS_Cd, and Place_Of_Srvc. A higher value 
could indicate that a provider is performing unnecessary procedures or services or 
that they are seeing an unusually high number of patients.

• Rndrng_Prvdr_Type is derived from the provider specialty code reported on the 
claim. For providers that reported more than one specialty code on their claims, 
this is the code associated with the largest number of services. This, coupled with 
other features, could provide insight into what type of procedures and services the 
provider is offering.

The results of our experiments with Part D data show that the model’s generalization 
was improved with the use of 10 features, compared to using all 82 features, based on 

Table 26 Medicare Part D 10 most important features

Tot_Clms

Tot_30day_Fills_sum

Tot_Benes_sum

Tot_Clms_sum

Tot_Day_Suply_sum

Tot_Day_Suply

Tot_30day_Fills

Gnrc_Tot_Clms

GE65_Tot_Clms

Tot_Drug_Cst_std
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AUPRC scores. Moreover, 7 features improved the model over using all features. Even 
so, all 10 features are listed in Table 26 for reference.

Looking at these 10 features for possible causal inferences can provide information on 
why fraud may have occurred and what features to focus on for particular fraudulent 
activities. Note that there are several engineered features with suffixes such as “_sum” or 
“_std” which are lumped in with their base feature. From these, there are some potential 
causal interpretations in relation to fraudulent activities.

• Tot_Clms, Tot_30day_Fills, and Tot_Day_Suply, are variables related to the number 
of drugs prescribed and dispensed. High values in these features could indicate pos-
sible fraudulent activities such as over-prescribing, over-dispensing, or even drug 
diversion.2

• Tot_Drug_Cst, which reflects the total cost of the associated claims, can also be a 
useful variable to detect fraud, especially if there are significant deviations from the 
expected cost in total or in relation to other features like total claims or beneficiaries.

• Tot_Benes is the total number of unique beneficiaries with one or more claims for 
a drug. As such, providers may claim many treatments for beneficiaries that could 
increase the possibility of a fraudulent claim.

• Additionally, other features like Gnrc_Tot_Clms and GE65_Tot_Clms could also be 
useful in detecting fraud. The former is related to the number of claims for generic 
drugs, which could be an indicator of lower quality care or prescription errors. The 
latter reflects the number of claims for beneficiaries aged 65 and older, a population 
that is at higher risk of healthcare fraud.

Conclusions
We have shown how a novel feature selection technique can be employed to generate 
more explainable models, as well as significantly decrease the size of a highly imbal-
anced Big Data dataset without necessarily compromising classification performance. 
Statistical analysis is essential in order to make the determination as to what the mini-
mum number of features are that one can eliminate from a dataset and build models 
that yield acceptable performance. Therefore, we would like to point out that one should 
employ statistical tests similar to the tests we conduct as a part of the feature selection 
technique.

In this study, we employ an ensemble supervised feature selection technique to rank 
features of two Big Data datasets. The datasets are derived from Medicare Part D and 
Medicare Part B insurance claims data, and labeled with data from the LEIE. They 
qualify as Big Data, and they are highly imbalanced. Therefore, our results demonstrate 
that our feature selection technique is a viable technique that can work for reducing the 
dimensionality of other highly imbalanced Big Data for supervised machine learning 
tasks. Taking our results for the Part D dataset as an example, our feature selection tech-
nique reduces a dataset from 82 to 10 features. Yet, models built on the reduced set of 
features yield classification results that are significantly better than using all 82 features.

2 https:// www. cdc. gov/ injec tions afety/ drugd ivers ion/ index. htm.

https://www.cdc.gov/injectionsafety/drugdiversion/index.htm
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Another important advantage of our feature selection technique is its running time. 
Our technique runs in the time that it takes to fit a collection of six classifiers to the 
dataset. If the fitting process for each of the classifiers is run in parallel, then the running 
time of the feature selection technique is bounded from above by the time it takes to 
fit one classifier. This is a far better running time than the brute-force approach of try-
ing all possible combinations of features. The brute-force approach requires exponential 
resources. Since our technique reduces the size of the dataset, this also improves the 
running time of many learners that one can fit to it, to train models for Medicare Fraud 
detection. Moreover, the reduction in size of the dataset also helps control overfitting. 
We conjecture this is why we observe better performance in terms of AUPRC for models 
built with fewer features

Explainable models are an additional result of our feature selection technique. When 
one can show that models built with a reduced number of features yield performance 
equivalent to using all features, one can make the case that the reduced number of fea-
tures contains all the information that the algorithm requires in order to successfully 
carry out the machine learning task. When fewer features are required, it is easier to 
understand and explain what sort of information a model uses. Future work should 
consider applying the techniques discussed here to other Big Data in other application 
domains.
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