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Abstract 

The diagnosis and categorization of cardiac disease using the low-cost tool electro-
cardiogram (ECG) becomes an intriguing study topic when contemplating intelligent 
healthcare applications. An ECG-based cardiac disease prediction system must be 
automated, accurate, and lightweight. The deep learning methods recently achieved 
automation and accuracy across multiple domains. However, applying deep learning 
for automatic ECG-based heart disease classification is a challenging research problem. 
Because using solely deep learning approaches failed to detect all of the important 
beats from the input ECG signal, a hybrid strategy is necessary to improve detection 
efficiency. The main objective of the proposed model is to enhance the ECG-based 
heart disease classification efficiency using a hybrid feature engineering approach. 
The proposed model consists of pre-processing, hybrid feature engineering, and clas-
sification. Pre-processing an ECG aims to eliminate powerline and baseline interfer-
ence without disrupting the heartbeat. To efficiently classify data, we design a hybrid 
approach using a conventional ECG beats extraction algorithm and Convolutional Neu-
ral Network (CNN)-based features. For heart disease prediction, the hybrid feature vec-
tor is fed successively into the deep learning classifier Long Term Short Memory (LSTM). 
The results of the simulations show that the proposed model reduces both the num-
ber of diagnostic errors and the amount of time spent on each one when compared 
to the existing methods.

Keywords: Convolutional neural network, Electrocardiogram, Heart disease detection, 
Classification, Smart healthcare

Introduction
Identifying heart diseases from an electrocardiogram (ECG) increasingly necessitates the 
use of computer-aided diagnosis (CAD) software. Numerous established methods for 
the immediate detection of cardiac abnormalities have been offered [1]. ECG signals are 
analyzed by auto-correlation work, frequency area features, time–frequency study, and 
wavelet transformation to spot these abnormalities. Separating abnormal ECG signals 
and meritoriously organizing them is still in progress [2–4], notwithstanding successful 
patient classification. As an ECG signal may comprise a wide variety of heartbeats or 
waves, feature extraction from the data is essential. After the ECG signal has been pro-
cessed, it comprises several different waves that, taken together, largely represent human 
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cardiac issues. These waves include the Q wave, the R wave, the S wave, the P wave, the 
T wave, and so on. The Q, R, and S waves form the QRS complex, which is concerned 
with ventricular depolarization. Atrial depolarization is managed by the P wave, whereas 
ventricular repolarization is the responsibility of the T wave. ECG-based heart disease 
prediction relies on feature extraction and characterization after pre-processing. The 
QRS complex controls ventricular depolarization. P waves depolarize atriums, whereas 
T waves repolarize ventricles. Time–frequency area to display ECG frequency and time 
components concurrently, or frequency space to compare QRS-complex power spec-
tra between normal and arrhythmia waveforms. In the second phase, SVM, NB, ANN, 
KNN, and others were utilized to categorize. Features extraction is harder than catego-
rization since QRS complexes are hard to get. Waveform, Hermite, wavelet, and statisti-
cal characteristics are feature removal techniques [5, 6]. Decision trees, support vector 
machines, key-value networks, linear discriminants, and artificial neural networks may 
organize recovered characteristics [7, 8]. Most automated ECG identification techniques 
use pattern-matching to describe the ECG signal as random patterns [9, 10]. They need 
advanced feature removal and high sample numbers, making them laborious. Many 
operations must use fewer characteristics and a lower sample rate to adopt real-time in 
the hospital affordably. Perfect cardiac disease categorization has scalability, computa-
tional complexity, and efficiency challenges [11].

The QRS complex identification system had proposed in [12] based on the estimation 
of the time-dependent entropy of an ECG signal. To improve the accuracy of QRS detec-
tion, entropy was computed at various temporal resolutions. Another unique technique 
for detecting QRS complexes using deterministic finite automata is given in [13]. They 
extracted QRS complexes and interpreted normalized ECG signals using regular grammar. 
The hybrid filtering technique is used in [14] to improve the accuracy of QRS beat detec-
tion. They created derivative and maximum mean minimum hybrid filtering methods. ICA 
pre-processed raw ECG data before chaos analysis recovered the QRS complex [15]. Some 
cardiovascular disease categorization approaches use manmade features. DWT and Prin-
cipal Component Analysis are used in automated cardiac disease diagnosis [16]. (PCA). 
DWT extracted beat characteristics and PCA reduced dimensionality in their dynamic 
segmentation strategy to account for HRV. In [17], authors have reported another DWT-
based ECG wave identification and feature extraction approach. The Probabilistic Neural 
Network sorted (PNN). Adaptive transformations and rational functions may extract indi-
vidual heartbeats from an ECG [18]. Raw ECG data yielded T, P, and QRS waves.

Image verification, object classification, object identification, voice recognition, and 
action recognition are all common applications of deep learning algorithms. It allows 
such processes to be fully automated and improved upon in terms of precision. Unsu-
pervised learning and recognition systems are the focus of current research, and deep 
learning techniques are being explored to construct a multistage architecture. CNN’s 
ECG-based heart disease diagnosis is one example of how deep learning techniques have 
improved accuracy. By performing automated feature learning and extraction on cer-
tain ECG datasets, these approaches have increased accuracy; nonetheless, they suffer 
from issues with scalability and resilience. A cardiologist’s ability to correctly catego-
rize cardiac disease using an ECG signal’s beat classification is crucial for guiding treat-
ment decisions. Information is not extracted using heartbeat-specific characteristics but 
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rather multi-layer automatic features used by CNN. Recently various methods have been 
proposed for ECG-based disease classification using deep learning.

ECG arrhythmia classification using 2D convolutional neural networks (CNNs) is proposed 
in [19]. ECG data input using STFT. A 2D CNN classified heart disorders using STFT spec-
trograms. Officially, the model was STFT-CNN. In [20], an effective deep-learning model 
using time–frequency and convolutional unit presentations had proposed. The CNN learned 
to automatically classify ECG data into two categories. A CNN-based architecture for ECG-
based cardiac disease categorization was suggested in [21]. The Grasshopper Optimization 
Algorithm created a hybrid CNN model to eliminate artifacts and noise (GOA). Instead of 
CNN features, the GOA-CNN model uses pre-processing and DWT-based feature extrac-
tion. The CNN from [22] had used in the innovative heart illness classification architecture. A 
5L-CNN automatically extracted and classified raw ECG data. Recently, [23] designed a deep 
learning algorithm to automatically identify and categorize illnesses using ECG data. They 
predicted cardiovascular disease using 18C-CNN and raw ECG data. A state-of-the-art con-
volutional neural network approach for segmenting and identifying ECG heartbeats had pro-
posed in [24]. The rapid R-CNN model allowed simultaneous segmentation and classification. 
Another study [25] employed Restricted Boltzmann Machine deep learning to classify ECG-
based arrhythmias (RBM). For ECG multi-class classification, a unique hybrid technique of 
deep neural network-integrated with linear and nonlinear characteristics collected from ECG 
and heart rate variability (HRV) had proposed in [26]. In [27], morphological filtering had 
used to build a revolutionary classification method based on Extreme Learning Machine with 
Recurrent Neural Networks (RNN). In [28], a CAD system utilizing an auto-encoder deep 
learning approach had developed to automatically classify various forms of arrhythmias from 
ECG data. CNN had developed in [29] to identify depression based on ECG patterns.

Deep learning approaches have surpassed semi-automatic ones in popularity, although 
utilizing electrocardiograms to identify heart disease is still difficult. Using real-time 
health behaviors, automatic feature extraction from raw ECG data yields erroneous con-
clusions. Directly using CNN may also loss of cardiac wave-specific and vital heartbeat 
features. Also, existing methods [19–29] perform the deep learning-based classification 
directly using the raw ECG signals. It leads to erroneous classification results. We use 
this as motivation to provide a new framework for ECG-based cardiac disease diagnosis 
that makes use of a hybrid process of feature extraction. To begin, we devise a method 
for cleaning up the raw ECG data of any artifacts. We then propose a hybrid approach 
to feature extraction by bringing together the Stationary Wavelet Transform (SWT) and 
automated CNN features. Before feeding the hybrid data into the deep learning classifier 
LSTM, manifold learning is used to minimize and normalize the features. Our hybrid 
feature extraction, pre-processing, and deep learning classifier solve these problems for 
ECG-based heart disease identification. Contributions are summarised here.

• We designed a pre-processing technique that removes baseline drift, power line 
interference, and disturbances from ECG signals without losing heartbeat data.

• Dynamic hand-crafted and comprehensive CNN feature extraction model proposed 
as a hybrid feature engineering approach. Dynamic threshold-based QRS complex 
extraction with third-level SWT decomposition extracts user-defined features. A 
lightweight 3-layer CNN model extracts CNN-based automated features from pre-
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processed ECG data. Combining, reducing, and normalizing CNN and handcrafted 
characteristics improves categorization.

• The sequential deep learning classifier called LSTM is designed for automatic heart 
disease classification from the hybrid features.

• We extensively test the suggested model using state-of-the-art methods on the publi-
cally available dataset.

The mechanism for ECG-based disease identification is presented in Section Proposed 
system. The section Simulation results contains simulation results and discussions. Sec-
tion Conclusion and future works discusses the conclusion and future suggestions.

Proposed system
Figure  1 shows the proposed system architecture for ECG-based heart illness diagnosis. 
Baseline drift, powerline interference, and other forms of noise are all eliminated from the 
raw ECG signal input before further processing. In this research, we build an adaptive and 
secure filtering system to achieve this goal. When the data has been cleaned and prepared, 
a mixture of automated and human-driven CNN-based features are used to execute hybrid 
feature extraction. The manifold learning method is employed to reduce the high-dimen-
sional features prior to normalisation, and the handcrafted and CNN features are com-
bined. The output of this block is the hybrid feature extraction performed by the proposed 

Fig. 1 ECG-based heart disease diagnosis framework proposed
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architecture. With sequential input of normalised feature vectors, the LSTM classifier may 
make early predictions about heart illness. Based on the likelihood score, the LSTM output 
layer identifies the input ECG signal of heart disease (the class with a high probability score). 
Scalability, precise QRS-complex extraction, timely disease detection, and reliable classifica-
tion are all issues that need to be addressed by the proposed integrated system.

Signal pre‑processing

The pre-processing method uses 1D median filters of various widths and 2D notch fil-
ters. 1D median filters eliminate baseline wander artefacts from input signal I to avoid 
data loss. Two median filters of 200 ms and 600 ms are used to input ECG data to cor-
rect baseline wander induced by low-incidence breathing components. Instantly remov-
ing the output of both filters from the original ECG signal yields the baseline-free ECG 
signal. A simple and effective second-order notch filter applied to the 60 Hz frequency 
component may reduce powerline interference, another ECG artefact. Notch cutoff is 
35 Hz. Two median filters with notch filtering eliminate noise, baseline drift, and power-
line interference with little processing. We’ve summarised pre-processing here.

• Acquire ECG signal I
• Apply median filter 1 m1 = median(I , 200)

• Apply median filter 2 m2 = median(I , 600)

• Baseline wonder removal m = m1−m2

• Powerline interference removal IP = notch(m, 60Hz)

• IP is pre-processed ECG signal.

Hybrid features extraction

Heartbeat segmentation, CNN feature extraction, and feature optimization are all part 
of this process. We apply an adaptive transform-domain function to segment the ECG 
data to obtain QRS beats. The CNN is designed to extract the automated characteristics 
from the pre-processed ECG signal. Finally, the features of handcrafted and CNN are 
combined in the final optimization step. Dimensionality reduction and feature normali-
zation are performed on the ensembled feature vector.

Dynamic heartbeat segment

Third-level SWT decomposition is used for segmenting pre-processed ECG data and 
extracting QRS characteristics. Using Normalized SWT, Algorithm  1 illustrates the 
effectiveness of the proposed handmade features vector creation (NSWT). Before apply-
ing the SWT decomposition, pre-processed ECG signals are normalised, which helps 
with the challenge of reliable wave detection for complex ECG data. Normalized and 
denoted by the symbol IN, the pre-processed ECG signal IP consists of:

When the signal has been normalised, a third-level NSWT decomposition is per-
formed using the Haar wavelet to provide an approximation and detailed coefficients. In 
this study, we use the third-level approximation (AAA) and detailed coefficients (DDD) 

(1)IN =
Ip2

max|Ip2|



Page 6 of 13Golande and Pavankumar  Journal of Big Data          (2023) 10:139 

to identify AQRS and DQRS, respectively. “The AQRS and DQRS beats are extracted 
using the dynamic thresholding method. QRS extraction’s adaptive technique takes care 
of scalability and data loss concerns. Using this method, the QRS complex is represented 
by the fusion of the approximation and detailed coefficients, FAD, allowing for accurate 
estimate of QRS characteristics of the input normalised ECG signal for the first time. 

After obtaining the 3rd level coefficients, AAA and DDD, the dynamic thresholds TA 
and TD for each coefficient are calculated as follows:”
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CNN‑features extraction

An automatic method for extracting lightweight CNN features was developed once the 
manual method was exhausted. Automatically extracted CNN features, or F-CNN, are 
produced using an IP pre-processed ECG signal as input. To extract features from pre-
processed ECG data at minimal computational costs, we propose a 3L-CNN model, as 
shown in Table 1. The first convolutional layer has a 40-element kernel, whereas the sec-
ond and third layers each have a 3-element kernel. Because of this, a lot less computa-
tion is required. “We employed batch normalisation after each 1D convolutional layer 
to address the problems of parameter growth and disappearing gradients. For efficient 
feature extraction in 3L-CNN, we employed 1D ReUL followed by max-pooling. The 
1 × 10,000 input ECG signal is used to generate 128 × 4 features at the third layer.

Using the aforementioned 3L-CNN framework, we were able to extract the features 
vector. Layers of batch normalisation, ReUL, and max pooling are combined with the 1D 
convolutional layer to form the squashing layer. The final outcome of this additive bias in 
the max pooling layer’s output is as follows:

where,

• Fl
j : are the feature maps produced by the ReUL l of jth max-pooling kernel

• f l−1
j  : are the feature maps of the previous ReUL l − 1,

• kij: are the i trained convolution kernels
• blj : the additive bias
• poolmax(·) : the max-pooling operation
• tanh(·) : the hyperbolic activation function.

The final layer Fl
j  stored into the output variable FCNN as 2D feature vector.”

Features selection and normalization (FSN)

In this stage, the recovered feature vectors FAD and FCNN are enlarged to the standard 
size for the full dataset. FAD and FCNN are then merged to produce a 256 × 1 feature vec-
tor into variable FEns.

Because the number of the extracted features FHyb is large, features selection becomes 
critical in order to improve prediction accuracy while minimising computational effort. 

(2)TA =
|max(AAA)|

2

(3)TD =
|max(DDD)|

2

(4)Fl
j = tanh

(

poolmax

(

∑

i

f l−1
j ∗ kij

)

+ blj

)

(5)FHyb = [FAD
, FCNN ]
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On extracted features, we used manifold learning for feature selection. When compared 
to other feature selection strategies, this technique creates trustworthy and unique fea-
tures. Using the manifold technique, the features from each vector were picked up to 50 
times.

Following feature reduction, we normalise them using the log 10 technique, as follows:

This method considerably increases the performance of heart disease diagnosis while 
also assisting in reducing space and time complexity.

Classifiers

We created the LSTM sequential classifier for disease prediction and CNN for auto-
mated feature extraction in this work. Memory cells, I/O gates, forget gates, and peep-
hole connections make up covert LSTM units. LSTM, fully connected, and softmax layer 
operations classify input data into two heart diseases. LSTM design uses 150 hidden lay-
ers and 27 epochs. Evaluation utilised other classifiers. We used 70% training data and 
30% test data to get the final total.

Simulation results
On a computer running Windows 10 with an I3 processor and 4 GB RAM, we put the 
proposed model into use and evaluated it. Every experiment is run on the PTB Diag-
nostic ECG Database, a publicly accessible research dataset [30]. This dataset is made 
up of ECG data gathered from 290 people. The ECG recordings were categorized into 
different categories, such as "myocardial dead tissue, myocardial infarction, and myocar-
dial infarction. Cardiomyopathy/Heart Disappointment, Pack branch square, Dysrhyth-
mia, Myocardial hypertrophy, Valvular heart disease, Myocarditis, Miscellaneous, and 
Healthy Control" are all conditions that may be seen in the human body. Every ECG is 

(6)FHyb = [manifold(FAD
, 50),manifold(FCNN

, 50)]

(7)Fnorm = −sign
(

FHyb
)

∗ log10|FHyb|

Table 1 3L-CNN configuration for automatic feature extraction

Layers Convolutional layer Batch normalization ReUL layer Pooling layer

Layer 1 Conv1D (1, 64, 40, 4):
Input: 1 channels
Output: 64 channels
kernel size: 40
Stride: 4

BatchNorma1D (64):
Features: 64

ReUL1D(64): Features: 64 MaxPool1D(64): kernel 
size: 4

Layer 2 Conv1D (64, 64, 3, 4):
Input: 1 channels
Output: 64 channels
kernel size: 4
Stride: 3

BatchNorma1D (64):
Features: 64

ReUL1D(64): Features: 64 MaxPool1D(64): kernel 
size: 4

Layer 3 Conv1D (64, 128, 3, 4):
Input: 1 channels
Output: 128 channels
kernel size: 4
Stride: 3

BatchNorma1D (128):
Features: 64

ReUL1D(128): Features: 
128

MaxPool1D(128): kernel 
size: 4
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data having a total of 15 signals which consist of 12 conservative leads and 3 Frank leads 
at 1000 Hz sampled frequency. We prepared the training ECG data in 6 major classes 
like Bundle Branch Block (BBB), Cardiomyopathy (CMP), Hypertrophy (HPT), Myocar-
dial Infarction (MCI), Other Heart Diseases (OHD), and Healthy Control (HC) of a total 
of 530 ECG samples. Table 2 shows the number of ECG samples collected for each class. 
The OHD class contains other heart diseases such as Dysrhythmia, heart failure, myo-
carditis, valvular heart disease, etc. For performance evaluation, the total dataset has 
been divided into the ratio of 70% (371) training and 30% (159) testing ECG samples for 
each classifier.

Using various classifiers, including LSTM, Ensemble Classifier, ANN, SVM, and KNN, 
we first assess the effectiveness of the suggested hybrid method of feature extraction. 
Then, using cutting-edge techniques, we give the comparison analysis. Performance met-
rics including precision, recall, accuracy, F1-score, and prediction time are measured.

The results of heart disease classification accuracy, precision, recall, and F1-score 
using various classifiers are displayed in Tables 3, 4, 5, 6. These findings suggest that 
FSN with LSTM outperforms other classifiers in terms of performance. It’s because, 
in comparison to other classifiers, LSTM successfully solves the issues of gradient 
exploding, overfitting, and class imbalance. The probabilistic LSTM classifier with 
sequential hybrid characteristics as input for the early prediction of heart disease was 
primarily responsible for the performance improvement. The EC classifier outper-
forms the SVM, KNN, ANN, and EC classifiers for all of these parameters because it 
can reduce misclassification more effectively than the other classifiers. Among all the 
classifiers, the KNN classifier has the worst performance. Another method of classi-
fier predictability analysis is shown by the F1-score parameter.

On the other hand, we contrasted the FSN features with the raw hybrid features 
to demonstrate how feature normalization and selection might improve classifica-
tion performance. Using the FSN for each classifier considerably enhances the results. 
The hybrid feature engineering strategy used CNN-based and handcrafted features 
for disease classification efficiency. Thus, the proposed model improves classification 
accuracy and F1-score parameters overall current techniques. By choosing signifi-
cant and distinctive characteristics from the high-dimensional hybrid feature vector, 
manifold learning may decrease duplicate features. Multiple learning has normalized 
the outcome to further decrease categorization errors. The benefits of feature nor-
malization and manifold learning decrease training and misclassification problems. 
Additionally, in machine learning approaches, feature normalization performs the 
straightforward procedure of distance computation. Effective weight computation 
during training and classification is guided by the normalized range of all character-
istics. Table 7 shows the impact of using manifold learning in the proposed model. It 
shows that applying manifold learning has improved the overall classification perfor-
mance approximately by 4%.

We conclude by comparing the proposed model to state-of-the-art deep learning 
algorithms for ECG-based cardiac disease classification based on their performance. 
We’ve employed several cutting-edge methods including STFT-CNN [20], GOA-CNN 
[21], 5L-CNN [22], and 18C-CNN [23]. Table  8 displays the average training-detec-
tion time, accuracy, and F1 score. This comparison suggests that the proposed cardiac 
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disease classification model achieves ECG-based efficiency with substantially lower 
computational overhead than any other deep learning-based approach now in use. The 
proposed model overcomes its limits by adopting an efficient pre-processing method, 
extracting adaptive QRS complexes, lightweight CNN features, manifold learning and 
normalization, and LSTM for classification. Existing deep learning-based models such 
as STFT-CNN, GOA-CNN, 5L-CNN, and 18C-CNN only relied on automatic feature 
extraction only which neglects some of the vital heart beats related features. The pro-
posed hybrid approach of feature engineering considered handcrafted and CNN-based 
features for disease classification efficiency. The achieved results using the proposed 
model, therefore, show a significant classification accuracy improvement compared to 
all existing methods in terms of accuracy and F1-score parameters. Another reason for 
performance improvement using the proposed model is the pre-processing of raw ECG 
signals. The existing deep learning-based methods directly worked on raw ECG signal 
which consists of redundant noisy beats and artifacts which affect the feature extrac-
tion and classification performances. The proposed CNN-based model also takes lower 
computational complexity compared to existing methods due to the reduced number of 
layers and kernel sizes.

Table 2 ECG heart disease dataset classification

Class label Class Number of 
samples

1 BBB 17

2 CMP 16

3 HPT 7

4 MCI 377

5 OHD 33

6 HC 80

Total samples 530

Table 3 Accuracy performance analysis

Classifiers Raw features FSN

KNN 81.45 85.21

SVM 74.54 90.15

ANN 61.21 81.25

ESEMBLE 84.52 92.54

LSTM 89.56 99.45

Table 4 Precision performance analysis

Classifiers Raw features FSN

KNN 75.4721 79.12

SVM 71.21 79.17

ANN 73.12 83.21

ESEMBLE 79.24 88.29

LSTM 91.02 99.14
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Conclusion and future works
The purpose of this article was to offer a unique method for classifying heart disease 
using ECG data. We created an integrated system that allows for automation while pre-
serving important cardiac wave data. With CNN’s automatic feature learning, adaptive 
heartbeats segmentation results in an accurate depiction of heart performance. It aids in 
the reduction of misclassification mistakes. As the features vector is constructed utilis-
ing CNN and QRS complex features, the FSN method offers a more effective and reliable 
feature set for the precise categorization of cardiac illnesses. The experimental results 
show that the suggested model performs better than the prior deep learning-based 

Table 5 Recall performance analysis

Classifiers Raw features FSN

KNN 81.15 88.24

SVM 88.45 94.12

ANN 91.45 94.47

ESEMBLE 92.48 98.21

LSTM 97.43 99.89

Table 6 F1-score performance analysis

Classifiers Raw features FSN

KNN 83.12 88.45

SVM 83.14 88.14

ANN 88.45 90.45

ESEMBLE 82.12 91.75

LSTM 93.31 99.83

Table 7 Proposed model analysis with manifold and without manifold learning

Measures Without manifold learning With 
manifold 
learning

Accuracy 95.89 99.45

Precision 95.32 99.14

Recall 95.78 99.89

F1-score 95.45 99.83

Table 8 Performance analysis with state-of-art methods

Accuracy F1‑score Time

STFT-CNN 91.45 94.04 5181

GOA-CNN 94.78 93.61 5283

5L-CNN 98.58 98.45 4191

18C-CNN 92.15 98.46 6113

Proposed 99.45 99.83 4281
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methods. We recommend looking at more data sets in the future to see how reliable the 
proposed model’s performance is.
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