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Abstract 

Hypernym discovery is challenging because it aims to find suitable instances 
for a given hyponym from a predefined hypernym vocabulary. Existing hypernym 
discovery methods used supervised learning with word embedding from word2vec. 
However, word2vec embedding suffers from low embedding quality regarding unseen 
or rare noun phrases because entire noun phrases are embedded into a single vector. 
Recently, prompting methods have attempted to find hypernyms using pretrained 
language models with masked prompts. Although language models alleviate the prob‑
lem of w embeddings, general‑purpose language models are ineffective for captur‑
ing hypernym relationships. Considering the hypernym relationship to be a linguistic 
domain, we introduce Hypert, which is further pretrained using masked language 
modeling with Hearst pattern sentences. To the best of our knowledge, this is the first 
attempt in the hypernym relationship discovery field. We also present a fine‑tuning 
strategy for training Hypert with special input prompts for the hypernym discovery 
task. The proposed method outperformed the comparison methods and achieved 
statistically significant results in three subtasks of hypernym discovery. Additionally, we 
demonstrate the effectiveness of the several proposed components through an in‑
depth analysis. The code is available at: https:// github. com/ Gun1Y un/ Hypert.

Keywords: Hypernym discovery, Hypernym relationship, Language model, Masked 
language modeling, Hearst pattern, Natural language processing

Introduction
Hypernymy denotes a semantic relationship characterized by a hierarchical connection 
between an abstract term and subordinate instances. To illustrate, when presented with 
a directive to enumerate various exemplars of vehicle, one may readily evoke representa-
tions such as an automobile, a watercraft, and an aircraft. In this context, these entities 
materialize as specific manifestations falling within the broader classification of vehicle, 
thereby designating vehicle as the hypernym and the entities mentioned above as their 
respective hyponyms.

The hypernym relation holds significant importance in natural language processing 
(NLP). This salient semantic connection assumes a crucial role in diverse NLP tasks, 
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including question answering, ontology construction, textual entailment, and lexicon 
augmentation [1–3]. To facilitate these tasks, a large lexical database, WordNet, was 
introduced, which delineates semantic relations among words. However, using manual 
human effort, constructing such a resource is labor-intensive and time-consuming. Con-
sequently, numerous studies have endeavored to automatically extract hypernym rela-
tionships from corpora [4–7].

Hypernym discovery entails identifying all possible instances of hypernyms for a given 
query within the vocabulary [8]. Recently, hypernym discovery studies have used word 
embeddings to capture the meaning and relationship between words. These studies 
can be further categorized into two classes: word2vec embedding methods [9–12] and 
prompting methods [13–16]. The word2vec embeddings are based on the distribution 
hypothesis to vectorize the meaning of a word into a vector space [17]. However, noun 
phrases are mapped to a single vector, and thus rare noun phrases in the corpus can be 
poorly embedded in this way.

The prompting method presents a potential solution to alleviate this issue, employ-
ing pretrained language models (PLMs) with subword tokenization algorithm [18]. The 
prompt takes sentences as input, which consist of a query token x and a [MASK] token 
(e.g., “A/An x is a [MASK]”) [13]. Despite the promise that harnessing PLMs holds for 
addressing challenges associated with infrequent terms, certain limitations persist. Only 
one word can be predicted from the prompt using one [mask] token, even though the 
gold hypernyms can be multiple words. Additionally, it is essential to acknowledge that 
PLMs, in their original design, are not inherently geared towards discerning hypernym 
relationships. Hence, customary procedures involving supplementary rounds of pre-
training and subsequent fine-tuning are often employed to tailor the PLM to the specific 
demands of domain-specific tasks [19, 20].

Within the realm of hypernym discovery, the application of these processes (i.e., pre-
training and fine-tuning) remains unexplored. An inherent shortcoming of existing stud-
ies concerning hypernym discovery is their limited efficacy in deciphering the semantics 
and hypernymic relationships inherent in noun phrases. Approaches grounded in word-
2vec suffer vulnerability when confronted with noun phrases due to their amalgamation 
into singular vectors. Even though prompting methodologies offer potential relief, the 
all-encompassing nature of general-purpose PLMs renders them unsuited for compre-
hending hypernymic information, given their training on broad-spectrum sentences.

To address the limitations posed by existing approaches, in this work, we propose 
Hypert, a hypernymy-aware pretrained language model for hypernym discovery that 
harnesses Hearst pattern sentences. The method we present aligns with established 
domain adaptation practices for PLMs. To elucidate, the PLM is subjected to additional 
training using a corpus consisting of sentences based on the Hearst pattern, thereby 
heightening its sensitivity to hypernymic constructs. The Hearst pattern, though sim-
ple, possesses a solid foundation, thereby facilitating the construction of a corpus rich 
in hypernym relationships [21]. More specifically, we employ the extended Hearst pat-
terns, which embody the core concept of the original Hearst patterns. Then, the aug-
mented pretrained model undergoes fine-tuning on a dedicated dataset tailored for 
the hypernym discovery task, employing a specialized input prompt. By amplifying 
the hypernym awareness of language models through supplementary pretraining, our 
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approach envisages an elevation in the efficacy of hypernym discovery, ultimately yield-
ing enhanced performance.

The effectiveness of the proposed method is assessed through a comparison with con-
ventional word2vec-based methods and the prompting approach, utilizing the SemE-
val-2018 task9 dataset [8]. The experimental results show that the proposed method 
significantly outperforms the comparison methods. Furthermore, an in-depth analysis 
was also conducted to evaluate the effectiveness of individual components of the pro-
posed method. We also presented the distribution of utilized Hearst patterns in the 
corpus and analyzed them. Additionally, our investigation reveals the efficacy of further 
pretraining, contrasting favorably with BERT [22]. To discover the robustness of our 
method, we conduct a comparative evaluation of prediction outcomes for rare words. 
Lastly, the t-distributed stochastic neighbor embedding (tSNE) plots are presented to 
visually represent the classification token ([CLS]) embedding representation space in 
the context of hypernymy.

The contributions of this work are be summarized as follows:

• We propose a further pretraining method to enhance the hypernymy awareness of 
language models by denoising Hearst pattern sentences from a corpus and using a 
special input prompt for fine-tuning to achieve the best performance among the 
comparison methods.

• An in-depth analysis is conducted regarding the further pretraining. The results 
reveal that the proposed further pretraining method improves performance com-
pared to BERT.

• The proposed method solves the low embedding quality of noun phrases that rarely 
appear and demonstrates this through the case study.

Related work
In traditional hypernym discovery and detection studies, pattern-based methods have 
been used to identify hypernym-hyponym pairs from a corpus. In the work of [1], the 
author defined lexico-syntactic patterns, called Hearst patterns, which can automatically 
filter hypernym-hyponym pairs from large corpora. For instance, a pattern like “y such 
as x” indicates that x is a hypernym of y. Because such pattern-based syntactic relation 
extraction is a good starting point, this seminal research affects lots of subsequent stud-
ies that can be roughly divided into distributional similarity-based, ontological knowl-
edge-based, and machine learning-based methods.

Several studies based on distributional similarity are inspired by the distributional 
inclusion hypothesis [23–25], which assumes that the hypernym can substitute for its 
hyponym. Based on this hypothesis, researchers have proposed unsupervised distri-
butional measures with asymmetric scoring functions. In the work of [26], WeedsPrec, 
a precision-based similarity measure was proposed to quantify the weighted inclu-
sion of a narrow term x to a broad term y (i.e., 

〈

x → y
〉

 ). Additionally, coWeeds [27], 
the geometric average of cosine similarity with WeedsPrec, was proposed. In the work 
of [28], ClarkeDE, a variant of WeedsPrec, was proposed to compute the degree of inclu-
sion. Alternatively, invCL [27] considered the inclusion of a narrow term x to a broad 
term y and the exclusion of y to x using the ClarkeDE measure. However, distributional 
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inclusion hypothesis methods require specific similarity measures to identify semantic 
relationships. In addition, there may also be a sparsity problem for noun phrases that 
contain more than one word, making it challenging to identify hypernym relationships.

Since the concept of word2vec embedding was introduced [17], researchers have 
attempted to use it as a word representation in supervised learning. In the work of [9], 
the authors demonstrated how to learn semantic hierarchies from word embeddings via 
projection learning. Projection learning achieved remarkable improvement in the Chi-
nese hypernym detection task compared to other pattern-based and distributed meth-
ods using learnable piecewise uniform projection matrices that map queries to various 
hypernym representations. In addition, RMM [11] repeatedly uses a shared weight pro-
jection matrix for a given query with word2vec embeddings, assuming that hypernyms 
may come from various conceptual hierarchy levels. RMM exploits the attention mecha-
nism [29] and residual connection [30] to capture corresponding candidate hypernyms. 
Furthermore, SPON [12] uses word2vec embeddings with a simple neural network to 
enforce hypernym relationship properties, asymmetry, and transitivity, as a soft con-
straint. However, these methods are vulnerable to rare or unseen words because they 
map noun phrases to a single vector. Moreover, traditional methods are highly inefficient 
when dealing with out-of-vocabulary terms because they either use random vectors or 
require retraining the entire word representation from scratch.

Ontological knowledge also aids hypernym discovery as many distant supervision 
approaches rely on existing ontologies. [31] utilized BabelNet [32], a multilingual lexi-
calized semantic network and ontology, to extract sentences containing terms linked by 
hypernym relations within BabelNet. The sentences are incorporated into the training 
data when these terms exhibit hypernymic connections. With this training data, they 
built classifiers to determine whether a given sentence contains expressions indicative of 
hypernymic relationships. Similarly, [33] use BabelNet [32] and embed pairs of its syn-
sets (namely, term-hypernym) into the sense embedding spaces [34]. For example, Apple 
and the concept company could form a term-hypernym pair. In that embedding spaces, 
the authors learn a hypernym transformation matrix of all term-hypernym pairs and 
then compute similarity values over the pairs.

The machine learning-based methods try to identify the patterns of hypernym rela-
tionships from given data. For example, HyperNET [35] used an LSTM-based network 
to recognize hypernym syntactic patterns by representing dependency tree paths as 
sequential data. Despite the many efforts to find hypernyms with syntactic patterns, 
pattern-based methods have sparsity problems in which hypernym-hyponym pairs that 
match the pattern are rare in the corpus [10, 36]. Recently, matrix factorization tech-
niques, such as Singular Value Decomposition, have been used to mitigate the sparsity 
problem of pattern-based methods and showed improved results [21].

With the emergence of the transformer [37] in NLP, many researchers have recently 
used transformer-based PLM, such as BERT [22], in various NLP tasks and applica-
tions. The transformer [37] is a novel encoder-decoder network architecture based solely 
on the attention mechanism, called self-attention, and does not rely on recurrence or 
other convolutions. In addition, BERT [22] is an effective PLM that can be fine-tuned 
for a wide range of NLP tasks using the encoder block of the transformer and has 
achieved state-of-the-art results on 11 benchmark datasets. Following the success of the 
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transformer and BERT, many BERT variants have been proposed [19, 20, 38–40]. For 
example, BioBERT [20] and FinBERT [19] improved their performance by further pre-
training BERT with a domain-specific corpus.

To use a PLM for identifying hypernym relationships, [16] evaluated the ability of 
BERT through human language experiments called prompting and demonstrated pro-
ficient results in hypernym retrieval. Moreover, several studies have used human lan-
guage experiments to evaluate the linguistic knowledge of PLM [41–43]. For example, 
singular and plural prompts were used to probe the hypernymy knowledge of BERT [15]. 
In addition, various prompts, specifically Hearst patterns, natural sentences, and hand-
written context, have been used to find hypernyms with BERT [14]. In the work of [13], 
the authors investigated the performance of general-domain and domain-adapted lan-
guage models on financial hypernymy pair datasets using prompting masked language 
models. However, the prompting approaches can incur unstable identification because 
the performance varies depending on the prompt type. In addition, due to the format 
of the prompt, only one token within the vocabulary of the language model used can be 
predicted.

Lastly, a group of studies adopts a strategy to hybridize multiple approaches to maxi-
mize identification performance. CRIM [10] can be a notable hybrid approach that com-
bines pattern-based and projection learning methods. The supervised learning approach 
of CRIM uses projection learning with multiple parallel projection matrices. The pat-
tern-based part of CRIM uses Hearst patterns to assign weight to word2vec embed-
dings. Then, the cosine similarity is used as a score between two words. Like CRIM, [44] 
proposed a hybrid approach to discover hypernym relations using a pattern-based and 
distributional model. Their model begins with finding seed hypernyms using extended 
Hearst patterns, then adds the hypernyms of the nearest neighbor.

Inspired by the effectiveness and generality of PLM, this study aims to find hypernyms 
using a language model further pretrained by masked language modeling (MLM) using 
Hearst pattern sentences. We employ a specially formatted input sentence consisting of 
noun phrases and special tokens. Moreover, projection learning is adopted to capture 
semantic relationships between noun-phrase embeddings.

Proposed method
This section introduces the proposed hypernym discovery system with Hypert. We 
illustrate the architecture of the proposed hypernym discovery system in Fig.  1. Data 
preparation (left) presents the dataset and generation of the input data for the model. 
Model training (middle) represents the model training and inference for Hypert. Pre-
diction (right) sorts the model output, taking the top 15 candidates.

Data preparation

This study employs the SemEval-2018 Task9 (Hypernym Discovery) [8] dataset for the 
benchmark. The dataset contains five subtasks: three subtasks for general purposes 
for three languages (English, Spanish, and Italian) and two domain-specific subtasks 
in English (Medical and Music). We considered three of these subtasks for the experi-
ments: 1A (English), 2A (Medical), and 2B (Music). Table  1 presents the examples 
of the query-hypernym pair dataset. The queries and candidate hypernyms in the 
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hypernym discovery task can be one-word, two-word, or three-word noun phrases. 
Each query can have up to 15 gold hypernyms. In addition, the query is given with a 
noun phrase and type of query, which is either a concept or entity.

Table 2 lists the statistics of each subtask. Each subtask comprises a corpus, vocabu-
lary, and the training, validation, and testing sets. The corpus was used to train word 
embeddings. The vocabulary includes noun phrases that can be target hypernyms. The 
datasets contain query-gold hypernym pairs, where the number of train, the number 
of valid, and the number of test are the number of queries for training, validation, and 

Fig. 1 Architecture of the hypernym discovery system in this study. (Left) Data preparation used for 
SemEval‑2018 task9 to generate input data. (Middle) Model training applied the Hypert of each subtask to 
initialize the decision model, adopting projection learning. (Right) Prediction sorts the top 15 output results

Table 1 Examples from the SemEval2018 Task9‑hypernym discovery dataset

Subtask Query Type Gold Hypernym(s)

1A
English

fuse Concept igniter, microcomputer, electrical conductance,
electronic component, party, resistor

2A
Medical

solitary pulmonary
nodule

Concept clinical finding, lung mass, single lesion,
nodule

2B
Music

Louis Armstrong Entity cornetist, trumpeter, jazzman, jazz musician,
musician, person

Table 2 Dataset statistics for each subtask

Subtask Corpus size # of

Vocabulary Train Valid Test

1A(English) 16G 218,753 1500 50 1500

2A(Medical) 800M 93,888 500 15 500

2B(Music) 500M 69,118 500 15 500
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testing, respectively, and the number of vocabulary represents the number of candi-
date hypernyms. More dataset details can be found in the work of [8].

We used extended Hearst patterns to build a hypernym-related corpus from the given 
corpus.1 47 patterns were used to extract hypernym-related sentences. Specifically, the 
number of extracted sentences for 1A, 2A, and 2B are 5 M, 137K, and 153K, respectively. 
These are 4%, 4%, and 3% of the total sentences for each subtask. Although there may be 
more efficient patterns, the patterns exploited in this study are sufficient to build a train-
ing corpus and achieve the best performance among the comparison methods.

We used a special input prompt sentence SP as an input sentence of the PLM:

where Q and C are the query and candidate hypernym terms, respectively. The [CLS] 
token is a special token that is always the first of every input sequence. This special token 
is a classification token used as the aggregate sequence representation. The [SEP] token 
is also a special token to separate sentences. We used the [CLS] token embedding to 
represent the hypernym relationship and the [SEP] token to separate query and candi-
date hypernym terms in this study. However, in the hypernym discovery task, the query 
is given with the type of query: concept or entity. For instance, the query “fuse” is a con-
cept, and the query “Louis Armstrong” is an entity. To provide type information for the 
input query, we added [CON] and [ENT] special tokens, referring to concept and entity 
types. Thus, the [Type] token of SP is [CON] when the query type is a concept and is 
[ENT] when the query type is an entity.

However, both input terms, the query and candidate hypernym, were split into multi-
ple tokens because of subword tokenization. Thus, the number of each term token var-
ies for each SP . The span of the subword tokens that correspond to each term must be 
identified to obtain word embeddings. To achieve this, we generated MQ,MC ∈ R

l×1 , 
masking vectors as span information vectors. The length of SP is l. Figure 2 illustrates the 
generated MQ and MC vectors for the given SP . Both vectors are one-hot vectors consist-
ing of 0 and 1. In addition, MQ is the query token span vector, and MC is the candidate 
hypernym token span vector. We set the masking vectors to 1 for each token span and 

(1)SP = “[CLS][TYPE] Q [SEP] C′′,

Fig. 2 Generation of MQ and MC for Sprompt . MQ is 1 for query tokens and 0 for all other tokens; MC is 1 for 
hypernym tokens and 0 for all other tokens

1 https://github.com/abyssnlp/Hearst-Hypernym-Extractor.
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0 for the others. For instance, MQ was set to 1 for the query token span and 0 for the 
others.

Hypert: hypernymy‑aware BERT

We introduce Hypert, a PLM for the hypernym relationship. The overall process of fur-
ther pretraining is illustrated in Fig.  3. Sentence extraction (left) indicates the pattern 
retrieval process to build a pretraining corpus. In addition, MLM (right) uses extracted 
sentences and generates Hypert, the hypernymy-aware BERT, for each subtask.

We hypothesize that the language models can learn hypernym relation knowledge 
from specific sentences in this study. As with BioBERT [20], FinBERT [19], and Dark-
BERT [45], domain-specific tasks are significantly improved with a further pretraining 
using the domain corpus. By considering the hypernym relationship to be a specific 
domain, the language model can be further pretrained on the hypernymy-related cor-
pus to improve hypernym relationship awareness. To achieve this, sentences represent-
ing a hypernym relation are required to construct a hypernymy-related domain corpus. 
The Hearst pattern is devised to detect hypernym-hyponym pairs from the corpus [1]. 
For example, if the sentence “mammal such as dog” matches “y such as x,” one of the 
Hearst patterns, then (dog, mammal) can be extracted as a hypernym relationship. We 
exploited the Hearst pattern to identify sentences that contain hypernym relationships. 
Sentences matching the Hearst patterns were extracted to build the hypernym-related 
corpus. When extracting sentences, only the part matching the pattern in the sentence 
was extracted, not the entire sentence containing the pattern.

Similar to BioBERT and FinBERT, Hypert is initialized with BERT, a pretrained 
model consisting of transformer encoder layers before further pretraining [22]. We also 
employed the BERT tokenizer and added special tokens [CON] and [ENT]. Subword 
tokenization in BERT splits words into multiple subtokens defined in the vocabulary 
pool of BERT, allowing rare or unseen words to be represented with proper subtoken 
embeddings. However, this advantage leads to the need for MQ and MC , as mentioned 
previously. In contrast, further pretraining on a corpus related to hypernymy allows 

Fig. 3 Overview of the further pretraining method. (Left) Sentence extraction used extended Hearst patterns 
for sentence retrieval. (Right) Masked language modeling exploits each extracted subtask corpus and creates 
the Hypert for each subtask
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BERT to gain a multiple-perspective understanding of the critical information regard-
ing the hypernym relationship between input query tokens and candidate tokens. While 
MLM effectively improves contextual hypernymy understanding, next sentence pre-
diction is irrelevant to this task as we are unconcerned with the relationship between 
two consecutive sentences. Therefore, the pretrained model initialized with BERTbase 
is further trained using the constructed corpus from above without the next sentence 
prediction objective. Additionally, Hypert is generated separately for each constructed 
subtask corpus. In other words, there are three Hypert models for 1A,2 2A,3 and 2B.4

Fine‑tuning and prediction

We present a fine-tuning and prediction process using Hypert. The output of Hypert 
H ∈ R

l×dmodel is obtained by f (SP) , where f is the proposed Hypert. The length of the 
input sentence tokens is l, and dmodel is 768, the dimension of the BERTbase model:

The embedding of each term is computed by averaging the token embedding, which can 
be obtained by multiplying H and each span information vector described above, divided 
by the sum of masking vectors as follows:

and

where êq , êc ∈ R
dmodel×1 are embeddings of query and candidate hypernyms. In addi-

tion, the embedding of the [CLS] token ê[CLS] ∈ R
dmodel×1 is obtained by taking the 

first index of the final hidden state of Hypert H. An affine transformation is applied to 
reduce the dimensions of each embedding. Thus, e[CLS] can be defined as follows:

The query embedding eq can be given as follows:

and the candidate hypernym embedding is defined as follows:

The dimensions of query embedding êq and candidate hypernym embedding êc are 
reduced by d with WQ,WC ∈ R

d×dmodel , and bQ, bC ∈ R
d×1 . The embedding of the 

(2)H = f (SP).

(3)êq =
H⊤ ·MQ
∑l

i MQi

(4)êc =
H⊤ ·MC
∑l

i MCi

,

(5)e[CLS] = W[CLS] · ê[CLS] + b[CLS].

(6)eq = WQ · êq + bQ,

(7)ec = WC · êc + bC .

2 https://huggingface.co/HeroGeonil/Hypert.
3 https://huggingface.co/HeroGeonil/Hypert-medical.
4 https://huggingface.co/HeroGeonil/Hypert-music.
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[CLS] token ê[CLS] is used in the last layer, so the dimensions are reduced by the num-
ber of projection matrices k with W[CLS] ∈ R

k×dmodel , and b[CLS] ∈ R
k×1 . All W and b 

are learnable wnd biases.
Previous studies have used projection learning for the supervised approach [9–11]. In 

this study, we adopted the projection learning method, using projection matrices � to cap-
ture the relationship between the query and candidate hypernym embeddings produced by 
Hypert. The projection matrix was created by applying a normal distribution N (0, 1/d) 
as noise to the identity matrix as follows:

where I denotes an identity matrix, and ǫi ∈ R
d×d represents the ith noise term sampled 

from a normal distribution. Each projection matrix �i was generated by adding the indi-
vidual noise ǫi to I.

Then, the query embedding eq was multiplied by multiple k square projection matrices 
�i ∈ R

d×d to obtain projected matrices Pi , where i = {1, ..., k} . P can be defined as

Finally, the score matrix s ∈ R
k×1 was computed using P ∈ R

k×d and the candidate 
hypernym embedding ec as follows:

The embedding of the [CLS] token was used for relation representation. To achieve 
this, e[CLS] and s were concatenated to F ∈ R

2k×1 as follows:

The input prompt includes the query and candidate hypernyms; thus, the output of the 
proposed model is the probability of a hypernym relationship. Thus, the final layer is a 
feedforward network with a sigmoid activation function to output [0, 1] as follows:

where o is the probability of a hypernym relationship, Wo and bo represent learnable 
parameters, and σ denotes a sigmoid function.

(8)�i = I + ǫi, ǫi ∼ N (0, 1/d) ,

(9)Pi =
(

�i · eq
)⊤

.

(10)s = P · ec.

(11)F = [ e[CLS] ; s ],

(12)o = σ(Wo · F + bo),
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However, hypernym discovery aims to retrieve suitable hypernyms from a given pre-
defined vocabulary. Therefore, as many input prompts as the number of all words in the 
predefined vocabulary are generated and calculated for one query. The number of o for 
each query equals the number of words in the predefined vocabulary. Each query has 
a maximum of 15 gold hypernyms; thus, we sorted the output, taking the top 15 can-
didates. The inference of the proposed method is described in Algorithm 1. In Line 4, 
make_prompt is a function that generates SP for the query Q and candidate hypernym 
c(i) , as demonstrated in Eq. 1 whereas the function make_masking_vectors of Line 5 pro-
duces masking vectors MQ and MC illustrated in Fig. 2 for a given SP.

Experimental results
This section presents the performance of the proposed and conventional methods. In 
addition, it describes the experimental settings for the hypernym discovery dataset, eval-
uation measures, and employed statistical tests.

Experimental settings

The HuggingFace transformers library5 with PyTorch [46] was used for the implementa-
tions. The experiment was conducted using an Intel i9-10980XE, three NVIDIA GeForce 
RTX 3090 GPUs, and 128GB RAM. In addition, distributed training was employed by 
using Data Parallel functionality in PyTorch. In the further pretraining of Hypert, the 
BERTbase model6 initialized the PLM. We set the batch size, learning rate, and cosine 
scheduler warm-up steps to 216, 5e-5, and 500, respectively. The maximum training step 
was also limited to 10k for each subtask dataset.

After further pretraining, the proposed pretrained model was fine-tuned on the 
training dataset of each subtask. In the fine-tuning model, k was set to 24, and d was 
set to 200. We set the batch size to 32 and the maximum epoch to 15 for training. 

5 https://github.com/huggingface/transformers.
6 https://huggingface.co/bert-base-uncased.
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In addition, we used negative sampling because the dataset consists of only positive 
samples. For each positive sample, 50 negative samples were generated. The model 
with the best validation mean average precision (MAP) score epoch was used for test-
ing. The loss function was set to binary cross-entropy loss and minimized using the 
AdamW optimizer [47]. The binary cross-entropy loss function is defined as follows:

where L, q, c, t, and y refer to the loss value, query, candidate hypernym, label, and pre-
diction of the proposed model. The label is 0 for negative pairs and 1 for positive pairs. 
We conducted hold-out cross-validation for each experiment. The training, validation, 
and testing sets were combined and randomly selected in equal proportions to the given 
split. For each subtask dataset, the experiment was repeated 10 times. We obtained 10 
performance values for each measure.

The proposed method was compared to three conventional hypernym discovery meth-
ods: RMM, SPON, and prompting BERT. Details of each method are provided below.

• RMM [11]: This method utilizes a projection matrix with word2vec embeddings. The 
shared projection matrix is applied to hyponym term embedding recurrently to obtain 
representations of higher concept-level of words. To obtain word2vec embeddings for 
RMM, we set embedding dimensions and window sizes to 200 and seven, respectively. 
Then it is trained based on ten negative samples with ten epochs training for each given 
corpus. Next, to train the RMM model, we set the batch size to 32, and the number of 
negative samples was set to 50. The maximum training epoch was set to 1,000 with 200 
patience. Lastly, the best validation MAP model was selected for testing. RMM was cho-
sen for comparison because it is a representative method based on the projection matrix.

• SPON [12]: This method creates a distance-to-satisfaction vector for a given hypo-
nym and candidate hypernym. The output representation is subtracted from the 
candidate hypernym term. All the parameter settings and procedures for obtaining 
word2vec embeddings and training SPON are the same as the experimental settings 
of RMM. Again, the best validation MAP model was selected for testing. In our com-
parison, SPON was chosen because it effectively reflects asymmetricity and transitiv-
ity properties which are essential for identifying hypernym relations.

• Prompting BERT (is‑a) [14]: Prompting BERT generates hypernym for a given 
prompt by predicting [MASK] token. Because the original BERT is used directly, 
an additional fine-tuning process is unnecessary. In our experiment, we considered 
the prompt “A/An x is a [MASK].” because of its simplicity in identifying hypernym 
relationships. The strategy to prompt BERT was chosen to validate the superiority 
between Hypert and the pre-trained language model for our task. Another reason 
for choosing the prompting strategy is that it does not rely on distributional similar-
ity, for example, word2vec, in contrast to RMM and SPON.

• Prompting BERT (such as) [14]: Similar to experimental settings of Prompting BERT 
(is-a), we considered a prompt “A [MASK] such as A/An x.” (such as) because of its 
superior performance in identifying hypernym relationships.

Next, we employed three evaluation measures as follows:

(13)L(q, c, t) = t × log (y)+ (1− t)× log(1− y),
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• Mean average precision (MAP): The MAP is the mean of average precision, the average 
of each obtained hypernym from the search space, for a given query word. The MAP is 
defined as 

 where Q and |Q| refer to the given set of query words and the size of the set, 
respectively.

• Mean reciprocal rank (MRR). The MRR is usually used to evaluate the effectiveness of 
an information retrieval system [48, 49]. The reciprocal rank is the reciprocal of the first 
relevant or correct outcomes. The MRR is the average of the reciprocal rank for each 
given query word and is defined as 

 where the ranki refers to the rank position of the first correct hypernym of i-th 
query.

• Precision at k (P@k). The P@k metric calculates the top-k hypernym outcome precision 
and is defined as 

 where TP and FP refer to the true positive and false positive, respectively. Specifi-
cally, we set the cut-off threshold k to 1, 3, 5, or 15 in this study.

We compared each method on different iterations using the Wilcoxon signed-rank test [50] 
because we are interested in the superiority of the proposed method over the comparison 
methods. We let di be the difference between the performance of the two methods on the 
ith iteration. The differences were ranked according to their absolute values: the smallest 
di was assigned to the first rank. In the case of ties, average ranks were assigned. We let R+ 
be the sum of the ranks for the iterations on which the compared method outperforms the 
proposed method, defined as

and R− is the opposite, as follows:

Then, according to the critical values for the Wilcoxon’s test, for a confidence level of 
α = 0.05 and with N = 10 , the difference between the compared methods is significant 
if min(R+ , R− ) ≤ 8. In this case, the null hypothesis of equal performance is rejected.

(14)MAP =
1

|Q|

|Q|
∑

q∈Q

AP(q),

(15)MRR =
1

|Q|

|Q|
∑

i=1

1

ranki
,

(16)P@k =
TP@k

(TP@k)+ (FP@k)
,

R+ =
∑

di>0

rank(di)+
1

2

∑

di=0

rank(di)

R− =
∑

di<0

rank(di)+
1

2

∑

di=0

rank(di)
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Comparison results

Table 3 presents the results of the experiments on three subtask datasets. This table con-
tains the MRR, MAP, and precision at ranks k = {1, 3, 5, 15} (P@k) of the proposed and 
comparison methods. The average performance of the holdout cross-validation with 
the corresponding standard deviation is presented for each evaluation measure and 
method, and the best performance among the methods is represented in bold. As listed 
in Table 3, the proposed method outperforms all measures across subtasks.

The MRR indicates the ability of the related item to be ranked high, suggesting that 
the proposed method performs more accurately in identifying hypernyms than other 
methods. For example, in the results of the 1A dataset, the MRR value of the proposed 
method is 38.86. Compared to RMM, which uses word2vec embedding with projection 
learning, the average performance difference is 11.47. The MAP value of the proposed 
method is 24.17, the first rank, and the difference in average performance from RMM, 
which is the second rank, is 5.92. The MAP considers the precision of all related items. 
Therefore, the results indicate that the proposed method predicts more gold hypernyms 
regarding ranking problems than other methods. The results of P@k also support this. 
These results appear the same in all other subtask datasets.

Table 4 reveals the results of the Wilcoxon signed-rank test of the proposed method 
against the comparison methods for 10 iterations on the 1A dataset. The table confirms 
that the proposed method significantly outperforms other methods because all p-val-
ues are less than the significance level of α = 0.05 , rejecting the null hypothesis. For 
each evaluation measure, the winning method is remarked with bold, and p-values are 

Table 3 Model performance on SemEval2018‑task9 dataset

Bold indicates the best performance across the comparison models

Subtask Evaluation 
measures

Proposed method RMM SPON Prompting 
BERT
(is a)

Prompting 
BERT
(such as)

1A
English

MRR 38.68 ± 2.00 27.21 ± 3.50 24.94 ± 4.10 19.74 ± 0.44 19.77 ± 0.41

MAP 24.17 ± 1.26 18.25 ± 1.16 15.72 ± 1.75 11.43 ± 0.16 10.93 ± 0.19

P@1 29.57 ± 1.98 18.71 ± 4.40 17.02 ± 3.95 12.10 ± 0.58 13.54 ± 0.50

P@3 21.56 ± 1.38 15.57 ± 1.76 13.53 ± 2.33 10.19 ± 0.22 9.64 ± 0.25

P@5 21.27 ± 1.25 16.14 ± 1.20 13.77 ± 1.87 10.20 ± 0.19 9.31 ± 0.14

P@15 27.52 ± 1.35 21.47 ± 2.12 18.42 ± 1.16 13.02 ± 0.23 12.73 ± 0.22

2A
Medical

MRR 64.83 ± 3.32 42.25 ± 2.01 46.54 ± 2.89 49.28 ± 1.60 41.40 ± 1.53

MAP 50.24 ± 2.29 32.44 ± 2.72 34.19 ± 1.87 21.99 ± 0.73 18.75 ± 0.67

P@1 53.28 ± 3.86 30.12 ± 2.44 35.26 ± 3.31 38.86 ± 1.65 30.62 ± 1.53

P@3 46.69 ± 3.52 28.68 ± 2.82 32.63 ± 2.63 25.07 ± 1.09 19.83 ± 0.94

P@5 46.60 ± 2.91 29.18 ± 2.73 32.02 ± 2.11 21.18 ± 0.92 17.30 ± 0.74

P@15 54.69 ± 1.74 37.72 ± 3.40 37.35 ± 1.55 19.28 ± 0.63 17.81 ± 0.56

2B
Music

MRR 67.43 ± 2.37 54.37 ± 3.06 60.47 ± 3.91 19.84 ± 0.98 19.54 ± 0.97

MAP 55.03 ± 1.98 47.52 ± 2.75 48.38 ± 2.07 8.91 ± 0.49 8.42 ± 0.44

P@1 56.68 ± 2.98 42.52 ± 3.45 48.34 ± 5.34 12.32 ± 0.65 12.42 ± 0.76

P@3 52.94 ± 2.05 44.53 ± 2.51 45.29 ± 3.25 9.08 ± 0.61 8.64 ± 0.37

P@5 52.92 ± 2.37 45.24 ± 2.92 46.00 ± 2.23 8.55 ± 0.47 7.72 ± 0.48

P@15 58.59 ± 2.05 52.72 ± 2.90 52.81 ± 1.00 8.86 ± 0.62 8.54 ± 0.53
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presented in the parenthesis. For the 2A and 2B datasets, the Wilcoxon signed-rank test 
result is the same as that for 1A, which can be observed in the Appendix 1.

In‑depth analysis

This study introduces a further pretraining and fine–tuning process for hypernym dis-
covery. Specifically, the pretraining phase uses MLM with extended Hearst patterns 
extracted from the given corpus, and the fine–tuning phase adopts projection learning 
with Hypert. To assess the influence of the choices, we examined several components 
of the proposed method. We discuss the effects of the proposed pretraining method and 
provide the results of the outcomes from each pretraining step. We also defined and 
evaluated two subgroups in the 1A subtask dataset to validate the robustness of Hypert 
against conventional methods. This study provides the pattern distribution with statis-
tics and analyzes which patterns appeared frequently. We speculated that the proposed 
method could handle rare noun phrases. To support this, we present the prediction 
list of the proposed method and comparison methods. Additionally, the tSNE plots of 
the e[CLS] representation space are presented to analyze the effectiveness of using the 
[CLS] token as a hypernym relationship information vector.

Table 4 Wilcoxon signed‑rank test results of the proposed method against comparison methods for 
the 1A dataset with 10 iterations

At the significance level of α = 0.05 (p-values in parentheses)

Comparison methods Evaluation measures Proposed versus

(p‑value)

RMM [11] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

SPON [12] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

Prompting BERT (is a)[14] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

Prompting BERT (such as)[14] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)
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The pattern analysis was conducted to determine which patterns effectively con-
struct a hypernym-related corpus. The pattern distribution for the extracted sen-
tences is displayed in Fig. 4. Most sentences were extracted using almost five patterns. 
Table 5 presents the counts for the top five patterns. The “ NPy as NPx ” pattern was 
more than 50% for all subtasks. The “ NPy such as NPx ” pattern was more than 20%. 
These five patterns comprised over 98% of sentences.   

Table  6 represents the results of using the Hypert and BERT models. The results 
indicate that the proposed pretraining method improves the performance of all 
subtask datasets across all evaluation measures. In addition, we also employed the 
Wilcoxon signed-rank test to confirm the superiority of the pretraining method. 
The results of the Wilcoxon signed-rank test are provided in Table  7. Most results 
reject the null hypothesis of the Wilcoxon signed-rank test with a significance level of 
α = 0.05 , except for the 2A dataset.

Because we chose 1k steps for all subtasks for fairness, we varied the pretraining 
from step 0k (without pretraining) to 10k to observe the performance of increasing 

Fig. 4 Distribution of patterns for each subtask

Table 5 Top five patterns and counts

Pattern proportions (%) are in parentheses

Pattern Subtask Count (%)

((NP_\w+ ?(, )?)+(and  or )?as NP_\w+) 1A 2,901,699 (57.87)

2A 67,962 (54.21)

2B 66,401 (54.64)

(NP_\w+ (, )?such as (NP_\w+ ?(, )?(and  or )?)+) 1A 1,305,599 (26.04)

2A 43,013 (34.31)

2B 24,527 (20.18)

(NP_\w+ (, )?like (NP_\w+ ? (, )?(and  or )?)+) 1A 285,906 (5.70)

2A 3540 (2.82)

2B 21,128 (17.38)

(NP_\w+ (, )?include (NP_\w+ ?(, )?(and  or )?)+) 1A 359,496 (7.17)

2A 7103 (5.66)

2B 6188 (5.09)

(NP_\w+ (, )?especially (NP_\w+ ?(, )?(and  or )?)+) 1A 65,892 (1.31)

2A 1664 (1.32)

2B 2006 (1.65)
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the steps. Tables 8 and 9 detail the performance of the proposed further pretraining 
method for each 1k step.

In the 1A dataset, the MRR value of pretraining with the 1k steps model is the 
best through all steps. Compared to the 0k steps model, which does not use further 

Table 6 Comparison of evaluation measures on the Hypert and BERT models for each subtask

Bold face indicates the best performance between two models

Subtask Evaluation measures Hypert model BERT model

1A
English

MRR 38.68 ± 2.00 36.44 ± 2.12

MAP 24.17 ± 1.26 23.29 ± 0.78

P@1 29.57 ± 1.98 26.38 ± 2.93

P@3 21.56 ± 1.38 20.90 ± 1.00

P@5 21.27 ± 1.25 20.68 ± 0.79

P@15 27.52 ± 1.35 26.63 ± 0.75

2A
Medical

MRR 64.83 ± 3.32 62.62 ± 3.20

MAP 50.24 ± 2.29 48.85 ± 1.57

P@1 53.28 ± 3.86 49.94 ± 4.35

P@3 46.69 ± 3.52 45.45 ± 2.27

P@5 46.60 ± 2.91 45.66 ± 1.74

P@15 54.69 ± 1.74 53.36 ± 0.97

2B
Music

MRR 67.43 ± 2.37 63.19 ± 5.38

MAP 55.03 ± 1.98 49.70 ± 3.37

P@1 56.68 ± 2.98 50.92 ± 7.31

P@3 52.94 ± 2.05 46.88 ± 4.28

P@5 52.92 ± 2.37 47.27 ± 3.59

P@15 58.59 ± 2.05 53.97 ± 2.48

Table 7 Wilcoxon signed‑rank test results for the Hypert and BERT models with 10 iterations

At the significance level of α = 0.05 ( p-values in parentheses)

Subtask Evaluation
measures

BERT model

Hypert model
versus
(p‑value)

1A MRR Win (2.73e–2)

MAP Win (6.40e–2)

P@1 Win (5.85e–3)

P@3 Win (8.39e–2)

P@5 Win (1.30e–1)

P@15 Win (4.88e–2)

2A MRR Win (1.93e–1)

MAP Win (1.93e–1)

P@1 Win (1.38e–1)

P@3 Win (4.92e–1)

P@5 Win (4.92e–1)

P@15 Win (4.88e–2)

2B MRR Win (4.88e–2)

MAP Win (9.76e–3)

P@1 Win (6.44e–2)

P@3 Win (3.90e–3)

P@5 Win (1.36e–2)

P@15 Win (3.90e–3)
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pretraining, the average performance difference is 2.24. Moreover, the results indi-
cate that the proposed further pretraining method improves performance compared 
to the 0k steps model at every 1k step. The rational choice for each subtask will now 
be discussed. For the 1A dataset, the model with 9k pretraining steps seems reason-
able considering average performance and standard deviation. For the 2A dataset, 
despite the 8k steps showing most of the best performance, we consider the 2k steps 
to be selected as the best choice because of the low standard deviation and the negli-
gible difference in performance between them. However, the results for the 2B dataset 
clearly provide reasonable pretraining steps, 1k. The second is also evident, 6k. Note 
that we merely selected the model with the 1k steps through all subtask datasets for 

Table 8 Comparison of MRR, MAP, and P@1 results by number of pretraining steps

0k indicates the BERT model. Bold represents the best performance across the comparison models, and underline 
represents second place

Subtask Steps Evaluation measures

MRR MAP P@1

1A English 0k 36.44 ± 2.12 23.29 ± 0.78 26.38 ± 2.93

1k 38.68 ± 2.00 24.17 ± 1.26 29.57 ± 1.98
2k 37.52 ± 2.02 23.59 ± 0.98 28.37 ± 2.64

3k 37.71 ± 1.08 23.76 ± 0.95 28.36 ± 1.39

4k 37.49 ± 1.05 23.69 ± 0.86 28.03 ± 1.33

5k 38.06 ± 2.04 24.51 ± 0.73 28.42 ± 2.53

6k 38.46 ± 2.33 24.36 ± 1.18 29.13 ± 2.62

7k 37.75 ± 1.49 23.89 ± 1.23 28.45 ± 1.52

8k 37.69 ± 3.08 23.89 ± 1.63 28.46 ± 3.43

9k 38.67± 1.59 24.46± 0.89 29.38± 1.82

10k 37.85 ± 1.94 24.40 ± 0.80 27.87 ± 2.78

2A
Medical

0k 62.62 ± 3.20 48.85 ± 1.57 49.94 ± 4.35

1k 64.83 ± 3.32 50.24 ± 2.29 53.28 ± 3.86

2k 66.52 ± 2.44 50.48± 1.63 55.64 ± 3.43

3k 60.91 ± 4.65 47.41 ± 2.60 49.40 ± 5.70

4k 65.10 ± 4.13 49.60 ± 2.50 54.62 ± 4.92

5k 64.04 ± 3.20 49.25 ± 1.38 53.34 ± 4.37

6k 66.21 ± 2.66 50.15 ± 2.23 55.68± 2.69

7k 64.74 ± 3.23 49.62 ± 2.04 54.28 ± 3.84

8k 66.34± 3.81 50.52 ± 2.15 56.16 ± 4.95
9k 64.42 ± 2.52 50.15 ± 1.52 53.18 ± 4.00

10k 63.44 ± 2.91 48.56 ± 1.34 52.62 ± 3.52

2B
Music

0k 63.19 ± 5.38 49.70 ± 3.37 50.92 ± 7.31

1k 67.43 ± 2.37 55.03 ± 1.98 56.68 ± 2.98
2k 65.71 ± 3.04 53.97 ± 2.24 53.84 ± 4.03

3k 62.93 ± 4.22 50.53 ± 3.75 50.42 ± 5.50

4k 65.63 ± 4.65 53.55 ± 3.27 53.86 ± 5.92

5k 66.89 ± 3.31 53.96 ± 2.33 55.62 ± 4.71

6k 67.40± 3.41 54.53± 3.23 56.42± 4.46

7k 66.09 ± 4.51 53.43 ± 3.02 54.84 ± 5.85

8k 67.21 ± 3.47 54.28 ± 1.93 56.18 ± 4.74

9k 65.25 ± 6.19 52.37 ± 4.57 53.48 ± 8.48

10k 64.54 ± 5.24 51.69 ± 3.77 52.92 ± 6.93
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fairness. A comparison of the pretraining steps considered to be the best performance 
can be found in Appendix 2.

In the 1A dataset, the MRR value of pretraining with the 1k-step model is the best 
through all steps. Compared to the 0k-step model, which does not use further pretrain-
ing, the average performance difference is 2.24. Moreover, the results indicate that the 
proposed further pretraining method improves performance compared to the 0k-step 
model at every 1k step. For the 1A dataset, the model with 9k pretraining steps seems 
reasonable, considering the average performance and standard deviation. For the 2A 
dataset, despite the 8k steps showing most of the best performance, the 2k steps are the 
best choice because of the low standard deviation and negligible difference in perfor-
mance between them. However, the 2B dataset results provide reasonable pretraining 

Table 9 Comparison of for P@3, P@5, and P@15 results by number of pretraining steps

0k indicates the BERT model. Bold represents the best performance across the comparison models, and underline 
represents second place

Subtask Steps Evaluation measures

P@3 P@5 P@15

1A
English

0k 20.90 ± 1.00 20.68 ± 0.79 26.63 ± 0.75

1k 21.56 ± 1.38 21.27 ± 1.25 27.52 ± 1.35

2k 21.01 ± 1.05 20.83 ± 0.84 26.79 ± 1.16

3k 21.25 ± 0.99 21.04 ± 0.93 26.95 ± 1.11

4k 21.19 ± 0.94 20.88 ± 0.87 26.89 ± 0.95

5k 21.81 ± 1.25 21.61 ± 0.87 27.96 ± 0.57
6k 21.93± 1.63 21.58 ± 1.18 27.52 ± 0.96

7k 21.48 ± 1.16 21.12 ± 1.11 27.12 ± 1.42

8k 21.32 ± 2.18 21.13 ± 1.68 27.17 ± 1.10

9k 21.91 ± 1.08 21.73 ± 0.80 27.62 ± 0.91

10k 21.93 ± 1.18 21.64± 0.82 27.80± 0.70

2A
Medical

0k 45.45 ± 2.27 45.66 ± 1.74 53.36 ± 0.97

1k 46.69 ± 3.52 46.60 ± 2.91 54.69 ± 1.74

2k 46.97 ± 1.56 46.22 ± 1.86 54.80 ± 1.69

3k 43.50 ± 2.89 43.47 ± 2.68 52.46 ± 2.42

4k 45.80 ± 2.97 45.21 ± 2.48 53.98 ± 2.00

5k 45.32 ± 2.04 44.83 ± 1.46 53.98 ± 1.10

6k 46.98 ± 2.46 46.05 ± 2.35 54.34 ± 2.12

7k 45.94 ± 3.08 45.36 ± 2.57 54.42 ± 1.27

8k 46.98± 2.65 46.28± 2.26 54.82± 1.83

9k 46.15 ± 1.78 45.85 ± 2.06 55.01 ± 1.06
10k 44.90 ± 2.34 43.92 ± 1.72 53.40 ± 1.46

2B
Music

0k 46.88 ± 4.28 47.27 ± 3.59 53.97 ± 2.48

1k 52.94 ± 2.05 52.92 ± 2.37 58.59 ± 2.05
2k 51.13 ± 2.99 51.91 ± 2.39 58.37 ± 1.79

3k 47.29 ± 4.56 47.95 ± 4.17 55.36 ± 2.78

4k 50.98 ± 3.89 51.67 ± 3.55 57.64 ± 2.48

5k 51.45 ± 2.99 51.69 ± 2.47 58.25 ± 1.51

6k 52.24± 4.52 52.25± 3.94 58.49± 2.41

7k 51.28 ± 4.33 51.27 ± 3.25 57.46 ± 1.96

8k 51.76 ± 3.20 52.17 ± 2.01 58.20 ± 1.29

9k 49.46 ± 6.50 49.79 ± 5.01 56.87 ± 3.42

10k 48.86 ± 5.33 49.52 ± 4.61 56.04 ± 2.52
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steps, 1k. The second is also evident at 6k. We selected the model with 1k steps through 
all subtask datasets for fairness. A comparison of the pretraining steps considered to 
have the best performance is provided in Appendix 2.

We defined and evaluated two subgroups to assess the robustness of performance for 
queries that can be grouped within the 1A dataset. One is the person group, and the 
other is the computer-software group. The person group consists of the query word if 
“person” exists in the gold hypernyms of the test set. The computer-software group con-
sists of queries that correspond when “computer” or “software” exists in the test set gold 
hypernyms. On average, the person group had 320 queries, and the computer-software 
group had 61 queries. We evaluated the proposed method and comparison methods for 
the two subgroups. The results are shown in Table 10.

For the person group, the proposed method showed the best performance among 
the comparison methods for all evaluation measures. The MRR value of the proposed 
method is 84.78, which is significantly higher than other methods. For the computer-
software group, the proposed method also outperforms other methods. Thus, the pro-
posed method consistently outperformed compared methods in the experiment of 
two subgroups which is a similar result observed from the experiment of the original 
1A dataset. In detail, the performance of the person group is substantially higher than 
the computer-software group. The reason for this result may be found from the charac-
teristics of the person group, that most of the gold hypernym “person” appears first in 
the gold hypernyms, and the number of gold hypernyms is small. In contrast, the gold 
hypernyms of the computer-software group are much more varying compared to that of 
the person group where most gold hypernyms are multi-words, such as (“Xpdf”, “code, 
computer software, software package,...”), indicating that the hypernym relation is much 
more difficult to predict.

To assess the robustness of the rare words, we compared the predictions of the pro-
posed method with word2vec-based methods for the rare words. The test query “open 
proxy server,” which appears nine times in the given corpus, was used for analysis. The 

Table 10 Model performance on two subgroups in the 1A dataset

Bold indicates the best performance across the comparison models

Subgroup Evaluation
measures

Proposed
method

RMM SPON Prompting 
BERT
(is a)

Prompting 
BERT
(such as)

Person MRR 84.78 ± 5.48 60.88 ± 17.54 66.83 ± 16.51 21.16 ± 1.22 17.08 ± 1.00

MAP 45.78 ± 1.50 38.37 ± 5.31 38.82 ± 5.58 13.68 ± 0.47 11.01 ± 0.68

P@1 79.34 ± 7.94 49.51 ± 21.90 55.01 ± 19.68 10.32 ± 1.23 8.50 ± 1.09

P@3 44.82 ± 1.72 34.92 ± 8.61 36.53 ± 8.61 10.38 ± 0.58 8.24 ± 0.75

P@5 40.88 ± 1.36 34.45 ± 5.77 34.92 ± 5.83 11.88 ± 0.42 8.60 ± 0.71

P@15 45.04 ± 1.54 41.16 ± 2.79 40.33 ± 2.77 17.02 ± 0.58 15.34 ± 0.73

Computer‑ Software MRR 36.69 ± 4.71 24.37 ± 3.49 17.01 ± 3.96 17.25 ± 3.19 19.52 ± 2.85

MAP 21.75 ± 2.13 14.58 ± 3.01 8.36 ± 2.23 7.01 ± 1.46 8.31 ± 1.14

P@1 22.53 ± 5.64 13.03 ± 3.13 7.94 ± 3.28 11.12 ± 2.35 11.59 ± 2.64

P@3 19.44 ± 2.71 12.58 ± 2.72 6.89 ± 2.44 7.22 ± 1.39 8.68 ± 1.32

P@5 20.09 ± 2.31 13.38 ± 3.29 6.89 ± 2.01 6.98 ± 1.44 7.97 ± 1.20

P@15 25.55 ± 2.15 17.83 ± 4.44 10.91 ± 2.57 6.48 ± 1.42 7.97 ± 1.21
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prediction lists of each method and the gold hypernyms are presented in Table  11. 
The gold hypernyms are represented in bold with the ⋆ symbol. Because the dataset 
is handcrafted, there may be more hypernyms. Thus, using underlines, we annotated 
relevant words on hypernym relationships using our judgment. Each prediction list 
was produced by sorting the probabilities of modes and taking the top 15 candidates. 
Hence, the earlier a word appears in the list, the more likely it is to be a hypernym.

The results reveal that the proposed method adequately predicts rare words. In 
addition, most prediction words, including relevant words, are predicted better than 
the others. Conversely, RMM and SPON, which are word2vec-based methods, per-
form poorly on low-frequency words. For example, SPON only corrects for one gold 
hypernym ranked low on the list. Except for “computer program⋆ ,” SPON predicted 
the wrong words. Although RMM did not correctly predict any gold hl relevant words 
were present in its prediction list, such as “pseudonymized,” “spoofing attack,” and “IP 
address spoofing,” but none of them were hypernymy. Table 12 lists the prediction list 
for “tempestuousness,” which appeared once in the corpus. The result also suggests 
that the proposed method contains more gold hypernyms than the others for rare 
words.

Table 11 Prediction results for each method for the rare noun phrase “open proxy server” (appearing 
nine times in the corpus)

Bold with the ⋆  symbol indicates gold hypernyms, and underlines mark hypernymy-relevant words

Model Predicted

Gold Service⋆ , Software⋆ , Computer program⋆ , Software program⋆ ,
Software application⋆ , Proxy server⋆ , Application⋆ ,
Software package⋆ , Application software⋆

Proposed Aervice⋆ , Aoftware⋆ , server, Computer program⋆ , facility, protocol,
Software program⋆ , platform, company, client, Software application⋆ ,
host, Application⋆ , Computer system, application program

RMM Person, pseudonymized, granularly, open proxy, ad filtering, intrabank,
Otherwise, spoofing attack, actual, statefully, sdl plc, authenticatable,
Ip address spoofing, example, solely

SPON Person, constructed structure, technical specification, town,
Single‑valued function, city, juridical person, leader, animal, state, boss,
Company, computer program⋆ , measure, political leader

Table 12 Prediction results for each method for the rare noun phrase “tempestuousness” (appearing 
once in the corpus)

Bold with the ⋆  symbol indicates gold hypernyms, and underlines mark hypernymy-relevant words

Model Predicted

Gold Turbulence⋆ , State⋆ , Disorder⋆ , Weather condition⋆ , Weather⋆ ,
Atmospheric phenomenon⋆ , Physical phenomenon⋆ ,
Natural phenomenon⋆ , Phenomenon⋆

Proposed Phenomenon⋆ , dislike, emotional state, Physical phenomenon⋆ ,
Atmospheric phenomenon⋆ , experience, circumstance, State⋆ , motion,
Natural phenomenon⋆ , Weather condition⋆ , sensation, badness
Convergence, binary relation

RMM Person, others, personality, another, upon, oneself, life, necessarily, relate,
Solely, become, intellectual, must, one, personal

SPON Specifications, constructed structure, town, city, technical specification,
Movement, locale, person, State⋆ , single‑valued function, Phenomenon⋆ ,
instrument, Physical phenomenon⋆ , animal, form
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In addition, we explored the quality of the [CLS] token embeddings. We randomly 
selected hypernym pairs for each subtask from the testing set. The positive SP were cre-
ated from the selected pairs. The negative SP were also generated by replacing a gold 
hypernym with a random candidate hypernym that is not gold. Then, each SP was input 
into the proposed model to obtain e[CLS] for each SP . Figure 5 depicts the tSNE plots of 
the e[CLS] representation space for each subtask. Blue indicates the e[CLS] of positive SP 
and red indicates the e[CLS] of negative SP . The hypernymy and nonhypernymy clusters 
are appropriately separated in all three plots, revealing that using the [CLS] token as a 
hypernym relationship information vector effectively identifies hypernym relationships.

Conclusions
Hypernym discovery is challenging because it finds appropriate hypernyms from a 
large predefined pool of candidates for a given query. In addition, because the can-
didates contain noun phrases, conventional word2vec-based methods are challeng-
ing to handle. In addition, BERT can solve this problem using subword tokenization. 
However, there have been no attempts to use BERT in hypernym discovery with its 
widely used training steps of domain adaptation: pretraining and fine-tuning. There-
fore, this study presents the following procedures for adapting BERT to the domain 
tasks by modifying the pretraining and fine-tuning stages.

Fig. 5 tSNE plots of the [CLS] token embedding representation for subtasks (a) 1A, (b) 2A, and (c) 2B. Blue 
indicates hypernymy, and red indicates non‑hypernymy (please see color version)
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We proposed MLM with Hearst pattern sentences as a further pretraining procedure 
to adapt the hypernymy domain. The proposed method outperformed the comparison 
methods on all evaluation measures and subtask datasets. The Wilcoxon signed-rank test 
was employed to confirm the superiority of the proposed method. We also conducted 
an in-depth analysis to confirm the effectiveness of the proposed pretraining procedure, 
analyzed the distribution of utilized Hearst patterns, and presented effective patterns. 
The proposed pretraining performs better than BERT without the proposed pretrain-
ing stage. In addition, we demonstrated that the proposed method is robust against rare 
words compared to the comparison models in the case study and can produce stable 
performance in the viewpoint of subgroups. The results of the case study indicate the 
robustness of the proposed method for rare words compared to the existing methods. 
Furthermore, the tSNE plots were presented to demonstrate the representation space of 
the special prompt component.

Despite the effectiveness of Hypert, the computational cost of Hypert for inferenc-
ing hypernym relationships can be heavier than conventional methods such as Hearst 
pattern matching. Thus, when a large number of queries and candidates, for example, 
200,000 candidates for one query in this study, is considered, Hypert can be slower 
than conventional methods. For example, the proposed Hypert expenses 15.52 queries 
per second (q/s), whereas its counterparts RMM, SPON, and prompting BERT consume 
0.02, 0.02, and 0.46 q/s, respectively. In addition, the performance of Hypert may still 
be limited because we employed a general tokenizer instead of developing a domain-
specific tokenizer for each general, medical, and music domain. Furthermore, a pre-
training process may be required if Hypert is applied to a new domain, such as cyber 
security because the proposed method is based on a general language model.

In the future, we would like to construct additional benchmark datasets for hypernym 
discovery because most studies in hypernym discovery tasks reported that no additional 
benchmark datasets are available so far except SemEval2018 Task9-Hypernym Discov-
ery dataset [11, 44]. Specifically, we would like to start our effort to create new datasets 
for Cyber Threat Intelligence (CTI) from the cyber security domain to evaluate the effi-
cacy of Hypert from cybersecurity-oriented documents. In the field of CTI, extracting 
cyber threat insights from diverse data sources spanning multiple domains, including 
the Web, is an essential task. In addition, cyber threat information is predominantly 
communicated through written language in diverse CTI reports involving hypernymic 
relationships. For example, cyber security practitioners may seek to scrutinize CTI 
reports containing references to specific malware instances. In this context, hypernym 
discovery can be used to determine the category of a particular malware, and the pro-
posed Hypert can be applied here. We would like to study this issue further.

Appendix 1. Statistical test details
See Tables 13, 14, 15, 16 and 17.
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Tables 13 and 14 are the results of the Wilcoxon signed-rank test for the 2A and 2B 
datasets against comparison models. All p-values in the result are 1.95e–3, rejecting the 
null hypothesis.

Appendix 2. Results of the best hypert model for each subtask
Table 15 compares the proposed method with the best Hypert and BERT models. The 
pretraining steps for the 1A, 2A, and 2B datasets are 9k, 2k, and 1k, respectively. The 
results of the Wilcoxon signed-rank test for all subtask datasets are provided in Table 16. 
Except for a few P@k measures, most of the p-values reject the null hypothesis.

Appendix 3. Extended hearst patterns
Table 17 lists the regular expressions of the extended hypernym syntactic patterns used 
in this study, where NP indicates a noun phrase, and PRON represents a pronoun.7

Table 13 Wilcoxon signed‑rank test results for the proposed method against the comparison 
models for the 2A dataset with 10 iterations

At the significance level of α = 0.05 (p-values parentheses)

Comparison methods Evaluation measures Proposed versus
(p‑value)

RMM [11] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

SPON [12] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

Prompting BERT (is a) [14] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

Prompting BERT (such as) [14] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

7 https://github.com/abyssnlp/Hearst-Hypernym-Extractor.
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Table 14 Wilcoxon signed‑rank test results of the proposed method against comparison models for 
the 2B dataset with 10 iterations

At the significance level of α = 0.05 (p-values parentheses)

Comparison methods Evaluation measures Proposed versus
(p‑value)

RMM [11] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

SPON [12] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

Prompting BERT (is a) [14] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

Prompting BERT (such as) [14] MRR Win (1.95e–3)

MAP Win (1.95e–3)

P@1 Win (1.95e–3)

P@3 Win (1.95e–3)

P@5 Win (1.95e–3)

P@15 Win (1.95e–3)

Table 15 Comparison of evaluation measures on the best Hypert and BERT models for each subtask 

Bold face indicates the best performance between two models

Subtask Evaluation measures Hypert model BERT model

1A
English

MRR 38.67 ± 1.59 36.44 ± 2.12

MAP 24.46 ± 0.89 23.29 ± 0.78

P@1 29.38 ± 1.82 26.38 ± 2.93

P@3 21.91 ± 1.08 20.90 ± 1.00

P@5 21.73 ± 0.80 20.68 ± 0.79

P@15 27.80 ± 0.91 26.63 ± 0.75

2A
Medical

MRR 66.52 ± 2.44 62.62 ± 3.20

MAP 50.48 ± 1.63 48.85 ± 1.57

P@1 55.64 ± 3.43 49.94 ± 4.35

P@3 46.97 ± 1.56 45.45 ± 2.27

P@5 46.22 ± 1.86 45.66 ± 1.74

P@15 54.80 ± 1.69 53.36 ± 0.97

2B
Music

MRR 67.43 ± 2.37 63.19 ± 5.38

MAP 55.03 ± 1.98 49.70 ± 3.37

P@1 56.68 ± 2.98 50.92 ± 7.31

P@3 52.94 ± 2.05 46.88 ± 4.28

P@5 52.92 ± 2.37 47.27 ± 3.59

P@15 58.59 ± 2.05 53.97 ± 2.48
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Table 16 Wilcoxon signed‑rank test results for the Hypert and BERT models with 10 iterations

At the significance level of α = 0.05 (p-values parentheses)

Subtask Evaluation measures BERT model

Hypert model
versus
(p‑value)

1A MRR Win (9.76e–3)

MAP Win (3.90e–3)

P@1 Win (9.76e–3)

P@3 Win (2.73e–2)

P@5 Win (3.90e–3)

P@15 Win (3.71e–2)

2A MRR Win (4.88e–2)

MAP Win (2.73e–2)

P@1 Win (4.88e–2)

P@3 (1.30e–1)

P@5 (7.67e–1)

P@15 Win (4.88e–2)

2B MRR Win (4.88e–2)

MAP Win (9.76e–3)

P@1 (6.44e–2)

P@3 Win (3.9e–3)

P@5 Win (1.36e–2)

P@15 Win (3.9e–3)
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Table 17 Regular expressions of extended Hearst patterns used in this study

No. Pattern

1 (NP_\w+ (, )?such as (NP_\w+ ?(, )?(and  or )?)+)

2 (such NP_\w+ (, )?as (NP_\w+ ?(, )?(and  or )?)+)

3 ((NP_\w+ ?(, )?)+(and  or )?other NP_\w+)

4 (NP_\w+ (, )?include (NP_\w+ ?(, )?(and  or )?)+)

5 (NP_\w+ (, )?especially (NP_\w+ ?(, )?(and  or )?)+)

6 ((NP_\w+ ?(, )?)+(and  or )?any other NP_\w+)

7 ((NP_\w+ ?(, )?)+(and  or )?some other NP_\w+)

8 ((NP_\w+ ?(, )?)+(and  or )?be a NP_\w+)

9 (NP_\w+ (, )?like (NP_\w+ ? (, )?(and  or )?)+)

10 such (NP_\w+ (, )?as (NP_\w+ ? (, )?(and  or )?)+)

11 ((NP_\w+ ?(, )?)+(and  or )?like other NP_\w+)

12 ((NP_\w+ ?(, )?)+(and  or )?one of the NP_\w+)

13 ((NP_\w+ ?(, )?)+(and  or )?one of these NP_\w+)

14 ((NP_\w+ ?(, )?)+(and  or )?one of those NP_\w+)

15 example of (NP_\w+ (, )?be (NP_\w+ ? (, )?(and  or )?)+)

16 ((NP_\w+ ?(, )?)+(and  or )?be example of NP_\w+)

17 (NP_\w+ (, )?for example (, )?(NP_\w+ ?(, )?(and  or )?)+)

18 ((NP_\w+ ?(, )?)+(and  or )?which be call NP_\w+)

19 ((NP_\w+ ?(, )?)+(and  or )?which be name NP_\w+)

20 (NP_\w+ (, )?mainly (NP_\w+ ? (, )?(and  or )?)+)

21 (NP_\w+ (, )?mostly (NP_\w+ ? (, )?(and  or )?)+)

22 (NP_\w+ (, )?notably (NP_\w+ ? (, )?(and  or )?)+)

23 (NP_\w+ (, )?particularly (NP_\w+ ? (, )?(and  or )?)+)

24 (NP_\w+ (, )?principally (NP_\w+ ? (, )?(and  or )?)+)

25 (NP_\w+ (, )?in particular (NP_\w+ ? (, )?(and  or )?)+)

26 (NP_\w+ (, )?except (NP_\w+ ? (, )?(and  or )?)+)

27 (NP_\w+ (, )?other than (NP_\w+ ? (, )?(and  or )?)+)

28 (NP_\w+ (, )?e.g. (, )?(NP_\w+ ? (, )?(and  or )?)+)

29 (NP_\w+ \( (e.g. i.e.) (, )?(NP_\w+ ? (, )?(and  or )?)+(\. )?\))

30 (NP_\w+ (, )?i.e. (, )?(NP_\w+ ? (, )?(and  or )?)+)

31 ((NP_\w+ ?(, )?)+(and or)? a kind of NP_\w+)

32 ((NP_\w+ ?(, )?)+(and or)? kind of NP_\w+)

33 ((NP_\w+ ?(, )?)+(and or)? form of NP_\w+)

34 ((NP_\w+ ?(, )?)+(and  or )?which look like NP_\w+)

35 ((NP_\w+ ?(, )?)+(and  or )?which sound like NP_\w+)

36 (NP_\w+ (, )?which be similar to (NP_\w+ ? (, )?(and  or )?)+)

37 (NP_\w+ (, )?example of this be (NP_\w+ ? (, )?(and  or )?)+)

38 (NP_\w+ (, )?type (NP_\w+ ? (, )?(and  or )?)+)

39 ((NP_\w+ ?(, )?)+(and  or )? NP_\w+ type)

40 (NP_\w+ (, )?whether (NP_\w+ ? (, )?(and  or )?)+)

41 (compare (NP_\w+ ?(, )?)+(and  or )?with NP_\w+)

42 (NP_\w+ (, )?compare to (NP_\w+ ? (, )?(and  or )?)+)

43 (NP_\w+ (, )?among ‑PRON‑ (NP_\w+ ? (, )?(and  or )?)+)

44 ((NP_\w+ ?(, )?)+(and  or )?as NP_\w+)

45 (NP_\w+ (, )? (NP_\w+ ? (, )?(and  or )?)+ for instance)

46 ((NP_\w+ ?(, )?)+(and or)? sort of NP_\w+)

47 (NP_\w+ (, )?which may include (NP_\w+ ?(, )?(and  or )?)+)
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