
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Ma and Zhai Journal of Big Data (2023) 10:135
https://doi.org/10.1186/s40537-023-00816-2

Journal of Big Data

Big data decision tree for continuous-valued
attributes based on unbalanced cut points
Shixiang Ma1 and Junhai Zhai1*

Abstract

The decision tree is a widely used decision support model, which can quickly mine
effective decision rules based on the dataset. The decision tree induction algo-
rithm for continuous-valued attributes, based on unbalanced cut points, is efficient
for mining decision rules; however, extending it to big data remains an unresolved.
In this paper, two solutions are proposed to solve this problem: the first one is based
on partitioning instance subsets, whereas the second one uses partitioning attrib-
ute subsets. The crucial of these two solutions is how to find the global optimal cut
point from the set of local optimal cut points. For the first solution, the calculation
of the Gini index of the cut points between computing nodes and the selection
of the global optimal cut point by communication between these computing nodes
is proposed. However, in the second solution, the division of the big data into subsets
using attribute subsets in a way that all cut points of an attribute are on the same map
node is proposed, the local optimal cut points can be found in this map node, then
the global optimal cut point can be obtained by summarizing all local optimal cut
points in the reduce node. Finally, the proposed solutions are implemented with two
big data platforms, Hadoop and Spark, and compared with three related algorithms
on four datasets. Experimental results show that the proposed algorithms can
not only effectively solve the scalability problem, but also have lowest running time,
the fastest speed and the highest efficiency under the premise of preserving the clas-
sification performance.

Keywords: Big data, Decision tree, Cut point, Hadoop, Spark

Introduction
In the field of machine learning, big data refers to data that is too large to be treated
using traditional machine learning algorithms. Therefore big data poses huge chal-
lenges to traditional machine learning algorithms [1]. It is of great theoretical and
application interest to study how to extend machine learning algorithms to handle
big data. In previous studies, some researchers have extended some machine learning
algorithms to the big data environment. For instance, as early as 2006, Chu et al. [2]
deeply and extensively studied the scalability of machine learning algorithms for big
data scenarios, and developed a broadly applicable parallel programming method by
adapting the MapReduce paradigm; as a result, the proposed method can be easily

*Correspondence:
mczjh@126.com

1 Hebei Key Laboratory
of Machine Learning
and Computational Intelligence,
College of Mathematics
and Information Science, Hebei
University, Baoding, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00816-2&domain=pdf

Page 2 of 22Ma and Zhai Journal of Big Data (2023) 10:135

applied to several learning algorithms, including locally weighted linear regression,
k-means, logistic regression, naive Bayes, support vector machine, independent
component analysis, principal component analysis, Gaussian discriminant analysis,
expectation maximum algorithm, and back-propagation algorithm. Moreover, He
et al. [3] considered the parallel implementation of several classification algorithms
based on MapReduce; thus, they implemented the parallel K-Nearest Neighbor
(K-NN) algorithm, the parallel naive Bayesian network, and the parallel decision tree,
respectively. As for Xu et al. [4], they extended the k-means algorithms to big data
environments with MapReduce; therefore, they proposed the k-means++ algorithm,
which can not only address the problem of optimal selection of parameter K but can
also improve the scalability and efficiency of the k-means algorithm. In addition,
Duan et al. [5] proposed a parallel multi-classification algorithm for big data using
the Extreme Learning Machine (ELM), and implemented it by the big data platform,
Spark. In the literature, there has been some work on the scalability of the decision
tree algorithms in the big data context. For instance, three parallel implementations
of C4.5 decision tree algorithm by MapReduce were proposed in Wang and Gao [6],
Mu et al. [7], and Dai and Ji [8], respectively. Furthermore, Wand et al. [9] conducted
a study on optimizing and parallelizing of the C4.5 algorithm on the Spark platform,
and proposed a Spark-based parallel C4.5 decision tree algorithm. Yuan et al. [10] also
investigated the optimization of the C4.5 decision tree algorithm, but unlike [9], it is
not on Spark platform but on MapReduce. Chern et al. [11] proposed a decision tree
credit assessment approach to solve the credit assessment problem in a big data envi-
ronment. Wang et al. [12] investigated the expansion of decision tree algorithm in big
data environment from the perspective of data mining, taking RainForest Tree and
Bootstrapped Optimistic Algorithm for Tree construction as examples. Regarding
big data machine learning, including big data decision tree learning, several research-
ers have presented in-depth and comprehensive reviews [13–17]. To sum up, we find
that although there have been some extensions of decision tree algorithms in big data
environments, the problem of the extension of continuous-valued decision tree algo-
rithms, based on unbalanced cut points in big data environments is still not solved.
Therefore, in this article, we proposed two solutions to solve this problem. This paper
makes three significant contributions:

1. Two solutions, based on the divide-and-conquer strategy, are proposed to extend
the continuous-value decision tree algorithm based on unbalanced cut points to big
data scenarios. The first one is based on partitioning instance subsets, that is, the big
data set is divided into several disjoint instance subsets. The second one is based on
partitioning attribute subsets, that is, the big data set is divided into several disjoint
attribute subsets. More intuitively, the first solution divides the big dataset into sev-
eral disjoint subsets along horizontal direction; The second solution divides the big
dataset into several disjoint subsets along vertical direction.

2. In the induction process of the continuous-valued big data decision tree based on
unbalanced cut points, how to find the global optimal cut point from multiple local
optimal cut points is a key problem. The second contribution of this paper is to solve
this problem. There is only one global optimal cut point, which is relative to the big

Page 3 of 22Ma and Zhai Journal of Big Data (2023) 10:135

dataset, and there are multiple local optimal cut points, which are relative to the sub-
set of the big dataset. Each local optimal cut point is independently calculated from
the local subset on a computing node of a big data platform;

3. Extensive experiments are conducted with the two big data platforms, Hadoop1 and
Spark2 to verify the feasibility and effectiveness of the proposed method. Including
the experiments compared with three closed-related algorithms on four big datasets,
and the experiments on two artificial data sets to demonstrate the feasibility of the
proposed algorithm.

The rest of this paper is organized as follows. In “Related work” section, we briefly review
the related work. In “Two solutions” section, we describe the details of the proposed
solutions. In “Experimental results and analysis” section, the experiments are conducted
to demonstrate the feasibility and effectiveness of the proposed solution. At last, we con-
clude our work in “Conclusions” section.

Related work
As one of the top ten classical algorithms in machine learning [18], the decision tree
has been widely used in classification and regression problems due to its fast learning
speed and high prediction accuracy. However, in the big data environment, the decision
tree cannot be completely constructed in memory due to the large amount of data to be
processed, which requires a large amount of operation time (in case it can be realized).
Accordingly, it is meaningful to study the way to extend the decision tree algorithm to a
big data environment. Moreover, the methods of extending the decision tree algorithm
and its variants to big data environments are mainly divided into two categories: distrib-
uted parallel crisp decision trees and distributed fuzzy decision trees.

The former is mainly based on the distributed extension of ID3, C4.5, CART, SPRING,
and other baseline algorithms, so as to improve the accuracy and efficiency of the algo-
rithm on big data; however, there is still a need to consider the computational complex-
ity of the decision tree algorithm itself, the resident memory, and other characteristics of
the optimization before implementing this algorithm. Based on MapReduce, two paral-
lelized C4.5 algorithms were proposed in Wang and Gao [6] and Mu et al. [7]. Moreover,
Genuer et al. [19] extended the random forest algorithm for big data classification. Based
on the work of Genuer et al. [19], Juez-Gil et al. [20] proposed the rotation forest algo-
rithm for big data classification. Furthermore, Shivaraju et al. [21] proposed a parallel
decision tree based on attribute partition. In this case, the whole dataset was divided
first into the training set for building a decision tree and the test set for testing the deci-
sion tree model according to certain rules. Then, the attributes of both datasets were
partitioned, and a decision tree was generated on the training set according to each par-
tition. Moreover, according to the partition of the test set and the training tree, the test
tree was generated, and the weighted voting method was used in the generated test tree
to deliver the final prediction classification result. To solve the time-consuming problem
relative to the calculation of the information gain rate of the C4.5 algorithm, Yuan et al.

1 https:// hadoop. apache. org/.
2 http:// spark. apache. org/.

https://hadoop.apache.org/
http://spark.apache.org/

Page 4 of 22Ma and Zhai Journal of Big Data (2023) 10:135

[22] proposed an improved C4.5 algorithm, which used the McLaughlin formula to cal-
culate the information gain in order to improve computational efficiency. By comparing
the improved C4.5 with the traditional C4.5 on the Hadoop platform, the results show
that the improved algorithm has higher accuracy and efficiency. Added to that, Desai
and Chaudhary studied the scalability of the distributed decision tree and proposed
two distributed decision tree algorithms: DDTv1 [23] and DDTv2 [24]. In more detail,
DDTv1 is a distributed implementation of the Hadoop-based Distributed Decision Tree
(DDT) and the Spark-based Spark Tree (ST). As for DDTv2, it optimizes DDT and ST
based on DDTv1 and makes a compromise between partitioning and accuracy. In other
words, DDTv2 provides as much parallelism as possible without any loss of accuracy. For
instance, Chen et al. [25] proposed a parallel random forest algorithm for big data; the
tests were performed on Spark. To improve the generalization performance of the par-
allel random forest algorithm, it is optimized based on the hybrid approach combining
data-parallel and task-parallel optimization. Therefore, Es-sabery et al. [26] proposed an
improved ID3 algorithm and used it for the classification of Twitter big data. The main
contributions of the proposed work included three points: (1) The information gain fea-
ture selector was used to reduce the dimensionality of Twitter’s high-dimensional data;
(2) Regarding the dimension reduction, the weighted information gain was used to
replace the information gain in the ID3 algorithm as a heuristic to induce the decision
trees; (3) The improved ID3 algorithm was implemented with the big data programming
framework, MapReduce. Moreover, Jurczuk et al. [27] proposed a global induction of
the classification trees for large-scale data mining using multi-GPU for accelerating the
algorithm. Abuzaid et al. [28] introduced an optimized system for training deep decision
trees at scale; it was based on partitioning the feature of the data along with a set of opti-
mized data structures to reduce the CPU occupancy and communication costs of train-
ing. Chen et al. [29] designed a distributed decision tree algorithm and implemented
it with the big data platform Spark. In addition, En-nattouh et al. [30] applied decision
tree algorithm to select the optimal configuration and enhance parameter optimization
in clustered platforms for Big Data. Specifically, the number of tasks for each node by
analyzing the internal elements of YARN was first calculated, the decision tree is then
used to find the optimal configuration. To reduce the time complexity in parsing big data
decision tree, Liu et al. [31] designed a novel data structure termed as collision-partition
tree, which can lead a more balanced tree structure, thus achieving the goal of reducing
the computational time complexity. Jin et al. [32] introduced a sampling scheme with
and without the replacement and designed an algorithm to improve the adaptation and
generalization ability of classification rules in a big-data environment. Online decision
tree algorithms can tackle the problem of big data learning by concurrently training
with incoming samples and providing inference results. Based on this point, Lin et al.
[33] proposed a high-performance and scalable online decision tree learning algorithm.
Weinberg et al. [34] proposed an algorithm to select a representative decision tree from
an ensemble of decision-tree models for fast big data classification.

The distributed fuzzy decision tree is an extension of the fuzzy decision tree in a big
data environment for handling large-scale data learning. Compared to the distributed
crisp decision tree, the research on the distributed fuzzy decision tree is relatively lim-
ited. Four representative works are Segatori et al. [15], Mu et al. [35], Wu et al. [36],

Page 5 of 22Ma and Zhai Journal of Big Data (2023) 10:135

and Fernandez-Basso et al. [37]. In Segatori et al. [15], proposed a distributed fuzzy
decision tree learning scheme based on the MapReduce programming model where the
learning scheme can generate both binary and multiway fuzzy decision trees from this
big data. The key idea of this learning scheme is that it uses fuzzy information entropy
to discretize each Continuous-Valued attribute. In Mu et al. [35], proposed a parallel
fuzzy rule-base based decision tree, the main contribution of this work lay in develop-
ing a parallel fusing fuzzy rule based classification system; moreover, the parallelization
was implemented via MapReduce, and the ensemble was used to evaluate the obtained
fuzzy rule-base. In [36], a Hadoop-based high fuzzy utility pattern mining algorithm was
developed to discover high fuzzy utility patterns from big datasets. In Fernandez-Basso
et al. [37], gave a Spark-based solution for discovering the fuzzy association rules asso-
ciated with big data.

As far as we know, the problem of how to extend the continuous-valued decision tree
induction algorithm based on unbalanced cut points to a big data environment, has not
been solved; therefore the main goal of this paper is to solve this problem.

Two solutions
The goal of this paper is to extend the continuous-valued decision tree induction algo-
rithm based on unbalanced cut points to big data scenarios. This section first briefly
reviews the baseline algorithm, and then introduces the two solutions: one based on par-
titioning instance subsets, and the other based on partitioning attribute subsets.

The continuous‑valued decision tree algorithm based on unbalanced cut points

The continuous-valued decision tree algorithm based on unbalanced cut points was pro-
posed by Fayyad and Irani in 1992 [38], the core concept of this algorithm is the unbal-
anced cut point. Given a continuous-valued decision table D = (U ,A ∪ Y) , where U is
a set of n instances in Rd , denoted by U = {x1, x2, · · · , xn} , xi ∈ Rd(1 ≤ i ≤ n) , A is a set
of d attributes, denoted by A = {a1, a2, · · · , ad} , aj ∈ R(1 ≤ j ≤ d) , Y is a set of labels of
instances in U, denoted by Y = {1, 2, · · · , k} , k is the number of classes of instances in
U. The intuitive representation of the decision table D is shown in Table 1. The values
in column j (i.e., the values of attribute aj) of Table 1 are sorted in ascending order, the
sorted result is denoted by xi1j , xi2j , · · · , xinj . The mid-value ts of xisj and xis+1j is called a
cut point of attribute aj , 1 ≤ s ≤ n− 1 and 1 ≤ j ≤ d . Obviously, ∀aj ∈ A , it has n− 1
cut points. If the samples xis and xis+1

 on both sides of the cut point ts belong to different
classes, then ts is called the unbalanced cut point. Otherwise, it is called the balanced cut
point.

Table 1 A decision table containing n instances

x a1 · · · aj · · · ad y

x1 x11 · · · x1j · · · x1d y1

x2 x21 · · · x2j · · · x2d y2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xn xn1 · · · xnj · · · xnd yn

Page 6 of 22Ma and Zhai Journal of Big Data (2023) 10:135

Given a continuous-valued decision table D = (U ,A ∪ Y) , the instances in U are classi-
fied into k classes, the number of instances in class i is ni , 1 ≤ i ≤ k . The Gini index of U is
defined as:

where pi = ni
n . Similar to information entropy, Gini index also measures the uncertainty

of the classes to which the instances belong.
Given a continuous-valued decision table D = (U ,A ∪ Y) . Let ts be a cut point of attrib-

ute aj , 1 ≤ s ≤ n− 1 , 1 ≤ j ≤ d , it partitions U into two subsets U1 and U2 . The Gini index
of ts is defined by

It can be seen from (2) that the Gini index of the cut point ts is the average value of the
Gini index of the two subsets U1 and U2 . In other words, the Gini index of the cut point
ts measures the uncertainty of the classes of the two subsets partitioned by the cut point
ts . Obviously, the smaller the Gini index of the cut point ts , the more important the cut
point ts is.

For ∀aj ∈ A , it has n− 1 cut points ts(1 ≤ s ≤ n− 1) , the optimal cut point of attribute aj
is a cut point that satisfies the following condition:

The global optimal cut point is defined as the optimal cut point with respect to the
attribute set A, which is a cut point that satisfies the following condition.

The attribute corresponding to the optimal cut point t∗ is called the optimal extended
attribute. Regarding the global optimal cut point, the following theorem holds [38].

Theorem 1 The global optimal cut point must be a unbalanced cut point.

This theorem suggests that when searching for the optimal cut point, only the Gini index
of the unbalanced cut points need to be calculated, whereas it is unnecessary to calculate
the Gini index of the balanced cut points, which can greatly reduce the computational com-
plexity and improve the efficiency of the algorithm. For each attribute a ∈ A , let Ta is the set
of all cut points of a. The pseudo-code of continuous-valued decision tree algorithm based
on unbalanced cut points is given in Algorithm 1.

(1)Gini(U) = 1−

k∑

i=1

p2i

(2)Gini(ts, aj ,U) =
|U1|

|U |

Gini(U1)+
|U2|

|U |

Gini(U2).

(3)t∗j = argmin
1≤s≤n−1

{Gini(ts, aj ,U)}

(4)t∗ = argmin
1≤j≤d

{Gini(t∗j , aj ,U)}

Page 7 of 22Ma and Zhai Journal of Big Data (2023) 10:135

When the continuous-valued decision table D is a big dataset, Algorithm 1 will become
infeasible, so how can Algorithm 1 be extended to big data scenarios? The general strat-
egy of big data processing is divide and conquer, that is, the big dataset is divided into
several subsets which are distributed to different computing nodes for parallel process-
ing. Big dataset can be divided into subsets in both horizontal and vertical directions.
The partition in horizontal direction is to divide the big dataset into instance subsets,
while the partition in vertical direction is to divide big dataset into attribute subsets. In
this paper, based on horizontal and vertical partitioning, we give two solutions to extend
the continuous-valued decision tree algorithm based on unbalanced cut points to big
data scenario.

The solution based on partitioning instance subsets

In this solution, the cut points of an attribute aj(1 ≤ j ≤ d) fall into two categories:

1. Cut points within a subset, or a computing node, which are the cut points corre-
sponding to the local data subset and can be viewed as local cut points;

2. Cut points between two subsets, or two computing nodes, which are naturally gener-
ated by dividing big dataset into several subsets.

If the number of computing nodes is m (i.e., the number of subsets or partitions of
big dataset), then the number of this kind of cut points is m− 1 (see Fig. 1). If we artifi-
cially control the partition of big dataset, so that the m− 1 cut points are all balanced cut
points, then it is unnecessary to calculate the Gini index of the m− 1 cut points, and the
difficulty of processing will be reduced.

Page 8 of 22Ma and Zhai Journal of Big Data (2023) 10:135

This solution needs to overcome the following two difficulties.

1. When calculating the Gini index of local cut points in a node, it needs to use the
information of subsets on other nodes, so how to calculate the Gini index of local cut
points across nodes is a difficult problem to be solved;

2. After the d local optimal cut points corresponding to the d attributes are found, then
we need to find the global optimal cut point from the d local optimal cut points.
Finding the global optimal cut point is another difficulty to be overcome.

The schematic diagram of the solution based on partitioning instance subsets is
illustrated in Fig. 2.

The attribute corresponding to the global optimal cut point is the most important
attribute, which is used as the extension attribute of the continuous-valued decision
tree. In the following, we first take the cut point t(2)1 of the attribute aj as an example
to explain how to calculate the Gini index of the cut points within a subsets.

Fig. 1 Schematic diagram of cut points within subset and cut points between subsets

Page 9 of 22Ma and Zhai Journal of Big Data (2023) 10:135

From Fig. 1, we can find that the cup point t(2)1 partitions the subset D2 into two sub-
sets {x(2)i1j

} and {x(2)i2j
, · · · , x

(2)
in2 j

} . On the other hand, from the view point of big dataset,

the cup point t(2)1 partitions the big dataset U into two subsets U1 and U2 , where

Fig. 2 The schematic diagram of the solution based on partitioning instance subsets

Page 10 of 22Ma and Zhai Journal of Big Data (2023) 10:135

U1 = D1(aj) ∪ {x
(2)
i1j

} and U2 = {x
(2)
i2j

, · · · , x
(2)
in2 j

} ∪ D3(aj) ∪ · · · ∪ Dm(aj) . According to

Eq. (2), after calculating the Gini index of U1 and U2 , we can easily calculate the Gini
index of the cut point t(2)1 . To calculate the Gini index of U1 and U2 , we only need to
count the number of instances in U1 and U2 that belong to each category respectively,
and it is easy to accomplish.

For the general case, let t(q)p be the pth cut point of the qth subset Dq , 1 ≤ p ≤ nq ,
1 ≤ q ≤ m . The cut point t(q)p partitions the subset Dq into two subsets {x(q)i1j

, · · · , x
(q)
ipj

}
and {x(q)ip+1j

, · · · , x
(q)
inq j

} . At the same time, the cut point t(q)p partitions the big data U into

two subsets U1 and U2 , where U1 = D1(aj) ∪ · · · ∪ Dq−1(aj) ∪ {x
(q)
i1j

, · · · , x
(q)
ipj

} , and
U2 = {x

(q)
ip+1j

, · · · , x
(q)
inq j

} ∪ Dq+1(aj) ∪ · · · ∪ Dm(aj) . Similarly, in order to calculate the

Gini index of the cut point t(q)p , we only need to count the number of instances in U1 and
U2 that belong to each category respectively. It should be noted that when we count the
number of instances belonging to each class in the map phase, the number of instances
in the local subset is counted in parallel on each node. After the map phase is completed,
the statistical results of all nodes are summarized in the reduce phase to obtain the num-
ber of instances belonging to each class in the big dataset. The design of the correspond-
ing map and reduce functions are given in Algorithms 2 and 3, respectively.

In the framework of MapReduce, The corresponding big data decision tree algorithm
based on partitioning instance subsets is denoted by BS-CDT-MR, and its pseudo-code
is given in Algorithm 4.

Page 11 of 22Ma and Zhai Journal of Big Data (2023) 10:135

In the framework of Spark, the pseudo-code of the corresponding algorithm
denoted by BS-CDT-SP is given in Algorithm 5.

Page 12 of 22Ma and Zhai Journal of Big Data (2023) 10:135

The solution based on partitioning attribute subsets

The partition based on attribute subsets is to use attribute subsets to divide the big dataset
into several data subsets, intuitively speaking, that is, to divide the big dataset into several
data subsets along the vertical direction. Each data subset corresponds to the result of a pro-
jection operation in the database system. Each data subset contains all instances, but each
instance is represented only by the values of the attributes in the attribute subset, that is, the
dimension of the instance vector is the potential of the attribute subset. For example, if a sub-
set of attributes contains three attributes, then each instance is represented by the values of
the three attributes, which is a three-dimensional vector. This solution consists of partition-
ing the dataset with attribute subsets and deploying these subsets in the computing node so
that all cut points of the same attribute are on one computing node. Therefore, the counting
of the unbalanced cut points and the calculation of the Gini index are similar to those in the
standalone environment, and the counting and calculation are relatively easy. The difficulty
of this solution is that the user needs to design the partition and the implementation scheme.
Hence, a java class, MTextInputFormat, is developed and it is extended from the Hadoop
class FileInputFormat, and two functions createRecordReader() and getSplits() are overloaded
to split the big dataset with attribute subsets. The partition scheme is given in Fig. 3, the sche-
matic diagram of the solution based on partitioning attribute subsets is illustrated in Fig. 4.

If the large dataset U has J attributes, the big data platform has K computing nodes.
Obviously, an instance of U consists of J attribute values and a class label. After parti-
tioning the big dataset equally, each subset Ai(1 ≤ i ≤ K) , has ⌈ J

K ⌉ attribute columns and
a class label column. Since Hadoop function getSplits() does not support splitting a data-
set by attribute subset, it must be overload. Specifically, if the first column is a class label,
the ith data of the first row is used as the starting position of the current split, and the ith
data of each subsequent row is read into the split to end flag delimiter, indicating that the
partitioned big dataset with the attribute ai(1 ≤ i ≤ K) is complete. Finally, the Hadoop
function createRecordReader() is modified to use the column offset as the key and the
contents of the attributes and class label columns as the value. The pseudo-code of the
corresponding map and reduce functions are given in Algorithm 6 and 7 respectively.

Fig. 3 The design scheme of partitioning attribute subsets

Page 13 of 22Ma and Zhai Journal of Big Data (2023) 10:135

Fig. 4 The schematic diagram of the solution based on partitioning attribute subsets

Page 14 of 22Ma and Zhai Journal of Big Data (2023) 10:135

The pseudo-code of the corresponding MapReduce-based algorithm denoted by BA-
CDT-MR is given in Algorithm 8.

In the framework of Spark, the pseudo-code of the corresponding algorithm denoted
by BA-CDT-SP is given in Algorithm 9.

Page 15 of 22Ma and Zhai Journal of Big Data (2023) 10:135

Experimental results and analysis
To demonstrate the effectiveness of the proposed solutions, we conducted experiments
on a big data platform with 6 computing nodes using two open-source framewoeks:
MapReduce and Spark. The configuration of the big data platform is given in Table 2,
and the configuration of computing nodes in the big data platform is given in Table 3. It
should be noted that in the big data platform, the configuration of the master node and
the slave node are same.

We compared the proposed algorithms with five methods on five datasets, includ-
ing two artificial and three UCI datasets. The first artificial dataset, denoted by Gauss-
ian1, is two-dimensions. The instances in this dataset are divided into two classes,
where both follow the Gaussian distribution. The corresponding parameters are given
in Table 4. The second artificial dataset, denoted by Gaussian2, is four-dimensions.
The instances in this dataset fall into four classes, all follow the Gaussian distribu-
tion. The corresponding parameters are given in Table 5. The basic information of the
five datasets is given in Table 6. The five comparison methods are Parallel C4.5 [7],

Table 2 The configuration of the big data platform

Items Configuration

CPU Intel(R) Xeon(R) Platinum 8255C CPU 2.50GHz

Memory 16GB

Network Card Broadcom 5720 QP 1Gb

Hard Disk 2TB

Operating System CentOS 7.0

Hadoop Hadoop 3.1.4

Sprk Spark 3.0.0

JDK JDK 1.8.0

Scala Scala SDK-2.12.11

Table 3 The configuration of the nodes in the big data platform

Nodes IP Type of nodes

Master 192.168.1.110 NameNode, ResourceManager

Worker 1 192.168.1.111 DataNode, NodeManager

Worker 2 192.168.1.112 DataNode, NodeManager

Worker 3 192.168.1.113 DataNode, NodeManager

Worker 4 192.168.1.114 DataNode, NodeManager

Worker 5 192.168.1.115 DataNode, NodeManager

Table 4 The parameters of the first artificial set Gaussian1

i µi �i

1 (1.0, 1.0)T
[

0.6 − 0.2

−0.2 0.6

]

2 (2.5, 2.5)T
[

0.2 − 0.1

−0.1 0.2

]

Page 16 of 22Ma and Zhai Journal of Big Data (2023) 10:135

FRBDT (Parallel Fuzzy Rule-base Based Decision Tree) [35], IS-C4.5 (Improvement
Strategy for C4.5) [6], Weka J48-MR in Hadoop machine learning library, and MLlib
DT-SP in Spark machine learning library. The parallel C4.5, based on MapReduce and
Spark, are denoted by Parallel C4.5-MR and Parallel C4.5-SP, respectively. The indexes
for the experimental comparison are the test accuracy and the running time.

Since the test accuracy of the same algorithm implemented by different platforms
will not change significantly, the experimental comparison results of the test accuracy

Table 5 The parameters of the second artificial set Gaussian2

i µi �i

1 (0.0, 0.0, 0.0)T

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

2 (0.0, 1.0, 0.0)T

1.0 0.0 1.0

0.0 2.0 2.0

1.0 2.0 5.0

3 (−1.0, 0.0, 1.0)T

2.0 0.0 0.0

0.0 6.0 0.0

0.0 0.0 1.0

4 (0.0, 0.5, 1.0)T

2.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 3.0

Table 6 The basic information of the five datasets

Datasets Number of instances Number of attributes Number of classes

Gaussian1 5,000,000 2 2

Gaussian2 2,500,000 3 4

Covertype 581,012 10 7

SUSY 5,000,000 18 2

HEPMASS 10,500,000 28 2

Table 7 The experimental comparison results of test accuracy

The data in bold indicate the highest test accuracy of different algorithms on different data sets

Methods Datasets

Gaussian1 Gaussian2 SUSY HEPMASS Covertype

BA-CDT-MR 0.985 0.523 0.723 0.782 0.825

BA-CDT-SP 0.982 0.529 0.717 0.781 0.824

BS-CDT-MR 0.985 0.512 0.696 0.789 0.821

BS-CDT-SP 0.983 0.511 0.688 0.792 0.823

Parallel C4.5-MR 0.987 0.522 0.662 0.805 0.819

Parallel C4.5-SP 0.984 0.516 0.668 0.801 0.819

Weka-J48-MR 0.977 0.503 0.665 0.787 0.792

MLlib-DT-SP 0.981 0.512 0.679 0.772 0.798

FRBDT 0.983 0.527 0.705 0.769 0.836
IS-C4.5 0.986 0.522 0.662 0.804 0.819

Page 17 of 22Ma and Zhai Journal of Big Data (2023) 10:135

of the algorithms implemented by MapReduce and Spark platforms are uniformly
presented in Table 7. Whereas the algorithms are implemented by MapReduce and
Spark, resulting in significant different running time. The experimental comparison
results of the running time of the algorithms implemented by MapReduce and Spark
are given in Tables 8 and 9, respectively.

From the experimental results, displayed in Table 7, one can find the following:

1. There is no significant difference in test accuracy between the two algorithms based
on instance subset partition (i.e., BS-CDT-MR and BS-CDT-SP) and the two algo-
rithms based on attribute subset partition (i.e., BA-CDT-MR and BA-CDT-SP) on
the five datasets. The test accuracy of the first two algorithms based on attribute sub-
set partition on datasets Gaussian2 and SUSY is slightly higher than that of the sec-
ond two algorithms based on instance subset partition. This is mainly due to the fact
that all four algorithms use the Gini index as a heuristic, but the partition mode and
implementation framework of the big datasets are different;

2. Compared to the other six algorithms (Parallel C4.5-MR, Parallel C4.5-SP, FRBDT,
IS-C4.5, Weka J48-MR, and MLlib DT-SP), there is no significant difference in the
test accuracy on the five datasets.

Referring to the experimental results shown in Table 8, the two algorithms pro-
posed in this paper have the least running time, the fastest speed, and the highest
efficiency compared to the four algorithms based on MapReduce. The reason is that

Table 8 The experimental comparison results of running time with MapReduce

The data in bold indicate the shortest run times for different algorithms implemented by MapReduce and Spark on different
datasets, respectively

Methods Datasets

Gaussian1 Gaussian2 SUSY HEPMASS Covertype

BA-CDT-MR 189.7 229.7 1244.1 3121.2 3669.3
BS-CDT-MR 221.0 259.5 1531.5 3710.0 3891.8

Parallel C4.5-MR 234.4 277.9 1557.4 3801.2 4656.4

Weka-J48-MR 274.5 286.4 1648.2 3956.2 4853.9

FRBDT 244.5 272.1 1789.0 3815.2 4386.3

IS-C4.5 255.5 289.4 1448.8 3798.6 3952.0

Table 9 The experimental comparison results of running time with Spark

The data in bold indicate the shortest run times for different algorithms implemented by MapReduce and Spark on different
datasets, respectively

Methods Datasets

Gaussian1 Gaussian2 SUSY HEPMASS Covertype

BA-CDT-SP 15.4 31.2 228.2 506.5 568.5
BS-CDT-SP 19.8 35.3 312.5 572.2 626.6

Parallel C4.5-SP 31.5 45.1 325.1 687.6 597.1

MLlib-DT-SP 55.2 59.8 414.0 709.5 583.4

FRBDT 34.1 40.5 219.8 556.7 572.1

IS-C4.5 35.5 43.1 252.0 619.5 595.9

Page 18 of 22Ma and Zhai Journal of Big Data (2023) 10:135

the proposed algorithms are based on the unbalanced cut point. Therefore, when cal-
culating the heuristic, only the Gini index of the unbalanced cut points needs to be
calculated, which is not the case for the balanced cut points. From a statistical point
of view, the computing time complexity can be reduced by half. Moreover, from the
experimental results in Table 9, one can get a conclusion similar to that of Table 8.
That is, the two algorithms proposed in this paper have the lowest running time, the
fastest speed and the highest efficiency. We believe that the reason is that the solution
based on partitioning attribute subsets makes all cut points of each attribute located
on the same computing node, and the calculation of the Gini index and the local opti-
mal cut point does not require communication between the computing nodes, while
the solution based on the partitioning instance subsets must communicate between
computing nodes to calculate the Gini index and the local optimal cut point for each
attribute.

In order to more intuitively show the difference in running efficiency when two dif-
ferent solutions are implemented with two different big data frameworks, MapRe-
duce and Spark, we visualized the running time on five datasets. Figure 5 presents
the comparison of the running time of the solution based on partitioning attribute
subsets under two frameworks, MapReduce and Spark. It can be clearly seen from
Fig. 5 that for the same partitioning method (based on partitioning attribute subsets),
the implementation of two different frameworks, MapReduce and Spark, the differ-
ence of running time is very significant. The result is similar for the case based on
partitioning instance subsets, see Fig. 6. We think there are two main reasons. First,
Spark constructs DAG directed acyclic graphs when processing big data. Compared
with MapReduce, the times used for shuffle operation can be reduced in most cases,
thus reducing a large amount of sorting time. Second, MapReduce needs to write the
intermediate results of calculations to disks, while Spark can store the intermediate
results in memory in the form of RDD, which greatly reduces disk I/O operations
and reduces the running time of algorithms. Compared with Spark, MapReduce has

15.4 31.2
228.2

506.5 568.5

189.7 229.7

1244.1

3121.2

3669.3

GAUSSIAN1 GAUSSIAN2 SUSY HEPMASS COVERTYPE

BA-CDT-SP BA-CDT-MR

Fig. 5 A comparison of the running time of the solution based on partitioning attribute subsets under two
frameworks

Page 19 of 22Ma and Zhai Journal of Big Data (2023) 10:135

better fault tolerance, because MapReduce saves the intermediate result first and then
processes it. When program errors occur, MapReduce can rectify them in time to
ensure the safe running of algorithms. Especially in the processing of big data, a small
error may cause the entire training process to fail. The high reliability of MapReduce
ensures its secure running.

Figures 7 and 8 provide the comparison of the running time of the two different solu-
tions under the framework MapReduce and Spark, respectively. One can find from the
Fig. 7 that the solution BA-CDT-MR based on partitioning attribute subsets runs less
than the solution BS-CDT-MR based on partitioning instance subsets. Although both
solutions use the Gini index as a heuristic for the induction of decision tree, BS-CDT-
MR requires sorting the current attribute aj before deploying the data subsets to each
compute node, resulting in longer running time than BA-CDT-MR. But the difference

19.8 35.3
312.5

572.2 626.6

221.0 259.5

1531.5

3710.0
3891.8

GAUSSIAN1 GAUSSIAN2 SUSY HEPMASS COVERTYPE

BS-CDT-SP BS-CDT-MR

Fig. 6 A comparison of the running time of the solution based on partitioning instance subsets under two
frameworks

189.7 229.7

1244.1

3121.2

3669.3

221.0 259.5

1531.5

3710.0
3891.8

GAUSSIAN1 GAUSSIAN2 SUSY HEPMASS COVERTYPE

BA-CDT-MR BS-CDT-MR

Fig. 7 A comparison of the running time of the two solutions under the framework MapReduce

Page 20 of 22Ma and Zhai Journal of Big Data (2023) 10:135

is not very significant. In addition, since the calculation of Gini index needs to count the
instance number of each class on the whole big data set, for BA-CDT-MR, all the cut
points of the same attribute are located on the same computing node, and the statistics
on the number of instances for each class can be completed within the same computing
node, and the extended attribute can be obtained in one iteration. BS-CDT-MR needs to
use inter-node communication to count the number of different instances, resulting in
a longer algorithm time than BA-CDT-MR. And as the size of the dataset increases, the
time gap becomes more significant. From Fig. 8, one can draw a similar conclusion.

Furthermore, from the experimental results, we found a strange phenomenon, among the
five datasets used in the experiment, Covertype had the smallest size, but all the algorithms
spent the most time on this dataset. We believe that it is precisely because of their small
size, MapReduce and Spark are difficult to fully use their advantages, when processing such
data sets, many small files will be generated, and these small files will produce a lot of I/O
operations, thus consuming a lot of time.

Conclusions
In this paper, two solutions are proposed to extend the continuous-valued decision tree
induction algorithm based on unbalanced cut points to the big data scenarios. The first
solution is based on the instance subset partition along the horizontal direction. The tech-
nical difficulty of this solution is to calculate the Gini index of the unbalanced cut points
across nodes. The second solution is based on attribute subset partition along the vertical
direction. The technical difficulty of this solution is that users need to design a big data par-
tition scheme based on attribute subsets. In this scheme, the calculation of the Gini index of
unbalanced cut points across nodes is not needed. For these two technical difficulties, this
paper gives corresponding perfect solutions, and proposes a continuous-valued big data
decision tree induction algorithm based on unbalanced cut points. The proposed algorithm
is implemented on two big data platforms, MapReduce and Spark, and the experimental
comparison is conducted with five related algorithms in terms of test accuracy and running

15.4
31.2

228.2

506.5

568.5

19.8
35.3

312.5

572.2

626.6

GAUSSIAN1 GAUSSIAN2 SUSY HEPMASS COVERTYPE

BA-CDT-SP BS-CDT-SP

Fig. 8 A comparison of the running time of the two solutions under the framework Spark

Page 21 of 22Ma and Zhai Journal of Big Data (2023) 10:135

time. The experimental results show that (1) the proposed algorithms outperform the five
algorithms, and (2) the proposed solutions can efficiently address the problem of scalability
of the continuous-valued decision tree algorithm based on unbalanced cut points in big
data scenarios.
Acknowledgements
We would like to thank Hebei Key Laboratory of Machine Learning and Computational Intelligence for supporting big
data computing platform.

Author contributions
SM: Methodology, validation, data preprocessing, visualization. JZ: Conceptualization, methodology, investigation, visu-
alization, funding acquisition, supervision, project administration, writing—review & editing.

Funding
This research is supported by the key R &D program of science and technology foundation of Hebei Province
(19210310D), and by the natural science foundation of Hebei Province (F2021201020).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 28 December 2022 Accepted: 22 August 2023

References
 1. Roh Y, Heo G, Whang SE. A survey on data collection for machine learning: a Big Data-AI integration perspective.

IEEE Trans Knowl Data Eng. 2021;33(4):1328–47.
 2. Chu CT, Kim SK, Lin YA, et al. Map-reduce for machine learning on multicore. In: Proceedings of the 2006 conference,

advances in neural information processing systems 19. MIT Press; 2007. p.281–8.
 3. He Q, Zhuang FZ, Li JC, et al. Parallel implementation of classification algorithms based on MapReduce. RSKT 2010,

lecture notes in computer science (LNAI,volume 6401). p. 655–62.
 4. Xu Y, Qu W, Li Z, et al. Efficient K-means++ approximation with MapReduce. IEEE Trans Parallel Distrib Syst.

2014;25(12):3135–44.
 5. Duan M, Li K, Liao X, et al. A parallel multiclassification algorithm for big data using an extreme learning machine.

IEEE Trans Neural Netw Learn Syst. 2018;29(6):2337–51.
 6. Wang HB, Gao YJ. Research on C4.5 algorithm improvement strategy based on MapReduce. Procedia Comput Sci.

2021;183:160–5.
 7. Mu YS, Liu XD, Yang ZH, et al. A parallel C4.5 decision tree algorithm based on MapReduce. Concurr Comput Pract

Exp. 2017. https:// doi. org/ 10. 1002/ cpe. 4015.
 8. Dai W, Ji W. A MapReduce implementation of C4.5 decision tree algorithm. Int J Database Theory Appl.

2014;7(1):49–60.
 9. Wang S, Jia Z, Cao N. Research on optimization and application of Spark decision tree algorithm under cloud-edge

collaboration. Int J Intell Syst. 2022;37(11):8833–54.
 10. Yuan F, Lian F, Xu X, et al. Decision tree algorithm optimization research based on MapReduce. In: 2015 6th IEEE

international conference on software engineering and service science (ICSESS), Beijing, China; 2015. p. 1010–3.
https:// doi. org/ 10. 1109/ ICSESS. 2015. 73392 25.

 11. Chern CC, Lei WU, Huang KL, et al. A decision tree classifier for credit assessment problems in big data environ-
ments. Inf Syst e-Bus Manag. 2021;19:363–86.

 12. Sabah S, Anwar SZB, Afroze S, et al. Big data with decision tree induction. In: 2019 13th international conference on
software, knowledge, information management and applications (SKIMA), Island of Ulkulhas, Maldives; 2019. p. 1–6.
https:// doi. org/ 10. 1109/ SKIMA 47702. 2019. 89824 19.

 13. Wang M, Fu W, He X, et al. A survey on large-scale machine learning. IEEE Trans Knowl Data Eng. 2022;34(6):2574–94.
 14. Nti IK, Quarcoo JA, Aning J, et al. A mini-review of machine learning in big data analytics: Applications, challenges,

and prospects. Big Data Min Anal. 2022;5(2):81–97.
 15. Segatori A, Marcelloni F, Pedrycz W. On distributed fuzzy decision trees for Big Data. IEEE Trans Fuzzy Syst.

2018;26(1):174–92.
 16. L’Heureux A, Grolinger K, Elyamany HF, et al. Machine learning with big data: challenges and approaches. IEEE

Access. 2017;5:7776–97.

https://doi.org/10.1002/cpe.4015
https://doi.org/10.1109/ICSESS.2015.7339225
https://doi.org/10.1109/SKIMA47702.2019.8982419

Page 22 of 22Ma and Zhai Journal of Big Data (2023) 10:135

 17. Zhang QC, Yang LT, Chen ZK, et al. A survey on deep learning for big data. Inf Fus. 2018;42:146–57.
 18. Wu X, Kumar V, Quinlan JR, et al. Top 10 algorithms in data mining. Knowl Inf Syst. 2008;14(1):1–37.
 19. Genuer R, Poggi JM, Tuleau-Malot C. Random forests for big data. Big Data Res. 2017;9:28–46.
 20. Juez-Gil M, Arnaiz-González Á, Rodríguez JJ, et al. Rotation forest for big data. Inf Fus. 2021;74:39–49.
 21. Shivaraju N, Kadappa V, Guggari S. A MapReduce model of decision tree classifier using attribute partitioning. In:

2017 international conference on current trends in computer, electrical, electronics and communication (CT-CEEC),
Mysore. New York: IEEE; 2017. p. 207–11.

 22. Yuan ZW, Wang CZ. An improved network traffic classification algorithm based on Hadoop decision tree. In: IEEE
international conference of online analysis and computing science (ICOACS), Chongqing. New York: IEEE; 2016. p.
53–6.

 23. Desai A, Chaudhary S. Distributed decision tree. In: Proceedings of the 9th annual ACM India conference, October
2016. p. 43–50.

 24. Desai A, Chaudhary S. Distributed decision tree v.2.0. In: 2017 IEEE international conference on big data (Big Data);
2017. p. 929–34

 25. Chen JG, Li KL, Tang Z, et al. A parallel random forest algorithm for big data in a Spark cloud computing environ-
ment. IEEE Trans Parallel Distrib Syst. 2017;28(4):919–33.

 26. Es-sabery F, Es-sabery K, Hair A. A MapReduce improved ID3 decision tree for classifying twitter data. In: Fakir, M.,
Baslam, M., El Ayachi, R. (eds) Business intelligence. CBI 2021. Lecture notes in business information processing, vol
416. Cham: Springer; 2021. https:// doi. org/ 10. 1007/ 978-3- 030- 76508-8_ 13.

 27. Jurczuk K, Czajkowski M, Kretowski M. Multi-GPU approach to global induction of classification trees for large-scale
data mining. Appl Intell. 2021;51:5683–700.

 28. Abuzaid F, Bradley JK, Liang FT, et al. Yggdrasil: an optimized system for training deep decision trees at scale.
Advances in neural information processing systems 29. MIT Press; 2016. p. 3817–25.

 29. Chen J, Wang T, Abbey R, et al. A distributed decision tree algorithm and its implementation on big data platforms.
In: 2016 IEEE international conference on data science and advanced analytics (DSAA). New York: IEEE; 2016. p.
752–61.

 30. En-nattouh Y, El fahssi K, Yahyaouy A, et al. The decision trees and the optimization of resources in Big Data solu-
tions. In: 2020 fourth international conference on intelligent computing in data sciences (ICDS), Fez, Morocco; 2020.
p. 1–4. https:// doi. org/ 10. 1109/ ICDS5 0568. 2020. 92687 27.

 31. Liu K, Chen L, Huang J, et al. Revisiting RFID missing tag identification. In: IEEE INFOCOM 2022—IEEE conference
on computer communications, London, United Kingdom; 2022. p. 710–9. https:// doi. org/ 10. 1109/ INFOC OM488 80.
2022. 97969 71.

 32. Jin CX, Li FC, Ma SJ, et al. Sampling scheme-based classification rule mining method using decision tree in big data
environment. Knowl Based Syst. 2022;244:108522.

 33. Lin Z, Sinha S, Towards Zhang W. Efficient and scalable acceleration of online decision tree learning on FPGA. In: IEEE
27th annual international symposium on field-programmable custom computing machines (FCCM). San Diego, CA,
USA. 2019; 2019. p. 172–80. https:// doi. org/ 10. 1109/ FCCM. 2019. 00032.

 34. Weinberg AI, Last M. Selecting a representative decision tree from an ensemble of decision-tree models for fast big
data classification. J Big Data. 2019;6:23. https:// doi. org/ 10. 1186/ s40537- 019- 0186-3.

 35. Mu YS, Liu XD, Wang LD, et al. A parallel fuzzy rule-base based decision tree in the framework of map-reduce. Pat-
tern Recogn. 2020;103: 107326.

 36. Wu JMT, Srivastava G, Wei M, et al. Fuzzy high-utility pattern mining in parallel and distributed Hadoop framework.
Inf Sci. 2021;553:31–48.

 37. Fernandez-Basso C, Ruiz MD, Martin-Bautista MJ. Spark solutions for discovering fuzzy association rules in Big Data.
Int J Approx Reason. 2021;137:94–112.

 38. Fayyad Usama M, Irani Keki B. On the handling of continuous-valued attributes in decision tree generation. Mach
Learn. 1992;8(1):87–102.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shixiang Ma is a M.S. candidate of College of Mathematics and Information Science, Hebei University,
Baoding, China. His main research interests include big data processing and machine learning.

Junhai Zhai is a Professor and Ph.D. Supervisor with College of Mathematics and Information Science,
Hebei University, Baoding, China. His main research interests include big data processing, machine learn-
ing, and deep learning.

https://doi.org/10.1007/978-3-030-76508-8_13
https://doi.org/10.1109/ICDS50568.2020.9268727
https://doi.org/10.1109/INFOCOM48880.2022.9796971
https://doi.org/10.1109/INFOCOM48880.2022.9796971
https://doi.org/10.1109/FCCM.2019.00032
https://doi.org/10.1186/s40537-019-0186-3

	Big data decision tree for continuous-valued attributes based on unbalanced cut points
	Abstract
	Introduction
	Related work
	Two solutions
	The continuous-valued decision tree algorithm based on unbalanced cut points
	The solution based on partitioning instance subsets
	The solution based on partitioning attribute subsets

	Experimental results and analysis
	Conclusions
	Acknowledgements
	References

