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Abstract 

Pollen identification is necessary for several subfields of geology, ecology, and evolu-
tionary biology. However, the existing methods for pollen identification are laborious, 
time-consuming, and require highly skilled scientists. Therefore, there is a pressing 
need for an automated and accurate system for pollen identification, which can be 
beneficial for both basic research and applied issues such as identifying airborne aller-
gens. In this study, we propose a deep learning (DL) approach to classify pollen grains 
in the Great Basin Desert, Nevada, USA. Our dataset consisted of 10,000 images of 40 
pollen species. To mitigate the limitations imposed by the small volume of our train-
ing dataset, we conducted an in-depth comparative analysis of numerous pre-trained 
Convolutional Neural Network (CNN) architectures utilizing transfer learning method-
ologies. Simultaneously, we developed and incorporated an innovative CNN model, 
serving to augment our exploration and optimization of data modeling strategies. We 
applied different architectures of well-known pre-trained deep CNN models, includ-
ing AlexNet, VGG-16, MobileNet-V2, ResNet (18, 34, and 50, 101), ResNeSt (50, 101), 
SE-ResNeXt, and Vision Transformer (ViT), to uncover the most promising modeling 
approach for the classification of pollen grains in the Great Basin. To evaluate the per-
formance of the pre-trained deep CNN models, we measured accuracy, precision, 
F1-Score, and recall. Our results showed that the ResNeSt-110 model achieved the best 
performance, with an accuracy of 97.24%, precision of 97.89%, F1-Score of 96.86%, 
and recall of 97.13%. Our results also revealed that transfer learning models can deliver 
better and faster image classification results compared to traditional CNN models built 
from scratch. The proposed method can potentially benefit various fields that rely 
on efficient pollen identification. This study demonstrates that DL approaches can 
improve the accuracy and efficiency of pollen identification, and it provides a founda-
tion for further research in the field.
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Background and literature review
The identification and classification of pollen grains are essential methods for various 
fields, including agriculture, ecology, paleoclimatology, agriculture, environment, paleo-
ecology, archeology, medicine, and forensics [1–4]. The field of pollen grain taxonomy, 
known as Palynology, relies heavily on analyzing morphological characteristics such as 
general shape, polarity, symmetry, apertures, size, and ornamentation. However, due to 
the frequent morphological similarities among pollen grains, it can be challenging to use 
these features to quickly and accurately identify pollen species, genera, or even fami-
lies (as illustrated in Fig. 1), and traditional identification methods have been associated 
with high error rates [5–7]. Also, manually identifying pollen grains using microscopes 
is time-consuming and labor-intensive.

Automating the identification process using DL algorithms can provide several ben-
efits, including reducing the time and effort required for identification, improving the 
accuracy and consistency of the results, and enabling large-scale analysis of pollen 
grain samples. These methods can lead to new insights and discoveries in numerous 
fields. In recent years, the demand for high accuracy and computational efficiency 
has increased in industry and academia due to the availability of advanced technol-
ogy in computer vision and image processing. Deep learning has been widely utilized 
to maximize efficiency and accuracy, reduce labor, and minimize artifacts [8–12]. 

Fig. 1 Images of pollen grains representing the similarities in morphological features across divergent taxa. 
A Salvia dorii; B Monardella villosa; C Phlox longifloia; D Phlox diffusa; E Taraxacum officinale; F Taraxacum 
californicum; G Astragalus pulsiferae; H Astragalus purshii; I Erysimum capitatum; J Sisymbrium altissimum; K 
Pinus monophylla; L Abies concolor 
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Among the DL techniques, CNNs have gained popularity over the past decade for 
image classification, object detection, and task recognition, owing to their powerful 
neural network architecture that automatically extracts mid- to high-level features 
from image datasets [13–15].

CNN modeling has been proven effective for pollen taxonomic classification, espe-
cially when using transfer learning, which involves pre-trained CNN models to solve 
new problems [3–5, 7]. However, CNN models require massive training datasets, 
making pollen grain classification challenging due to the limited availability of pollen 
images. Transfer learning is an effective technique for learning features from small 
training datasets and automatically classifying images, making it a powerful tool for 
deep networking training without overfitting. One limitation, however, is that trans-
fer learning heavily rely on large datasets to avoid overfitting [16–18]. Transfer learn-
ing is a technique in which a pre-trained CNN model, trained on a large dataset such 
as ImageNet that contains millions of images, is repurposed to learn a new task by 
leveraging the knowledge already gained from the previous task [19]. In the context 
of pollen classification, these pre-trained models can be used to make predictions or 
combined to train a new model. Transfer learning offers several advantages, including 
reducing the amount of time required to train a model from scratch, which is typi-
cally time-consuming and requires many parameter combinations. Moreover, utiliz-
ing pre-trained models can lead to higher accuracy and a lower risk of overfitting, 
making it a valuable approach for pollen classification tasks [17, 20, 21].

Previous studies on pollen grain automation have succeeded to some extent [4, 5, 
7]. However, one of the main challenges in identifying pollen species is the limited 
availability of pollen datasets for training neural network models. The small number 
of datasets makes it difficult to define relevant features and variations in pollen mor-
phology for identification purposes, especially given the similarities among pollen 
species [19, 22–29]. Moreover, most previous studies on pollen identification algo-
rithms have primarily focused on Europe, Asia, and equatorial regions, leaving a gap 
in the literature for North America [23–29]. Our study is fills this gap by focusing 
on pollen classification in North America. Studying pollen grains in this region can 
expand our understanding of pollen morphology and provide more accurate identifi-
cation tools for researchers worldwide.

The aim of this study was to enhance the accuracy of pollen grain image classification 
by utilizing transfer learning techniques to address the challenge of limited training data. 
To accomplish this objective, we employed a total of eleven transfer learning architec-
tures, namely AlexNet, VGG-16, MobileNet-V2, ResNet (18, 34, 50, 101), ResNeSt (50, 
101), SE-ResNeXt, and ViT, in addition to developing a CNN model from scratch. Our 
research objective was to achieve highly accurate and efficient classification of pollen 
grain images in North America, which has not been previously accomplished. Further-
more, this study sought to answer several critical scientific questions, such as the effec-
tiveness of the proposed scratch CNN model in identifying pollen grains compared to 
the transfer learning models, and how the performance of the 11 transfer learning mod-
els compared to each other in identifying different types of pollen grains. We also aimed 
to investigate the limitations of the proposed models in identifying pollen grains and 
provide possible avenues for addressing these limitations in future research.
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Materials and methods
Data collection and data preprocessing

To train and test the model, we needed to collect a dataset of images of pollen grains. 
In this study, pollen grains were collected from plants located at the University of 
Nevada, Reno Museum of Natural History (UNRMNH). To ensure the accuracy of 
pollen identifications, the researchers prepared over 400 reference slides containing 
pollen from previously identified native flowers at the UNRMNH. A total of 10,000 
images from the 400 pollen reference slides, representing 40 pollen species, were 
taken and used for training the model, where each class includes a range between 95 
and 500 (Figs. 2, 3) images of size 224 × 224 and in *.jpg format.

We used a ZEISS Axiolab 5 light microscope and an Axiocam 208 color microscope 
camera to identify and photograph pollen grains. The images were captured using 
40× objective lenses and 10× ocular lenses. Z-stack images were used to capture all 
details of the pollen grains, showing the vertical details of pollen grains at various 
focus levels. To prepare the images for training the model, we cropped each image 

Fig. 2 Historgram of taxa images used in this study

Fig. 3 The basic structure of CNN
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using Adobe Photoshop (CS6, 13.0.1.3). Then, we removed images with high noise 
levels due to debris, air bubbles, or aggregated pollen.

Before training the models, the dataset was preprocessed; this step includes normal-
izing the pixel values to a specific range and resizing the images to the appropriate input 
size for the models. We also applied data augmentation techniques such as rotating, flip-
ping, or adding noise to the images to improve model robustness and prevent overfit-
ting. The dataset was split into training (70%), validation (15%), and test sets (15%) to 
train the models.

CNN modeling background

CNNs are a type of DL model used for image classification tasks. These models com-
prise multiple layers, including input, hidden, and output layers (Fig. 3). The input layer 
takes the image dataset as input, which is then preprocessed and resized to an optimal 
size and passed to the convolutional layer. In the convolutional layer, filters or kernels 
perform element-wise multiplications with input images to extract low and high-level 
features, while the pooling layer reduces the size of the image while retaining important 
information. Next, normalization (ReLU) is applied to the features extracted in the con-
volutional layer, followed by processing in the fully connected layers, where the images 
are processed with a non-linear function to produce distinct categories with probabili-
ties ranging from 0 to 1 for each taxon. This step adds considerable power to traditional 
taxonomic approaches, while the automated classification step provides a quick comput-
erized approach for identifying pollen. The output layer provides the final classification 
result for the given input image.

Research methodology
Create a model from scratch

We developed the CNN model with a 6-layer model created from scratch. We chose an 
input image size of 224 × 224 and applied data augmentation techniques like rotation, 
rescale, shear, zoom, and horizontal flip to the training image data. The Rectified Lin-
ear Unit (ReLU) activation function was used within each convolutional layer. To avoid 
overfitting, a dropout with a rate of 0.2 was implemented. The softmax function was 
applied to estimate the probability for each taxon. The model consisted of three convolu-
tional layers and two fully connected layers. The Adam optimizer with a learning rate of 
0.0001 was used for training and trained the model for 14 epochs with a batch size of 32.

Transfer learning

Transfer learning was utilized as a technique to improve the classification accuracy of 
pollen grain images. The approach involves using a pre-trained CNN model as the start-
ing point for a new task. The weights and biases of some layers are unfrozen and trained 
on the new image dataset, allowing the pre-trained model to adapt to the new task. The 
model architecture is adjusted by freezing some layers of the pre-trained model and 
modifying the output neurons to fit the specific needs of the task. The convolutional 
layers act as a fixed feature extractor that extracts relevant features from the input pol-
len images for classification. For retraining these transferred networks, the number of 



Page 6 of 14Rostami et al. Journal of Big Data          (2023) 10:151 

classes in the last layer was adjusted to 40, which is the number of pollen species present 
in the Great Basin.

Proposed transfer learning methods

1. AlexNet: is the first large-scale CNN model, which was initially created to classify 
millions of images in 1000 categories in ImageNet datasets [30]. The model takes 
input images of size 224 × 224 RGB (Red Green Blue) and consists of eight lay-
ers, including five convolutional layers and three fully connected (FC) layers. The 
AlexNet model has around 61 million parameters (Table 1). The output layer in the 
AlexNet model predicts the probability of images belonging to each pollen species 
category. This approach uses ReLU activation function, Dropout, and data enhance-
ment strategies to avoid overfitting.

2. VGG-16: Visual Geometry Group (VGG) introduced by the University of Oxford. 
VGG-16 consists of 16 convolutional layers, five max-pooling layers, and three fully 
connected layers [13]. VGG-16 has over 138 million parameters and uses ReLU acti-
vation function and dropout regularization to improve generalization error and pre-
vent overfitting. The final layer of VGG-16 uses the softmax activation function fol-
lowed by the ReLU activation function. Images with a fixed size of 224 × 224 are used 
as inputs, and the stride is set to 1 (Table 1). The main difference compared to pre-
vious models is the deeper architecture, which includes associated double or triple 
convolution layers. In our model, we used the Adam optimizer with a learning rate of 
0.0001, and training was performed with a batch size of 32 in 14 epochs.

3. MobileNet-V2: MobileNet-V2 is a family of neural network architectures for efficient 
on-device image classification and related tasks. The “V2” indicates that it’s the sec-
ond version of the MobileNet architecture, which includes several enhancements 
over the original MobileNet. The enhancements focus on improving accuracy and 
reducing computational complexity, making the model more efficient for mobile and 
edge devices where computational resources are limited. This architecture was intro-

Table 1 Properties of our scratch model and eleven pre-trained CNNs

Models Depth (# 
layers)

Number of 
parameters 
(millions)

Input image size Complexity Speed

Scratch-model 6 5.6 224 × 224 Low High

AlexNet 8 61 227 × 227 Low High

VGG-16 16 40.1 224 × 224 High Low

MobileNet-V2 53 3.5 224 × 224 Low High

ResNet-18 18 11.4 224 × 224 Low Low

ResNet-34 34 21.5

ResNet-50 50 23.5

ResNet-101 101 42.5

ResNeSt-50 50 22.9 224 × 224 High Low

ResNeSt-101 101 86.74

Se-ResNeXt 101 28 240 × 240 High High

ViT 24 26 16 × 16 High High



Page 7 of 14Rostami et al. Journal of Big Data          (2023) 10:151  

duced by a team of Google engineers [31]. The MobileNet-V2 is a lightweight CNN 
model with 5.3 million parameters, making it remarkably efficient compared to other 
architectures in this study. It contains 53 layers, including an initial fully convolu-
tional layer with 32 filters, followed by 19 residual bottleneck layers, and takes input 
images with a size of 224 × 224 (Table. 1). MobileNet-V2 architecture features linear 
bottlenecks between the layers and shortcut connections between the bottlenecks, 
enabling faster training and better accuracy. The MobileNet-V2 architecture utilizes 
depth-wise separable convolutions, resulting in models that are smaller, low-latency, 
and low-power. The use of global hyperparameters in this architecture optimizes 
accuracy, and the model builder can choose the most suitable model size to achieve 
better accuracy. Moreover, MobileNet-V2 uses 3 × 3 depth-wise separable convo-
lutions that require 8 to 9 times less processing than traditional convolutions, with 
negligible loss in model performance.

4. ResNet (Residual Network): The ResNet architecture was developed by Micro-
soft researchers [32] and consists of various ResNet models, including ResNet-18, 
ResNet-34, ResNet-50, ResNet-101, ResNet-152, ResNet-1202, and others. In this 
study, we utilize ResNet-18, 34, 50, and 101. The ResNet architecture introduces a 
novel identity shortcut connection that skips one or more layers, which helps address 
the issue of vanishing gradients commonly encountered in DL models. This is espe-
cially important since using a high number of layers in transfer learning often leads 
to the derivatives disappearing in the network. Instead of fully connected layers, 
ResNet uses global average pooling. Batch normalization is also utilized in the fully 
connected layers to achieve convergence and enable the use of higher learning rates, 
leading to faster training speed. The input images for this architecture need to be of 
size 224 × 224 pixels, as shown in Table 1.

5. ResNeSt: This term is short for “ResNet with Split-attention Networks”. It is an 
architecture developed by Facebook researchers [33] that includes between 27 and 
48 million parameters. ResNeSt is a variant of ResNet that combines channel-wise 
attention with multi-path representation in a Split-Attention block, allowing atten-
tion across feature-map groups. Two main variants of ResNeSt are ResNeSt-50 and 
ResNeSt-101, which are pre-trained on the ImageNet dataset. This architecture uses 
an average pooling layer with a kernel size of 3 × 3, and input images of size 224 × 224 
pixels (Table 1). To prevent overfitting, a dropout regularization with a probability of 
0.2 is employed.

6. SE-ResNeXt: is an extension of the ResNeXt (ResNet with Next-gen architecture, 
it is a variant of the original ResNet model, which incorporates “next generation” 
enhancements for better performance) architecture that incorporates a squeeze 
and excitation (SE) block. It was introduced by Hu et  al. [34] and contained over 
28 million parameters. SE-ResNeXt uses the same basic building block as ResNeXt, 
which is a split-transform-merge strategy that enables parallel feature extraction. In 
this architecture, a squeeze and excitation (SE) block is used at the end of each non-
identity branch of the residual block. The SE block performs channel-wise feature 
recalibration by explicitly modeling interdependencies between channels. This archi-
tecture creates a well model for several complex image datasets by stacking SE blocks 
together. The input image size for this model is fixed at 224 × 224 (Table 1).
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7. Vision Transformer (ViT): is a novel image classification model that uses the Trans-
former architecture, which was initially developed for Natural Language Processing 
(NLP), over patches of images [35]. The Transformer is a deep neural network based 
on the attention mechanism that achieved state-of-the-art results in NLP tasks. This 
success has inspired computer vision researchers to use the Transformer approach 
for image classification tasks [36]. Unlike CNNs, which take pixels in images as input 
data, ViT divides the images into fixed-size patches (usually 16 × 16) and embeds 
each patch while retaining its positional embedding as input to the transformer 
encoder. The ViT employs self-attention to enable the model to embed knowledge 
across the image.

In Table  1, we compare different models in terms of their depth, parameters, input 
image size, complexity, and speed. Regarding the definition of complexity and speed, 
Complexity refers to the computational complexity of the model, which we determine 
primarily based on the number of layers and the number of parameters the model con-
tains. A ‘low’ complexity model is one that is relatively simpler and requires fewer com-
putational resources, typically having fewer layers and parameters. On the other hand, a 
’high’ complexity model is more intricate, having a higher number of layers and param-
eters, and thus requires more computational resources.

Regarding the speed, it refers to the inference speed of the model, which is the rate 
at which the model can process input and generate output. This rate is measured in 
terms of the number of input samples processed per unit of time. A ‘high’ speed model 
can process a larger number of input samples in a given time frame, while a ‘low’ speed 
model processes fewer.

These categorizations are relative and meant to provide a broad comparison across 
different models based on the various factors such as batch size, hardware accelerators 
(GPUs, TPUs) and software optimizations.

Experimental design and optimization techniques

The experiments for the scratch model, AlexNet, and VGG-16, data preprocessing, and 
analysis were conducted on a Dell Alienware (m17 R4) laptop using the Python pro-
gramming language (version 3.10.6) and several unique libraries for running DL models. 
For other transfer learning experiments, we utilized the Microsoft Azure cloud comput-
ing platform with the Azure automated ML service, utilizing a Standard_NC6 virtual 
machine, GPU device (NVIDIA Tesla K-80), six cores, 56 GB RAM, and 380 GB storage. 
To optimize our models, we implemented several hyperparameters, including early stop-
ping (using the Bandit policy with a slack factor of 0.1) and 15 ensemble iterations. Addi-
tionally, we utilized grid search to find the optimal hyperparameters, specifying the grid 
sampling method for sweeping over the defined parameter space. We set the maximum 
number of configurations to sweep to 100 iterations.

Performance metrics
Figure 4 shows a flowchart of the pollen classification steps using CNNs, including Input 
images, preprocessing steps, transfer learning models, and evaluation Metrics.
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This section evaluates the performance of various transfer learning models in clas-
sifying pollen grain images. The models are assessed based on accuracy, precision, 
recall, and F1-score. The evaluation uses a macro-average, which considers the over-
all study and assigns equal weight to each pollen species class. The macro-average 
is preferred because the dataset is relatively imbalanced, and all classes are equally 
significant. To analyze the experimental results, the confusion matrix is used, which 
provides guidance for the four outcomes: TP (True Positive), TN (True Negative), FP 
(False Positive), and FN (False Negative). These metrics used in this study provide 
insights into how well the model performs across all classes.

1. Accuracy estimates the ratio of correct predicted classes to the entire number of 
samples evaluated.

2. Recall (Sensitivity) is used to estimate the fraction of positive patterns that are accu-
rately classified.

3. Precision (Specificity) is used to estimate the positive patterns that are correctly pre-
dicted by all predicted patterns in a positive class. 

4. F1-score incorporates the precision and recall of a classifier into a single metric by 
using their harmonic mean.

(1)Accuracy:
TN + TP

TN + FN + TP + FP

(2)Recall:
TP

TP + FN

(3)Precision:
TP

TP + FP

(4)F1-score:
2 ∗ Precision ∗ Recall

Precision+ Recall

Fig. 4 Flowchart showing the pollen image classification process across several steps, including: (1) Input 
images; (2) Preprocessing step; (3) Transfer learning models; (4) Evaluation Metrics



Page 10 of 14Rostami et al. Journal of Big Data          (2023) 10:151 

Results and discussion
Classifying small datasets in computer vision is challenging and has been a topic of 
interest for many researchers [37, 38]. In our study, we addressed the issue of having 
a limited number of pollen images by comparing the performance of a scratch model 
and eleven transfer learning models. Our research builds upon a few automated clas-
sification methods for pollen grains that were developed using small datasets [19, 20, 
22, 23, 25]. In this study, we trained a CNN model from scratch with six layers, fine-
tuned the hyperparameters, and achieved an impressive accuracy of 91.87%. We also 
evaluated the performance of eleven transfer learning architectures on the classifica-
tion of pollen grain images. Despite imbalances in the dataset, the models achieved 
excellent values for accuracy (ranging from 92.87 to 97.24%), precision (ranging from 
93.50 to 97.89%), recall (ranging from 93.10 to 97.13%), and F1-score (ranging from 
92.40 to 96.86%). The best-performing models were ResNeSt-101 and SE-ResNeXt, 
with accuracy values of 97.24% and 97.05%, respectively. On the other hand, AlexNet 
had the lowest accuracy of 91.87%. The study also found that deeper neural networks 
in the ResNet architecture (ResNet-101>ResNet-50>ResNet-34>ResNet-18) per-
formed relatively better than shallower ones, indicating the importance of having 
more layers in the model to improve the learning of low and high-level features in 
pollen grain images. Table 2 and Figure 5 provide more information on each model’s 
precision, recall, and F1 scores.

The ViT has a shorter training time but may not perform well on small datasets 
due to its high capacity and complex architecture. ViTs require a significant amount 
of data to generalize well and may be overfitted on limited data [39]. In addition, 
ViTs apply self-attention mechanisms to capture global dependencies in the image 
but may not capture fine-grained details as effectively as models that use convolu-
tional layers, such as ResNeSt and SE-ResNeSt [40]. The ResNeSt-110 model has a 
deeper and wider architecture compared to the ViT model, which may contribute to 
its better performance in this study. The ResNeSt-110 model has 110 layers, while the 
ViT model has only 12 layers. Deeper architectures can capture more complex and 
abstract features, which may be necessary for accurately identifying pollen grains [41, 
42]. Additionally, the ResNeSt-110 and SE-ResNeSt models have a wider architecture, 

Table 2 Model performance of different transfer learning architectures in this study

The italic emphasis shows the most promising modeling performance

Accuracy (%) Precision (%) Recall (%) F1-score (%)

AlexNet 92.87 93.50 93.10 92.40

VGG-16 95.10 95.30 95.50 95.60

MobileNet-V2 94.78 96.04 95.68 95.74

ResNet-18 94.65 95.78 94.67 95.05

ResNet-34 95.32 94.78 94.57 94.47

ResNet-50 95.37 96.58 96.50 96.50

ResNet-110 96.84 96.86 96.28 96.43

ResNeSt-50 96.54 96.79 96.80 96.76

ResNeSt-101 97.24 97.89 97.13 96.86

SEResNeXt 97.05 97.66 97.31 97.01

ViT 95.95 95.71 95.46 95.54
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meaning that they have more channels in each convolutional layer, which allows them 
to capture more diverse and informative features from the pollen grain images.

On the other hand, the MobileNet-V2 network is a lightweight model that has the 
smallest number of parameters, making it more suitable for use in applications with lim-
ited storage space. However, its performance on pollen classification is lower than most 
other architectures. Therefore, we recommend using MobileNet-V2 architecture when 
high classification performance is not critical, such as when the model is used in a phone 
application. The slight decrease in classification accuracy can be tolerable in such cases.

ResNeSt and SE-ResNeXt architectures leverage multi-scale features in a nested way, 
which enables them to capture more complex patterns and features in the data. Spe-
cifically, ResNeSt uses a multi-scale group convolutional approach that divides the chan-
nels of each convolutional layer into groups and aggregates them hierarchically [33]. This 
allows ResNeSt to capture fine-grained details in the image and learn more discrimina-
tive features, which can lead to higher accuracy and precision. At the same time, the 
stacked blocks in SE-ResNeXt generate a highly effective model for the pollen grain 
dataset [34]. The SE-ResNeXt architecture is designed to enhance the representational 
power of a network by allowing dynamic channel-wise feature recalibration [34].

This study also found that increasing the number of layers is useful, especially in 
ResNet networks. However, increasing the number of channel groups in ResNeSt 
and SE-ResNeXt was more effective than increasing the depth. These techniques can 
enhance the accuracy without increasing the parameter complexity and simultaneously 
reduce the number of parameters. In conclusion, our analysis highlights the limita-
tions of using relatively shallow and simple models such as Alexnet, VGG, ResNet-18, 
and ResNet-34 for the pollen classification task. Our experimental results demonstrate 
that models with shortcut connections and Squeeze-and-Excitation networks, such as 

Fig. 5 The values of accuracy and loss for the top five best transfer learning models
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ResNeSt and SE-ResNeXt, outperform the other models on the pollen dataset. There-
fore, we recommend the use of these more advanced models for improved accuracy and 
performance in the context of pollen classification (Fig. 6).

Conclusion
In the context of pollen grain classification, transfer learning allows using pre-trained 
models on large image datasets to classify pollen grains more efficiently. With the 
approaches outlined here, we have demonstrated that we could achieve accurate clas-
sification results by fine-tuning a pre-trained model on a small dataset of pollen grain 
images while reducing the training time and computational resources required. This 
study demonstrated that increasing the complexity and depth of neural networks effec-
tively achieves reliable and efficient classification of pollen grains at low taxonomic 
levels. However, classifying pollen grain datasets using machine learning and deep neu-
ral networks is challenging due to the relatively small and imbalanced sets of images. 

Fig. 6 Confusion matrix for the 40 pollen species used for the training dataset pollen images from the 
Great Basin. Rows are species identities, and columns are CNNs species assignments. The color bar indicates 
frequency, with dark green being the most frequent. The diagonal elements are the frequency of correctly 
classified outcomes, while misclassified outcomes are on the off-diagonals
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Among the transfer learning techniques used, ResNeSt-101 and SE-ResNeXt performed 
exceptionally well, even though the CNN architecture utilized data from the ImageNet 
dataset, which has no image data similar to pollen grains. These techniques worked well 
because of their ability to capture multi-scale features, their deeper and wider architec-
ture, and their suitability for the task of pollen grain classification.

The findings of this research have significant implications for the study of the Great 
Basin Desert, as identifying pollen grains can provide insights into the plant species pre-
sent in the region, their distribution, and their interactions with other organisms. Fur-
ther research is needed to address the limitations of the proposed models, including a 
focus on potential bias in the dataset and improved interpretability of the model.
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