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Abstract 

Real-time object tracking and occlusion handling are critical research areas in com-
puter vision and machine learning. Developing an efficient and accurate object-
tracking method that can operate in real-time while handling occlusion is essential 
for various applications, including surveillance, autonomous driving, and robotics. 
However, relying solely on a single hand-crafted feature results in less robust track-
ing. As a hand-crafted feature extraction technique, HOG effectively detects edges 
and contours, which is essential in localizing objects in images. However, it does 
not capture fine details in object appearance and is sensitive to changes in lighting 
conditions. On the other hand, the grayscale feature has computational efficiency 
and robustness to changes in lighting conditions. The deep feature can extract features 
that express the image in more detail and discriminate between different objects. By 
fusing different features, the tracking method can overcome the limitations of indi-
vidual features and capture a complete representation of the object. The deep fea-
tures can be generated with transfer learning networks. However, selecting the right 
network is difficult, even in real-time applications. This study integrated the deep 
feature architecture and hand-crafted features HOG and grayscale in the KCF method 
to solve this problem. The object images were obtained through at least three con-
volution blocks of transfer learning architecture, such as Xception, DenseNet, VGG16, 
and MobileNet. Once the deep feature was extracted, the HOG and grayscale features 
were computed and combined into a single stack. In the KCF method, the stacked 
features acquired the actual object location by conveying a maximum response. The 
result shows that this proposed method, especially in the combination of Xception, 
grayscale, and HOG features, can be implemented in real-time applications with a small 
center location error.
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Introduction
In recent years, significant progress has been made in visual tracking for robotics appli-
cations [1, 2] and surveillance systems [3, 4]. The main focus has been on real-time 
implementation and addressing challenges related to occlusion. Despite numerous 
attempts to develop reliable tracking mechanisms, this area still has ongoing work.

Since the seminal work by Bolme et al. [5], correlation-based filters have become highly 
popular within the visual tracking community. These filter-based tracking methods are 
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well-known for their computational efficiency, making them particularly valuable for 
real-time applications [6, 7]. Bolme et  al. [5] introduced the minimum output sum of 
squared error (MOSSE), the first object-tracking method to use correlation filtering. To 
determine the target’s position, the Fast Fourier Transform (FFT) technique, and gray-
scale features represent the target image. Through FFT analysis, the tracker can iden-
tify the target’s position by locating the maximum response value, which is considered 
the target position. However, the grayscale may not capture all the object appearance 
data for tracking [8]. Numerous methods have been developed since then to enhance 
it. Henriques [9] suggested utilizing HOG features instead of grayscale features in the 
KCF method, where this algorithm extracts features from the observed object and con-
structs a set of feature samples with cyclic shifts. It then trains a classifier to predict the 
target position using ridge regression with a kernel method. The KCF tracking method 
employs a circulant matrix for sampling, leading to decreased complexity and improved 
tracking speed [9–12]. Although the outstanding tracking performance of KCF under 
normal circumstances, it cannot produce a reliable performance when faced with obsta-
cles such as occlusion [13].

Even though these methods have made significant progress, computer vision research-
ers are still working on addressing issues related to real-time implementation and occlu-
sion handling. Creating a reliable and effective system to imitate the human visual 
process is crucial in computer vision. Inspired by previous studies, one factor in effec-
tively tracking objects is extracting useful information to identify appropriate target 
characteristics from images. It helps avoid tracking errors that can accumulate in the 
KCF method and result in inaccuracies when determining the tracked object position. 
Several hand-crafted features, including HOG [10, 11], Harris corner detection [14], and 
Scale-Invariant Feature Transform (SIFT) [15], have been suggested in earlier studies. 
As a hand-crafted feature extraction technique, the HOG feature is extracted by calcu-
lating and counting the gradient direction histogram of the image’s local region, which 
helps capture the target’s contour and edges [16, 17]. It is essential in localizing objects 
in images. However, in practical application, it does not capture fine details in object 
appearance and is sensitive to changes in lighting conditions. On the other hand, the 
grayscale feature has computational efficiency and robustness to changes in lighting con-
ditions. However, it may not capture all the discriminative information needed for accu-
rate tracking.

Deep features can extract detailed information from images and distinguish between 
different objects. As of now, deep learning has been used for visual object tracking, 
yielding excellent results [11, 18–22]. In particular, transfer learning, which leverages the 
knowledge gained from a pre-trained model on a large dataset, enables the generation 
of deep features encompassing richer and more discriminative representations [18]. The 
deep features continuously learn more abstract deep characteristics. It can find the best 
feature representation from the target dataset and associate it with the original image, 
allowing for a more precise expression of the image and better distinguishing among 
various objects [19], and getting the essential image information [10]. The Hierarchical 
Convolutional Features tracker derives hierarchical convolutional features, which can 
extract deep features and use the multi-level correlation response maps to infer the tar-
get location. This tracker achieves 10–11 FPS, but when long-term occlusions occur, this 
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tracker fails to follow targets [23]. Furthermore, to obtain high tracking performance, 
Nam et al. proposed pre-train deep CNNs in multi-domains, with each domain corre-
sponding to one training video sequence, and achieved good tracking performance with 
1 FPS [24]. The Correlation Filter with anti-occlusion and multi-feature fusion has been 
proposed and achieves 5.89 FPS [6]. Even though deep model-based tracking methods 
can be applied to challenging situations, they still utilize a lot of hardware resources. 
Selecting a good network for real-time applications can be challenging as the depth of 
the network increases, resulting in higher-level feature abstractions that capture dis-
tinctive image characteristics. However, this limitation can be addressed by incorpo-
rating HOG and grayscale features from the extracted deep features. The use of such 
feature fusion has been widely applied in various domains, including feature fusion for 
improving image inpainting results [25, 26], high-resolution image reconstruction [27], 
and enhancing image quality [28]. It has also been employed with IoT devices for tar-
get-tracking purposes [29]. The fusion of features improves the overall performance and 
generates a more effective feature representation [30]. By leveraging the fusion of HOG 
and grayscale features from the extracted deep features, computational complexity, and 
resource requirements can be reduced while preserving crucial information. The track-
ing method can overcome the limitations of individual features and capture a complete 
representation of the object by fusing different features.

This paper proposed an approach to combine deep features with transfer learning 
architectures and hand-crafted features, namely HOG and grayscale. By doing so, this 
study aims to enhance the effectiveness of the KCF method and address concerns related 
to real-time single object tracking, as well as occlusion handling during specific dura-
tions. The primary contributions of this paper can be summarized as follows:

1. The present paper suggests an approach to improve the performance of the KCF 
tracking method in video tracking applications. Specifically, the proposed method 
combines deep feature architecture and hand-crafted features, including HOG and 
grayscale, to address two key challenges in tracking: real-time tracking and occlusion 
handling. The goal of this approach is to enhance the robustness of the KCF method 
under these conditions.

2. The present study employs transfer learning techniques to extract deep features from 
object images. Specifically, the transfer learning architectures Xception, DenseNet, 
VGG16, and MobileNet are utilized for this purpose. These techniques leverage the 
knowledge acquired from pre-trained models on a large dataset to enhance the fea-
ture extraction process. The object images are passed through a minimum of three 
convolution blocks belonging to the same transfer learning architecture to obtain 
deep features. Following the extraction of deep features, HOG and grayscale features 
are computed and integrated into a single stack. In the KCF method, the stacked fea-
tures are intended to acquire the actual object location by conveying a maximum 
response. The intention of this combination is to create a more comprehensive and 
robust feature representation for the object being tracked. By incorporating deep 
and hand-crafted features, the proposed method seeks to improve the accuracy and 
robustness of the KCF tracking method under various tracking conditions, including 
real-time tracking and occlusion handling.



Page 4 of 22Maharani et al. Journal of Big Data          (2023) 10:136 

The remainder of this paper is organized as follows. “Materials and method” section 
provides an overview of transfer learning, a key aspect of the proposed method. “Our 
approach” section presents a detailed description of the proposed method, includ-
ing integrating deep feature architecture and hand-crafted features such as HOG and 
grayscale. In “Results” section, three experimental datasets utilized in this study are 
introduced, and the experimental results obtained are analyzed and discussed. Finally, 
“Conclusion” section summarizes the major findings of this study and outlines future 
plans.

Materials and method
Xception

The Xception model was proposed in 2016 by François Chollet. This Xception architec-
ture model outperforms VGG-16, ResNet50, ResNet101, ResNet152, and Inception-V3 
on ImageNet. In its early version, the Xception model has its foundation, such as the 
original Inception [31] and the Inception-V3 [32]. The Inception method in a CNN is 
an intermediary step between ordinary convolution and depthwise separable convolu-
tion operations that are separated in-depth (followed by pointwise convolutions). The 
depthwise separable convolution is an Inception Module with many towers. Therefore, 
the observation findings suggest a deep CNN inspired by Inception. The inception mod-
ule can be substituted with depthwise separable convolutions Xception, which performs 
slightly better than Inception V3 with ImageNet (a large image classification dataset). 
Since Xception architecture and Inception V3 have the same number of parameters, 
there is an improvement in the performance due to more effective model parameters. 
The convolution layer aims to analyze 3D filters using two spatial dimensions (width 
and height) and channel dimensions. Both the cross-channel and spatial correlations 
must be mapped by a single convolutional kernel. This Inception module tries to sim-
plify and improve the process by breaking the procedure into a set of operations that will 
separately determine the cross-channel and spatial correlation. According to the core 
principle of Inception, it is not required to map cross-channel and spatial correlations 
concurrently. Exception’s “Extreme Inception” architecture features a 36-layer convolu-
tion as the feature extraction network [33]. The Xception architecture has 14 modules 
and consists of a linear stack of depth-wise separable convolution layers with residual 
connections. These 14 modules are further divided into three groups, including entry 
flow (4 modules), middle flow (8 modules), and exit flow (optional and fully connected 
layers). The data is transferred through the entry flow, and the middle flow repeated 
eight times, and finally, the exit flow. Batch normalization is applied to all Convolution 
and SeparableConvolution layers.

In this research, we applied the third convolution module in the entry flow for this fea-
ture extraction. Figure 1 illustrates the multiple channel result on three Xception blocks. 
The results of the three Xception convolution blocks show a variation in each channel, 
which can provide a rich feature representation for the tracked object. By combining 
the channels from the three Xception convolution blocks, a diverse and rich feature 
representation can be generated for the tracked object. Figure 2 shows the input of the 
Xception module is (299, 299, 3) with the average layer in the last layer. The pre-trained 
model has already learned useful features from a large dataset, and these features can be 
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leveraged to improve the performance of the new model. As more deep feature layers 
are added, the capacity for effective feature extraction also improves gradually. Deep fea-
tures are capable of acquiring diverse image feature descriptions through multiple con-
volution layers, each containing several convolutions that can generate distinct feature 
descriptions from the original image.

DenseNet

Dense Convolutional Network (DenseNet) network also aims to bring the issue of the 
vanishing gradient caused by the depth of the network [33, 34]. DenseNet establishes 
connections between every layer and all the other layers in a feed-forward model. Each 
layer receives inputs from all the previous layers and transmits its feature maps to all the 
following layers. Connections are established directly from any layer to all the follow-
ing layers. To transfer information from the previous layers to the next layers, the fea-
ture maps are merged through concatenation at each layer. The need to learn repetitive 
information is eliminated, resulting in a significant reduction in the number of param-
eters required for the model. To enable down-sampling in DenseNet architecture, the 

Fig. 1 Multiple channel results on three Xception convolution blocks

Fig. 2 Feature extraction with entry flow in Xception architecture
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network is divided into multiple dense blocks that are densely connected. The layers 
located between these blocks are referred to as transition layers, which perform con-
volution and pooling operations. These transition layers contain a batch normalization 
layer and a 1 × 1 convolutional layer, followed by a 2 × 2 average pooling layer. DenseNet 
has the capability to have narrow layers. Every layer within its block has access to all 
the previous feature-maps, resulting in the utilization of the network’s “collective knowl-
edge”. Following the last dense block, a global average pooling is carried out, after which 
a softmax classifier is appended.

In this research, we pruned the network of at least three convolutional blocks in the 
first dense block of DenseNet, as illustrated in Fig. 3. The input size of the image was 
set at (224, 224, 3). The first dense block in DenseNet comprised six layers that func-
tioned together to process the input image. These layers included a batch normalization 
layer, a ReLU activation layer, two 3 × 3 convolutional layers with 64 filters, and addi-
tional batch normalization and ReLU activation layers. The output feature maps of each 
layer were concatenated with the input feature maps of the next layer, rather than being 
added together. This ensured that each layer had access to all of the features learned by 
the previous layers, resulting in a more comprehensive representation of the input data. 
Additionally, since the outgoing feature maps did not modify the incoming feature maps, 
this concatenation approach helped to reduce the number of parameters required in the 
network. In the final layer, we added an average layer and produced three channels.

MobileNet

Previous research [35] has successfully detected an object effectively using this 
MobileNet method. MobileNet is a neural network structure intended for use on mobile 
and embedded devices that have limited computing resources. Its primary feature is the 
use of depthwise separable convolutions, which involves dividing the convolution into 
two steps: depthwise convolution and pointwise convolution. In the depthwise convolu-
tion step, each input channel is filtered separately, creating a set of feature maps. The 
pointwise convolution step then combines these feature maps using a 1 × 1 convolution 
to produce the final output. This approach reduces the number of parameters and com-
putations required compared to traditional convolutions.

In this research, the MobileNet network was pruned as illustrated in Fig. 4. The net-
work was designed to handle input images with a size of (224, 224, 3) and it comprised 
several layers including the convolutional layer, batch normalization layer, ReLU activa-
tion layer, and Depthwise convolution layer. Specifically, four convolutional layers were 

Fig. 3 Feature extraction with DenseNet
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employed in the network. The last layer of the network was equipped with an average 
layer that calculates the average value of all channels in each pixel. This approach helped 
to capture a more representative feature of the input image, which can enhance the 
accuracy and reliability of the tracking process. The use of multiple convolutional lay-
ers helped to extract more complex and high-level features of the input image, while the 
average layer helped to obtain a single feature vector that summarized the entire input 
image. Furthermore, the pruning technique employed in this research helped to reduce 
the computational cost and the number of parameters required by the network, which 
was crucial for achieving real-time performance in video-tracking applications.

VGG16

The VGG16 was first proposed by [36], who won the ILSVRC-2014 localization and 
classification tracks competition. It has a distinctive character compared to AlexNet 
[37], through its deep network structure with a minimal convolutional filter of 3 × 3. In 
the competition, six deep CNNs were employed. The VGG16 consists of 13 convolution 
layers and three fully connected layers [33]. Both networks employ a stack of 3 × 3 small 
convolutional filters with stride 1, followed by multiple non-linearity layers.

The design of VGG16, which has 16 layers of convolution, is very similar to that of 
AlexNet. The convolution layer portion, which features a 3 × 3 convolution with several 
filters and is chosen for feature extraction, receives the 224 × 224 picture input. Figure 5 
shows a convolution layer with 64,128, and 256 filters, followed by a Rectified linear unit 
(ReLU) activation function, MaxPooling (2 × 2) layer. The max pooling layer is added to 
reduce the spatial dimensions of the output. If it is completed up to the last layer in this 
VGG16 architecture, it will result in a vector of 1000 values. However, after conduct-
ing several experiments, we found that using only three blocks of convolutional layers in 
VGG16 produced good features and enabled real-time implementation.

Kernelized correlation filter (KCF) [9]

The KCF tracker is nominated as a fast tracker in the performance category due to its 
cyclic shift approach and simple principles [38]. KCF was first proposed by [9] as a clas-
sic conventional form of discriminating and a correlation filter framework. This set of 
methods learns to filter from a series of training samples. The KCF sample is created 

Fig. 4 Feature extraction with MobileNet
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using the cyclic shift technique, which allows for high frame rates [39]. The training and 
detection stages are the two basic KCF processes. In this case, the target is chosen as 
a binary classifier throughout the training phase. The traditional method of tracking 
involves trying to isolate a group of objects and solving linear regression issues. In order 
to get the data, linear regression attempts to describe the relationship between two vari-
ables using the appropriate linear equation. The equation form of linear regression:

where X is the explanatory variable and y is the dependent variable, b is the slope, and 
a is the intercept, which is the value of y when x = 0 . This KCF method concerns more 
with ridge regression because it has a simple closed-form solution with a more sophis-
ticated method [9]. Mathematically, the objective function of linear ridge regression is 
(2). The purpose of the training is to get the function f (z) = wTz that can minimize the 
square error of the sample xi and target yi.

Ridge regression has a closed-form solution by (3)

The detection obtained a finding that denotes the target location coordinates. Based 
on the previous research project [40], it was assumed that the tag of the training sam-
ple as 

{(

X1, y1
)

,
(

X2, y2
)

. . .
(

Xn, yn
)}

 to locate a purpose f (z) = wTz. Set of samples 
X = [X1, . . .Xn] as an image patch that has one sample per row xi , y is a regression target 
yi , and I is an identity matrix. KCF in this case will play in the Fourier domain which 
usually uses complex values such as:

where XH as a Hermitian transpose, XH = (X∗)T and X∗ as a complex conjugate from X . 
The KCF employs cyclic shift from the base sample to make a circulant matrix thus the 
linear regression becomes easier. The cyclic shift of X denoted as P = [X0,X1, . . .Xn−1]

T 

(1)y = a+ bX ,

(2)min
w�i

(

f (xi)− yi
)2

+ ��w�2,

(3)w = (XTX + �I)−1XTy.

(4)w = (XHX + �I)−1XHy,

Fig. 5 Feature extraction with VGG16
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where P is the permutation matrix. Cyclic shifts of all sample data matrix X = P(x) or 
called circulant matrix.

Discrete Fourier Transform (DFT) makes all circular matrices diagonal regardless of 
the vector x produced. It is presented as follows:

where F  is a Digital Fourier Transform (DFT), a constant matrix that does not depend 
on x and transforms the data into the Fourier domain, x̂ is a DFT vector, while FH is a 
Hermitian transpose of F  . Equation (6) is the eigen decomposition of the circular matrix. 
Back to Eq.  (4) where XHX as a noncentered covariance matrix so that if substituted 
with Eq. (6), it will become:

Since the diagonals of the matrix are symmetrical, calculating the Hermitian transpose 
leaves only the conjugate complex x̂∗. Also, we can remove the factor from FHF = 1 so 
that the equation becomes:

Since the operations on the diagonal matrix are element-wise, this can be defined as 
the element-wise product as ⊙ and yielded:

By substituting Eq. (4), we get the solution:

(5)X = P(x) =















x1 x2 x3 · · · xr
xr x1 x2 · · · xr−1

xr−1 xr x1 · · · xr−2

...
...
... . . .

...
x2 x3 x4 · · · x1















.

(6)X = F diag
(

x̂
)

FH ,

(7)XHX = F diag
(

x̂∗
)

FH F diag
(

x̂
)

FH .

(8)XHX = F diag
(

x̂∗
)

diag
(

x̂
)

FH .

(9)XHX = F diag
(

x̂∗ ⊙ x̂
)

FH .

(10)w =
(

F diag
(

x̂∗ ⊙ x̂
)

FH + �I
)−1

XHy,

(11)w =
(

F diag
(

x̂∗ ⊙ x̂
)

FH + �FHIF
)−1

XHy,

(12)w =
(

F diag
(

x̂∗ ⊙ x̂ + �
)−1

FH
)

XHy,

(13)w = F diag
(

x̂∗ ⊙ x̂ + �
)−1

FHF diag
(

x̂
)

FHy,

(14)w = F diag

(

x̂

x̂∗ ⊙ x̂ + �

)

FHy,
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Since Fw = ŵ , then:

Since the diagonal and vector matrices product is an element-wise only, then:

where x̂ = Fx is the DFT of x and x̂∗ s the complex conjugate of x̂ . In this case, the 
Inverse Fast Fourier Transform (IFFT) can be used to calculate the current w simply. 
The KCF tracker classifier is trained by minimizing the following features. Where λ, as in 
Eq. (2), represents the regularization parameter, the linear regression classifier does not 
show good results when the data is distributed in non-linearity. In this case, a classifier 
needs a more robust nonlinear regression function. The nonlinear problem’s low-dimen-
sional solution is mapped to the high-dimensional kernel space using a kernel technique 
that allows the KCF to extend the problem into nonlinear space. After mapping with the 
kernel function, the linear regression coefficient of linear problems in high-dimensional 
kernel space is:

Under the optimal conditions, the parameter α represents the coefficients, and ϕ(X) 
represents mapping with the Gaussian kernel. In a high-dimensional space, the linear 
regression function is:

So, Eq. (19) can be expressed as:

κ as a Gaussian kernel function, and the kernel function calculation method is:

where σ as a standard deviation, * represents complex conjugation. F−1 is an inverse 
Fourier transformation is a transformation that reverses the direction of the Fourier 
coefficients. As a result, the α equation is translated from the regression coefficient 
solution.

(15)Fŵ = diag

(

x̂∗

x̂∗ ⊙ x̂ + �

)

Fy.

(16)ŵ = diag

(

x̂∗

x̂∗ ⊙ x̂ + �

)

ŷ.

(17)ŵ = diag

(

x̂∗ ⊙ ŷ

x̂∗ ⊙ x̂ + �

)

,

(18)w =
∑

i

αiϕ(Xi).

(19)f (z) = wTz = wTϕ(z) =

n
∑

i=1

αiϕ(Xi)ϕ(z).

(20)f (z) =

n
∑

i=1

αiκ(zi,Xi),

(21)
κXX

′

= κ
(

X ,X ′
)

= exp

(

−
1

σ 2

(

||X ||2 +
∣

∣

∣

∣X
′
∣

∣

∣

∣

2
− 2F−1

(

X̂
∗
⊙ X̂′

))

)
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where K  as a mxm kernel matrix as:

A cyclic matrix can be proven to be the corresponding kernel matrix K .

The cyclic shift samples form a cyclic matrix in Eq. (5). Where ˆ as a DFT. κXX ′ is the 
first row of kernel matrix K = P

(

κXX
)

 . The sample can be checked after training α using 
the above procedure. All the specimens to be the Z observed are generated by the cyclic 
shift of the base sample z, and the training sample X is caused by the cyclic shift of the 
base sample X . The kernel matrix is:

It is possible to measure the response output value of all input samples according to 
Eq. (20):

For calculations efficiency, KZ can be diagonalized with DFT:

During the tracking process, particularly the updating process in the detection pro-
cess, f (z) is a match score for all cyclic shifts from the test image patch. In this case, the 
target position is estimated by calculating the highest value. The use of KCF through the 
implementation of goal tracking is considered an effective method since it achieves the 
fastest and highest efficiency among the recent top-performing methods. However, KCF 
cannot effectively track targets that vanish and appear again with varying scales [40]. 
The kernel tricks in KCF are used to transform our data into linear separable feature 
space with a higher dimension.

Our approach
This section presents the detailed methodology of the proposed approach, as illustrated 
in Fig. 6. In recent years, deep learning algorithms and their computer vision capabili-
ties have undergone significant advancements. Specifically, deep learning architectures 
are widely utilized for object classification tasks. As a result, in this study, deep learning 
architectures are utilized as a feature extraction method to distinguish between different 
objects.

The tracker’s first step is to choose a target and create a bounding box to obtain a tem-
plate object. The object is then passed through a learning transfer block, where a pre-
trained model is used to extract relevant features learned by the network. These learned 

(22)α = (K + �I)−1y,

(23)Kij = κ
(

Xi,Xj

)

.

(24)α̂ =
ŷ

K̂ XX ′
+ �

.

(25)KZ = P
(

KXZ
)

.

(26)f (z) =

n
∑

i=1

αiκ(zi,Xi) = KZTα.

(27)f̂ (z) = κ̂XZ ⊙ α̂.
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weights transform the input data into a new representation and initialize feature extrac-
tion layers. To learn to detect more complex features, at least three convolution blocks 
of each transfer learning method are used. By utilizing transfer learning with pre-trained 
models and selecting the appropriate network blocks, we can extract relevant high-level 
features for object tracking, improving the tracking algorithm’s efficiency. Addition-
ally, this approach can enable real-time implementation of the algorithm by reducing 
the computational load required for feature extraction. The convolution blocks become 
higher layers and are designed to average feature maps. The resulting grayscale image 
represents the most informative features and is used to calculate the HOG feature. By 
fusing the grayscale and HOG features, the tracking method can overcome the limita-
tions of individual features and capture a complete representation of the object. Thus, 
the fused features are used for KCF tracking. This approach allows for the comprehen-
sive tracking of an object by combining multiple features.

Deep features‑based transfer learning

Figure 7 shows the input image wxhx3 referring to an image with width w, height h, and 3 
color channels (red, green, and blue). In transfer learning, the image passes through sev-
eral layers to extract its features, which are typically done through a deep network model 
that has been previously trained on a large dataset. The last layer of the pre-trained deep 
neural network model is usually a classification layer consisting of several neurons with 
an activation function, which provides accurate classification results. However, in this 
research, the classification layer may not be relevant to the task at hand. Therefore, the 
last layer of the pre-trained model can be replaced with a new layer, such as an average 
layer, which produces an output of wxhx1 . This average layer calculates the average of 
features in each channel across the entire image and produces an output that represents 
the overall features of the image.

The grayscale and HOG features are used in KCF and make a good result in real-
time implementation and accuracy. Obtaining grayscale features from the transfer 
learning network can be a useful method for reducing input data dimensionality, 

Fig. 6 The overall framework

Fig. 7 Deep feature extraction with transfer learning
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improving computational efficiency, and increasing interpretability by showing the 
relative intensity of each pixel in all channels of the network, rather than the com-
bination of red, green, and blue values. And also, the grayscale feature can be used 
for the HOG feature that effectively detects edges and contours, which is essential in 
localizing objects in images. By combining various features, a tracking method can 
overcome the limitations of using only one feature and capture a more comprehensive 
representation of the object being tracked. This approach can improve the accuracy 
and robustness of the tracking method, as it allows for a more complete and diverse 
set of information to be used to track the object over time.

We used these weights for feature extraction and obtained the grayscale image, and 
also, from the grayscale, we could calculate the HOG feature. Nevertheless, deep fea-
tures depend on extensive datasets. We made use of HOG, while deep features were 
utilized to overcome the abstract feature extraction capability of HOG. When the 
multi-feature descriptions of deep learning are combined with HOG, it enhances the 
classical HOG by extracting features not only from the original image, resulting in an 
improved feature description ability.

Because of its quick characteristics as a tracker, the KCF tracker is currently being 
used. To test how it works, we have tried various settings. The tracker generally func-
tions better if the network is deeper, which significantly lengthens the implementa-
tion time. Therefore, deep feature extraction is much enhanced by using the third 
block of each learning transfer.

where (c, d) is a pixel index, e indicates the channels and x represents the input image, 
and f  is the activation function applied element-wise to the output. We utilize the 
weights of each transfer learning approach as feature extraction through fine-tuning 
phases in multiple channels. Thus, we can optimize the use of weights learned by the 
previous network to produce more relevant and representative features in the training 
and sample testing process. Fine-tuning stages are performed in multiple channels to 
ensure more accurate and effective feature extraction results. Equation  (28) calculates 
the output of a single filter in a convolutional layer by taking a weighted sum of the input 
pixels in the corresponding region of the image, applying an activation function, and 
outputting the resulting feature map. This process is repeated for each filter in the layer 
to produce a set of feature maps.

We put the benchmark sequences often utilized in the literature to the test. In this 
instance, we created a video file from the sequences. Additionally, the findings dem-
onstrate strong performance under challenging conditions. Objects in a scene can be 
obscured by other things. In such cases, the object may be completely hidden by oth-
ers, disguised in certain areas, or located behind other objects. Occlusion can cause 
the object’s visual model to briefly vary, which can pose a challenge for object-track-
ing techniques. Figure 8 illustrates the challenge faced by our proposed tracker when 
the object deals with partial and complete occlusion. Moreover, the results in Fig. 8 
demonstrate that the use of a fused feature in KCF leads to peak performance when 
occlusion is present.

(28)Feature map = f
(

xc,d,e
)

,
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Tracking strategy

After the input image has gone through three convolution blocks of transfer learning 
architecture, the last layer is with the average layer, which produces a grayscale feature 
with wxhx1 dimension. This single-channel feature is used to extract the HOG feature. 
The feature extraction aims to discover the candidate region’s characteristics that can 
specifically identify the target. The quality of the feature is the most significant direct 
influence on tracking results. A new kind of pattern detector can be found in each of 
the derived feature map channels. In this case, others are more sensitive to color infor-
mation and primarily distinguish textural elements, while some are highly discrimina-
tive regarding edges and corners [23]. In complex video environments, most tracking 
methods rely on subtle features, which can make them less robust and more susceptible 
to environmental changes. The HOG feature [41] is a descriptor that is unaffected by 
changes in object color information and rapidly characterizes an object’s local gradient 
characteristics. To take advantage of multiple feature extraction methods, both HOG 
and grayscale features are computed and combined into a single stack.

The grayscale feature as an image with a single channel computes the HOG features. 
The input image is first divided into small cells of size 4 × 4 pixels. Within each cell, 
the gradient orientations and magnitudes are computed, which are used to construct 
a histogram of gradient orientations. This histogram is divided into 9 bins, with each 
bin representing a range of gradient orientations. The HOG feature for each cell is then 
represented by the values in the corresponding 9 bins of its histogram. These cell-level 
HOG features are then concatenated to form a block. The block size determines how 
many cells are included in each block, and in this case, the block size is 8 × 8 pixels. To 
capture more information about the image, the blocks overlap with a stride of 4 × 4 pix-
els. This means that each cell is included in multiple blocks, and each block is partially 
overlapping with neighboring blocks. The final HOG feature vector is the concatenation 
of all the block-level HOG features. Afterwards, the two features are concatenated into 
one stack and used for KCF tracking.

The KCF method, which uses the surrounding images as a training sample to train 
the target detector, extracts the HOG feature from an image of a tracking target. Then 
we trained a kernelized correlation filter using the input from the stack. This method 
involved using a kernel to compute the correlation between an object template and the 
input image at each position in the image. First, an object template was selected which 

Fig. 8 The tracking result of the Gilr2 dataset when occlusion occurs
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feature had been extracted and a kernel was created with the same size as the template. 
Then, the kernel was applied to the input image at each position. A kernel is a func-
tion used to compute the correlation between the object template and the input image 
at each position. In this research, the kernel was created using a Gaussian kernel. The 
location with the highest correlation value is considered to be the location of the desired 
object by finding the maximum value in the response map (computed using Eq. 26). A 
tracking method is suggested below:

The initial goal position was used to train the model. In order to reduce boundary arti-
facts caused by circular shifts, the patch used was larger than the tracked object, and the 
patch input used a cosine window. The following frame was made as a test picture using 
the bounding box’s current location. Utilizing the test image as the place of the highest 
score, the target was discovered. The bounding box was further modified. Meanwhile, in 
a new position, the new model was trained. In this case, in order to supply memory for 
the tracker, the convex combination of the current and prior states was updated between 
alpha and x.

When the number of features is increased, the KCF method speed will substantially 
decrease. For features fusion, the HOG and grayscale feature are extracted and obtained 
z from discrete Fourier transform. Furthermore, κ(zi,Xi) is calculated using the Eq. (26). 
Then, parameter α in KCF is also determined. The output of regression values of all pos-
sible response regions of each feature = f̂ (zi) = κ̂Xzi ⊙ α̂ . We designed the response 
of each feature as presented in Fig.  9. Thus, we could get the target position with the 

Fig. 9 HOG, grayscale, and feature fusion response
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maximum response feature. The position corresponding to the maximum response is 
the target’s location being tracked. However, when partial occlusion occurs, the peak 
value may be affected and lead to inaccurate tracking results. In Fig. 9, multiple response 
peaks are generated by the KCF method using grayscale features and two HOG vector 
peaks. To improve the accuracy of the results, feature fusion is performed between deep 
grayscale features and HOG. The result of this feature fusion produces a single response 
peak with the maximum value. This occurs because deep features can extract more com-
plex features, making the object’s appearance more distinct than grayscale and HOG 
features used separately. Therefore, the use of deep gray and HOG feature fusion in the 
KCF method can significantly improve the accuracy and precision of object detection.

Experimental setup

a. Hardware setup
 All the implementation software ran on Windows using Keras with TensorFlow. 

v1.15, which is a backend to Keras [42]. The hardware setup was CPU i7 AMD Ryzen 
5 3500X 6-Core Processor and 64-bit operating system. The graphical processor unit 
was a single Nvidia Geforce GTX 1650.

b. Dataset
 Experiments on challenging videos dataset [43] show that the proposed approach 

has been successfully implemented. In this case, a sequence of images is converted to 
obtain a video file.

c. Evaluation metrics
 The evaluation of tracking algorithms is a critical aspect of object tracking. The 

Center Location Error (CLE) is a widely-used evaluation metric that calculates the 
Euclidean distance between the predicted object center location and the ground-
truth object center location. Another important metric is the Overlap Success Rate 
(OS%), which measures the overlap between the predicted and ground-truth bound-
ing boxes and compares it to the union of their areas. Additionally, precision and 
recall are commonly used to evaluate the performance of tracking algorithms. Pre-
cision measures the true positives about the sum of true positives and false posi-
tives, while recall measures the true positives concerning the sum of true positives 
and false negatives. These metrics are typically used to evaluate the performance of a 
tracking algorithm for each video with a threshold of 0.5.

Results
The goal of feature extraction is to discover features in the candidate region that get the 
target characteristics exclusively. The most significant direct influence on tracking out-
comes in object tracking comes from the feature’s quality. After passing through three 
block convolutional layers of transfer learning networks, we combine these HOG and 
grayscale features into a single stack to increase tracking and real-time implementation 
performance. When a complete occlusion occurs in the Girl2 dataset, the suggested 
approach effectively tracks the object.
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Our proposed method yields a significant increase compared to the vanilla KCF tech-
nique. The graph Fig. 10 shows that when a severe occlusion occurs at frame #109, the 
center location error significantly increases. This can be due to the fact that during a full 
occlusion, the object cannot be well detected using HOG and grayscale features in the 
KCF method. Both features heavily rely on image clarity and texture details, and thus, 
when a full occlusion occurs, these features may not provide sufficient information to 
track the object. However, when a full occlusion occurs at frame #109, the use of deep 
features with at least three convolutional layer blocks in transfer learning can overcome 
this issue. These features are generated from layers of convolutions and pooling that can 
extract information at increasingly complex levels.

Figure 11 shows the location error in using KCF MobileNet with the grayscale fea-
ture with CLE of 31.33 and KCF Densenet with HOG feature with CLE of 22.92, it 
shows that many points produce suddenly high error values. In addition, errors can 
also occur due to the weakness of these features in recognizing objects under certain 
conditions, such as when there is occlusion or poor lighting. However, location errors 
when using KCF Xception fusion and KCF Xception HOG indicate that both methods 
produce relatively small error values in partial and severe object occlusion conditions. 

Fig. 10 Center location error curves of Girl2 dataset (1st frame to 400th frame)

Fig. 11 Center location error curves of faceocc1 dataset (1st frame to 400th frame)
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The details are shown in Fig. 13b. This can be attributed to the ability of both meth-
ods to extract complex object features in various conditions, including occlusion 
conditions.

Figure 12 shows the results of an experiment that compares the performance of dif-
ferent fusion methods on a faceocc2 dataset. The results show that the KCF-Xception 
fusion method produces the lowest CLE with a value of 6.94, which is significantly 
lower than the other methods. The MobileNet fusion method produces the second 
lowest CLE after KCF-Xception with a value of 6.96. On the other hand, the KCF 
DenseNet Grayscale method produces the largest CLE with a value of 21.63. The 
Grayscale feature, which transforms images into grayscale before processing, leads to 
the loss of valuable color information that could be beneficial for object tracking. The 
use of deep features with transfer learning for object feature extraction in images can 

Fig. 12 Center location error curves of faceocc2 dataset (1st frame to 400th frame)

Fig. 13 CLE result of a girl2, b faceocc1, and c faceocc2 dataset
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result in lower CLE. This means that deep features can help improve the performance 
of object-tracking systems, especially in cases of object occlusion.

As in Fig.  13, the analysis of the error location plot on the girl2 dataset shows that 
the use of Baseline KCF with grayscale features still results in high error location values 
in some frames. The CLE value in using Baseline Vanilla KCF with grayscale features is 
45.22 pixels. This can be attributed to the limitations of grayscale features in recognizing 
objects in various conditions. In addition, Baseline KCF only uses one feature, so it can-
not extract features complexly on the tracked object. Furthermore, when the proposed 
deep grayscale feature with multiple layers was added, it was able to improve the results 
of the baseline KCF-grayscale feature on the girl2 dataset. The average location error 
produced by the deep grayscale feature on the girl2 dataset was 37.74 pixels, which is 
smaller compared to the baseline Vanilla KCF-grayscale feature. Furthermore, the dura-
tion of object occlusion has also been calculated, with an average of 56 frames for partial 
occlusion and 8 frames for severe occlusion.

From Table 1, the recall result, there is a significant variation in values, ranging from 
Vanilla HOG KCF with a recall of 0.69 to KCF-Xception Fusion with a recall of 0.93. 
Some values are relatively high, including KCF-Xception Fusion, KCF-DenseNet Fusion, 
and KCF Xception grayscale, indicating their ability could track the object. The method 
employing the green and red font indicates the highest and second-highest results. And 
also, Table 1 shows the deep feature HOG was able to produce an average CLE of 13.58 
pixels, which was significantly smaller compared to the baseline KCF-grayscale feature 
and KCF-deep grayscale feature. The use of the deep feature HOG in the KCF method 
improved the tracking performance compared to the KCF-deep grayscale feature. This 
deep feature fusion was able to achieve an average CLE error of 12.84 pixels, which is 
smaller compared to using only deep feature HOG or grayscale. These results demon-
strate that several transfer learning models, such as Xception, VGG16, MobileNet, and 
DenseNet with convolution blocks, can improve the recall, precision, OS, and CLE of 

Table 1 The performance of different transfer learning deep features models in the OTB-100 dataset
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the KCF method for object tracking. Moreover, adding a transfer learning module, fol-
lowed by the computation of either HOG or grayscale features or their fusion, has been 
shown to improve the performance of the KCF tracker.

Conclusion
This study integrated the deep feature architecture and hand-crafted features HOG 
and grayscale and allows for real-time implementation and effective occlusion han-
dling, a common challenge in tracking methods. By fusing different features, the track-
ing method can overcome the limitations of individual features and capture a complete 
representation of the object. These methods improve the feature extraction process by 
leveraging the information gained from pre-trained models. Once the input image is 
obtained through convolution blocks transfer learning architecture (such as Xception, 
VGG16, MobileNet, or DenseNet), the HOG and grayscale features are computed and 
combined in KCF methods. The result shows that the fusion of Xception transfer learn-
ing with HOG and grayscale in the KCF method significantly improves the recall, preci-
sion, OS, and CLE, and real-time implementation achieves up to 36 FPS. The study is 
limited by the duration of occlusion on the object, which is not too long, with an average 
of 56 frames for partial occlusion and 8 frames for severe occlusion, and focuses solely 
on single object tracking. In the future, we can explore the possibility of using object 
target tracking techniques for multiple object tracking. By doing so, we can enhance the 
efficiency and speed of real-world applications of object-tracking technology.

Abbreviations
KCF  Kernelized correlation filter
HOG  Histogram oriented gradient
DFT  Digital Fourier Transform
FFT  Fast Fourier Transform
IFFT  Inverse Fast Fourier Transform
CLE  Center location error
CNN  Convolutional neural network
FPS  Frame per second
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