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Abstract 

The existing Fisher’s exact test has been widely applied for investigating 
whether the difference between the observed frequencies is significant or not. The 
existing Fisher’s exact test can be applied only when the observed frequencies are 
in determinate form and has no vogues information. In practice, due to the complic-
ity in the production process, it is not always possible to have observed frequencies 
in determinate form. Therefore, the use of the existing Fisher’s exact test may mislead 
the industrial engineers. The paper presents the modification of Fisher’s exact test 
using neutrosophic statistics. The operational process, simulation study, and applica-
tion using the production data will be given in the paper. From the analysis of indus-
trial data, it can be concluded that the proposed Fisher’s exact test performs well 
than the existing Fisher’s exact test.

Keywords: Classical statistics, Neutrosophic, Indeterminate, Simulation, The power of 
the test

Introduction
Fisher’s exact test using classical statistics has been applied for investigating whether the 
observed frequencies from dichotomous distributions are associated with each other 
or independent from each other. Fisher’s exact test using classical statistics is usually 
applied for 2× 2 contingency table. The main aim of Fisher’s exact test is to test the null 
hypothesis that observed frequencies dichotomous distributions are associated vs. the 
alternative hypothesis that observed frequencies dichotomous distributions are inde-
pendent. According to Kanji [1], the test statistic 

(∑
p
)
 of Fisher’s exact test is calculated 

and compared with the specified level of significance (which is the probability of reject-
ing the null hypothesis when it is true) and the null hypothesis is rejected when the cal-
culated value of the test statistic is less than the level of significance, otherwise, the null 
hypothesis is not rejected. Chen [2] differentiate between the chi-square test and Fisher’s 
exact test for 2× 2 contingency table. Choi et al. [3] discussed the foundations and infer-
ence of 2× 2 contingency table. Zhong et  al. [4] discussed the application of the test 
for biological data. Ma and Mao [5] discussed the application of this test for scanning 
dependency. More information on Fisher’s exact test can be seen in [6–8].

Fuzzy-logic has the application where uncertainty is found in the data. To analyze 
the uncertain data, the statistical tests using classical statistics cannot be applied. The 
information about two measures (true and false) can be obtained from the fuzzy-based 
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analysis. The logic having more information in uncertainty is known as “neutrosophic 
logic” is introduced by [9]. Smarandache [10] discussed that the neutrosophic logic has 
an edge over the interval data analysis and fuzzy logic. Basha et al. [11] and Das et al. 
[12] discussed the applications of neutrosophic logic. Based on the idea of neutrosophic 
numbers, the idea of neutrosophic statistics was given by [13] and further investigated 
by [14, 15]. Neutrosophic statistics was found to be more informative and more efficient 
than classical statistics by [12, 16, 17].

The operational process of Fisher’s exact test using classical statistics is designed to 
analyze only the determinate or exact observed frequencies. The existing Fisher’s exact 
test cannot be applied when the observed frequencies are in intervals. By exploring the 
literature and best of the author’s knowledge, no efforts have been made to design Fish-
er’s exact test using neutrosophic statistics. In this paper, we will extend Fisher’s exact 
test using neutrosophic statistics. The test statistic of Fisher’s exact test will be modified 
to analyze the neutrosophic numbers. The power of Fisher’s exact test will be discussed 
and application will be given using the industrial data. It is expected that Fisher’s exact 
test under neutrosophic statistics will be more efficient than the existing Fisher’s exact 
tests in terms of the power of the test, information and flexibility.

The proposed fisher’s exact test
The exiting Fisher’s exact test under classical statistics is applied to investigate whether 
the difference between observed frequencies is significant or not. The existing Fish-
er’s exact test cannot be applied if the observed frequency is interval rather than the 
exact number. To overcome this issue, it is necessary to modify Fisher’s exact test 
using neutrosophic statistics so that an investigation about the difference in fre-
quency can be done in the presence of interval, fuzzy, imprecise and indeterminate 
data. Similar to Fisher’s exact test under classical statistics, the proposed Fisher’s exact 
test under neutrosophic statistics will be applied using a 2× 2 contingency table. Let 
aN = aL + aUIN ; IN ǫ[IL, IU ],bN = bL + bUIN ; IN ǫ[IL, IU ], cN = cL + cU IN ; IN ǫ[IL, IU ] , 
and dN = dL + dUIN ; IN ǫ[IL, IU ] be neutrosophic observed frequencies. Note here 
that the first values of observed frequency denote the determinate values, aUIN,bUIN
,cU IN,dUIN are indeterminate observed frequencies and IN ǫ[IL, IU ] is a measure of 
indeterminacy associated with observed frequencies. These measures can be cal-
culated from the imprecise data as (upper value-lower value)/upper value. Suppose 
that NN = NL + NUIN ; IN ǫ[IL, IU ] be the total observed frequency. A 2× 2 contin-
gency table to carry out Fisher’s exact test under the idea of neutrosophy is presented 
in Table  1 as follows, see [18, 19] for more details. The neutrosophic test statistic 
∑

pN ǫ
[∑

pL,
∑

pU
]
 for Fisher’s exact test is defined as

Table 1 A 2× 2 contingency table

Class 1 Class 2 Total

Sample 1 aL + aUIN bL + bUIN (aL + bL)+ (aU + bU)IN

Sample 2 cL + cUIN dL + dUIN (cL + dL)+ (cU + dU)IN

Total (aL + bL)+ (aU + cU)IN (bL + dL)+ (bU + dU)IN NL + NUIN
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where the first part 
∑

pL denotes the statistic of Fisher’s exact test under classical sta-
tistics, the second part 

∑
pUIpN denote the indeterminate part and IpN ǫ

[
IpL , IpU

]
 is the 

uncertainty measure associated with the proposed test statistic. The proposed test statis-
tic 

∑
pN ǫ

[∑
pL,

∑
pU

]
 reduces to the existing test statistic 

∑
pL when IpL=0. By follow-

ing [1], the test statistic of the proposed test can be written as

The proposed test statistic 
∑

pN ǫ
[∑

pL,
∑

pU
]
 can be expressed as

As mentioned in [1] “the summation is over all possible 2 × 2 schemes with a cell fre-
quency equal to or smaller than the smallest experimental frequency (keeping the row 
and column totals fixed as above)”.

The computed value of 
∑

pN ǫ
[∑

pL,
∑

pU
]
 is compared with the pre-specified level 

of significance α . The null hypothesis of independence between sample and class is 
rejected if 

∑
pN ǫ

[∑
pL,

∑
pU

]
< α , otherwise, the alternative hypothesis that sample 

(1)
∑

pN =
∑

pL +
∑

pUIpN ; IpN ǫ
[
IpL , IpU

]

(2)

∑
pN =

(aL + bL)!(cL + dL)!(aL + cL)!(bL + dL)!
NL!

∑

i

1
aiL!biL!ciL!diL!

+
(aU + bU )!(cU + dU )!(aU + cU )!(bU + dU )!

NU !
∑

i

1
aiU !biU !ciU !diU !

IpN ; IpN ε
[
IpL , IpU

]

(3)
∑

pN ǫ

{
(aL+bL)!(cL+dL)!(aL+cL)!(bL+dL)!

NL!

∑
i

1
aiL!biL!ciL!diL!

,
(aU+bU )!(cU+dU )!(aU+cU )!(bU+dU )!

NU !

∑
i

1
aiU !biU !ciU !diU !

}

Fig. 1 The procedure of Fisher’s exact test under classical statistics
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and class are not independent is not rejected. The operational procedure of the proposed 
Fisher’s exact test under classical statistics is discussed in Fig. 1.

Application using industrial data
In this section, the application of the proposed test is given using the information 
obtained from the manufacturing industry. Two machines A1 and A2 work for an hour 
and produced defective items in intervals. To explain the process of the proposed test, a 
2× 2 contingency table is extracted from [20] and the data is shown in Table 2. Indus-
trial engineers are interested to investigate there is a significant difference between the 
performance of machines A1 and A2 . As mentioned before, the neutrosophic-based tests 
have the ability to analyze the interval-based data more effectively than the tests using 
classical statistics.

The neutrosophic test statistic is derived by computing all conceivable combinations 
utilizing the hypergeometric distribution, as outlined in Table  3. The minimum value 
among these combinations is identified and compared against all other combinations to 
ascertain those below this minimum. It’s important to emphasize that these combina-
tions are carefully selected to ensure that both the row and column totals remain con-
sistent with those presented in Table 2.

Based on the possible combinations in Tables 2, 3, 
∑

pN is calculated as

The simplified neutrosophic form of 
∑

pN ǫ[0.9218, 0.8980] is given as 
∑

pN = 0.9218− 0.8980IpN ; IpN ǫ[0, 0.0267] . Suppose that α=0.05. The calculated val-
ues of 

∑
pN ǫ[0.9218, 0.8980] will be compared with 0.05. By comparing the values of 

statistic 
∑

pN ǫ[0.9218, 0.8980] with 0.05, the values of statistic 
∑

pN ǫ[0.9218, 0.8980] is 
greater than 0.05, therefore, the industrial engineers do not reject the null hypothesis H0 
of no difference between the performance of machines A1 and A2 . Figure 2 depicts the 
operational procedure of the proposed Fisher’s exact test for the production data.

∑
pN =

2!36!11!27!

38!

{
1

10!26!
+

1

2!11!25!

}
+
2!47!16!33!

49!

{
1

15!32!
+

1

2!16!31!

}
IpN ; IpN ǫ

[
IpL , IpU

]

Table 2 A 2× 2 contingency table of machines and production

Machines A1 A2 Total

Production time [1, 1] [1, 1] [2, 2]

Number of defective [10, 15] [26, 32] [36, 47]

Total [11, 16] [27, 33] [38, 49]

Table 3 1st combination of the original data

Note that the bold numbers are showing the totals

[0,0] [2,2] [2,2]
[11,16] [25,31] [36,47]
[11,16] [27,33] [38,49]
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Advantages based on industrial data
The proposed Fisher’s exact test using neutrosophic statistics is a generalization 
of several tests. Now, the efficiency of the proposed Fisher’s exact test under neu-
trosophic statistics will be compared with Fisher’s exact test using Fisher’s exact 
test under classical statistics, interval-statistics, and Fisher’s exact test using fuzzy 
logic in terms of information and adequacy. To compare the efficiency of vari-
ous tests, the neutrosophic statistic 

∑
pN ǫ

[∑
pL,

∑
pU

]
 obtained for the produc-

tion data will be considered. The neutrosophic form of the statistic from the data is 
given as:

∑
pN = 0.9218− 0.8980IpN ; IpN ǫ[0, 0.0267] . Note that the first value 

∑
pL

=0.9218 presents Fisher’s exact test under classical statistics and 0.8980IpN is an inde-
terminate part, and IpN ǫ[0, 0.0267] is a measure of indeterminacy associated with 
∑

pN ǫ
[∑

pL,
∑

pU
]
 . The proposed statistic 

∑
pN ǫ

[∑
pL,

∑
pU

]
 reduces to Fisher’s 

exact test under classical statistics when IpL=0. By comparing the proposed Fisher’s 
exact test under neutrosophic statistics with Fisher’s exact test under classical sta-
tistics, it can be seen that the proposed Fisher’s exact test under neutrosophic sta-
tistics provide the values of statistic 

∑
pN ǫ

[∑
pL,

∑
pU

]
 in indeterminate interval 

with the measure of indeterminacy. For example, for testing the null hypothesis at 
a level of significance α=0.05, the proposed Fisher’s exact test under neutrosophic 
is explained as: the probability of accepting the null hypothesis is 0.95, the probabil-
ity of committing an error is 0.05 and the measure of indeterminacy is 0.0267 . From 

Fig. 2 The procedure of Fisher’s exact test for production data
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the comparison, it is clear that the proposed Fisher’s exact test under neutrosophic 
is more efficient and more informative than Fisher’s exact test using classical statis-
tics. Now, the efficiency of the proposed Fisher’s exact test under neutrosophic sta-
tistics will be compared with Fisher’s exact test using interval-statistics. The statistic 
∑

pN ǫ
[∑

pL,
∑

pU
]
 using interval-statistics only capture the data inside the interval. 

The statistic 
∑

pN ǫ
[∑

pL,
∑

pU
]
 using interval statistic tells that the values of the test 

statistic may vary from 0.9218 to 0.8980 . Similarly, Fisher’s exact test using fuzzy-logic 
gives information about the measure of truth that is 0.95, and the measure of falseness 
that is 0.05. Like the interval-statistics, it tells that the statistic 

∑
pN ǫ

[∑
pL,

∑
pU

]
 

may change from 0.9218 to 0.8980 under uncertain environment. From the analysis, 
it is concluded that the proposed Fisher’s exact test under neutrosophic statistics has 
an edge over the three Fisher’s exact tests. Therefore, the use of the proposed Fish-
er’s exact test under neutrosophic statistics in the production industry will give more 
information and facilitate the decision-makers in the presence of an indeterminate 
environment.

Simulation study
To see whether the measure of indeterminacy IpN ǫ

[
IpL , IpU

]
 affects the deci-

sion about the null hypothesis or not. To study this affect, various intervals val-
ues of 

∑
pN ǫ

[∑
pL,

∑
pU

]
 are considered in Table  4. The neutrosophic forms of 

∑
pN ǫ

[∑
pL,

∑
pU

]
 for the selected values of 

∑
pN ǫ

[∑
pL,

∑
pU

]
 , the measure 

of indeterminacy IpN ǫ
[
IpL , IpU

]
 , and the decision about the null hypothesis are also 

reported in Table  4. From Table  4, it can be seen that 
∑

pN ǫ
[∑

pL,
∑

pU
]
 increases, 

Table 4 Effect of indeterminacy
∑

pNǫ
[∑

pL,
∑

pU
] ∑

pL +
∑

pUIpN ; IpN ǫ
[
IpL , IpU

]
Decision

∑
pNǫ[0.04, 0.01] 0.04− 0.01IpN ; IpN ǫ[0, 3] Reject H0∑
pNǫ[0.09, 0.05] 0.09− 0.05IpN ; IpN ǫ[0, 0.80] Do not reject H0∑
pNǫ[0.14, 0.10] 0.14− 0.10IpN ; IpN ǫ[0, 0.40] Do not reject H0∑
pNǫ[0.19, 0.15] 0.19− 0.15IpN ; IpN ǫ[0, 0.27] Do not reject H0∑
pNǫ[0.24, 0.20] 0.24− 0.20IpN ; IpN ǫ[0, 0.20] Do not reject H0∑
pNǫ[0.29, 0.25] 0.29− 0.25IpN ; IpN ǫ[0, 0.16] Do not reject H0∑
pNǫ[0.34, 0.30] 0.34− 0.30IpN ; IpN ǫ[0, 0.13] Do not reject H0∑
pNǫ[0.39, 0.35] 0.39− 0.35IpN ; IpN ǫ[0, 0.11] Do not reject H0∑
pNǫ[0.44, 0.40] 0.44− 0.40IpN ; IpN ǫ[0, 0.10] Do not reject H0∑
pNǫ[0.49, 0.45] 0.49− 0.45IpN ; IpN ǫ[0, 0.09] Do not reject H0∑
pNǫ[0.54, 0.50] 0.54− 0.50IpN ; IpN ǫ[0, 0.08] Do not reject H0∑
pNǫ[0.59, 0.55] 0.59− 0.55IpN ; IpN ǫ[0, 0.07] Do not reject H0∑
pNǫ[0.64, 0.60] 0.64− 0.60IpN ; IpN ǫ[0, 0.07] Do not reject H0∑
pNǫ[0.69, 0.65] 0.69− 0.65IpN ; IpN ǫ[0, 0.06] Do not reject H0∑
pNǫ[0.74, 0.70] 0.74− 0.70IpN ; IpN ǫ[0, 0.06] Do not reject H0∑
pNǫ[0.79, 0.75] 0.79− 0.75IpN ; IpN ǫ[0, 0.05] Do not reject H0∑
pNǫ[0.84, 0.80] 0.84− 0.80IpN ; IpN ǫ[0, 0.05] Do not reject H0∑
pNǫ[0.89, 0.85] 0.89− 0.85IpN ; IpN ǫ[0, 0.05] Do not reject H0∑
pNǫ[0.94, 0.90] 0.94− 0.90IpN ; IpN ǫ[0, 0.04] Do not reject H0∑
pNǫ[0.99, 0.95] 0.99− 0.95IpN ; IpN ǫ[0, 0.04] Do not reject H0
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the values of IpN ǫ
[
IpL , IpU

]
 decreases. For example, when 

∑
pN ǫ[0.01, 0.04] , the values 

of IpN is IpN ǫ[0, 3] . When 
∑

pN ǫ[0.95, 0.99] , the values of IpN is IpN ǫ[0, 0.04] . In addition, 
it can be noted when IpN ǫ[0, 0.80] are fewer, although the values of 

∑
pN ǫ

[∑
pL,

∑
pU

]
 

changes but no effect on the null hypothesis when comparing with α=0.05. We note that 
the larger values of IpN affect the decision about the null hypothesis. For example, when 
IpN ǫ[0, 3] , the decision about the null hypothesis is changed from “Do not reject H0 ” to 
“reject H0 ”. From the study, it is clear that the larger values of the measure of uncer-
tainty/indeterminacy affect the decision about the null hypothesis. Therefore, industrial 
engineers should be very careful in making decisions in the presence of uncertainty.

Sensitivity analysis
The sensitivity of the proposed Fisher’s exact test under neutrosophic statistics will 
be discussed now. The values of IpN ǫ

[
IpL , IpU

]
 are shown in Table  4. From Table  4, 

it can be seen that when 
∑

pN ǫ
[∑

pL,
∑

pU
]
 changes from [0.79, 0.75] to [0.89, 

0.85], the values of the measure of indeterminacy remain the same that is 0.05. When 
∑

pN ǫ
[∑

pL,
∑

pU
]
 changes from [0.94, 0.90] to [0.99, 0.95], the values of the meas-

ure of indeterminacy remain the same that is 0.04. Similarly, there is not much change 
in IpN ǫ

[
IpL , IpU

]
 when 

∑
pN ǫ

[∑
pL,

∑
pU

]
 changes from [0.34, 0.30] to [0.44, 0.40]. 

This analysis shows that the change in the statistic 
∑

pN ǫ
[∑

pL,
∑

pU
]
 change the val-

ues of IpN ǫ
[
IpL , IpU

]
 but it does not affect the decision about the null hypothesis. From 

the analysis, it is concluded that the proposed test is sensitive for the higher values of 
IpN ǫ

[
IpL , IpU

]
.

Power of the test
This section presents the discussion on the power of Fisher’s exact test under neutro-
sophic statistics. Suppose that α and β be the probability of rejecting H0| true and the 
probability of accepting H0| false. The power of the test is denoted by (1− β).

By following Nosakhare and Bright [21], the steps used to calculate β are given as.

Step-1: Generate a set of 10,000 random samples of the test statistic 
∑

pN

Step-2: Compare the values of 
∑

pN with the level of significance and record 
whether the null hypothesis H0 is rejected or accepted.
Step-3: Determine the values of β (Type II error rate) by the ratio of the number of 
erroneous conclusion to the total number of replications.

Table 5 The values of power of the tests

α (1− β)

0.01 [0.9895, 0.9418]

0.02 [0.9789, 0.8994]

0.04 [0.9589, 0.8284]

0.05 [0.951, 0.801]

0.08 [0.9183, 0.7184]

0.10 [0.8978, 0.6705]

0.15 [0.8527, 0.569]

0.20 [0.8036, 0.4878]
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The values of (1− β) for various values of α are shown in Table 5. The power curve for the 
proposed Fisher’s exact test under neutrosophic statistics is shown in Fig. 3. As mentioned 
earlier, the proposed Fisher’s exact test under neutrosophic statistics reduces to Fisher’s exact 
test under classical statistics when no uncertainty is found. The lower line in Fig. 3 shows 
the power of the indeterminate part and the upper curve shows the power of the test for 
the determinate part. Overall, Fig. 3 shows the power of the test for Fisher’s exact test under 
neutrosophic statistics. From Fig. 3, it is clear that as the values of α increases, the power of 
Fisher’s exact test under neutrosophic statistics decreases. For example, when α = 0.01 , the 
power of the test ranges from 0.9857 to 1. When α = 0.10 , the power of the test ranges from 
0.8978 to 0.6705. The first value 0.9878 presents the power of the test under classical statis-
tics. It is clear that the power of the test reduces from 0.8978 to 0.6705; therefore, the use 
of the existing test under classical statistics may mislead decision-makers. In a nutshell, it is 
concluded that in the case of neutrosophy, the power of the test is in indeterminate intervals 
rather than the exact values. This study shows that the proposed test is more flexible than the 
existing Fisher’s exact test.

Effect of indeterminacy on level of significance

Now, we will discuss the effect of indeterminacy on the level of significance. To study 
this effect, various values of specified values of levels of significance are considered to 
assess the effect of uncertainty. Suppose that α0 denote the pre-defined/specified level of 
significance and let α̂N ǫ[α̂L, α̂U ] denote the computed level of significance from the fol-
lowing simulation process.

Step-1: Generate a set of 10,000 random samples of the test statistic 
∑

pN

Step-2: Compare the values of 
∑

pN with the level of significance and record 
whether the null hypothesis H0 is rejected or accepted.
Step-3: Determine the values of α̂N ǫ[α̂L, α̂U ] (Type I error rate) by the ratio of the 
number of rejection conclusions to the total number of replications.

Fig. 3 The power curve of Fisher’s exact test under neutrosophic statistics
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By implementing the above simulation process, the values of α̂N ǫ[α̂L, α̂U ] are placed 
in Table 6. From Table 6, it can be noted that lower values of α̂N are the same as the α0 . 
But it is worth noting that the upper values of α̂N are larger than α0 . In addition, it can be 
noted that as α0 , there is an increase in α̂N . From the study, it is clear while implement-
ing the test under uncertainty, the level of significance may change from α0 . For example, 
when α0=0.05, the computed α̂N is α̂N ǫ[0.05, 0.20] . We can see that level of significance 
changes from 0.05 to 0.20 which can affect the decision related to the null hypothesis.

Concluding remarks
In this paper, Fisher’s exact test under neutrosophic statistics was presented. The design of 
the proposed Fisher’s exact test under an indeterminate environment was given. The opera-
tional procedure was explained with the help of industrial data. The proposed Fisher’s exact 
test was a generalization of the existing Fisher’s exact test under classical statistics. Based 
on the analysis and the simulation studies, it is concluded that the proposed test efficiently 
indicates a change in the power of the test and the level of significance when the test is 
implanted in the presence of imprecise data. The use of the proposed test is quite adequate 
to be applied in the uncertain environment as compared to the existing test. Based on the 
analysis and simulation studies, the application of the proposed Fisher’s exact test is rec-
ommended in the industry where the production data is ambiguous, imprecise, and or in-
intervals. For future research, other statistical properties of the proposed Fisher’s exact test 
under neutrosophic statistics can be studied. Another fruitful area of the research may the 
extension of the proposed Fisher’s exact test using other sampling schemes.
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