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Abstract 

Precision farming (PF) plays a crucial role in the field of agriculture to solve the chal-
lenges of food shortages in society. Heterogeneity, multicollinearity, and outliers are 
problems in PF because they can cause bias and lead to incorrect inferences. However, 
traditional methods typically assume it to be a homogenous model, and in machine 
learning, data scientists ignore heterogeneity. In this study, the aim is to identify 
the heterogeneity parameters and develop hybrid models before and after heteroge-
neity. Data on seaweed is collected using sensor smart farming technology attached 
to v-Groove Hybrid Solar Drier (v-GHSD). There are 29 drying parameters, and each 
parameter has 1914 observations. We considered the highest order up to the second 
order interaction, and the parameters increased to 435 parameters from 29 param-
eters. In high-dimensional data, the number of observations is less than the number 
of parameters. The authors proposed a method using the variance inflation factor 
to identify the heterogeneity parameters. Seven predictive models such as ridge, 
random forest, support vector machine, bagging, boosting, LASSO and elastic net are 
used to select the 15, 25, 35 and 45 significant drying parameters for the moisture 
content removal of the seaweed, and hybrid models are developed using robust sta-
tistical methods. For before heterogeneity, the hybrid model random forest M Hampel 
with 19 outliers is the best, because it performs better when compared to other 
models. For after heterogeneity, the hybrid model boosting M Hampel with 19 outliers 
is the best, because it performs better when compared to other models. These results 
are vital to seaweed precision farming. The study of heterogeneity will not only help 
us to comprehend the dynamics of the large number of the drying parameters, 
but also gives a way to leverage the data for efficient predictive modelling.

Keywords:  Big data, Precision agriculture, Heterogeneity, Machine learning, Forecast, 
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Introduction
Farming involves the growing of crops and the rearing of livestock. It is a source of 
raw materials for industries. The traditional methods used by farmers are not pre-
cise, which leads to manual labour and the consumption of time [1]. Precision farm-
ing (PF) plays a vital role in the field of agriculture to solve the challenges of food 
shortages in society. The PF method is a subset of smart farming technologies (SFTs) 
that deals with information systems, the internet of things (IoT), precision agriculture 
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systems, artificial intelligence, cloud computing, farm management, wireless sensor 
networks, robotics, and automation of agriculture [2, 3]. The merit of the method is 
that it boosts farm profits and cuts down the cost of production [6].

Seaweeds are also called macroalgae. They are like plant organisms attached to 
rocks or rock layers. In addition, they grow in lakes, oceans, rivers, and water bodies 
[7, 8]. It a crucial source of fat, carbohydrates, vitamins, fibre, and ash, as well as pro-
teins and beta-carotene [9]. For example, seaweed is useful in many forms (for exam-
ple, powder, fresh, salted, canned, dried or extracts) for eating by humans or as feeds, 
biofuels, medicines, and fertilisers [10]. (See Fig. 1 for the stages involved in seaweed 
pre-harvest and post-harvest of seaweed).

One of the post-harvest problems with seaweed is the high moisture content. 
According to [11], seaweed is easily damaged when it is very fresh. Therefore, this 
demands that seaweed be dried after harvesting. The drying of seaweed is used to 
reduce the moisture content [15]. The biomass weight of seaweed during transporta-
tion will be decreased, which makes it available for additional processing [12]. Dry-
ing also reduces storage, transportation, and processes to prevent losses and increase 
value [14]. The types of drying are freeze-drying (direct drying method), conventional 
drying and microwave- assisted drying (solar). See Fig. 2 for details. A solar drier is 
the most efficient drying method for seaweed and can dry the water content faster 

Fig. 1  Seaweed processing application [25]
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[16]. These authors [13, 17–19] have employed solar driers in their studies. The drying 
parameters using v-Groove Hybrid Solar Drier (v-GHSD) were monitored effectively 
by [13, 17]. Furthermore, the internet of things (IoT) based solar drying system using 
the v-Groove Hybrid Solar Drier (v-GHSD) was more effective in monitoring the dry-
ing behaviour [13, 15]. All the parameters involved in solar drying should be studied 
to reduce the moisture content of seaweed, improve food quality and quantity. How-
ever, the methods Density-Based Spatial Clustering of Applications (DBSCAN), Clus-
tering Large Applications (CLARA), Partitioning About Medoids (PAM) and multiple 
linear regression were used to find the optimal parameters to increase the production 
of crops [24].

ML algorithms are used to model complicated problems that humans cannot under-
stand because of their complexity. In addition, these algorithms are useful to detect dis-
eases, predict soil parameters, predict crop yield, and detect species [1, 6].

A study conducted by [26] on fish drying investigated the moisture content using 
ridge regression in conjunction with eight selection criteria. The most significant factors 
influencing the moisture content and the interaction terms were investigated. From the 
results, the important drying parameters can be predicted from the moisture content of 
fish. Research by [27] on the drying parameters that determined the moisture content 
removal of seaweed was investigated. From the results, bagging performed better than 
boosting in determining the drying parameters of the seaweed, but heterogeneity was 
not considered.

Big data analysis comes with many challenges, such as outliers, and multicollinearity. 
Many studies have been conducted on how to handle these problems. Another prob-
lem facing big data is heterogeneity and there is insufficient knowledge about heteroge-
neity, especially in the field of agriculture using seaweed big data. In addition, the data 
obtained in big data has varied sources and some are structured and unstructured [28]. 
All these complexities make the data complicated to analyse. Heterogeneity refers to 
variation in the data. This variability needs to be investigated to avoid wrong results and 
inferences.

Heterogeneity is a problem in the field of agriculture. For example, [29] found that 
there is substantial heterogeneity driving the forces of the rice ecosystem. The results 
showed that the adoption of each management method has heterogeneity. According to 
[30], heterogeneity was based on the spatial characteristics and behaviour of the par-
ticipants, which influenced decision making. In the study of hydrological response to 
heterogeneity using a variable infiltration capacity model by [31], accounting for hetero-
geneity in land use gives better responses to hydrology and evapotranspiration. A study 
on the effects of ignoring heterogeneity showed that ignoring heterogeneity results in 
overestimation of the technical efficiency and underestimation of the parameters of the 
models [32]. The study on farmland heterogeneity revealed that under different ecosys-
tem services (ES). The changes in heterogeneity are not the same, there is a need for 
improvement in the ES to understand the market, especially for pest regulation and crop 
production [33]. According to [34], the effect of temperature on yield was a significant 
heterogeneity and it was an eye opener for adaptation between cooler and warmer coun-
ties. The study on bird diversity by [35] revealed that the community is affected by crop-
land heterogeneity and cropland size.
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Additionally, there is little research on the parameters influencing the moisture con-
tent removal of seaweed. Even in the literature found, few researchers have worked on 
seaweed big data. Also, few studies considered the interaction terms in seaweed drying. 
There is no study that compared the outliers before and after heterogeneity. Finally, there 
is no study on heterogeneity using big data in agriculture, especially on the moisture 
content removal of seaweed.

A lot of studies have been done on outliers and multicollinearity, but not on heter-
ogeneity. In fact, we do not find any literature in the agricultural field that addresses 
heterogeneity using drying parameters. Hence, this study focuses on how to detect the 
heterogeneity of drying parameters and develop hybrid models to determine the signifi-
cant parameters of the moisture content removal of seaweed. Interaction effects up to 
the second order for the seaweed big data are incorporated into the model. In addition, 
hybrid models using seven supervised ML algorithms with robust estimation are utilised 
to determine the significant parameters that determine the moisture content removal 
of the seaweed and reduce the number of outliers. The accuracy of the ML algorithms 
is also investigated via evaluation metrics. Finally, the impact of the errors is also com-
pared before and after heterogeneity.

Materials and methods
Seven supervised machine learning algorithms such as ridge, random forest, support 
vector machine, bagging, boosting, LASSO and elastic net will be used to determine 
the significant parameters for the moisture content removal of the seaweed before and 
after heterogeneity. In addition, robust methods are utilised for the development of the 
hybrid models. The flowchart in Fig. 3 states the procedure and methodology used in 
this research.

Data description

The data are collected from 8th April 2021 to 12th April 2021, between the hours of 
8:00 am to 5:00 pm during the drying of seaweed by using v-Groove Hybrid Solar Drier 
(v-GHSD) at Semporna, South-Eastern Coast of Sabah, Malaysia. Some of the param-
eters are temperature, relative humidity ambient, relative humidity chamber, and solar 
radiation. Table 1 shows the 29 main parameters, and each parameter has 1914 observa-
tions in this study, which is equivalent to 536,870,912 equations. Each observation area 
is evaluated as a parameter and the region is considered to simplify the system. This is 
not feasible to deal with because of the time and complexity. The addition of the second 
order interaction to the main 29 seaweed drying parameters increased all the parameters 
to 435. Optimization by selecting the first 15, 25, 35 and 45 high-ranking important vari-
ables is performed.

Phase I

This involves the addition of all possible models up to second order and testing of 
assumptions. According to [15], the total number of models can be calculated by using 
Eq. 1.
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Fig. 3  Flowchart for the study

Table 1  Representation of parameters

Symbols Factors Meanings

Y Dependent Moisture content

H1 Independent Relative humidity ambient

H5 Independent Relative humidity chamber

PY Independent Solar radiation

T1 Independent Temperature ( ◦C ) ambient

T2, T3, T4 Independent Temperature ( ◦C ) prior to entering the solar collector

T5 Independent Temperature ( ◦C ) in opposite the down v-Groove (solar collector)

T6, T8 Independent Temperature ( ◦C ) in front of the up v-Groove (solar collector)

T7, T14, T15, T16, T21, T22 Independent Temperature ( ◦C ) for the solar collector

T9, T10, T11, T12 Independent Temperature ( ◦C ) behind the inside chamber

T13, T17, T19 Independent Temperature ( ◦C ) in the front of (inside chamber)

T23, T25, T26, T27, T28, 29 Independent Temperature ( ◦C ) from the solar collector to the chamber
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where N  represents number of possible models, k is the total number of explanatory 
variables and j = 1, 2, 3, . . . , k . The assumptions of linearity, errors, observations, inde-
pendent variables, and heterogeneity are checked in the R programming language. Then 
ridge, random forest (RF), support vector machine (SVM), boosting, bagging, ridge, 
LASSO and elastic net are used to select the significant parameters that determine the 
moisture content removal. The 15, 25, 35 and 45 parameters are selected because fea-
tures selection can only provide the rank of important variables and does not tell us 
the number of significant factors [36]. Next, the validation metrics are computed using 
mean absolute percentage error (MAPE), mean squared error MSE and coefficient of 
determination (R2).

Phase II

Next, the computation of VIF is done with vif from the car library in R using the origi-
nal data. This gives the range of the values for the variances before we compute the 
R-squared and 90% confidence interval. If the model has a value that falls below the max-
imum R-squared, then it exhibits heterogeneity. The models that exhibit heterogeneity 
are excluded and the models that do not exhibit heterogeneity are included. Then, the 
ML algorithms in phase I are used to select the 15, 25, 35 and 45 significant parameters.

Phase III

Next, the hybrid models are developed for before and after heterogeneity using robust 
methods. Data with outliers can be analysed by using robust estimation [37, 38]. The 
robust methods that are used are M Bi-Square, M Hampel, M Huber, MM and S. Finally, 
the validation metrics are computed using the 3—sigma limits to identify the number of 
outliers. The sigma limits are used for quality improvement [41].

The v‑Groove Hybrid Solar Drier (v‑GHSD)

In this study, v-Groove Hybrid Solar Drier (v-GHSD) was used for drying the sea-
weed. Solar drier is a used in precision agriculture to dry foods by using solar energy to 
improve the quality of food and reduce wastage. The v-GHSD drier (Fig. 4) comprises a 
solar panel, a v-aluminium roof, a drying chamber solar collector, and sensors using the 
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Fig. 4  v-Groove Hybrid Solar Drier (v-GHSD)
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internet of things to retrieve data. All the parameters are to receive data from different 
locations of the drying drier. The sensors are positioned to measure the data for temper-
ature, solar radiation, relative humidity, and moisture content. IoT cloud database was 
used to understand the performance and the interaction of drying parameters during 
identified drying period and then, the data are stored in cloud database for every second 
and later converted to thirty minute intervals for performing analysis and identifying 
heterogeneity parameters and reduce the multicollinearity and outliers, using the pro-
posed model to determine the moisture content removal.

Heterogeneity identification

Heterogeneity refers to variability of observations. This variability leads to inconsistent 
estimates and distort conclusion [42]. Suppose we have this multiple linear regression 
(MLR)

where Y  is the moisture content, estimates β′s are the regression coefficients, T ′s are the 
drying parameter, aj denote heterogeneity, that is, the parameters that exhibit heteroge-
neity and ε  is the random error. In Eq. 2, a common problem is the issue of multicollin-
earity, and this happens when many variables that are correlated and significant not only 
with dependent variable, but also with each other. Our interest in this equation is aj . In 
Eq. (2), if we estimate the regression equation and omit a crucial variable, then the esti-
mate of β will be biased and inconsistent. According to [43], the variance inflation factor 
in multiple regression is used to quantify the level of severity. It can be computed with

Which means that R2
= 1− 1

VIF .

If the R2 satisfied certain conditions, then the parameter is said to exhibit heterogeneity.

Evaluation metric

The suitability and accuracy of the models were evaluated using the mean absolute per-
centage error (MAPE), mean squared error (MSE) and coefficient of determination ( R2 ). 
The metrics are stated in Table 2, where yi is the actual value and y is the mean of the 
actual value and ŷi is the forecast value.

(2)Y = β0 + T1β1 + T2β2 + · · · + aj + ε

(3)VIFl =
1

1− R2
l

Table 2  Evaluation metric

Metrics Equations Description

MAPE 100
n

∑n
i=1

∣∣∣ yi−ŷi
yi

∣∣∣ It is widely used because it is easy to interpret and due to its scale-independency 
[44].

MSE 1
n

∑n
i=1

(
yi − ŷi

)2 This is good for given weights to outliers that need to be identified [45].

R2

1−

∑
(yi−ŷi)

2

∑
(yi−y)2

This gives the proportion of variance in the dependent variable which can be 
predicted from the independent variables. R2 lies between 0 and 1 [45, 46].
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Statistical power for percentage change and absolute change

Statistical power is the probability of a test to reject a false null hypothesis. Statistical 
power = P(reject H1|H1 is false) where H1 is the null hypothesis. For a t-test, the equa-
tion becomes P(|t|> tα/2) = P(Pt < α) where tα/2 represents t-value under the level of sig-
nificance α and Pt is the t-test p-value.

where BMAPE  and AMAPE are the MAPE before and after heterogeneity.
To know the best indicator to use between percentage and absolute change, the statis-

tical power must be compared [47]. Statistical power was compared through simulation 
[48]. According to [49], absolute change was used to study the weight change. Absolute 
change was used to investigate change in obesity by [50]. Percentage change was used 
to study change in loss of fat by [51]. A test statistic that compared the maximum likeli-
hood of an absolute change to a percentage change was developed by [52]. According to 
[53], the percentage change is not affected by the unit of measurement, but the paper did 
not explain how to choose between absolute and percentage change.

For the evaluation, if R =
Statistical power of absolute change
Statistical power of percentage change

> 1 [47], then absolute change 
has a better statistical power than percentage change, then we choose absolute change, 
otherwise, we choose percentage change.

Results and discussion
In this research, the assumptions of linear regression are verified to understand the data. 
The heterogeneity parameters among the seaweed drying parameters are identified. To 
determine the significant factors that determine the moisture content removal of the 
seaweed, seven popular supervised machine learning algorithms such as ridge, random 
forest, support vector machine, bagging, boosting, LASSO, and elastic net are utilized. 
Furthermore, metric validations were conducted, and hybrid models were developed.

The variability of the 29 main parameters is shown in Fig.  5. Each box-plot repre-
sents each drying parameter for the seaweed and helps to understand the heterogeneity 
among the main parameters. The points outside the box-plot are the outliers. A box-
plot uses the 5-number summary of Q1, Q2, Q3, minimum and maximum value to sum-
marise the data. The assumptions of linearity between the dependent and independent 
variables are checked. No linear relationship exists between them. The assumption of 
no multicollinearity among the independent variables is not satisfied. The values of the 
variance inflation factor (VIF) are high, the highest value of the VIF was 75,337.29. It 
shows the high level of multicollinearity. The assumption that the observations are inde-
pendent is also checked using the Durbin Watson Test. From the results we obtained, 
the p-value of 0 is less than the significance level α = 0.05, which shows that the residu-
als are autocorrelated. It means that the observations are not independent. In addition, 
the normality assumption is also checked with the Kolmogorov–Smirnov test. The the 
p-value = 2.2e−16 which is less than 0.05 means we have enough evidence to say that the 

(5)Percentage changePc =
BMAPE − AMAPE

BMAPE
× 100

(6)Absolute changeAc = |BMAPE − AMAPE |
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residuals do not come from a normal distribution. Figures 6, 7, 8, 9, 10, 11 and 12 show 
the standardised residual plots for the ridge, RF, SVM, bagging, boosting, LASSO and 
elastic net for before and after heterogeneity.

Based on these results in Table  3, the parameters T7, T11, H5, T6, T8, H1, and PY 
exhibit heterogeneity. This is also evident in Fig.  5. After removing the seven param-
eters that exhibit heterogeneity and including the second order interaction, there are 253 
parameters that determine the moisture content removal of the seaweed. The selection 
of important features was used by [54, 55]. The summary of the assessment results for 
the ML models is stated in Table 4. However, before the heterogeneity parameters are 
removed, all validation model measures reveal that random forest outperforms other 
models in predicting the significant parameters. In addition, evaluation measures with 
MAPE (2.125891), MSE (7.330011) and R-squared (0.9732063), indicate that significantly 

Fig. 5  Box-plot for the seaweed drying parameters

Fig. 6  Comparison between the standardized residuals for 45 highest ranking variables for ridge before and 
after heterogeneity
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better results are obtained by random forest for the 45 highest important variables when 
compared to the 45 highest important variables for other models for significant param-
eters that determine the moisture content removal. After the heterogeneity parameters 
are removed, all validation model measures also reveal that random forest outperforms 
ridge, support vector machine, bagging, boosting, LASSO, and elastic net in predicting 
the significant parameters that determine the moisture content removal of the seaweed.

In addition, evaluation measures with MAPE (7.588079), MSE (44.39000) and 
R-squared (0.8377405) indicate that significantly better results are obtained by ran-
dom forest for the 45 highest important variables when compared to the 45 highest 
important variables for ridge, support vector machine, bagging, boosting, LASSO, 
and elastic net significant parameters that determine the moisture content removal. 
Since the random forest algorithm performed better than the other methods based 

Fig. 7  Comparison between the standardized residuals for 45 highest ranking variables for random forest 
before and after heterogeneity

Fig. 8  Comparison between the standardized residuals for 45 highest ranking variables for support vector 
machine before and after heterogeneity
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on the results of the metrics, the 15, 25, 35 and 45 highest important variables for 
random forest are the most important parameters that accurately forecast the mois-
ture content removal of the seaweed. This also confirms the results of [27, 54, 59, 60] 
where random forest absolutely performed better than the other methods. All the val-
ues for MAPE random forest are less than 10. It is sufficient to say that this is a high 
prediction accuracy for the predictive model. This is in line with [61] which claims 
that if MAPE value is less than 10, it is a high prediction accuracy.

By comparing the metric validation for after and before heterogeneity parameters 
are removed, generally for ridge, random forest, support vector machine, bagging, 
boosting, LASSO, and elastic net in Table 3, the MAPE and MSE after the heteroge-
neity parameters are removed are higher than the values of MAPE and MSE when the 

Fig. 9  Comparison between the standardized residuals for 45 highest ranking variables for bagging before 
and after heterogeneity

Fig. 10  Comparison between the standardized residuals for 45 highest ranking variables for boosting before 
and after heterogeneity
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heterogeneity parameters have not been removed in the model. Also, the R-squared 
values after heterogeneity parameters are removed are lower than the R-squared 
before heterogeneity is removed. The results have shown that the removal of some 
variables can reduce the accuracy of the model.

The heterogeneity parameters that were removed did not increase the accuracy of the 
model. According to [62], if an MAPE validation is equal or less after the removal of a 

Fig. 11  Comparison between the standardized residuals for 45 highest ranking variables for LASSO before 
and after heterogeneity

Fig. 12  Comparison between the standardized residuals for 45 highest ranking variables for elastic net 
before and after heterogeneity

Table 3  Heterogeneity parameters

Lowest VIF Highest VIF Lowest R squared Highest R-squared 90% CI Heterogeneity 
parameters

3.067297 75,337.29 0.67398 0.999987 [0.786375, 0.8875918]T7, T11, H5, T6, T8, 
H1, PY
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parameter, it does not mean that the parameter has no effect on the response variable. It 
means that the variability level in the data was not enough to be explained by the model.

The percentage change for ridge 15, bagging 15, LASSO 15 and elastic net is positive. 
This represents 14.3% of the total number of models and the few cases where MAPE 
before heterogeneity is higher than MAPE after heterogeneity. The percentage change 
of 24 models is negative, which means that the MAPE before heterogeneity is lower than 
the MAPE after heterogeneity. This represents 85.7% of the total number of models. 
Random forest 15, 25, 35 and 45 models have the highest negative percentage change 
compared to other models.

In summary, through the validation metrics, the ability of ridge, random forest, sup-
port vector machine, bagging, boosting, elastic net, and LASSO is evaluated to accom-
plish more substantial and significant conclusions. The results are shown in Table 4 for 
all models. It is observed that random forest shows higher accuracy than other models 
models. This proves the superiority of random forest before and after heterogeneity over 
the other models and it leads to higher accuracy with the lowest errors. According to 
[54] the number of parameters is crucial because it will reduce the training time and 
avoid the curse of dimensionality.

Table 4  Determination of optimal machine learning models before and after heterogeneity

ML 
models

High 
ranking 
variables

Metric validations before 
heterogeneity

Metric validations after 
heterogeneity

Absolute 
change

Percentage 
change

MAPE MSE R2 MAPE MSE R2

Ridge 
(control)

15 14.64603 83.92337 0.6932309 13.45105 82.84078 0.6971881 1.194980 8.159071

25 11.50656 56.4660 0.7935971 12.63606 75.31612 0.7246934 1.129500 − 9.81614

35 10.0306 48.23541 0.8236828 12.00500 70.29434 0.7430497 1.974400 − 19.68380

45 9.657189 44.48745 0.8373829 11.95927 69.44397 0.7461581 2.302081 − 23.83800

Random 
forest

15 2.458969 9.910512 0.9637737 9.885843 67.35215 0.7538052 7.426874 − 302.03200

25 2.337353 9.010273 0.9670644 7.909333 47.21578 0.8274099 5.571980 − 238.38800

35 2.174667 7.790909 0.9715216 7.663343 45.15805 0.8349317 5.488676 − 252.39200

45 2.125891 7.330011 0.9732063 7.588079 44.39000 0.8377405 5.462188 − 256.93600

Support 
vector 
machine

15 8.614626 45.25618 0.8347612 11.77207 77.48160 0.7169731 3.157444 − 36.65210

25 7.980399 35.80985 0.8691446 11.15354 71.12697 0.7401082 3.173141 − 39.76170

35 7.568951 34.00095 0.8757802 10.89938 68.85807 0.7484105 3.330429 − 44.00120

45 7.351331 32.38644 0.8816661 10.62685 66.33326 0.7575719 3.275519 − 44.55680

Bagging 15 12.25897 74.29053 0.7284423 11.30002 66.52011 0.7568458 0.958950 7.822440

25 9.778194 47.33173 0.8269861 10.62821 57.44370 0.7900233 0.850016 − 8.69298

35 8.413645 36.41955 0.8668739 9.417039 48.41542 0.8230248 1.003394 − 11.92580

45 8.151903 33.65611 0.8769752 8.983211 45.01187 0.835466 0.831308 − 10.19770

Boosting 15 8.168942 142.4542 0.5310293 13.09470 217.8164 0.3416015 4.925758 − 60.29860

25 8.697362 136.3236 0.5543729 13.16813 215.4273 0.346658 4.470768 − 51.40370

35 8.183671 140.1463 0.5368431 12.78951 208.6947 0.3629861 4.605839 − 56.28080

45 8.203304 134.0864 0.5569358 8.228835 135.3237 0.5510545 0.025531 − 0.311230

LASSO 15 14.39656 101.8853 0.6275736 12.27376 74.04000 0.7293580 2.122800 14.74519

25 10.82264 52.90467 0.806615 11.65852 67.91064 0.751763 0.835880 − 7.72344

35 8.977735 37.69348 0.8622172 11.60206 67.40559 0.7536091 2.624325 − 29.23150

45 8.149872 31.57626 0.8845778 11.52189 66.86088 0.7556002 3.372018 − 41.37510

Elastic Net 15 13.12778 78.47416 0.7131497 12.31004 73.09066 0.7328282 0.817740 6.22908

25 9.485387 41.90456 0.8468243 11.72084 68.13366 0.7509478 2.235453 − 23.56730

35 9.051548 37.81546 0.8617713 11.64224 67.48376 0.7533234 2.590692 − 28.62150

45 8.191381 32.53884 0.8810592 11.66734 67.30154 0.7539895 3.475959 − 42.43430
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The comparison of the statistical power is shown in Table 5. The ratio of the test sta-
tistic for absolute change to percentage change is less than 1. This shows that percentage 
change has better statistical power than absolute change to explain the results and draw 
valid conclusions.

Table 6 shows the results of the hybrid model and the original model before and after 
heterogeneity for 45 high-ranking variables. The 3-sigma limits are also provided to 
identify the number of outliers and make comparisons. For the ridge before heteroge-
neity, the best robust estimator is M Hampel with 16 outliers, while the original has 23 
outliers.

For the random forest before heterogeneity, the best robust estimator is M Hampel 
with 19 outliers, while the original has 45 outliers. For the support vector machine 
before heterogeneity, the best robust estimator is M Hampel with 23 outliers and the 
original has 24 outliers. For the elastic net before heterogeneity, the best robust estima-
tor is M Hampel and M Huber with 33 outliers, while the original has 29 outliers. With 
these results. For before heterogeneity, M Hampel robust estimation performs better 
than M Bi-Square, M Huber, MM and S.

For the ridge after heterogeneity, the best robust estimators are M Bi-Square and MM 
with 22 outliers, while the original has 29 outliers. For the random forest after heteroge-
neity, the best robust estimator is M Hampel with 29 outliers, while the original has 41 
outliers. For the support vector machine after heterogeneity, the best robust estimator 
is M Bi-Square with 27 outliers, while the original has 24 outliers. For the bagging after 
heterogeneity, the best robust estimator is M Hampel with 21 outliers, while the origi-
nal has 28 outliers. For the elastic net after heterogeneity, the best robust estimator is 
M Hampel and M Huber with 23 outliers, while the original has 33 outliers. With these 
results. For after heterogeneity, the ridge performs better with M Bi-Square and MM. 
Random forest, bagging and boosting perform better with M Hampel. Support vector 
machine and LASSO perform better with M Bi-Square. The elastic net performs better 
with M Hampel and M Huber.

Generally, the outliers using the 3-sigma limits for before and after heterogeneity indi-
cate that for the original model, the number of outliers increases from before heteroge-
neity to after heterogeneity for ridge, LASSO, and elastic net. It is constant for support 
vector machine. It decreases for random forest, bagging and boosting.

Conclusions and future work
The heterogeneity parameters are identified, and hybrid models were developed to fore-
cast the significant drying parameters that determine the moisture content removal of 
the seaweed after drying. Seven predictive models, such as ridge, random forest, support 
vector machine, bagging, boosting, LASSO, and elastic net are used for determining the 

Table 5  Comparison of statistical power

Absolute change Percentage change Remarks

Test statistic 8.0924 − 3.4367 8.0924
−3.4367

< 1

Percentage change will be used since the ratio is less 
than 1

P-value 1.078e−08 0.001921

Df 27 27
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significant parameters in conjunction with robust methods. These hybrid models are 
useful for determining the significant parameters that determine the moisture content 
removal of the seaweed. For before heterogeneity, the hybrid model random forest M 

Table 6  Comparison between the number and percentage of outliers outside the 3-sigma limits for 
the original and hybrid models for 45 high-ranking variables

ML models Robust method µ± 3σ(%) Remarks

Before 
heterogeneity

After heterogeneity

Ridge (control) Original 23(1.20) 29(1.52) Increase

M Bi-Square 25(1.31) 22(1.15) Decrease

M Hampel 16(0.84) 24(1.25) Increase

M Huber 35(1.83) 28(1.46) Decrease

MM 63(3.29) 22(1.15) Decrease

S 33(1.72) 32(1.67) Decrease

Random forest Original 45(2.35) 41(2.14) Decrease

M Bi-Square 26(1.36) 34(1.78) Increase

M Hampel 19(0.99) 29(1.52) Increase

M Huber 25(1.31) 33(1.72) Increase

MM 85(4.44) 48(2.51) Decrease

S 75(3.92) 30(1.57) Decrease

Support vector machine Original 24(1.25) 24(1.25) Constant

M Bi-Square 27(1.41) 27(1.41) Constant

M Hampel 23(1.20) 28(1.46) Increase

M Huber 27(1.41) 28(1.46) Increase

MM 80(4.18) 68(3.55) Decrease

S 82(4.28) 36(1.88) Decrease

Bagging Original 31(1.62) 28(1.56) Decrease

M Bi-Square 34(1.78) 28(1.46) Decrease

M Hampel 28(1.46) 21(1.10) Decrease

M Huber 30(1.57) 26(1.36) Decrease

MM 79(4.13) 31(1.62) Decrease

S 75(3.92) 29(1.52) Decrease

Boosting Original 15(0.78) 14(0.73) Decrease

M Bi-Square 33(1.72) 25(1.31) Decrease

M Hampel 29(1.52) 19(0.99) Decrease

M Huber 31(1.62) 25(1.31) Decrease

MM 94(4.91) 26(1.36) Decrease

S 81(4.23) 31(1.62) Decrease

LASSO Original 26(1.36) 35(1.83) Increase

M Bi-Square 37(1.93) 42(2.19) Increase

M Hampel 38(1.99) 27(1.41) Decrease

M Huber 41(2.14) 33(1.72) Decrease

MM 73(3.81) 43(2.25) Decrease

S 54(2.82) 33(1.72) Decrease

Elastic Net Original 29(1.52) 33(1.72) Increase

M Bi-Square 36(1.88) 28(1.46) Decrease

M Hampel 33(1.72) 23(1.20) Decrease

M Huber 33(1.72) 26(1.36) Decrease

MM 74(3.87) 30(2.25) Decrease

S 51(2.67) 26(1.36) Decrease
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Hampel with 19 outliers is the best, because it performs better when compared to other 
models. For after heterogeneity, the hybrid model boosting M Hampel with 19 outliers is 
the best, because it performs better when compared to other models.

For future studies, the traditional statistical methods and machine learning models 
for predicting the moisture content removal of seaweed can be compared. The number 
of selected drying parameters can be increased or all the parameters with interaction 
can be used. Other robust estimators such as least trimmed squares (LTS), least absolute 
deviation (LAD) and least median of squares (LMS) estimators can be used to develop a 
hybrid model.
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