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Abstract
Triple-negative breast cancer (TNBC) is a relatively aggressive breast cancer subtype 
due to tumor relapse, drug resistance, and multi-organ metastatic properties. 
Identifying reliable biomarkers to predict prognosis and precisely guide TNBC 
immunotherapy is still an unmet clinical need. To address this issue, we successfully 
constructed a novel 25 machine learning (ML) algorithms-based immune infiltrating 
cell (IIC) associated signature of TNBC (MLIIC), achieved by multiple transcriptome 
data of purified immune cells, TNBC cell lines, and TNBC entities. The TSI index was 
employed to determine IIC-RNAs that were accompanied by an expression pattern 
of upregulation in immune cells and downregulation in TNBC cells. LassoLR, Boruta, 
Xgboost, SVM, RF, and Pamr were utilized for further obtaining the optimal IIC-RNAs. 
Following univariate Cox regression analysis, LassoCox, CoxBoost, and RSF were 
utilized for the dimensionality reduction of IIC-RNAs from a prognostic perspective. 
RSF, Ranger, ObliqueRSF, Rpart, CoxPH, SurvivalSVM, CoxBoost, GlmBoost, SuperPC, 
StepwiseCox, Enet, LassoCox, CForest, Akritas, BlackBoost, PlsRcox, SurvReg, GBM, and 
CTree were used for determining the most potent MLIIC signature. Consequently, 
this MLIIC signature was correlated significantly with survival status validated by 
four independent TNBC cohorts. Also, the MLIIC signature had a superior predictive 
capability for TNBC prognosis, compared with 148 previously reported signatures. 
In addition, MLIIC signature scores developed by immunofluorescent staining of 
tissue arrays from TNBC patients showed a substantial prognostic value. In TNBC 
immunotherapy, the low MLIIC profile demonstrated significant immune-responsive 
efficacy in a dataset of multiple cancer types. MLIIC signature could also predict 
m6A epigenetic regulation which controls T cell homeostasis. Therefore, this well-
established MLIIC signature is a robust predictive indicator for TNBC prognosis and 
the benefit of immunotherapy, thus providing an efficient tool for combating TNBC.
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Introduction
Triple-negative breast cancer (TNBC) is broadly defined as a particular subtype of 
breast cancer, which is negative for estrogen receptor-negative (ER), progesterone recep-
tor-negative (PR), and human epidermal growth factor receptor 2 (HER2) expression. It 
is indisputable that TNBC is rather aggressive because of its tumor relapse, drug resis-
tance, and multi-organ metastatic properties [1]. Platinum-based drugs, PARP inhibi-
tors, and immunotherapeutics represented by antibody-drug couples, PD-L1/PD-1 
checkpoint inhibitors, and their diverse combination modalities are now becoming 
prominent options for the clinical management of TNBC [2, 3]. Meanwhile, the molecu-
lar heterogeneity of TNBC and the continuing deficiency of therapeutically successful 
approaches beyond chemotherapy, have made TNBC characterized by poor progno-
sis [4]. Therefore, identifying reliable biomarkers to predict outcomes and precisely 
guide TNBC treatment decisions is still an unmet clinical need and warrants further 
investigation.

The tumor microenvironment (TME) is a highly complex multicellular entity consist-
ing of tumor cells, immune cells, cancer-associated fibroblasts (CAFs) and adipocytes 
(CAAs), endothelial cells, extracellular matrix, and mesenchymal stem cells. In recent 
years, the advancement of multi-omics techniques has unearthed and unveiled the 
molecular heterogeneity characteristics within TNBC TME, highlighting the intensive 
dynamic correlations between the cancer cells and other non-neoplastic cells [5]. The 
tumor landscape deciphered by multi-omics, especially in TME complexity, may ben-
efit the in-depth understanding of the TNBC oncogenesis, progression, and transfor-
mation. Immune cell types in TME are abundant, including various types of B cells, T 
cells, tumor-associated macrophages (TAMs), dendritic cells (DCs), and CAFs. These 
immune cells constitute the primary effector cells of the cancerous immune response, 
thus determining the TNBC prognosis significantly. For example, studies have demon-
strated that patients with a high abundance of tumor-infiltrating lymphocytes (TILs) 
have higher performance in terms of overall survival (OS), disease-free survival (DFS), 
and complete pathological response (pCR), compared with patients with low levels of 
TILs [6]. Similarly, similar results are also observed in the CD4 + and CD8 + TIL popula-
tions, which strongly suggests that TIL could serve as a significant predictor for TNBC 
prognosis. In the age of big data, a variety of high-throughput data are developing, and 
making appropriate use of these data as a tool is commonly the key to understanding 
cancer mechanisms and justifying cancer treatment. Moreover, by integrating genomics, 
metabolomics, and other data, prediction algorithms using machine learning (ML) can 
accurately and rapidly process massive data for elucidating the molecular characteristics 
of TNBC at multiple scales [7]. The ML employment will provide efficient tools for min-
ing novel and reliable markers, tumor prognosis and metastasis prediction, and hierar-
chical patient management [8–11].

Although previously reported algorithms have emphasized the intriguing character-
istics of immune-related genes in judging TNBC prognosis, there were no comprehen-
sive reports on immune infiltrating cell (IIC) associated signatures in TNBC-based ML. 
To address this issue, in the current study, we successfully constructed a TNBC MLIIC 
signature based on 25 ML algorithms, which was achieved by multiple transcriptome 
datasets of various purified immune cells, TNBC cell lines, as well as TNBC entities. 
Subsequently, the predictive capability of this MLIIC signature and its corresponding 
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potential in optimizing the immunotherapy responsiveness in TNBC were meticulously 
validated. Undoubtedly, this well-validated MLIIC signature in TNBC in this study will 
provide a profound insight into interpreting prognosis, immune cell alterations, and 
tumor immune landscape in the ecosystem of TNBC.

Materials and methods
Acquisition of TNBC patients and various tumor cell line cohorts

Transcriptome data and clinical data of TNBC patients were obtained from 3 data-
bases, including The Cancer Genome Atlas (TCGA, https://xenabrowser.net/) via Illu-
mina-HiSeq platform, Molecular Taxonomy of Breast Cancer International Consortium 
(METABRIC, https://www.cbioportal.org/) through Illumina-HiSeq platform, and Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) via Illumina-HiSeq plat-
form and Affymetrix Human Genome U133 Plus 2.0 Array platform. The overall samples 
enrolled in our research comprised 122 samples from the TCGA TNBC dataset (training 
set), 299 from the METABRIC dataset (validation set), 133 from the GSE96058 data-
set (validation set), and 107 from the GSE103091 dataset (validation set). Transcriptome 
data were acquired from GSE36133 (Cancer Cell Line Encyclopedia project (CCLE)) 
for 20 TNBC cell lines using the Affymetrix Human Genome U133 Plus 2.0 Array plat-
form. The fragments per kilobase million (FPKM) values of RNA sequencing data were 
converted into transcripts per kilobase million (TPM) values. The Robust Multi-array 
Average (RMA) algorithm was implemented for quantile normalization, background 
correction, and log2 transformation of microarray data derived from the Affymetrix 
platform through the R package ‘affy’ [12]. The data relating to copy number variations 
(CNVs) and DNA methylation information in the TNBC cohort were all acquired from 
the TCGA database.

Acquisition of purified immune cell lineage cohorts

Transcriptome information for all the 115 purified cell lineages of 19 primary immune 
cell categories was available and analyzed through the Affymetrix Human Genome U133 
Plus 2.0 Array platform with 16 datasets, which included GSE27291 (T gamma delta), 
GSE27838 (NK activated), GSE28490 (B cell activated), GSE13906 (T gamma delta), 
GSE23371 (Immature dendritic cells), GSE25320 (Mast cells activated), GSE28698 
(Eosinophils), GSE28726 (NKT activated, CD4 T cell resting, CD4 T cell resting, CD4 T 
cell activated), GSE49910 (Neutrophils, Monocytes, CD8 T cell resting, CD8 T cell acti-
vated, CD4 T cell activated, B cell activated), GSE51540 (T helper 17), GSE59237 (Den-
dritic cells resting, Dendritic cells activated), GSE37750 (Plasmacytoid dendritic cells), 
GSE39889 (Neutrophils), GSE42058 (Myeloid dendritic cells), GSE6863 (Immature den-
dritic cells), GSE8059 (NK resting, NK activated). This part of the data was further col-
lected and processed according to the previous study [13].

MLIIC signature construction

An MLIIC signature was determined by a comprehensive analysis of purified immune 
cells, TNBC cell lines, and TNBC solid tumor tissues using an innovative computational 
framework according to a series of sequential ML algorithms. The flowchart is outlined 
below (Fig. 1).

https://xenabrowser.net/
https://www.cbioportal.org/
http://www.ncbi.nlm.nih.gov/geo
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Fig. 1 The computational framework for constructing the MLIIC signature. The top 15% expressed RNAs 
were adopted for candidate immune-related RNAs for each immune cell line. TSI was a widely used index to assess 
gene expression level relationships in tissue specification. TSI was applied to calculate the expression specificity 
of candidate immune-related RNAs for each cell type. The highly expressed RNAs in all immune cell types were 
identified as igRNA. igRNAs were believed to have high specificity in all immune cell types. igRNAs significantly 
upregulated in immune cell lines and downregulated in TNBC cell lines were identified as IIC-RNAs. IIC-RNAs were 
believed to be specific for immune cell lines and unspecific for TNBC cell lines, which were used as the input for ML-
based classification and dimensionality reduction. Six ML algorithms for classification were utilized to determine 
potentially valuable IIC-RNAs. Univariate Cox regression analysis was further performed to screen out IIC-RNAs with 
prognostic features. Three ML algorithms for survival were taken to identify more valuable IIC-RNAs that were used 
as the input for signature construction. The MLIIC signature was eventually constructed according to RSF scoring 
with the best performance among 19 ML algorithms for scoring. The relationship between MLIIC signature, prog-
nosis, biological function, tumor immune microenvironment, genome alternations, chemotherapeutic drug, and 
the immunotherapeutic response was thoroughly explored in the subsequent validation session. Finally, the MLIIC 
signature was verified using the LUAD tissue chip
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(1) The highest 15% expressed RNAs of each immune cell line were extracted as potential 
screening immune-related RNAs because of the appropriate number of genes for the 
downstream analysis.

(2) The tissue specificity index (TSI) suggested by Yanai et al. [14], a widely used index 
to assess gene expression level relationships in tissue specification, was employed to 
determine the specificity of the above candidate RNA expression per immune cell.

 
TSI =

∑N
i=1 (1 − xi)
N − 1

 where N represents the comprehensive count encompassing a variety of immune cell 
types, xi  indicated the normalized expression level of immune cell type i relative to the 
highest RNA expression intensity detected across all immune cell types. The TSI spans 
a range from 0 to 1. A TSI value of 0 designates the RNA as broadly present across 
immune cells, while a TSI value of 1 indicates the RNA’s exclusive presence in a specific 
immune cell types. RNAs exhibiting robust expression across all immune cell types have 
been verified as immune-related generic RNAs (igRNAs) as immune-related generic 
RNAs (igRNAs). igRNAs were believed to have high specificity in all immune cell types.

(3) Differentially expressed igRNAs that showed a pattern of both upregulations in 
multiple immune cell lines and downregulation in TNBC cell lines were determined 
as IIC-RNAs obtained through the R package ‘limma’ [15]. IIC-RNAs were believed to 
be specific for immune cell lines and unspecific for TNBC cell lines, which were used 
as the input for ML-based classification and dimensionality reduction.

(4) A total of 6 ML algorithms for classification were further used for downscaling, 
including least absolute shrinkage and selection operator regularised logistic regression 
(LassoLR), Boruta, Xgboost, support vector machine (SVM), Random Forest (RF), 
and prediction analysis for microarrays (Pamr). This step aimed to filter worthwhile 
IIC-RNAs by extracting the intersected IIC-RNAs identified by 6 ML algorithms for 
classification.

(5) IIC-RNAs with prognostic potential were then screened in the TCGA TNBC dataset 
using univariate Cox regression analysis with the threshold of P < 0.05 and were used 
as the input for signature construction.

(6) Next, 3 ML algorithms for survival, including Random Survival Forest (RSF), least 
absolute shrinkage and selection operator regularized Cox regression (LassoCox), and 
CoxBoost, were subsequently applied to assess the significance of the prognostic IIC-
RNAs and conduct the dimensionality reduction accordingly.

(7) 19 ML algorithms for scoring, including RSF, Ranger, ObliqueRSF, recursive 
partitioning and regression trees (Rpart), CoxPH, SurvivalSVM, CoxBoost, gradient 
boosting with component-wise linear models (GlmBoost), supervised principal 
components (SuperPC), StepwiseCox, elastic net regression (Enet), LassoCox, 
conditional random forests (CForest), akritas conditional non-parametric survival 
estimator (Akritas), gradient boosting with regression trees (BlackBoost), partial least 
squares regression for cox models and related techniques (PlsRcox), regression for a 
parametric survival model (SurvReg), generalized boosted regression models (GBM), 
and conditional inference trees (CTree), were used to determine the most reliable 
model.
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(8) The MLIIC signature was established according to the prognostic IIC-RNAs via 
performing the RSF algorithm. Log-rank score test survival trees was executed by a 
previously established methodology [16]. Firstly, the x-variable x was supposed to be 
ranked as x1 ≤ x2 ≤ … ≤ xn. Then, the “ranks” of every survival time Tj (j ∈ [1, …, n]) 
were calculated. The specific equation utilized was given below:

 
aj = δj −

∑Γj

k=1

δk

n − Γk + 1

 where Γk = # [t : Tt ≤ Tk]  and Γj  represented the index of the order for Tj. The log-rank 
score test was presented below:

 

MLIIC signature = S (x, c) =

∑
xk≤c (aj − nlā)

√
nl

(
1 − nl

n

)
S2

a

 where a  and s2
a  represented the sample mean and sample variance of [aj : j = 1,. . ., n], 

respectively. The measure of node separation was determined utilizing log-rank score 
splitting by | S (x, c) |. The best split was achieved by maximizing this value over x and c.

Annotation of immune-related characteristics for the MLIIC signature

A detailed description of this part is provided in the supplementary file [17–27].

Predictive value of the MLIIC signature for immunotherapy response

A detailed description of this part is provided in the supplementary file [28–39].

Drug susceptibility prediction

A detailed description of this part is provided in the supplementary file [40–43].

Multi-omics alteration characteristics of the MLIIC signature score

A detailed description of this part is provided in the supplementary file [44].

Multiplex immunofluorescence (IF) staining in TNBC samples

We obtained the tissue microarray from the Outdo Biotech company (BRC1603, Shang-
hai, China) and the ethics was approved. Next, after a series of chip sample processing 
procedures, the corresponding primary antibodies were used for incubation in the two 
groups, including anti-MEI1 (Mouse, sc-515359, Santa Cruz, United States), anti-HMX1 
(Rabbit, orb184221, biorbyt, United Kingdom), anti-VIM (Rabbit, 10366-1-AP, Protein-
tech, China), and anti-MORN3 (Rabbit, PA5-58506, ThermoFisher, United States) anti-
bodies. Afterward, the incubation and tyramide signal amplification (TSA) (FITC-TSA, 
CY3-TSA, 594-TSA, 647-TSA, Servicebio, China) in the microarray were performed 
using relevant secondary antibodies (GB23301, GB23303, Servicebio, China) that were 
conjugated to the fluorophore. Besides, the nuclei were stained with 4’,6-Diamidino2-
phenylindole dihydrochloride (DAPI, 1:1,000, Beyotime, China). The IF digital images 
were acquired by using the Pannoramic Scanner (3D HISTECH, Hungary). The intensity 



Page 7 of 25Li et al. Journal of Big Data          (2023) 10:132 

quantifications were finally calculated to evaluate the expression feature of these stained 
biomarkers.

Statistical analysis

The samples were classified into subgroups depending on the cut-off threshold of our 
MLIIC signature ascertained by the R package ‘survminer’. To assess OS disparities 
between the two MLIIC signature groups, Kaplan-Meier survival plots were generated 
using the ‘survival’ R package. For each of the individual clinical variables, including the 
MLIIC features, the C-index of OS was calculated. Furthermore, the prognostic impli-
cations of the MLIIC signature were elucidated through time-dependent receiver oper-
ating characteristic (ROC) curves, facilitating by the ‘timeROC’ R package. In order to 
assess the variations between two groups and multiple groups for continuous variables, 
we utilized the Wilcoxon rank sum test and the Kruskal-Wallis test, respectively. The 
correlation between two variables was calculated using the Spearman correlation analy-
sis, and its significance was assessed using a two-sided hypothesis test. A P-value less 
than 0.05 was considered statistically significant. All P-values were two-sided. For all sta-
tistical analyses, they were conducted in the R project, version 4.1.2.

Results
Identification of IIC-RNAs

To meticulously assess the immune cell-associated RNA, we first investigated 115 puri-
fied cell lineages containing 19 sorts of primary immune cells in 16 datasets by review-
ing the literature from 2007 to 2022 (Fig. 1). A total of 5474 RNAs were extracted from 
each immune cell line, among the 15% most highly expressed, and used to screen for 
these related immune-related RNAs. The TSI scores of 5474 RNAs were calculated to 
determine the igRNAs that were ubiquitously represented in a total of 19 immune cell 
types. It is essential to mention that RNAs with low TSI scores present generally high 
expression patterns in diverse immune cell types, demonstrating the critical role of the 
immune effects. Subsequently, 2724 igRNAs were proved to be essential factors in the 
modulation of elemental immunity and were accompanied by a characteristic thresh-
old of TSI < 0.2. Through analyzing these differential expressions of 2724 igRNAs, it was 
observed that 212 igRNAs were remarkably upregulated in 115 immune cell lines and 
downregulated in 20 TNBC cell lines depicted in Figure S1. Finally, we denoted these 
212 igRNAs as the IIC-RNAs of TNBC.

Development of the MLIIC signature

A total of 6 ML algorithms for classification, encompassing LassoLR, Boruta, Xgboost, 
SVM, RF, and Pamr, were effectively deployed to discern nine noteworthy IIC-RNAs 
from the aformentioned screened igRNAs (Fig.  2A). The robustness of the identi-
fied IIC-RNAs’ prognostic potential of the OS of TNBC patients was further sub-
stantiated through univariate Cox proportional hazards regression.  Remarkably, this 
analysis unveiled four pivotal IIC-RNAs within the TCGA dataset (Fig. 2B). Following 
this, we extended our inquiry by engaging three distinct survival-oriented ML algo-
rithms, including LassoCox (Fig. 2C), CoxBoost (Fig. 2D), and RSF (Fig. 2E), all aimed 
at rigorously scrutinizing the efficacy of the four prognosis-related IIC-RNAs (Fig. 2F). 
The expression pattern of the 4 IIC-RNAs in immune cells, including meiotic defect 1 
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(MEI1), H6 family homeobox 1 transcription factor gene (HMX1), membrane occupa-
tion and recognition nexus repeat containing 3 (MORN3), vimentin (VIM) were repre-
sented in Figure S2A. Figure S2B shows the differences in 4 IIC-RNAs between immune 
and tumor cells, and Figure S2C demonstrates the relationship between 4 IIC-RNAs and 

Fig. 2 Development of the MLIIC signature based on ML. (A) Venn plot shows the intersected genes identi-
fied by six ML algorithms for classification. (B) Univariate Cox regression analysis of the screened nine intersected 
genes displayed via forest plot. (C) Dimension reduction of the ten prognostic genes by the CoxBoost algorithm. 
(D) Dimension reduction of the ten prognostic genes by the LassoCox algorithm. (E) Dimension reduction of 
the ten prognostic genes by RSF algorithm. (F) Venn plot shows the intersected prognostic genes identified by 
three ML algorithms for survival. (G) Performance of 19 ML algorithms for scoring in terms of signature construc-
tion. (H) Kaplan-Meier survival curves of the MLIIC signature regarding OS in the TCGA, METABRIC, GSE96058, and 
GSE103091 datasets. (I) Time-dependent ROC curves of the MLIIC signature regarding 1-, 2-, 3-, 4-, and 5-year OS in 
the TCGA, METABRIC, GSE96058, and GSE103091 datasets

 



Page 9 of 25Li et al. Journal of Big Data          (2023) 10:132 

the prognosis for TNBC. 19 ML algorithms for scoring were used to determine the most 
reliable signature (Fig. 2G). Then, we established an MLIIC signature according to the 
four prognostic IIC-RNAs by employing the RSF algorithm.

Prognostic value of the MLIIC signature

The characteristics of the four included cohorts are provided in Table S1. TNBC patients 
with high MLIIC signature scores had decreased OS time in the TCGA TNBC, META-
BRIC, GSE96058, and GSE103091 datasets (Fig. 2H). Besides, TNBC patients with high 
MLIIC signature scores had decreased progression-free survival (PFS) (Figure S3A) and 
disease-specific survival (DFS) (Figure S3B) time in the TCGA TNBC dataset. Concor-
dantly, time-dependent ROC curves were generated for 1-, 2-,3-, 4-, and 5-year overall 
survival (OS) within the TCGA TNBC dataset, yielding respective AUC values of 0.854, 
0.902, 0.904, 0.895, and 0.908. Similarly, the METABRIC dataset exhibited AUC values of 
0.748, 0.718, 0.767, 0.776, and 0.766 for the corresponding time intervals. Correspond-
ing results were observed for the GSE96058 dataset, with AUC values of 0.717, 0.616, 
0.677, 0.697, and 0.621, and the GSE103091 dataset, with AUC values of 0.683, 0.725, 
0.706, 0.739, and 0.721. There outcomes collectively reinforce the prognostic significance 
of the MLIIC signature (Fig. 2I).

Comparison of prognostic value between the MLIIC signature and previous signatures

In the TCGA dataset, the MLIIC signature was markedly related to survival status, 
tumor stage, and TNM staging system (Fig.  3A). Besides, the MLIIC signature indi-
cated the prognostic potential for superior accuracy over age, gender, TNM staging sys-
tem, and the C-index of tumor staging in the TCGA dataset (Fig. 3B). Due to the rapid 
advancements in omics technologies, numerous studies have been reported to construct 
and analyze signatures based on specific gene combinations with promising predictive 
efficacy. We then aimed to systematically compare these relevant signatures with our 
MLIIC signature in the past decade. After a detailed investigation, we included a total of 
148 signatures in terms of RNA signatures (Table S2). It should be noted that the MLIIC 
signature exhibited superior performance with respect to the C-index in the TCGA 
TNBC (Fig.  3C), METABRIC (Fig.  3D), GSE96058 (Fig.  3E), and GSE103091 (Fig.  3F) 
datasets, compared to nearly all of the previous models. Moreover, the MLIIC signature 
was compared with the MAPS signature and CMPS signature [45] with respect to the 
C-index in LumA, LumB, HER2, and Basel subtypes of BRCA in the TCGA dataset (Fig-
ure S3C).

Prediction of biological mechanisms associated with MLIIC signature

Considering the upregulation of immune-related features shown in the low-MLIIC 
group, we preferred to unearth the underlying biological mechanisms. The MLIIC signa-
ture score prominently displayed a robust inverse correlation with a plethora of immu-
nologic pathways, encompassing the B cell receptor signaling pathway, T cell receptor 
signaling pathway, T cell-mediated immunity, the initiation of the immune response, as 
well as the intricate process of antigen processing and presentation (Fig.  4A). Signifi-
cant differences in the immunological pathways in two MLIIC signature score groups 
were further proved by t-distributed stochastic neighbor embedding (t-SNE) (Fig. 4B). 
The chromosome distribution of genes significantly correlated with the MLIIC signature 
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score is shown in Fig. 4C. The genes significantly associated with the MLIIC signature 
score were enriched in immune infiltration and activation pathways via Metascape 
(Fig.  4D). In GSEA of GO and KEGG terms, the low MLIIC signature group showed 
enrichment of the T cell receptor signaling pathway and B cell receptor signaling path-
way as expected (Fig. 4E). Taken together, our results revealed that a low MLIIC signa-
ture represented a potency of superior immune response under immunotherapy.

Fig. 3 The superior predictive capability of MLIIC signature for TNBC prognosis. (A) Univariate and multi-
variate Cox regression analysis of OS of individual clinical variables with and without MLIIC signature in the TCGA 
dataset displayed via forest plot. (B) Bar plot shows the C-index of the MLIIC signature and various clinical factors 
in the TCGA, METABRIC, GSE96058, and GSE103091 datasets. (C) The C-index of the MLIIC signature and other 
published models developed in the TCGA, METABRIC, GSE96058, and GSE103091 datasets displayed via forest plot
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Immune characteristics related to the MLIIC signature

Then, to delve into the immune status represented by MLIIC features, the subsequent 
focus was on the relationship between MLIIC features and immune infiltrating cells 
and immune modulators. As shown in Fig. 5A and B, in the TCGA dataset, the lower 
MLIIC signature subgroup exhibited higher levels of immune infiltrating cells and 
modulators, confirming an inflammatory but comparatively immunopromoted TME, 
potentially contributing to the choices of immunotherapy. MLIIC signature was signifi-
cantly and negatively correlated with several classical immune checkpoints (Figure S4A). 

Fig. 4 Biological peculiarities of the MLIIC signature score in the TCGA dataset. (A) MsigDB-based GSVA 
analysis delineated the biological attributes of two MLIIC signature score groups displayed via heat map. (B) t-SNE 
plot of GO and KEGG terms delineated the differences in pathway activity in two MLIIC signature score groups. 
(C) Chromosome distribution of genes significantly correlated with MLIIC signature score. (D) Metascape-based 
enrichment analysis of genes significantly associated with MLIIC signature score. (E) GSEA of GO and KEGG terms 
for the MLIIC signature score
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Additionally, we further analyzed the status of TMB, MSI, CYT, GEP, APM score, IFN-γ, 
TCR Richness, TCR Shannon, and CD8, which were associated with a stronger immu-
noreactive TME between the high and low score group. Related results suggested that 
all the indicators were at high levels in the low-MLIIC group from the TCGA dataset 
(Fig. 5C-5F, S4B-S4G).

Fig. 5 Immune-related characteristics of the MLIIC signature in the TCGA dataset. (A) Heat map presented 
the correlation between the MLIIC signature and immune infiltrating cells. (B) From left to right: mRNA expression; 
expression versus methylation; amplification frequency; and the deletion frequency for 75 immunomodulators 
genes by MLIIC signature groups displayed by heat map. (C) Box plot showed the TMB levels between two MLIIC 
signature score groups. (D) Box plot showed the MSI levels between two MLIIC signature score groups. (E) Box plot 
showed the CYT levels between two MLIIC signature score groups. (F) Box plot showed the GEP levels between 
two MLIIC signature score groups
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The MLIIC signature is a predictive indicator of immunotherapy response

On account of the superior predictive capability of our MLIIC signature towards the 
benefit of immunotherapy, we performed validation of its effectiveness in several immu-
notherapy datasets.

In the GSE35640 (Fig.  6A) and GSE91061 (Fig.  6B), melanoma patients with low 
MLIIC signature scores had significantly and even increased survival periods (Fig. 6A). 
In the GSE78220 dataset, we also observed that melanoma patients with low MLIIC sig-
nature scores had significantly longer survival times (Fig. 6C) and were able to respond 
positively to anti-PD-1 immunotherapy (Fig. 6D). In the Van Allen dataset, melanoma 
patients with low MLIIC signature scores experienced increased survival times (Fig. 6E). 
As predicted, patients suffering from melanoma with low MLIIC signature scores 
appeared to be responsive to anti-CTLA-4 immunotherapy (Fig. 6F). In the Nathanson 
dataset, consistent with previous trends, melanoma patients with low MLIIC signature 
scores survived longer (Fig. 6G) and frequently responded to anti-CTLA-4 immunother-
apy (Fig. 6H). In the IMvigor dataset, urothelial carcinoma patients with low MLIIC sig-
nature scores had significantly and even increased survival periods (Fig. 6I). Moreover, 
urothelial carcinoma patients with low MLIIC signature scores were more inclined to be 
responsive to anti-PD-L1 immunotherapy (Fig. 6J). In the Braun dataset, patients suffer-
ing from renal cell carcinoma with low MLIIC signature scores experienced increased 
survival time (Fig.  6K), which was consistent with a trend toward their response to 
anti-PD-1 immunotherapy (Fig.  6L). Furthermore, patients in the GSE179351, includ-
ing those with colorectal adenocarcinoma (Fig.  6M) and pancreatic adenocarcinoma 
(Fig. 6N) dataset with low MLIIC signature scores, were also more likely to respond to 
immunotherapy. Of note, patients with low MLIIC signature scores were more likely to 
react to targeted therapy in the GSE165252 (esophageal adenocarcinoma) (Fig. 6O) and 
GSE103668 (TNBC) (Fig. 6P) datasets. Based on the TIDE algorithm, a low MLIIC sig-
nature score correlated significantly with the responses of immune checkpoint inhibitors 
(ICIs) in the TCGA dataset (Fig. 6Q). According to the Submap analysis, a low MLIIC 
signature score predicted an association with anti-PD-1 immunotherapy responses in 
the TCGA dataset (Fig. 6R).

Prediction of drug response related to the MLIIC signature score

A lower CMap score indicates a greater likelihood of the drug reversing the molecular 
attributes of the disease as per the CMap theory. Remarkably, arachidonyltrifluorometh-
ane exhibits the lowest CMap score, suggesting its potential efficacy in treating TNBC 
patients with a prominent MLIIC signature score (Fig.  7A). Noteworthy findings also 
include Afatinib, displaying significantly heightened drug sensitivity within the high 
MLIIC characteristic score cohort (Fig. 7B). Furthermore, a compelling trend emerges 
with CTRP-derived tinifarnih-P1 (Fig. 7C) and PRISM-derived tucatinib (Fig. 7D), both 
showcasing robust negative correlation with the MLIIC signature score. Notably, these 
two drugs exhibit markedly improved drug sensitivity within the high MLIIC signature 
score subset.

Multi-omics alteration characteristics related to the MLIIC signature score

In the context of our study, we noted varying patterns of chromosomal alterations across 
two distinct groups based on the MLIIC signature scores (Fig. 8A). The precise genomic 
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Fig. 6 Predictive value of the MLIIC signature in immunotherapy response. (A) Box plot displays the levels 
of the MLIIC signature score in patients with different immunotherapy responses in the GSE36540 dataset. (B) Box 
plot displays the levels of the MLIIC signature score in patients with different immunotherapy responses in the 
GSE91061 dataset. (C) Kaplan-Meier survival curves of the MLIIC signature regarding OS in the GSE78220 dataset. 
(D) Box plot displays the levels of the MLIIC signature score in patients with different immunotherapy responses in 
the GSE78220 dataset. (E) Kaplan-Meier survival curves of the MLIIC signature regarding OS in the Van Allen data-
set. (F) Box plot displays the levels of the MLIIC signature score in patients with different immunotherapy responses 
in the Van Allen dataset. (G) Kaplan-Meier survival curves of the MLIIC signature regarding OS in the Nathanson 
dataset. (H) Box plot displays the levels of the MLIIC signature score in patients with different immunotherapy 
responses in the Nathanson dataset. (I) Kaplan-Meier survival curves of the MLIIC signature regarding OS in the 
IMvigor dataset. (J) Box plot displayed the levels of the MLIIC signature score in patients with different immuno-
therapy responses in the IMvigor dataset. (K) Kaplan-Meier survival curves of the MLIIC signature regarding OS in 
the Braun dataset. (L) Box plot displays the levels of the MLIIC signature score in patients with different immuno-
therapy responses in the Braun dataset. (M-N) Box plot displayed the levels of the MLIIC signature score in patients 
with different immunotherapy responses in the GSE179351 dataset. (O) Box plot displays the levels of the MLIIC 
signature score in patients with different immunotherapy responses in the GSE165252 dataset. (P) Box plot dis-
plays the levels of the MLIIC signature score in patients with different immunotherapy responses in the GSE103668 
dataset. (Q) Contingency table of the two MLIIC signature score groups and immunotherapy responses based on 
TIDE algorithm. (R) Heat map of the two MLIIC signature score groups and anti-PD-1/anti-CTLA-4 immunotherapy 
responses based on submap analysis
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regions displaying alterations are visually depicted in Fig.  8B. Remarkably, the cohort 
withelevated MLIIC signature scores exhibited pronounced chromosomal instability, 
prominently showcasing aberrations in FGA, FGG, and FGL (Fig. 8C).

The superior predictive capability of MLIIC signature for TNBC prognosis in the TNBC tissue 

array

Lastly, to more sufficiently verify the accuracy, we used multiplex IF staining for the key 
indicators MEI1, HMX1, VIM, and MORN3 of the MLIIC signature, in the external 
cohort of the TNBC tissue microarray. The staining intensities of these four IIC-RNAs 

Fig. 7 The drug responses between two MLIIC signature score groups. (A) CMap-based drug prediction. (B) 
Box plot shows the GDSC-based drug prediction. (C) Dot plot and box plot show the CTRP-based drug prediction. 
(D) Dot plot and box plot shows the PRISM-based drug prediction
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were analyzed semi-quantitatively, and the score of the MLIIC signature was gener-
ated. The captured representative IF images of MEI1, HMX1, VIM, and MORN3 in two 
MLIIC signature score subgroups were demonstrated in Fig.  9A. The Kaplan-Meier 
survival curves indicated that those TNBC patients with low MLIIC signature scores 
exhibited a markedly higher survival state (Fig. 9B). Furthermore, the Time-dependent 
ROC curves of the MLIIC signature for 3-, 5-, and 10-year OS assessment (0.679, 0.706, 
and 0.713, respectively) substantiated the prognostic potential of our MLIIC signature 

Fig. 8 Multi-omics alteration characteristics of the MLIIC signature score in the TCGA dataset. (A) GISTIC 
2.0-based chromosome amplifications and deletions in two MLIIC signature score groups. (B) Waterfall plot shows 
the genomic alteration landscape in two MLIIC signature score groups. (C) Box plot shows the fraction of genome 
alteration, the fraction of genome gained, and the fraction of genome lost in two MLIIC signature score groups
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(Fig. 9C). In addition, the C-index of our signature and the focused clinical factors were 
illustrated in Fig. 9D, which suggested that this MLIIC signature displayed certain supe-
riority versus the C-index.

Microenvironment characteristics related to the MLIIC signature

m6A epigenetic regulators, including ALKBH5, FMR1, FTO, HNRNPA2B1, HNRNPC, 
IGF2BP1, IGF2BP2, IGF2BP3, METTL14, NPLOC4, RBM15, RBM15B, RBMX, WTAP, 
YTHDC1, YTHDC2, YTHDF2, YTHDF3, and ZC3H13, were significantly highly 
expressed in the low MLIIC signature score group (Figure S5A). This promising result 
also corroborated that MLIIC is a credible immune microenvironmental trait in relation 
to the mRNA methylation that has been proven to control T cell homeostasis. MLIIC 
signature was further found to negatively correlate with CYT, TLS, IFN-γ, chemokines, 
Roh_IS, Davoli_IS, Ayes_expIS, and T cell inflamed signature (Figure S5B).

Discussion
TNBC is a highly complicated, heterogeneous, relapsed BC type characterized by a high 
propensity to metastasize, poor outcomes, and a lack of treatment targets. TNBC no 
longer relies on a single traditional treatment but gradually evolves towards classification 
and precision treatment. Some emerging regimens, including PARP1 inhibitor, androgen 
receptor (AR) inhibitor, PI3K inhibitor, and especially ICIs, as well as their optimized 
combinations, are currently under clinical investigation [46]. ICI treatment produces a 
long-lasting and complete tumor regressive effect in some TNBC patients but a tempo-
rary, partial, or no response in some patients [47]. The highly heterogeneous and com-
plex immune status of TME causes the clinical outcome of TNBC to be unpredictable. 

Fig. 9 The superior predictive capability of MLIIC signature for TNBC prognosis in the TNBC tissue array. 
(A) Representative multiplex IF images of MEI1, HMX1, VIM, and MORN3 in two MLIIC signature score groups. (B) 
Kaplan-Meier survival curves of the MLIIC signature regarding OS. (C) Time-dependent ROC curves of the MLIIC 
signature regarding 3-, 5-, and 10-year OS. (D) Bar plot shows the C-index of the MLIIC signature and focused clini-
cal factors
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This is an intriguing issue for establishing well-defined indicators to determine progno-
sis and immunotherapy responsiveness.

ML has been proposed as a promising resource in many domains of medicine for 
classifying and predicting patient outcomes. Its model prognosis depends on the com-
plex, multidimensional, and nonlinear relationships between patient tumor malignancy, 
surgical treatment, and drug therapy [48]. The analysis of immune infiltration, includ-
ing the quantity and quality of TILs, the integrated evaluation of TIL and other clini-
cal markers, and the use of ML platforms for a more comprehensive characterization of 
immune features in breast cancer, are worthy of in-depth evaluation [49]. Here, using 25 
comprehensive and sequential ML algorithms, we successfully constructed an immune-
related MLIIC signature of TNBC based on four finally screened RNAs, including MEI1, 
MORN3, HMX1, and VIM. MEI1 participants in homologous recombination in meiosis 
during mammalian spermatogenesis.

Moreover, polymorphic alleles of the human MEI1 gene have been confirmed to be rel-
evant to human azoospermia through meiotic arrest [50]. In oncology research, only one 
report has shown by sequencing studies that MEI1 is one of the vital differential genes in 
human papillomavirus (HPV) + vs. HPV- tumors. It may be involved in the prognosis of 
cervical cancer [51]. MORN3 is known to be a protein that affects cardiac function and 
tumor progression. At the same time, Morncide, the targeting peptide of Morn3, pos-
sesses the ability to curb tumor growth by activating the p53 pathway [52]. The role of 
MORN3 in tumors has also rarely been studied and is only present in one bioinformatic 
model construction. However, this study included a relatively large number of 16 genes 
and did not sufficiently consider the predictive capability of immunotherapy [53]. HMX1 
is a critical orchestrator in developing craniofacial structures, ocular defects, and mor-
phological abnormalities of the outer ear [54, 55]. HMX1 is also involved in the activ-
ity of NKL homologous frame genes in normal and malignant bone marrow cells [56]. 
Vimentin (VIM) is a typical mesenchymal marker with abnormal methylation expres-
sion patterns in breast and prostate cancer [57]. Natarajan et al. demonstrated that the 
VIM gene network modulated various neoplastic processes, such as adipogenesis, senes-
cence, and autophagy [58]. Overall, all four genes are now less reported and even less in 
oncology. Besides, we also performed a semi-quantitative validation of these indicators 
by multiple IF staining in an external cohort validation with TNBC tissue microassay. 
Our results presented that these IIC-RNAs have different patterns of high or low expres-
sion in high- or low-risk groups, predicting that they exert diverse functional properties 
in TNBC tumors.

On the one hand, this indicates the specificity and novelty of the genes involved in 
our MLIIC signature, accompanied by high expression in immune cells and low expres-
sion in TNBC. Meanwhile, it also reflects that subsequent studies must explore the rela-
tive gaps in the functions associated with these four genes. In terms of the prognosis 
capability, the superiority of 1-, 2-, 3-, 4-, and 5-year OS prediction of MLIIC signature 
were also confirmed, compared to 148 previous published signatures with respect to the 
C-index in all included databases.

TNBC is characterized by higher tumor mutational load, tumor-infiltrating T cell 
levels, and PD-L1 RNA expression versus other breast cancer subtypes. These immu-
nogenic features make TNBC a potential population for immunotherapy. For monitor-
ing responses to tumor immunotherapy, PD-L1, tumor-associated antigens (TAAs), 
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BRCA1/2 mutation, and ctDNA have been confirmed to be effective candidates, among 
which PD-L1 was among the first applied biomarkers. Notably, IMpassion130 was the 
first study to successfully introduce immunotherapy into TNBC, in which PD-L1 was 
used as a well-established indicator of immunotherapy in metastatic TNBC [59]. How-
ever, this indicator had a narrow application scope and could not assure whether the 
PD-L1 positive cohort was the population that could benefit from ICI in early TNBC. 
Inconsistent findings suggested that PD-L1 is by far the best, but not perfect, predic-
tive biomarker for ICI efficacy. Therefore, identifying predictive biomarkers and the cor-
responding signature strategies for precision immunotherapy are essential concerns for 
the current TNBC treatment. In our study, we found that this MLIIC signature with a 
low score indicated a more robust immune effector cell activation and more benefits 
from immune therapy. Specifically, the lower MLIIC signature subgroup possessed a 
higher abundance of TILs, immune modulators, TMB, MSI, CYT, GEP, and IFN-γ and 
showed a distinct enriched signaling pathway for immune response, T and B cell recep-
tor, antigen processing and presentation, and PD-L1/PD-1 checkpoint. Our signature is 
effectively capable of reflecting a wealth of information regarding alteration in immune 
cell infiltration and related pathways, presenting more insight into tumor immunity than 
reported studies.

BC is characterized by insufficient T-lymphocyte infiltration and is known as an 
immune “cold” tumor, resulting in an inadequate response to immunotherapy, including 
PD-1/PD-L1 inhibitors. Our study shows that TNBC has high low-risk immune infil-
tration, characterized by increased infiltration of cancer-suppressing immune cells and 
high levels of cancer-suppressing immune cells. The reasons for this phenomenon may 
have some relevance to the physical structure of breast tissue, immune cell abundance, 
tumor heterogeneity, age, hormone levels, and the included cohort. Firstly, differences 
in the immune microenvironment across cancer species are driven by the organ-specific 
structural and molecular characteristics of the different tissues. Different angiogenesis, 
immune cell distribution, and stem cell activity exist in sterile tissues (pancreas, brain), 
filtering and metabolic tissues (liver, kidney), environmental interface tissues (skin, lung, 
intestine), and body surface tissues (breast). When tumorigenesis occurs, immune cell 
infiltration and homing are influenced by tissue location-specific factors. For example, in 
gliomas and RCC, where there is a high degree of microangiogenesis and astrocytes, the 
abundance and functional status of immune cell infiltration are specific, while in TNBC, 
the TME formed by a large number of adipocytes surrounded by a large number of adi-
pose cells is primarily influenced by the regulation of crosstalk and changes in paracrine 
signaling between adipose tissue and cancer cells.

Moreover, adipogenesis in TNBC is associated with cancer metabolism and unfavor-
able tumor immune microenvironment, consequently affecting immunotherapy. Sec-
ondly, as previously mentioned, TNBC is highly heterogeneous and can be classified into 
different entities based on various immune, metabolic, pathological, and other molecu-
lar characteristics. We note that in terms of immune stratification, Shao et al. classified 
TNBC into three types: immune desert type, immune inactivation type, and inflam-
matory immune type [60]. Among them, the immune desert-type microenvironment 
has a low tumor infiltration rate, fails to attract immune cells, and is associated with 
MYC gene amplification. The immunodepleted type is chemotactic, but innate immune 
inactivation and a low amount of tumor antigen may contribute to immune escape. In 
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contrast, the immune-inflammatory type highly expresses immunecheckpoint mole-
cules. This implies that certain specific cohorts of TNBC subtypes present a high abun-
dance of infiltrative immune features. Besides, the expression of oncoproteins, cancer 
cell proliferation, progression, and metastasis are all increased by the frequent upregula-
tion of m6A epigenetic regulators in human cancer tissues from a variety of organ ori-
gins [61]. A recent study reported that by targeting the IL-7/STAT5/SOCS pathways, 
m6A mRNA methylation regulates T cell homeostasis [62]. In our study, m6A epigenetic 
regulators were significantly highly expressed in the low MLIIC signature score group, 
further indicating the immune active environment in TNBC patients with low MLIIC 
signature scores.

Although the predictive efficacy of MLIIC signature has been preliminarily docu-
mented in TNBC, we remain concerned that several issues remain to be addressed. 
Firstly, this study is essentially a retrospective study using previous data, and its actual 
value needs to be further corroborated using real-world information. MLIIC signature 
is also in urgent need of validation in a prospective immunotherapy cohort in terms of 
predicting the effects of immunotherapy. In addition, TNBC belongs to a subtype of 
malignant BC and possesses its complex classification, including the PAM50 type and 
six categories based on molecular characteristics. More accurate molecular typing can 
guide the prognosis and treatment selection of TNBC. The MLIIC signature in this study 
predicts overall TNBC, but no in-depth exploration of the subdivided TNBC subtypes 
was made. This is of extremely high value in the diagnosis and treatment of TNBC. 
Therefore, we would likely construct more accurate diagnostic signatures for different 
TNBC subtypes in the follow-up. Finally, the MLIIC signature score is closely related to 
multiple immune cells, tumor process pathways, and other biological mechanisms. In 
this regard, the key molecules and interaction networks also deserve further profound 
study in molecular biology. Finally, it is essential to note that our signature is currently 
an efficient tool that reflects a wide range of treatment information but is not a replace-
ment for the gold standard diagnosis and treatment method. The combination of MLIIC 
signature and conventional tools is exciting and promising.

Conclusion
Taken together, based on 25 ML algorithms, we successfully constructed a robust and 
reliable MLIIC signature for predicting TNBC prognosis, mutation, biological function, 
drug responsiveness, immune infiltration, and immunotherapy responsiveness. Notably, 
the TNBC patients with a low score of MLIIC signature possessed a superior prognosis, 
a more active immune microenvironment, and a more substantial immunotherapeutic 
effect. Our well-established MLIIC signature provides an effective tool to guide TNBC 
prognosis determination and treatment stratification management.
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