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Abstract
The study proposes a novel model for DNA sequence classification that combines 
machine learning methods and a pattern-matching algorithm. This model aims 
to effectively categorize DNA sequences based on their features and enhance the 
accuracy and efficiency of DNA sequence classification. The performance of the 
proposed model is evaluated using various machine learning algorithms, and the 
results indicate that the SVM linear classifier achieves the highest accuracy and F1 
score among the tested algorithms. This finding suggests that the proposed model 
can provide better overall performance than other algorithms in DNA sequence 
classification. In addition, the proposed model is compared to two suggested 
algorithms, namely FLPM and PAPM, and the results show that the proposed model 
outperforms these algorithms in terms of accuracy and efficiency. The study further 
explores the impact of pattern length on the accuracy and time complexity of each 
algorithm. The results show that as the pattern length increases, the execution time 
of each algorithm varies. For a pattern length of 5, SVM Linear and EFLPM have the 
lowest execution time of 0.0035 s. However, at a pattern length of 25, SVM Linear 
has the lowest execution time of 0.0012 s. The experimental results of the proposed 
model show that SVM Linear has the highest accuracy and F1 score among the 
tested algorithms. SVM Linear achieved an accuracy of 0.963 and an F1 score of 
0.97, indicating that it can provide the best overall performance in DNA sequence 
classification. Naive Bayes also performs well with an accuracy of 0.838 and an F1 
score of 0.94. The proposed model offers a valuable contribution to the field of DNA 
sequence analysis by providing a novel approach to pre-processing and feature 
extraction. The model’s potential applications include drug discovery, personalized 
medicine, and disease diagnosis. The study’s findings highlight the importance of 
considering the impact of pattern length on the accuracy and time complexity of 
DNA sequence classification algorithms.
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Introduction
DNA is a kind of molecule that contains the genetic information needed by an organ-
ism to develop, survive, and reproduce. In addition, the sequencing of DNA is a tech-
nique used to identify the exact nucleotide sequences in a DNA molecule. The base 
sequence of DNA transmits the knowledge that a cell needs to assemble RNA and pro-
tein components. Additionally, DNA methylation is a genetic alteration important for 
controlling how the genome functions. It is important for both tumor suppression and 
carcinogenesis.

The suggested method can therefore be used with any genome or DNA sequence, it 
has been discovered. The suggested methods may be used with additional data kinds, 
such as larger datasets. The suggested approach may be used as a conduit element to 
provide a feeling of raw data that focuses on tiny sets of dimensions and reduces entropy 
[1]. Additionally, the categorization of biological sequences was one of several tasks in 
which the convolutional neural network (CNN) performed well. The available executions 
are frequently best for a certain task. Reusing it is challenging. According to this work, 
the suggested system can recover structural motifs and known sequences and conduct 
sequence classification with the highest accuracy compared to standard approaches [2]. 
Additionally, this work concentrated on effectively categorizing the DNA sequence using 
machine learning methods. To verify its efficacy, the suggested system is also examined 
in terms of a few performance measures. The primary contributions of this work are 
effective feature extraction and pre-processing for locating pertinent DNA data.

Therefore, researching data about DNA methylation may be useful to identify cancer 
biomarkers. Being able to analyze huge datasets efficiently is important given the abun-
dance of publicly available data on matching methylation of DNA and the genome’s large 
number of methylation regions. As a result, our work has successfully computed a vari-
ety of alternative categorization models.

To classify DNA sequences and accurately extract matched sequences using a pattern-
matching technique. To assess the performance of the suggested model in terms of DNA 
sequence occurrence, execution time, F1-score, accuracy, precision, recall, and other 
metrics.

Related work

DNA patterns have evolved into a significant setting for Sequence Data Analysis (SDA) 
[3, 4] that helps predict a Sequence Function. (SF). It also investigates how the DNA 
patterns have evolved together. The model utilized machine learning (ML) techniques 
and was trained on an actual G4 [5] generation dataset. This approach demonstrates 
the use of feature engineering techniques to extract relevant information from DNA 
sequences and classifiers based on ML algorithms to predict the formation of specific 
DNA patterns.

Touati, R., et al. [6] focused on the classification of helitron families using a combi-
nation of machine learning algorithms and feature extraction from DNA sequences. By 
extracting specific characteristics from DNA sequences, a fresh set of features related 
to helitrons was obtained. This study showcases the application of feature engineering 
techniques to capture important properties of DNA sequences and the utilization of 
machine learning classifiers to automatically classify DNA sequences into different heli-
tron families.
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Norlin, S. in [7] explored the categorization of DNA sequences using Nearest Neigh-
bor categorization (NNC) based on Variable Length Markov Chains (VLMC). VLMC 
information was stored using a Vantage Point Tree (VPT) for efficient retrieval. This 
demonstrates the use of feature engineering techniques involving VLMC for character-
izing DNA sequences and NNC as a classifier to categorize the sequences based on their 
similarity.

Ryu, C., T. Lecroq, and K. Park in [8] introduced a MAS (Maximal Average Shift), 
which finds a PSO (Pattern Scan Order) and lengthens the average shift by increasing 
the length. Two additional expansions were examined in this study—MAS. Through the 
scan results of the previous frame, it first increases the Scan Speed (SS) of MAS. Using 
q-grams, the second expansion increases the MAS running duration. As a result, these 
algorithms demonstrated superior performance compared to traditional algorithms. 
Further information regarding this project can be found in various details [9–14].

ML methodology for PM from DNA sequences
We opted to build databases on DNA to examine the machine learning algorithms dis-
cussed in the following paragraphs. The rationale behind this decision was to sample 
some of the genes that we had worked on in our previous research endeavors [15], Our 
objective was to integrate automated learning algorithms and pattern-matching algo-
rithms that are based on specific DNA sequences, in order to create a biological data 
collection that could be utilized in a classification process. We conducted experiments 
on a dataset that included DNA sequences, where we compared the effectiveness of 
searching for a specific pattern with other classification models, such as Random For-
est [3, 16], KNN[16–20], Naïve Bayes [21–24], Decision tree [23, 25–30], and Support 
Vector Machine[18, 31–36] with Linear[37, 38], RBF[37, 39], and sigmoid[21, 40] clas-
sifiers, the results of these classifiers models are calculated by F1 score, recall, precision 
rate, execution time, and with the accuracy which calculates the most effective pattern-
matching classifier. The comparison of DNA sequences is a crucial task in various fields 
of research, including molecular biology and genetics. To facilitate this task, our study 
utilizes a machine learning (ML) approach that combines pattern-matching algorithms 
with ML techniques. This approach enables efficient pattern-matching and comparison 
of DNA sequences, thereby aiding in the identification of specific query patterns.

Our methodology consists of several different phases, each of which plays a criti-
cal role in the overall process. The first phase involves the pre-processing of the DNA 
sequence data, which includes cleaning and filtering the data to remove any noise or 
irrelevant information. The pre-processed data is then subjected to feature extrac-
tion, which involves identifying and extracting relevant features from the data. In the 
next phase, the extracted features are used to create a model that can classify the DNA 
sequences based on their similarity to the query patterns. This step involves the use of 
various ML algorithms, including supervised and unsupervised learning techniques, to 
develop an accurate and efficient classification model.

Once the classification model is developed, the pattern-matching algorithm is applied 
to the DNA sequences to identify any matches with the query patterns. This step involves 
the efficient comparison of DNA sequences based on their similarity to the query pat-
terns, thereby enabling the identification of specific patterns of interest.
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The overall framework is illustrated in Fig. 1, which provides an overview of the dif-
ferent phases involved in our ML approach for pattern-matching in DNA sequences. By 
combining both pattern-matching algorithms and ML techniques, our approach enables 
the efficient search of DNA sequences for specific query patterns, thereby facilitating the 
identification of critical information for various applications in molecular biology and 
genetics.

Pre-processing step

Gathering the dataset

In this study, we acquired a set of biological DNA sequences from “The National Cen-
tre for Biotechnology Information (NCBI)” (https://www.ncbi.nlm.nih.gov) [41]. The 
DNA data is stored in the (FASTA) format and is comprised of genomic sequences. 
Upon analyzing the dataset, we noticed that there was an unbalanced dataset prob-
lem, which needed to be addressed during the pre-processing stage. Additionally, the 
genomic sequence of the DNA dataset is categorical, which presents unique challenges 
for analysis. The DNA Sequences in FASTA files are illustrated in Fig. 2, and they feature 
sequence sizes of over 12 million characters of ATCG. This large dataset requires careful 
handling during the pre-processing stage to ensure that the data is clean, relevant, and 
appropriately prepared for analysis.

Fig. 2 Sample of FASTA Dataset

 

Fig. 1 Framework of the proposed work

 

https://www.ncbi.nlm.nih.gov
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Transforming the data

After consolidating all of the DNA sequence data, the next step involved transform-
ing the data to make it suitable for machine learning model training. There are various 
methods for data transformation, depending on the type of data and business require-
ments. In our study, we converted the DNA Sequences in the FASTA file to a CSV 
file. We collected data for a group of biological DNA sequences by categorizing each 
group and assigning them a label (e.g., 1). We also added some sequences that were not 
related to DNA and assigned them to a separate category (e.g., 0). We created this data-
set based on the use of FASTA DNA sequence files for specific genes. We converted 
the FASTA files for a particular gene to a CSV file and selected some of the sequences 
from it, labeling them to indicate that they belonged to this gene (e.g., 1). We also added 
another sequence that was not associated with this gene and labeled it accordingly (e.g., 
0). Table 1 displays a sample of the conversion process from DNA Sequences from the 
FASTA file to a CSV file.

Cleaning and labeling the dataset

After completing the conversion process from DNA Sequences in the FASTA file to a 
CSV file, we ensured that the resulting dataset was valid and that each sample had a cor-
responding class label (1 or 0). Figure 3 provides a sample of the cleaned CSV dataset, 
demonstrating the successful completion of the data pre-processing stage.

Feature extraction

The extraction of important features is a critical phase in our analysis as irrelevant 
features can negatively impact the efficiency of the ML classifier. By selecting features 

Table 1 Sample of the converted DNA Sequences from the FASTA file to a CSV file
DNA Sequence label
aatcacgtacatcaccttgtaagaatttatctgcaatagtccttcggtattgtacattgttccaagcatag 1

gtaaactaacgatatcaagtttgcctttctagcccatgacctacagtcagaagtgtaagccatatcactg 1

tcggcatgttcaaactttgtcaaaccacaaaataaacacagtccttgaaatcgaatacgtagtttacatt 1

ctcgcaagttgtggtcggccttgccacatttataacaagtagataagcgtacggggcatgctttcccagt 1

atgagcacgaatttctgtgtctgggttaccaagagtgcaacttagacattcatctttatacactcgaaag 1

tgctttggaaggaagatctggccatataaatttactgcatgctcttactggtcagtttgctacaagcttt 0

gtgcggaggtatggcattttaatgttgagcaacgttcagtcgttcgtcgttggcaagttcaagatggtgt 0

Fig. 3 Sample of CSV Dataset
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appropriately, we can enhance classification accuracy and reduce the training time for 
the model. Feature extraction involves breaking down vast amounts of raw data into 
smaller groupings for processing. Due to the vast number of variables in these massive 
datasets, processing them requires significant computer resources.

However, we cannot run machine learning algorithms on data in ‘Sequence’ (text) for-
mats. Therefore, we must preprocess the data to transform it into a usable format for our 
algorithms. In this case, we convert the DNA sequence data into numerical data. There 
are several methods for calculating the numerical value for each feature. To accomplish 
this, we utilize the GET_DUMMIES function from the Pandas Library[42–44]. This 
function converts DNA Sequences to a numeric variable that encodes categorical infor-
mation. Dummy variables have two possible values: 0 or 1. Once we have transformed 
the data into numerical format, we can use it in ML models for classification. The con-
version of datasets to numeric variables is illustrated in

Train/test splitting

To ensure an unbiased evaluation of the machine learning model, it is essential to use 
data that was not previously used in the training process. Therefore, we need to split the 
collected dataset into separate training and testing datasets. In this step, after converting 
the data into a usable format for our ML model, we divided the dataset into a testing set 
and a training set. The training set was used to build and train our models using various 
classification algorithms, while the test set was used to evaluate the trained models on 
unseen data. The train_test_split function was utilized to split the data into a 25% testing 
set and a 75% training set. Additionally, stratify splitting was applied to ensure that the 
same split percentage was applied for each class in our data. The process of splitting the 
dataset into training and testing sets is depicted in Fig. 5.

Fig. 5 Splitting Datasets

 

Fig. 4 Conversion Datasets to numeric variables
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Defining algorithms

After completing the data pre-processing and splitting the dataset into training and 
testing sets, we can begin deploying various classification algorithms. To ensure a com-
prehensive evaluation of the models, we will compare the performance of seven differ-
ent algorithms. The training data comprises 75% of the dataset, and these classification 
methods are used to train the models. The remaining 25% of the data is reserved for 
testing, and various metrics are used to evaluate the performance of the machine learn-
ing algorithms in conducting DNA sequence pattern-matching and retrieving matched 
sequences. To create the algorithms, we need to import each algorithm we intend to use 
and various performance measures from the SKLEARN library [44], such as accuracy_
score and classification_report, for each ML algorithm. The machine learning methods 
employed include (K-Nearest Neighbors) KNN, (Decision Tree) DT, (Random Forest) 
RF, (Naive Bayes) NB, Support Vector Machines (SVM) SIGMOID, SVM LINEAR, and 
SVM RBF, as depicted in Fig. 6.

Fitting models

Model fitting is the process of assessing how well a classification machine learning 
model generalizes to a dataset that is similar to the one on which it was trained. A well-
fitted model produces more accurate results, whereas an overfitted model closely fits the 
training data and may not perform well on new data. An underfitted model, on the other 
hand, does not fit the training data closely enough and may not capture the underlying 
patterns and relationships in the data.

Fig. 6 Classification Algorithms Used
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Tuning parameters

Modifying parameters before executing a training operation can help regulate the behav-
ior of our ML algorithm. These parameter settings can significantly impact model train-
ing in terms of training duration, model accuracy, and model convergence. In this stage, 
we experiment with varying the algorithm’s parameters to find the best classification 
model solutions. For instance, when using the KNN algorithm, we set K = 3 to achieve 
the highest accuracy in identifying the DNA dataset. In the Decision Tree algorithm, 
we use max depth = 5 while classifying the dataset, which provides an optimal solution. 
For the RF model, we found that setting max depth = 5 and n estimators = 10 yielded the 
best classification results. We also employ several kernels to ensure the accuracy of SVM 
Classification, including SVM RBF, SVM SIGMOID, and SVM LINEAR, while using the 
SVM method. By experimenting with different parameter settings, we can optimize the 
behavior of our ML algorithm and achieve better classification performance.

Table  2 provides a comparison of different classification algorithms based on their 
time complexity, advantages, and disadvantages. The table lists the algorithms in rows, 
with columns indicating the time complexity, advantages, and disadvantages of each 
algorithm. The time complexity column provides an estimate of the time required by 
each algorithm to complete the classification task. The advantages column lists the 
strengths and benefits of each algorithm, such as high accuracy, robustness, and inter-
pretability. The disadvantages column highlights the limitations and weaknesses of each 
algorithm, such as high computational complexity, overfitting, and poor performance on 
imbalanced datasets.

Some of the algorithms listed in Table 2 include Naive Bayes, Random Forest, K-Near-
est Neighbors, Decision Trees, and Support Vector Machines (SVMs). For example, 
Naive Bayes is known for its simplicity and efficiency, making it a popular choice for text 
classification tasks. However, its main disadvantage is its assumption of independence 
between features, which can result in poor performance when dealing with highly cor-
related features.

Fig. 7 The Confusion Matrix
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Random Forest, on the other hand, is known for its high accuracy and robustness to 
noise and outliers. However, its training time can be significant, and it may suffer from 
overfitting when dealing with highly complex or imbalanced datasets.

K-Nearest Neighbors is a simple and effective algorithm that can be used for both clas-
sification and regression tasks. However, its main disadvantage is its high computational 
complexity, which can make it impractical for large datasets.

Decision Trees are easy to understand and interpret, making them a popular choice for 
applications where interpretability is important. However, they can suffer from overfit-
ting and poor performance on imbalanced datasets.

Finally, SVMs are known for their high accuracy and ability to handle complex datasets. 
However, their training time can be significant, and they may require careful selection 
and tuning of hyperparameters to achieve optimal performance.

Table 2 Classification algorithms Comparisons
Algorithms Time 

Complexity
Advantages Disadvantages

KNN O (n * d)
Where:
n: the number of 
instances,
d: dimensions

1. There is no training period- KNN.
2. Simple Implementation

1. It does not perform well with huge 
datasets.
2. Does not function properly with 
several dimensions.
3. Sensitive to missing and noisy data
4. Scaling of Features

SVM O(s*d)
Where:
s: number of SV,
d: data 
dimensionality

1. In higher dimensions, it performs 
effectively.
2. When classes can be separated, the 
best algorithm is used.
3. Outliers have less influence.
4. SVM is well-suited for binary clas-
sification in extreme cases.

1. Slower with bigger datasets
2. Overlapped classes perform 
poorly.
3. It is critical to choose proper 
hyperparameters.
4. Choosing the right kernel function 
might be difficult.

Decision 
Tree

O(k)
Where:
k: depth of tree

1. No data normalization or scaling is 
required.
2. Missing value handling
3. Feature selection that is automatic

1. Susceptible to overfitting.
2. Data sensitivity. When data 
changes little, the consequences 
might alter dramatically.
3. It takes more time to train decision 
trees.

Random 
Forest

O(k*m)
Where:
k: depth of tree, 
m: decision trees

1. Error reduction
2. Excellent performance on unbal-
anced datasets
3. Dealing with massive amounts of 
data
4. Effective handling of missing data
5. Outliers have little influence

1. Features must have some predic-
tive power, or they will not operate.
2. The tree predictions must be 
uncorrelated.

Naive 
Bayes

O(n*d) 1. Scalable when dealing with large 
datasets.
2. Insensitive to unimportant 
characteristics.
3. Effective multi-class prediction
4. High dimensional performance with 
good performance

1. The independence of characteris-
tics is not valid.
2. Training data should accurately 
represent the population.
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Overall, Table  2 provides a useful summary of the advantages and disadvantages of 
different classification algorithms and can help guide researchers in selecting the most 
appropriate algorithm for their specific task and dataset.

Evaluation

In this phase, several classification measurements were applied to report the perfor-
mance of each model. These measurements are accuracy, recall, precision, and F1-score. 
All those measurements cannot be calculated without a confusion matrix [45, 46].

The Confusion Matrix is a performance statistic for a machine learning classification 
task where the output might be two or more classes. It is a table with four alternative 
combinations of projected and actual values, as shown below.

Accuracy

is a measure of how close a measurement is to the truth, represented as the percentage 
of correctly classified instances. It is calculated using the equation:

Accuracy = (TP+TN) / (TP+TN+FP+FN)

where TN refers to the correct number of classifications of negative instances, TP refers 
to the correct number of classifications of positive instances, FP refers to the incorrect 
number of classifications of negative instances, and FN refers to the incorrect number of 
classifications of positive instances.

Precision

refers to the metric that measures how many of the predicted outputs were predicted 
correctly, calculated using the equation:

Precision=True positives / (True positives+ False positives)

Recall

is the percentage of correct positive predictions that have been made, based on all the 
correct positives in the dataset. It is calculated using the equation:

Recall =True positives / (True positives+ False negatives)

F1-Score

is defined as the harmonic mean of both recall and precision of a model, scaled appro-
priately, calculated using the equation:

F1 Score= 2 ∗ (Precision ∗Recall) / (Precision +Recall)

The ROC AUC

can also be defined in terms of precision and recall, which are two other common met-
rics used in binary classification. Precision measures the fraction of positive predictions 
that are correct, while recall measures the fraction of positive examples that are correctly 
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identified by the model. The relationship between precision, recall, and the true positive 
rate (TPR) and false positive rate (FPR) is as follows:

TPR= recall = true positives / (true positives+ false negatives)

FPR= false positives / (false positives+ true negatives)

The ROC curve can be constructed by varying the classification threshold of the model 
and plotting the TPR against the FPR. The ROC AUC is then calculated by integrating 
the ROC curve as follows:

ROCAUC= integral (recall (FPR)) dFPR

where recall(FPR) is the recall as a function of the false positive rate, and the integral is 
taken over the range of FPR. The ROC AUC can be interpreted as the probability that 
a randomly chosen positive example is ranked higher than a randomly chosen negative 
example by the model’s predicted scores, when the threshold for positive classification is 
varied. A perfect classifier has an ROC AUC of 1, while a random classifier has an ROC 
AUC of 0.5.

Computation time

is the learning time of the model in the DNA classification model using different 
Machine Learning Algorithms, as well as the time spent in the model testing process. 
The time function is used to record the time it takes to train the data during the clas-
sification process for all the methods used in the model. The computation time for each 
algorithm is shown in Table 2.

The experimental results
Table 3 presents the results of the DNA sequence classification algorithms, along with 
their time complexity. The table includes seven algorithms: K-Nearest Neighbors (KNN), 
Decision Tree, Random Forest, Naive Bayes, Support Vector Machine with Radial Basis 
Function kernel (SVM RBF), Support Vector Machine with Sigmoid kernel (SVM Sig-
moid), and Support Vector Machine with Linear kernel (SVM Linear).

The performance of the algorithms is evaluated using several metrics, including accu-
racy, precision, ROC_AUC, recall, and F1 score. The execution time of each algorithm is 
also reported.

Table 3 shows that SVM Linear has the highest accuracy (0.963) and F1 score (0.97), 
indicating that it has the best overall performance among the algorithms. Naive Bayes 
also performs well with an accuracy of 0.838 and an F1 score of 0.94. KNN has the low-
est accuracy (0.778) and F1 score (0.79) among the algorithms, while Random Forest 
performs poorly with an accuracy of 0.609 and an F1 score of 0.55. In terms of time 

Table 3 Results of the DNA sequence Classification Algorithms and Time Complexity
Algorithms Accuracy Precision ROC_AUC Recall F1 score Execution time

1 KNN 0.778 0.62 0.701 0.65 0.79 14.448

2 Decision Tree 0.815 0.92 0.891 0.71 0.8 13.271

3 Random Forest 0.609 0.67 0.623 0.47 0.55 12.983

4 Naive Bayes 0.838 0.83 0.855 0.88 0.94 12.606

5 SVM RBF 0.925 0.83 0.937 0.88 0.94 13.173

6 SVM Sigmoid 0.925 0.83 0.952 0.88 0.94 14.189

7 SVM Linear 0.963 0.91 0.963 0.94 0.97 10.059
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complexity, SVM Linear has the lowest execution time (10.059 seconds), followed by 
Decision Tree (13.271 seconds) and SVM RBF (13.173 seconds). KNN has the highest 
execution time (14.448 seconds), while SVM Sigmoid has the second-highest execution 
time (14.189 seconds).

Overall, the results suggest that SVM Linear and Naive Bayes are the top-perform-
ing algorithms for DNA sequence classification, while KNN and Random Forest are less 
effective. The time complexity results indicate that SVM Linear, Decision Tree, and SVM 
RBF are the most efficient algorithms in terms of execution time.

Figure 8 displays the metrics of each algorithm on the same DNA sequence, while 
Fig. 9 shows the execution time for each technique in the DNA sequence classification 
process.

Table  4 provides a comparison of the machine learning techniques discussed above 
with traditional techniques, including our two proposed methods (EFLPM and EPAPM) 
[47] based on their execution time for different pattern lengths in DNA sequences.

Table 4 summarizes the results of experiments conducted on different pattern match-
ing and classification algorithms for different pattern lengths in DNA sequences. The 
table shows the pattern lengths in columns and the algorithms in rows, with correspond-
ing values indicating execution time achieved by each algorithm for a particular pattern 
length.

Fig. 9 DNA sequence execution time for each technique

 

Fig. 8 Metrics of each algorithm on the same DNA sequence
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The experiments involved the use of FLPM, PAPM, EFLPM, EPAPM, and SVM Linear 
algorithms for DNA sequence classification. At a pattern length of 5, FLPM achieved 
timeof 0.0045, PAPM achieved time of 0.0054, EFLPM achieved time of 0.0035, EPAPM 
achieved time of 0.0044, and SVM Linear achieved time of 0.0035.

As the pattern length increased, the accuracy of each algorithm varied. For instance, at 
a pattern length of 10, both EFLPM and EPAPM achieved the highest accuracy of 0.0018, 
while PAPM achieved time of 0.0018. SVM Linear performed the best at a pattern length 
of 25, achieving time of 0.0012.

In addition, the table indicates that our proposed methods, EFLPM and EPAPM, out-
performed traditional techniques such as FLPM and PAPM in terms of classification 
accuracy for certain pattern lengths. Furthermore, SVM Linear consistently performed 
well across all pattern lengths.

Overall, the results suggest that the accuracy of each algorithm is dependent on the 
pattern length, and machine learning techniques, specifically SVM Linear and our pro-
posed methods, are better suited for DNA sequence classification than traditional tech-
niques like FLPM and PAPM.The visualization of the summary of experimental results is 
shown in Fig. 10.

As shown in Fig. 10, SVM Linear outperforms other methods in terms of execution 
time, indicating that our model is efficient in classifying DNA sequences and match-
ing patterns. Moreover, we compared the proposed and existing systems based on their 
runtime, and the results demonstrate that both our proposed methods (EFLPM and 
EPAPM) and SVM Linear with a linear kernel have similar execution times, minimizing 
time complexity. Therefore, these methods are effective and practical solutions for DNA 
sequence classification tasks that require fast execution times.

Table 4 A comparison of machine learning techniques with traditional techniques based on their 
execution time for different pattern lengths in DNA sequences
No Algorithms Pattern Length

5 10 15 20 25
1 FLPM 0.0045 0.0025 0.0025 0.0026 0.0018

2 PAPM 0.0054 0.0018 0.0022 0.0025 0.0024

3 EFLPM 0.0035 0.0018 0.0019 0.0020 0.0012

4 EPAPM 0.0044 0.0011 0.0017 0.0013 0.0015

5 SVM Linear 0.0035 0.0020 0.0019 0.0015 0.0012

Fig. 10 Summary of the experiments results
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Discussion
The use of machine learning algorithms in pattern matching has gained significant atten-
tion in recent years due to their ability to accurately classify and identify patterns in large 
datasets. In this discussion section, we will explore the advantages and limitations of 
using machine learning algorithms in pattern matching and their potential applications.

One of the main advantages of using machine learning algorithms in pattern matching 
is their ability to process large amounts of data quickly and accurately. Machine learning 
algorithms can identify complex patterns and relationships in data sets that may not be 
immediately apparent to human analysts. Furthermore, these algorithms can learn and 
adapt to new patterns as they are discovered, making them a powerful tool for identify-
ing and classifying new patterns and trends.

Another advantage of using machine learning algorithms in pattern matching is their 
ability to automate the process, reducing the need for human intervention. This can 
significantly reduce the time and resources required to analyze large datasets, enabling 
researchers to focus on other aspects of their research.

However, there are also limitations to using machine learning algorithms in pattern 
matching. One of the main challenges is the need for large amounts of high-quality data 
to train the algorithms effectively. In many cases, obtaining high-quality data can be dif-
ficult, particularly when working with complex data sets such as DNA sequences.

Another limitation is the potential for overfitting, where the algorithm becomes too 
specialized in recognizing specific patterns in the training data and performs poorly 
when presented with new data. To address this challenge, researchers must carefully 
select and preprocess the data used to train the algorithms and use appropriate tech-
niques such as cross-validation to evaluate their performance.

Despite these limitations, machine learning algorithms have many potential applica-
tions in pattern matching, including DNA sequence classification, image recognition, 
and natural language processing. For example, in DNA sequence classification, machine 
learning algorithms can be used to identify specific patterns associated with various dis-
eases, enabling researchers to develop more targeted treatments.

Overall, the use of machine learning algorithms in pattern matching has the potential 
to revolutionize many fields and disciplines, enabling researchers to identify and analyze 
patterns in large datasets quickly and accurately. However, it is important to carefully 
evaluate the strengths and limitations of these algorithms to ensure they are used effec-
tively and appropriately.

Limitations
The limitations for Pattern Matching classification can be summarized as follows:

  • Algorithm comparison: The study compares the proposed model with only two 
other algorithms, FLPM and PAPM. While the results show that the proposed model 
outperforms these algorithms, it would be valuable to compare the Deep Learning 
models with a wider range of algorithms to further validate its effectiveness.

  • Pattern length evaluation: The study examines the impact of pattern length on 
the accuracy and time complexity of each algorithm, but only for a limited range of 
pattern lengths. It would be valuable to investigate the performance of the algorithms 
for longer or more complex patterns.
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  • Feature extraction: More complex feature extraction methods could potentially 
improve the model’s performance.

  • Scope of applications: The study focuses primarily on DNA sequence classification 
for drug discovery, personalized medicine, and disease diagnosis. While these are 
important applications, the model’s potential for other applications or fields is not 
explored in depth.

  • Imbalanced dataset: The dataset used in the study may be imbalanced, meaning that 
there are more examples of one class than the other. This could affect the model’s 
performance and lead to biased results.

  • hyperparameter tuning: The study uses a limited range of hyperparameters for each 
algorithm, which may not be optimal for all datasets or applications.

Conclusion and future work
The proposed model for DNA sequence classification offers a valuable contribution 
to the field and has significant potential for practical applications. Further research 
and development in this area could lead to improved accuracy and efficiency in DNA 
sequence classification, with important implications for drug discovery, personalized 
medicine, and disease diagnosis.

This paper focuses on using a pattern-matching method to retrieve matched DNA 
sequences. The study covers the following steps:

  • Building a DNA Sequences dataset from DNA FASTA files and converting it to a 
CSV file.

  • Importing data from the CSV file.
  • Converting text inputs to numerical data.
  • Building and training classification algorithms.
  • Comparing and contrasting classification algorithms based on execution time, recall, 

precision, F1-score, ROC_AUC, occurrences, and accuracy.

The performance of the proposed model is evaluated using various machine learning 
algorithms, and the results indicate that the SVM linear classifier achieves the high-
est accuracy and F1 score among the tested algorithms. This finding suggests that the 
proposed model can provide better overall performance than other algorithms in DNA 
sequence classification. In addition, the proposed model is compared to two suggested 
algorithms, namely FLPM and PAPM, and the results show that the proposed model 
outperforms these algorithms in terms of accuracy and efficiency. The study further 
explores the impact of pattern length on the accuracy and time complexity of each algo-
rithm. The results show that as the pattern length increases, the execution time of each 
algorithm varies. For a pattern length of 5, SVM Linear and EFLPM have the lowest exe-
cution time of 0.0035 s. However, at a pattern length of 25, SVM Linear has the lowest 
execution time of 0.0012 s. The experimental results of the proposed model show that 
SVM Linear has the highest accuracy and F1 score among the tested algorithms. SVM 
Linear achieved an accuracy of 0.963 and an F1 score of 0.97, indicating that it can pro-
vide the best overall performance in DNA sequence classification. Naive Bayes also per-
forms well with an accuracy of 0.838 and an F1 score of 0.94.
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Future work The proposed model for DNA sequence classification is a promising devel-
opment that can enhance the accuracy and efficiency of DNA sequence classification. 
However, there are several future directions that could be pursued to further improve the 
model’s performance and expand its potential applications.
One possible future direction is to investigate the performance of the proposed model 
on larger datasets. The current study used a relatively small dataset, and it would be 
interesting to see how the model performs on larger-scale datasets with more diverse 
sequences. This would help to validate the model’s effectiveness in real-world scenarios 
and enhance its potential applications.

Another possible future direction is to explore the use of deep learning techniques 
for DNA sequence classification. Deep learning models, such as convolutional neural 
networks (CNNs,MLP and LSTM) and recurrent neural networks (RNNs), have shown 
promising results in various domains, including natural language processing and com-
puter vision. It would be interesting to see how these techniques could be adapted to 
DNA sequence classification and whether they could provide improved performance 
compared to the proposed model.

Furthermore, it would be valuable to investigate the model’s performance on different 
types of DNA sequences, such as those from different organisms or with different func-
tional roles. This would help to identify any potential limitations of the model and areas 
where it could be further improved.
Acknowledgements
Authors sincerely acknowledge Computer Science Department in Faculty of Science, Minia University for the facilities 
and support.

Authors’ contributions
This work was carried out in collaboration among all authors. Author BAH designed the study, performed the statistical 
analysis and wrote the protocol. Authors OASI and TAEH managed the analyses of the study, managed the literature 
searches and wrote the first draft of the manuscript. All authors read and approved the final manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with 
The Egyptian Knowledge Bank (EKB).

Data availability
The data that support the findings of this study are available in https://github.com/belalahmedhamed/Bioinformatics-
Dataset. These data were derived from the following resources available in the public domain of “The National Center for 
Biotechnology Information advances science and health by providing access to biomedical and genomic information” 
https://www.ncbi.nlm.nih.gov/guide/dna-rna/.

Declarations

Competing interests
The authors declare that there is no conflict of interest. The authors declare that they have no known competing 
financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical statement
All procedures performed in studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or 
comparable ethical standards.

Consent statement
Informed consent was obtained from all individual participants included in the study.

Received: 30 March 2023 / Accepted: 16 July 2023

References
1. Marczyk VR, Recamonde-Mendoza M, Maia AL, Goemann IMJT. Classification of Thyroid Tumors Based on DNA Methylation 

Patterns 2023(ja).

https://github.com/belalahmedhamed/Bioinformatics-Dataset
https://github.com/belalahmedhamed/Bioinformatics-Dataset
https://www.ncbi.nlm.nih.gov/guide/dna-rna/


Page 17 of 18Hamed et al. Journal of Big Data          (2023) 10:124 

2. Liu PJFiG. Pan-cancer DNA methylation analysis and tumor origin identification of carcinoma of unknown primary site 
based on multi-omics. 2022;12:798748.

3. Zhao F, Li L, Lin P, Chen Y, Xing S, Du H, Wang Z, Yang J, Huan T, Long C, Zhang L, Wang B, Fang M. HExpPredict: In Vivo 
Exposure Prediction of Human Blood Exposome Using a Random Forest Model and Its Application in Chemical Risk Priori-
tization. 2023;131(3):037009.

4. Suyama Y, Hirota SK, Matsuo A, Tsunamoto Y, Mitsuyuki C, Shimura A, Okano K. Complementary combination of multiplex 
high-throughput DNA sequencing for molecular phylogeny. Wiley Online Library; 2022.

5. Zhong H-S, Dong M-J, F.J.I.S.C.L S, Gao. G4Bank: A database of experimentally identified DNA G-quadruplex sequences 2023: 
p. 1–9.

6. Touati R, Messaoudi I, Oueslati AE, Lachiri Z, Kharrat M. New Intraclass Helitrons classification using DNA-Image sequences 
and machine learning approaches. IRBM. 2021;42(3):154–64.

7. Norlin S. “DNA Seq Classif Using Variable Length Markov Models” 2020.
8. Ryu C, Lecroq T, Park K. Fast string matching for DNA sequences. Theor Comput Sci. 2020;812:137–48.
9. Xu G, Li H, Ren H, Lin X, X.J.I.T.o.C C, Shen. DNA similarity search with access control over encrypted cloud data. 

2020;10(2):1233–52.
10. Yang A, Zhang W, Wang J, Yang K, Han Y. L.J.F.i.B. Zhang, and Biotechnology. Rev application Mach Learn algorithms Seq 

data Min DNA. 2020;8:1032.
11. Ravikumar M, Prashanth MJC, Cognition. and M.L.A.P.o. ICCCMLA, Analysis of DNA sequence pattern matching: a brief survey 

2021: p. 221–229.
12. Millán Arias P, Alipour F, Hill KA, Kari LJPo. DeLUCS: Deep learning for unsupervised clustering of DNA sequences. 

2022;17(1):e0261531.
13. Rossi F, Paiardini AJCB. A machine learning perspective on DNA and RNA G-quadruplexes. 2022. 17(4): p. 305–9.
14. Xiong X, Zhu T, Zhu Y, Cao M, Xiao J, Li L, Wang F, Fan C, Pei HJNMI. Mol convolutional neural networks DNA Regul circuits. 

2022;4(7):625–35.
15. Ibrahim OAS, Hamed BA, El-Hafeez TAbd. A new fast technique for pattern matching in biological sequences 2022: p. 1–22.
16. Jukic S, Saracevic M, Subasi A, Kevric JJM. Comparison of ensemble machine learning methods for automated classification of 

focal and non-focal epileptic EEG signals. 2020. 8(9): p. 1481.
17. Hassan SU, Ahamed J, Ahmad KJSO, Computers. Analytics of machine learning-based algorithms for text classification. 

2022;3:238–48.
18. Kurani A, Doshi P, Vakharia A, J.A.o.D M. A comprehensive comparative study of artificial neural network (ANN) and support 

vector machines (SVM) on stock forecasting. 2023. 10(1): p. 183–208.
19. Mondal HS, Ahmed KA, Birbilis N, Hossain MZJSR. Mach Learn detecting DNA attachment SPR Biosens. 2023;13(1):3742.
20. Alshayeji MH, S.C.J.E.S.w.A., Sindhu. Viral genome prediction from raw human DNA sequence samples by combining 

natural language processing and machine learning techniques. 2023;218:119641.
21. Sarkar S, Mridha K, Ghosh A, Shaw RN. Machine Learning in Bioinformatics: New Technique for DNA Sequencing Classification, 

in Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2022. 2022, Springer. p. 335–355.
22. Karr AF, Bowen Z. and A.A.J.a.p.a. Porter, Structure of Classifier Boundaries: Case Study for a Naive Bayes Classifier 2022.
23. Habib MA, Manik MMH, Khulna B. Classification of DNA Sequence Using Machine Learning Techniques. 2022, EasyChair.
24. Khatun ME, Rabeya T. A Machine Learning Approach for Sentiment Analysis of Book Reviews in Bangla Language. in 2022 6th 

International Conference on Trends in Electronics and Informatics (ICOEI). 2022. IEEE.
25. Kushwah JS, Kumar A, Patel S, Soni R, Gawande A, Gupta SJMTP. Comp study regressor classifier Decis tree using Mod 

tools. 2022;56:3571–6.
26. Rivera-Lopez R, Canul-Reich J, Mezura-Montes E, Cruz-Chávez MAJS, Computation E. Induction of decision trees as clas-

sification models through metaheuristics. 2022;69:101006.
27. Costa VG, C.E.J.A.I R, Pedreira. Recent advances in decision trees: An updated survey 2023. 56(5): p. 4765–4800.
28. Lee CS, Cheang PYS, J.A.i.D M. Predictive analytics in business analytics: decision tree. 2022;26(1):1–29.
29. Bansal M, Goyal A, A.J.D.A.J., Choudhary. A comparative analysis of K-nearest neighbor, genetic, support vector machine, deci-

sion tree, and long short term memory algorithms in machine learning. 2022. 3: p. 100071.
30. Shorabeh SN, Samany NN, Minaei F, Firozjaei HK, Homaee M, Boloorani ADJRE. Decis model based Decis tree Part swarm 

Optim algorithms identify optimal locations solar power plants Constr Iran. 2022;187:56–67.
31. Ravikumar M, Prashanth M, Guru D. Matching pattern in DNA sequences using machine learning Approach based on 

K-Mer function, Modern approaches in machine Learning & Cognitive Science: a Walkthrough. 2022, Springer. 159–71.
32. Koul N, Manvi SS, Gardiner B. Method for Classification of Cancers with Partial Least Squares Regression as Feature Selector with 

Kernel SVM. in 2022 International Conference for Advancement in Technology (ICONAT). 2022. IEEE.
33. Manoharan A, Begam K, Aparow VR, J.J.o.E D. Artificial neural networks, gradient boosting and support Vector Machines for 

electric vehicle battery state estimation: a review. 2022. 55: p. 105384.
34. Zhang H, Zou Q, Ju Y, Song C, Chen DJCB. Distance-based support vector machine to predict DNA N6-methyladenine modifi-

cation. 2022. 17(5): p. 473–82.
35. Roy A, Chakraborty SJRE, Safety S. Support vector machine in structural reliability analysis: A review 2023: p. 109126.
36. Jäger J, Krems RVJNC. Universal expressiveness of variational quantum classifiers and quantum kernels for support vector 

machines. 2023. 14(1): p. 576.
37. Dragomir MP, Calina TG, Perez E, Schallenberg S, Chen M, Albrecht T, Koch I, Wolkenstein P, Goeppert B, Roessler SJE. DNA 

methylation-based classifier differentiates intrahepatic pancreato-biliary tumours 2023. 93.
38. Chadha A, Dara R, Pearl DL, Sharif S, Poljak ZJPVM. Predictive analysis for pathogenicity classification of H5Nx avian influenza 

strains using machine learning techniques 2023. 216: p. 105924.
39. Mangkunegara IS, Purwono P. Analysis of DNA Sequence Classification Using SVM Model with Hyperparameter Tuning Grid 

Search CV. in 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). 2022. IEEE.
40. Andrade-Girón D, Carreño-Cisneros E, Mejía-Dominguez C, Velásquez-Gamarra J, Marín-Rodriguez W, Villarreal-Torres H. 

R.J.E.E.T.o.P.H. Meleán-Romero, and Technology, support vector machine with optimized parameters for the classification of 
patients with COVID-19. 2023. 9: p. e8–e8.

41. NCBI., National Center for Biotechnology Information 2020.
42. Borjigin C. Data analysis with Python, in Python Data Science. Springer; 2023. pp. 295–342.



Page 18 of 18Hamed et al. Journal of Big Data          (2023) 10:124 

43. Rajamani SK, Iyer RS. Machine Learning-Based Mobile Applications Using Python and Scikit-Learn, in Designing and Developing 
Innovative Mobile Applications. 2023, IGI Global. p. 282–306.

44. Lavanya A, Gaurav L, Sindhuja S, Seam H, Joydeep M, Uppalapati V, Ali W. Assessing the performance of Python Data 
visualization libraries: a review. and V.S. SD; 2023.

45. Valero-Carreras D, Alcaraz J, Landete MJC, Research O. Comparing two SVM models through different metrics based on 
the confusion matrix. 2023;152:106131.

46. Li J, Sun H, Li JJML. Beyond confusion matrix: learning from multiple annotators with awareness of instance features. 2023. 
112(3): p. 1053–75.

47. Ibrahim OAS, Hamed BA, El-Hafeez TAbd. A new fast technique for pattern matching in biological sequences. 
2023;79(1):367–88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 


	Optimizing classification efficiency with machine learning techniques for pattern matching
	Abstract
	Introduction
	Related work

	ML methodology for PM from DNA sequences
	Pre-processing step
	Gathering the dataset
	Transforming the data
	Cleaning and labeling the dataset


	Feature extraction
	Train/test splitting
	Defining algorithms
	Fitting models
	Tuning parameters
	Evaluation
	Accuracy
	Precision
	Recall
	F1-Score
	The ROC AUC
	Computation time

	The experimental results
	Discussion
	Limitations
	Conclusion and future work
	References


