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Abstract 

Hepatocellular carcinoma (HCC) represents a formidable malignancy with a high lethal-
ity. Nonetheless, the development of vaccine and the establishment of prognostic 
models for precise and personalized treatment of HCC still encounter big challenges. 
Thus, the aim of this study was to develop HCC vaccines and explore anoikis-based 
prognostic models based on RNA sequencing data in GEO datasets (GSE10143, 
GSE76427) and the TCGA-LIHC cohort. Potential HCC antigens were identified using 
GEPIA2, cBioPortal, and TIMER2. Anoikis-related subtypes and gene clusters were 
defined by consensus clustering of 566 liver cancer samples based on 28 anoikis regu-
lators, and we further analyzed their relationship with the immune microenvironment 
of HCC. A predictive model based on anoikis-related long noncoding RNAs (lncRNAs) 
was developed to accurately predict HCC prognosis. Seven overexpressed genes 
associated with HCC prognosis and tumor-infiltrating antigen-presenting cells were 
identified as potential tumor antigens for the development of HCC mRNA vaccines. 
Two subtypes based on anoikis-related genes (ARGs) and two gene clusters with differ-
ent characteristics were identified and validated in defined cohorts. The tumor immune 
microenvironment between the two subtypes showed different cell infiltration 
and molecular characteristics. Furthermore, a prognostic score based on seven lncR-
NAs identified by LASSO regression was constructed, with the low-risk group having 
favorable prognosis, a “hot” immune microenvironment, and better response to immu-
notherapy. CCNB1, CDK1, DNASE1L3, KPNA2, PRC1, PTTG, and UBE2S were first identi-
fied as promising tumor antigens for mRNA vaccine development in HCC. Besides, we 
innovatively propose anoikis-based molecular subtypes, which not only enable person-
alized prognostic stratification of HCC patients but also provide a blueprint for identify-
ing optimal candidates for tumor vaccines, enhancing immunotherapeutic strategies.

Keywords:  HCC, Anoikis, Prognosis, Subtype, TCGA​, GEO, Machine learning, 
Hepatocellular carcinoma, Anoikis, Tumor antigen, mRNA vaccine, Tumor immune 
microenvironment

*Correspondence:   
yan.zhiping@zs-hospital.sh.cn; 
fduwangxiaolin@outlook.com

1 Department of Interventional 
Radiology, Zhongshan Hospital 
Fudan University and Shanghai 
Institute of Medical Imaging, 
Fudan University, 180 Fenglin 
Road, Shanghai 200032, China
2 Faculty of Medicine, Institute 
for Experimental Molecular 
Imaging, Uniklinik RWTH 
Aachen and Helmholtz Institute 
for Biomedical Engineering, 
RWTH Aachen University, 
52074 Aachen, Germany
3 National Clinical Research 
Center for Interventional 
Medicine, Zhongshan Hospital, 
Fudan University, 180 Fenglin 
Road, Shanghai 200032, China
4 Department of Neurosurgery, 
Zhongshan Hospital Fudan 
University, 180 Fenglin Road, 
Shanghai 200032, China
5 Department of Neurosurgery, 
Baoji Central Hospital, 8 Jiangtan 
Road, Baoji 721008, Shaanxi 
Province, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00803-7&domain=pdf


Page 2 of 32Zheng et al. Journal of Big Data          (2023) 10:129 

Introduction
Hepatocellular carcinoma (HCC), the most common primary liver malignancy, ranks 
as the seventh most prevalent cancer worldwide, with 905,677 newly diagnosed cases 
(4.7%) and 830,180 deaths (8.3%) [1]. Patients with early-stage HCC may qualify for 
curative treatments such as surgery and liver transplantation, while those with advanced 
HCC, comprising approximately 70% to 80% of patients, generally experience a survival 
rate of less than 12% over a 5-year period. This is primarily attributed to the scarcity of 
treatment options available and the suboptimal response to initial therapy [2, 3]. There-
fore, identifying innovative approaches for earlier detection is essential for better pre-
diction of therapy response and survival in patients with HCC [4]. Since 2017, immune 
checkpoint inhibitors (ICIs) and combinations based on ICIs have emerged as the most 
promising approach for improving the prognosis of patients with unresectable HCC. 
However, accumulating evidence has shown that the poor pharmacokinetic properties 
of antibodies can induce treatment-related adverse events, while off-target immunologi-
cal effects on other organs can trigger immune-related adverse events, which can lead 
to treatment cessation and drug-related deaths, thereby limiting the application of this 
therapy [5]. Randomized trials assessing the efficacy of anti-PD-1 monotherapy in both 
the first-line and second-line setting showed no improvement in overall survival (OS). 
Consequently, the development of new combination therapy strategies aimed at activat-
ing the suppressive immune microenvironment in HCC is necessary [6].

Tumor-associated antigens (TAAs) are crucial targets for activating immunotherapy, 
as they are normal self-proteins that are overexpressed or re-expressed by tumors. 
Developing effective, minimally invasive, and long-lasting treatments targeting TAAs 
has been a long-standing goal in cancer therapy. Cancer vaccines aim to stimulate 
tumor-specific immune responses by targeting TAAs and increasing cytotoxic CD8 + T 
cells. Additionally, effective immunotherapy responses have been associated with neoan-
tigens, which are novel immunogenic sequences resulting from tumor mutations. Neo-
antigens are also being considered as potential targets for cancer immunotherapies, such 
as tumor vaccines, adoptive cell therapy (ACT), and antibody-based treatments, and as 
predictors for immune checkpoint blockers (ICBs). Despite the fact that HCC tumor 
cells can elicit significant immune responses against a range of mutant antigens, no clini-
cally developed HCC vaccine targeting a tumor antigen currently exists. Therefore, there 
is an urgent need to identify novel antigens in HCC and develop HCC vaccines.

Apoptosis is a programmed cell death mechanism that helps maintain tissue homeo-
stasis and prevent the development of cancer. When cells lose contact with neighboring 
cells or their extracellular matrix (ECM), they undergo a process called anoikis, which 
is a type of apoptosis that is triggered by detachment from the ECM [7]. Cancer cells 
detaching from primary sites acquire anoikis resistance and can colonize target organs or 
tissues via the circulatory and lymphatic systems [8]. Therefore, anoikis, a new hallmark 
of cancer metastasis, has attracted the attention of oncologists [9]. In HCC, strategies 
that reverse the anoikis resistance phenotype of HCC cells to inhibit cancer metastasis 
may be promising for the treatment of patients with local metastasis and potential vas-
cular invasion. Some studies have elucidated the relationship between tumor resistance 
to anoikis and immunity, revealing that anoikis affects the tumor immune microenvi-
ronment and anoikis resistance of cancer cells [10, 11]. Zhang et al. discovered that the 
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deactivation of IL1RAP promotes anoikis and suppresses Ewing sarcoma cell metasta-
sis, revealing the promising potential of anoikis-targeted therapy in cancer  [11]. Thus, 
exploring the role of anoikis in HCC will provide valuable insights into patient prognos-
tic stratification and the development of novel therapeutic targets, which also has the 
potential to enhance combination therapy with cancer vaccines and immunotherapy in 
HCC.

LncRNAs have been discovered to modulate the expression of genes associated with 
anoikis, either by facilitating or impeding anoikis resistance in cancer. Previous studies 
have shown that silencing lncRNA ANRIL promotes caspase activity, leading to anoikis-
induced cell death in glioma cells. Additionally, lncRNA-HOX antisense intergenic RNA 
(lncRNA-HOTAIR) is highly expressed in various cancers and has been shown to con-
tribute to cell survival and epithelial–mesenchymal transition (EMT) [12]. However, the 
molecular role and clinical implications of anoikis in HCC remain unknown. Hence, 
deciphering the molecular underpinnings of the relationship between the anoikis phe-
notype and lncRNAs in HCC based on datasets from multiple clinical RNA sequencing 
sample cohorts may illuminate the intricate mechanisms underlying HCC progression 
and metastasis. Additionally, such investigations may uncover promising therapeutic 
targets, paving the way for effective interventions to impede the development of HCC.

In this study, we aimed to identify tumor antigens that could be utilized in the devel-
opment of an mRNA vaccine for HCC. Furthermore, we constructed a prognostic risk 
score model based on anoikis-related lncRNAs, which has the potential to predict the 
prognosis of HCC patients as well as provide insights into the immunological tumor 
microenvironment (TME) of HCC. The risk model can be further employed to facilitate 
precision HCC treatment, such as chemoimmunotherapy, and the development of HCC 
vaccines.

Methods
Acquisition and preprocessing of HCC datasets

We initially searched the Gene-Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases for publicly available RNA-seq data that had 
complete clinical information. All adult patients and patients with missing survival 
information were excluded from further analysis. Finally, we enrolled a total of 566 
patients from three HCC cohorts (GSE10143, GSE76427, and TCGA-LIHC) into a 
metacohort for further investigation. Microarray data (GSE10143 and GSE76427 
cohorts) were downloaded from the GEO database at https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​query/​acc.​cgi?​acc=​GSE10​143 and https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE76​427, and RNA sequencing data (TCGA-LIHC cohort, FPKM 
values) were obtained from the Genomic Data Commons (GDC) at https://​portal.​
gdc.​cancer.​gov/ [13–15]. The FPKM data were converted to transcripts per kilobase 
million (TPM) values, and batch effects due to nonbiological technical biases were 
adjusted using the "ComBat" method in the “sva” R package. Table 1 summarizes the 
baseline data for all relevant HCC datasets. Only genes with nonzero expression lev-
els in over 50% of samples were retained. Additionally, mutation data were retrieved 
from the TCGA-LIHC database. A combined total of 132 anoikis-related genes were 
obtained from the GeneCard database (https://​www.​genec​ards.​org/, Accessed on 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10143
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10143
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76427
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76427
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.genecards.org/
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25 December 2022) [16] and the Harmonizome portal (https://​maaya​nlab.​cloud/​
Harmo​nizome/, Accessed on 25 December 2022) [17]. After performing a regression 
analysis of the 132 ARGs (p < 0.05), we identified 28 anoikis-related regulators. The 

Table 1  Clinical baseline characteristics of HCC patients in TCGA and GEO cohorts

Data are shown as n or n%

AJCC, American Joint Committee on Cancer; GEO, Gene Expression Omnibus; HCC, hepatocellular carcinoma; TCGA, The 
Cancer Genome Atlas; NA, not Applicable

Variable TCGA cohorts GEO cohorts

n = 371 GSE10143, n = 80 GSE76427, n=115

Age, year 59.22 ± 13.42 NA 63.45 ± 12.68

Gender NA NA

 Male 119 NA 93

 Female 252 NA 44

Grade NA BCLC stage

 G1 55 NA 0 4

 G2 180 NA A 74

 G3 123 NA B 28

 G4 13 NA C 9

Stage NA

 I 174 NA 55

 II 85 NA 35

 III 86 NA 21

 IV 5 NA 3

 Unknown 21 NA 1

AJCC-T NA

 T1 184 NA NA

 T2 92 NA NA

 T3 81 NA NA

 T4 13 NA NA

 Unknown 1 NA NA

AJCC-N NA

 N0 256 NA NA

 N1 4 NA NA

 Nx 110 NA NA

 Unknown 1 NA NA

AJCC-M NA

 M0 270 NA NA

 M1 4 NA NA

 Mx 97 NA NA

Overall survival NA

 1-year 84.6% 98.6% 88.7%

 3-year 72.3% 88.6% 84.3%

 5-year 67.4% 78.8% 80.7%

Survival status

 Alive 243 48 92

 Death 128 32 23

https://maayanlab.cloud/Harmonizome/
https://maayanlab.cloud/Harmonizome/
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annotation file was collected from the Ensembl database (http://​asia.​ensem​bl.​org) 
for lncRNA selection.

Identification of tumor antigens and Kaplan–Meier survival analysis

cBioPortal (https://​www.​cbiop​ortal.​org/) was used to merge unprocessed data from 
the TCGA cohort in this study [18, 19]. In addition, cBioPortal was utilized to visual-
ize genetic mutations in HCC patients and to identify mutant genes. Differentially 
expressed genes (DEGs) in HCC patients were identified using ANOVA and the "Dif-
ferential Genes" module of Gene Expression Profiling Interactive Analysis version 2 
(GEPIA2, http://​gepia2.​cancer-​pku.​cn/#​index), [20] with settings of |log2FC| value > 1 
and q value < 0.01. Additionally, the OS and relapse-free survival (RFS) of HCC patients 
were assessed using the “survival analysis” module of GEPIA2 with a median cutoff of 
50%, and the log-rank test was used for comparisons. The median value of identified 
tumor antigen expression was used to separate HCC patients into high and low expres-
sion groups, and the hazard ratio was calculated by the Cox proportional hazards regres-
sion model. The parameter settings were consistent throughout all analyses, and no p 
value adjustments were made. In various comparisons made between three or more 
groups, one-way ANOVA and Kruskal‒Wallis tests were used, and p values less than 
0.05 were considered statistically significant.

Tumor immune microenvironment component analysis

The Tumor Immune Estimation Resource (TIMER) is a web server that provides com-
prehensive analysis of tumor-infiltrating immune cells, including dendritic cells (resting 
and activated) and macrophages (M0, M1, and M2) [21]. In this study, we used TIMER-
based purity-adjusted partial Spearman’s correlation analysis to investigate the relation-
ship between tumor antigen expression and APC infiltration. We also utilized analytical 
modules for gene expression, somatic mutations, clinical outcomes, and somatic copy 
number changes to analyze and visualize the relationship between the number of tumor 
immune infiltrating cells (TIICs) and HCC tumor antigen-related genes. The cutoff value 
for statistical significance was p < 0.05.

Unsupervised clustering and subtype analysis based on 28 ARGs

To uncover distinct anoikis regulatory patterns mediated by ARGs, we identified 28 reg-
ulators from two combined GEO datasets and TCGA cohorts. Based on the expression 
of these 28 ARGs, we used unsupervised clustering analysis to categorize patients into 
groups with different anoikis regulation patterns for further study. We used the consen-
sus clustering algorithm [19] to estimate the number of clusters and their stability. We 
utilized the "ConsensusClusterPlus" packages to perform these processes, with 500 rep-
etitions performed to ensure classification stability.

Gene set variation analysis (GSVA) and functional annotation

We used the R package "GSVA" to conduct GSVA enrichment analysis to evaluate the 
differences in the biological process regulatory patterns of anoikis. GSVA is a nonpara-
metric and unsupervised technique commonly used to predict the variation in pathway 

http://asia.ensembl.org
https://www.cbioportal.org/
http://gepia2.cancer-pku.cn/#index
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and biological process activity in expression dataset samples [22]. We retrieved “c2.
cp.kegg.v6.2.-symbols” gene sets from the MSigDB database for GSVA. A p value of less 
than 0.05 was considered statistically significant. We used the clusterProfiler R package 
to perform functional annotation for anoikis-related genes with an FDR threshold of 
0.05 [23, 24].

Identification and validation of anoikis subtypes

To classify patients into unique anoikis regulation subtypes, we utilized the expression of 
28 ARGs and applied the empirical Bayesian method of the limma R package to identify 
DEGs between these types. We set a significance threshold for identifying DEGs at an 
adjusted p value of less than 0.001. Next, we quantified the anoikis regulatory patterns 
of each tumor sample and developed a scoring system, named the ARG score, to evalu-
ate the anoikis pattern of each patient with HCC. To determine the ARG score, we nor-
malized the DEGs with anoikis regulation pattern-related genes across all samples and 
identified the overlapping genes. We then used an unsupervised clustering approach to 
categorize the 566 patients into multiple groups for further investigation, and the con-
sensus clustering approach was used to determine the optimal number of gene clusters 
and their stability. We conducted prognostic analysis for each gene in the signature using 
the univariate Cox regression model and isolated 28 genes with significant prognostic 
value for further analysis. We calculated the ARG score using principal component anal-
ysis (PCA), which centered the score on the set containing the largest block of highly 
correlated (or uncorrelated) genes and downweighed the contributions of genes that did 
not track with other set members.

Further establishment of an anoikis‑related lncRNA signature

After performing a differential expression analysis between the high and low ARG score 
groups, we identified anoikis-related lncRNAs using the R package "limma." Next, we 
used the Wilcoxon test to compare gene expression across 50 normal tissue samples 
and 374 HCC samples from TCGA, resulting in the identification of another set of 855 
anoikis-related lncRNAs. Then, we investigated the association between overall survival 
(OS) and 104 lncRNAs that were differentially expressed and associated with anoikis 
in the TCGA training set using univariate Cox survival analysis. The R package "sur-
vival" was utilized to calculate the hazard ratio (HR) and p value, and 44 lncRNAs were 
chosen for further analysis using a significance threshold of p < 0.001 with the LASSO 
approach, aiming to identify hub lncRNAs associated with survival. We also plotted the 
partial likelihood deviation against log (lambda), with lambda being a tuning parame-
ter. Multivariate Cox regression analysis was performed to assess the regression coef-
ficients of significant prognostic lncRNAs associated with anoikis in the training set. 
These lncRNAs were selected based on their strong correlation with anoikis, and a sig-
nature of seven lncRNAs was ultimately generated using the coefficients. Based on their 
individual anoikis risk indices (ARIs), patients in the training set were divided into low- 
and high-risk groups using the median ARI value, which was performed by the pack-
age "survminer" in R. The Kaplan‒Meier algorithm was used to compare the differences 
in OS between these groups. ROC curves were generated to evaluate the ARI formula’s 



Page 7 of 32Zheng et al. Journal of Big Data          (2023) 10:129 	

predictive accuracy by examining its sensitivity and specificity. The formula was also 
applied to the validation cohorts to ensure its consistency. Since some clinicopathologic 
features, such as TNM stage, may affect prognosis in HCC patients, univariate and mul-
tivariate analyses were performed to determine whether the ARI was independent of 
these features.

Furthermore, ANOVA was conducted to explore the relationship between anoikis reg-
ulators and their associated molecular and cellular properties. The genes that were most 
susceptible to mutation were examined for significant changes using chi-square analysis. 
The functional characteristics of each gene module were annotated by analyzing gene 
ontologies by DAVID software [25, 26]. To determine the immunological enrichment 
score of each sample, which was defined as the number of genes that were upregulated 
or downregulated in a coordinated manner within the sample, single-sample gene set 
enrichment analysis (ssGSEA) was employed.

Predicting the effective response to immunotherapy and drugs

The IPS of HCC patients was obtained from The Cancer Immunome Atlas (TCIA) web-
site (https://​tcia.​at/​home) and was objectively determined by considering four types of 
immunogenicity-determining genes, including genes related to effector cells, immu-
nosuppressive cells, MHC molecules, and immune modulators. To compare the gene 
expression levels across the four distinct cell types, z scores were utilized. Higher IPS 
scores were found to be associated with increased immunogenicity [27]. In addition, the 
TIDE algorithm (http://​tide.​dfci.​harva​rd.​edu/) was employed to predict the response 
to immune checkpoint blockade (ICB) and to evaluate neoantigen potential [28, 29]. In 
addition, we used the R package “pRRophetic” to predict the sensitivity of chemother-
apeutic agents based on a statistical model constructed based on gene expression and 
drug sensitivity data from a very large panel of cancer cell lines [30].

Construction of a nomogram based on the ARI and comparison of its prediction abilities 

with clinicopathologic features

With the "rms" package in R, we were able to construct a nomogram that incorporates 
independent prognostic criteria to predict 1-, 3-, and 5-year OS rates. The AUC values 
were used to evaluate the nomogram’s discriminatory power in predicting survival. The 
DCA curve supported the use of the nomogram for making useful and beneficial infer-
ences. In addition to the factors already included in the nomogram, we generated a com-
prehensive nomogram indicator with the clinical and laboratory markers, which was a 
better predictor of overall survival.

Statistical analysis

Data processing and analysis were performed using R software (version 4.1.0). For con-
tinuous variables with normal distribution and variance, an independent samples t test 
was utilized, whereas for those without normal distribution and variance, the Wilcoxon 
rank-sum test was used. The Pearson correlation coefficient test was employed to ana-
lyze associations. A statistical significance threshold of P < 0.05 was considered meaning-
ful. All the R packages and statistical methods were list in Additional file 2: Table S11.

https://tcia.at/home
http://tide.dfci.harvard.edu/
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Results
Identification of potential tumor antigens in HCC

The study flowchart is presented in Fig.  1. To identify potential PAAD antigens, 
we screened for aberrantly expressed genes, which resulted in the identification of 
2,207 overexpressed genes (as determined by GEPIA) that potentially encode tumor-
associated antigens (Fig. 2A). Next, using cBioPortal, we analyzed genomic changes 
and mutation counts in samples and identified a total of 13,054 mutated genes that 
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may encode tumor-specific antigens. Interestingly, most patients had low levels of 
genomic changes and mutation counts, indicating that HCC is seemingly not highly 
immunogenic (Fig. 2B, C). The top 10 most frequently altered genes in the fractional 
genomic alteration and mutation count groups are depicted in Fig. 2F and G, respec-
tively. Notably, alterations to the tumor protein p53 gene were observed in a signifi-
cant proportion of patients in both groups. Furthermore, analysis of hepatocellular 
carcinoma mutation data from the TCGA database revealed that deletion mutations 
were the most frequently observed type of mutation in liver cancer, with single-
nucleotide polymorphisms being the most common type among these. Among single-
nucleotide mutations, the most common substitution was C to T, followed by T to C, 
C to A, T to A, C to G, and T to G in decreasing order of frequency. After analyzing 
the mutated genome fraction and mutation count, the top three genes found to be 
mutated were TTN, TP53, and CTNNB1. In addition to these genes, MUC16, ALB, 
PLCO, RYR2, APOB, OBSCN, and LRP1B were also observed to have mutations in a 
significant proportion of hepatocellular carcinomas, with frequencies exceeding 8%. 
(Fig.  2D) These genes are likely to have significant research value for further muta-
tion studies. Furthermore, in patients with overlapping mutations, genes such as titin, 
transcriptional repressor GATA binding 1, piccolo presynaptic cytomatrix protein, 
and usherin also showed a high frequency of mutations. In total, a set of 118 genes 
that were both overexpressed and mutated were identified by overlapping these two 
gene sets.

Through screening of 11 candidate genes closely related to overall survival (OS) of 
HCC, we identified eight genes that were significantly associated with recurrence-free 
survival (RFS) (Fig. 2E and Additional file 2: Table S1). These genes may play a crucial 
role in the progression of HCC and can be exploited in mRNA vaccine production. 
The OncoPrint tab presents a summary of the genomic changes in each mutated and 
overexpressed gene observed in the TCGA dataset (Fig. 2H, I). For example, overex-
pression of Aurora kinase A (AURKA) in tumor tissues was associated with a lower 
survival rate (Additional file  1: Fig. S1A). Ephrin B2 (EFNB2), cyclin B1 (CCNB1), 
cyclin-dependent kinase 1 (CDK1), karyopherin subunit alpha 2 (KPNA2), protein 
regulator of cytokinesis 1 (PRC1), PTTG1 and ubiquitin conjugating enzyme E2 S 
(UBE2S) all had high expression levels that were correlated with a poor prognosis 
(Additional file 1: Fig. S1B–T). One protective gene (AURKA) was found and further 
excluded.

The heatmap in Fig. 2K shows the correlation analysis of the infiltration of immune 
cells in the microenvironment and the seven genes in HCC. Heatmap analysis showed 
statistically significant correlations between seven of the genes (AURKA, CCNB1, 
CDK1, KPNA2, PRC1, PTTG1, and UBE2S) and tumor purity, neutrophils, mac-
rophages, dendritic cells, and CD8-positive and CD4-positive T cells (p < 0.05). A sig-
nificant correlation was found between the infiltration of B cells and the five genes, 
but this correlation was not found for AURKA and KPNA2. These findings suggest 
that these genes have important correlations with the aforementioned immune cells. 
A strong correlation was also observed between the expression of these seven candi-
date genes and B cell, macrophage, dendritic cell, and CD8 T-cell infiltration in HCC 
(Additional file  1: Fig. S2A–G). Since antigen-presenting cells (APCs) may directly 
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process and display these seven tumor antigens to generate an immune response, they 
are targets that should be a focus of studies for the development of HCC mRNA vac-
cines. In summary, these seven potential genes that are both mutated and overex-
pressed are important in the progression and tumor microenvironment of HCC.

Mutation and immune microenvironment analysis of the ARGs

We combined two GEO datasets (GSE10143 and GSE76427) and the TCGA-LIHC 
cohort into a metacohort with OS data and clinical information (Table 1). Differential 
analysis and univariate regression analysis of the ARGs revealed that patients with high 
expression of the 28 ARGs had poorer overall survival (OS). (Additional file 1: Fig. S3 
and Additional file 2: Table S2) The ARG network (Fig. 3A) revealed the landscape of the 
interactions, regulatory connections, and prognostic significance of the top 28 ARGs in 
HCC patients. We found a significant statistical relationship between these ARGs. From 
the network, it is apparent that all the genes functioned as risk factors for anoikis, with 
statistical evidence showing that each gene shared a strong positive regulatory link with 
other genes involved in anoikis, and these relationships were significant. High RHOC 
expression in tumors correlated with low SKP2 and MTA1 expression.

Based on the expression of these 28 ARGs, we were able to completely distinguish 
between HCC and normal samples. To investigate whether the mentioned genetic vari-
ants altered ARG expression in HCC patients, we examined the mRNA expression levels 
of anoikis regulators in normal and HCC samples. We found that changes in copy num-
ber variants (CNVs) may be the primary factor leading to ARG expression perturbations. 
All ARGs with increased CNVs showed significantly higher expression in HCC (Fig. 3B). 
In addition, our analysis of the frequency of CNVs showed that 28 ARGs had CNVs. 
Copy number variation analysis revealed that copy number gains (CNGs) accounted 
for the majority of copy number amplifications, whereas ICASP3, BRCA2, MTA1, and 
SMAD4 had a high frequency of deletion (decreased gene or sequence fragment copies 
in the genome) (Fig. 3C). Figure 3D depicts the location on the chromosomes where the 
CNVs of the ARGs were found. This evidence suggests that an imbalance in the expres-
sion of ARGs plays a critical role in the development of HCC, as our investigations 
revealed strikingly different changes in the genetic characteristics and gene expression of 
ARGs between normal and liver cancer samples.

Due to the higher frequency of mutations in the FN1 and IGF1R genes than in other 
genes, we analyzed how tumors with FN1 and IGF1R mutations and wild-type proteins 
expressed other ARGs. Compared to wild-type tumors, FN1-mutant tumors showed 
significant downregulation of snail family transcriptional repressor 2 (SNAI2), phos-
phatase and tensin homolog (PTEN), and fibronectin 1 (FN1), while tumor protein P53 
and clusterin (CLU) were significantly upregulated and downregulated, respectively, in 
insulin-like growth factor 1 receptor (IGF1R)-mutant tumors (Fig. 3E–H). According to 
the findings, oncogenes were upregulated in the mutant group, while tumor suppressor 
genes were downregulated. These findings suggest that interactions between regulators 
of distinct ARGs likely contribute significantly to the development of tumor-specific pat-
terns of anoikis regulation and TME cell infiltration.

We focused on FN1, a regulator, and discovered a highly favorable link between FN1 
expression and a wide variety of immune cells that had infiltrated the TME. Subsequent 
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analyses revealed that FN1 was related to the tumor immunological microenvironment. 
To compare the total number of immune cells present in people with high and low FN1 
expression, we used the ESTIMATE method. We analyzed the presence of twenty-two 
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immune cells in the TME in patients with high or low FN1 expression. Tumors with high 
FN1 expression showed significantly higher infiltration of CD8 T cells, CD4 memory 
activated T cells, and immune cells than those with low expression. (Fig.  3I) We also 
found that low expression of FN1 led to widespread increases in MHC, costimulatory, 
and adhesion molecule expression. Interestingly, the upregulation of the immune check-
point molecule PD-L1 (CD274) in the high FN1 expression group occurred simultane-
ously with enhancement of immune-related pathways (Fig.  3J). To investigate further, 
we used Spearman’s correlation analysis to examine the association between individual 
types of cells infiltrating the TME and each ARG (Fig. 3K).
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Fig. 4  A–C Unsupervised cluster analysis of 28 regulators of anoikis in a meta-cohort (TCGA + GEO). D 
Principal component analysis of two different anoikis-related gene regulation patterns. E Survival analysis 
of 2 modes of regulation of anoikis in a meta-cohort. F Analysis of the infiltration of immune cells in the 
tumor microenvironment of ARGs in two groups. G An unsupervised clustering heatmap of anoikis-related 
genes, with clinical shapes such as stage, gender, and age as annotations. H GSVA analysis heat map of 
two anoikis-related gene expression patterns. Red modules represent high expression gene patterns, blue 
represents low expression
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Identification of two anoikis regulation patterns mediated by 28 ARGs

We performed unsupervised clustering based on the expression of 28 ARGs and 
were able to identify two distinctive patterns of anoikis regulation in the metacohort 
(Fig. 4A–C and Additional file 2: Table S3). Pattern A consisted of 190 cases, while pat-
tern B had 376 cases. Using PCA to show the molecular patterns of different types in 
the two groups, we found that the ARG cluster was composed of two groups of samples 
with different characteristics (Fig. 4D). We also analyzed the prognosis of the two dis-
tinct anoikis patterns and found that the ARGscluster-B regulatory pattern conferred a 
greater advantage for survival than the ARGscluster-A regulatory pattern (Fig. 4E). To 
compare the differences in immune cell components between the two anoikis regula-
tion modes, we used CIBERSORT, a deconvolution algorithm based on support vector 
regression for identifying immune cell types in malignancies. We found that ARGsclus-
ter-B had a disproportionately high number of immune cells, including gamma delta T 
cells, neutrophils, and type 17  T helper cells, while ARGscluster-A had an excessively 
high level of immune cells, including activated CD4 T cells, activated dendritic cells, 
CD56 natural killer cells, immature dendritic cells, MDSCs, natural killer T cells, natu-
ral killer cells, plasmacytoid dendritic cells, regulatory T cells, T follicular helper cells, 
and type 2 T helper cells (Fig. 5F). We also visualized the expression of the 28 regula-
tors of anoikis in the metacohort using unsupervised clustering and a heatmap. Patient 
information such as ARG cluster, sex, tumor stage, project, and age were considered. 
The majority of ARGs had high expression in group A and low expression in group B, as 
illustrated by the heatmap (Fig. 5G). Using GSVA, we investigated the impact of different 
regulatory patterns on the biological pathways that are affected by anoikis regulation. 
GSVA indicated that ARGscluster-A was highly enriched in the cell cycle pathway, while 
ARGscluster-B was significantly enriched in metabolic pathways, including the arginine, 
proline, histidine, tyrosine, phenylalanine, glycine, serine, threonine, β alanine, trypto-
phan, propanoate, butanoate, fatty acid, linoleic acid, and retinol metabolism pathways 
and xenobiotics by cytochrome P450 pathway; furthermore, ARGscluster-B showed 
enrichment of glycolysis, gluconeogenesis, valine, leucine, and isoleucine degradation, 
complement and coagulation cascades, steroid hormone biosynthesis, and drug metab-
olism by cytochrome P450. (Fig.  4H) The findings from the GSVA indicated that the 
regulatory pattern found in cluster B was significantly associated with a high metabolic 
activity phenotype of HCC.

Gene scoring and functional annotation for the anoikis phenotype

We utilized the R package “limma” to identify 5588 DEGs associated with the anoikis 
phenotype to investigate the potential biological activity of each anoikis regulatory 
pattern. The DEGs were subjected to GO enrichment analysis with the "clusterPro-
filer" package, and Fig. 5A summarizes the significantly enriched biological processes 
(Additional file 2: Table S4). Interestingly, these genes were enriched in biological pro-
cesses related to anoikis and immunometabolic pathways, providing further evidence 
for the crucial role of anoikis in the tumor microenvironment. KEGG analysis of the 
genes revealed the top seven pathways with activity counts greater than 40: the cell 
cycle, focal adhesion, regulation of actin cytoskeleton, PI3K-Akt signaling pathway, 
human papillomavirus infection, proteoglycans in cancer, and human T-cell leukemia 
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Fig. 5  A Gene ontology analysis of genes involved in anoikis (biological process, molecular function and 
cellular components). B KEGG pathway analysis of the intersection genes of two patterns of anoikis genes. C, 
D Consensus clustering of genes associated with anoikis phenotypes. E Survival analysis of genes associated 
with anoikis phenotype in two gene clusters. F Alluvial diagram of the relationship between the two modes 
of ARGs with the risk and survival status. G Unsupervised clustering matrix of anoikis clusters. H The gene 
expression of regulators of 28 anoikis genes was in two gene clusters. I Inter-group analysis of ARGs score 
between two ARGs clusters. J Inter-group analysis of ARGs gene cluster score between two clusters. K 28 
anoikis-related genes expression in the high- and low-risk gene clustering group. L Tumor microenvironment 
scores difference of estimate score, immune score, stromal score in high-risk group and low-risk group. 
M Gene clustering analysis of two different anoikis gene clusters with stage, gender, age and project. N 
Correlation analysis between ARG score and tumor infiltrating immune cells
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virus 1 infection. These pathways are closely linked to tumor cell proliferation, apop-
tosis, and metastasis, thus indicating the relevance of the model to the cancer-related 
anoikis phenotype (Fig. 5B and Additional file 2: Table S5). To verify this regulatory 
mechanism, we performed unsupervised clustering analysis of the 28 genes related to 
the anoikis phenotype and classified patients into distinct genomic subtypes. Unsu-
pervised clustering identified two distinct anoikis genomic phenotypes, which we 
designated anoikis gene clusters A and B, consistent with the clusters identified based 
on anoikis regulatory patterns (Fig.  5C, D). Consistent with the predicted anoikis 
regulatory patterns, significant differences in the expression of ARGs were observed 
between the two ARG clusters (Fig. 5G and Additional file 2: Table S6).

The expression levels of anoikis gene cluster A were higher, while the expression 
levels of anoikis gene cluster B were lower, indicating two distinct phenotypic gene 
clusters related to anoikis. For example, differential analysis revealed significant dif-
ferences in the expression of PLK1, YWHAZ, RHOA, HMGA1, HK2, ITGA5, CASP2, 
RHOC, SKP2, CSNK2A1, PAK4, DAP3, MAPK1, ITGB1, SMAD4, IGF1R, CSAP8, 
CAV1, TGFB1, BRCA2, CD63, SH3GLB1, MTA1, PRKD1, SIRPA, CASP3, and 
PRKCA between the two groups, with group A showing significantly higher expres-
sion levels than group B (Fig. 5H). Considering the role of these genes in the tumor 
microenvironment, it is speculated that group A has a higher level of tumor antigen 
activity, and the expression of these genes remodels the tumor microenvironment of 
HCC. Subsequently, we conducted a comparison between the ARGcluster and gene-
cluster and found that the risk score of group A in both ARGcluster and geneclus-
ter was higher than that of group B, indicating that the patients in gene cluster A 
had a worse prognosis and higher risk (Fig.  5I, J). The expression levels of anoikis-
related genes that were significantly different between the two groups were also 
observed to be higher in the high-risk group than in the low-risk group (Fig. 5K). The 
tumor microenvironment (TME) of HCC was evaluated using three scores: stromal, 
immune, and ESTIMATE scores. The results revealed that group A had higher stro-
mal, immune, and ESTIMATE scores, demonstrating the intricate nature of the TME 
in this group. Notably, group A showed an increased level of immune activity, empha-
sizing the importance of considering the complexity of the TME for understanding 
the regulatory patterns of anoikis in HCC (Fig. 5L and Additional file 2: Table S7).

To assess the anoikis pattern of individual HCC patients, we developed a scoring 
system called the anoikis-related gene (ARG) score based on these phenotype-related 
genes. A Sankey diagram was used to depict the attribute changes of individual 
patients (Fig.  5F). Next, we aimed to determine the value of the ARG score in pre-
dicting the outcome of patients. Patients were classified as having a low or high ARG 
score based on the cutoff value, which was calculated using the “survminer” pack-
age in R. The results confirmed that patients with HCC could be classified into two 
groups with unique anoikis phenotype-related gene regulation modes. Patients with 
a favorable status (179 of 566 patients) for 7 years were mostly classified into anoikis 
gene cluster B, while those with a poor prognosis (387 patients) were clustered in 
anoikis gene cluster A. The anoikis gene clusters indicated that HCC has three unique 
anoikis phenotype-related gene regulation modes. The 5-year survival rate was found 
to be significantly higher among patients with a low ARG score than in those with a 
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high ARG score, as evidenced by the data presented in Fig. 5E. Additionally, the heat-
map in Fig.  5M shows the gene expression differences between the ARGs and gene 
clusters. The results demonstrate that group A had a higher level of gene expression 
than group B, which is consistent with the previous findings.

Furthermore, the correlation analysis revealed a significant association between the 
ARG score and the proportions of immune cells present in HCC. For instance, the infil-
tration of activated B cells, CD8 T cells, CD56 natural killer cells, eosinophil γδ T cells, 
immature B cells, immature dendritic cells, monocytes, neutrophils, type 1 helper T 
cells, type 17 helper T cells, and type 2 helper T cells was lower when the ARG score was 
higher, as demonstrated in Fig. 5N.

Development of a lncRNA signature associated with anoikis for diagnosis and treatment

The analysis of differences between 50 normal tissue samples and 374 HCC samples 
from TCGA was accomplished by “limma” packages in R, and a total of 16,773 lncRNAs 
were identified. Subsequently, the 370 HCC samples were randomly split into a "train-
ing" set comprising 185 samples and a "testing" set consisting of 185 samples for fur-
ther analysis. Pearson’s correlation analysis was utilized to determine the relationships 
between lncRNAs and ARGs, which led to the identification of 855 lncRNAs with a cor-
relation coefficient greater than 0.4 and a p value less than 0.01, indicating their associa-
tion with ARGs.

In the training group, the prognostic value of 28 ARG-related lncRNAs in liver can-
cer patients was then determined by using univariate Cox regression analysis (p < 0.001). 
To construct a prognostic anoikis-related lncRNA model, least absolute shrinkage and 
selection operator (LASSO) regression and cross validation were applied, resulting in 
the identification of prognostic lncRNAs (RNF216P1, AP002449.1, NRAV, AC100847.1, 
LINC01871, PSMB8-AS1, HMGN3-AS1, ZFPM2-AS1, TMEM220-AS1, AL590705.3, 
AC025176.1, AC027097.1, LINC01559, LINC01269A, and L117336.2) (Fig.  6A, B and 
Additional file  2: Table  S8). Subsequently, multivariate Cox regression analysis was 
performed and revealed seven lncRNAs, which were included in the risk model score 
(AC100847.1, PSMB8-AS1, ZFPM2-AS1, AL590705.3, AC025176.1, LINC01559, and 
LINC01269), along with their corresponding hazard ratios (HRs) and 95% confidence 
intervals (CIs).

Each patient’s anoikis risk index (ARI) was established using the following formula:

We performed survival analysis with ARI scores for HCC patients in TCGA. All the 
lncRNAs had positive associations with OS risk (p < 0.0001). Using the median value of 

ARI = (0.616675640597704 ∗ AC100847.1)

+ (−0.797818424476765 ∗ PSMB8− AS1)

+ (0.441031959395331 ∗ ZFPM2− AS1)

+ (0.777545279336812 ∗ AL590705.3)

+ (1.35551255903678 ∗ AC025176.1)

+ (0.5062856764437 ∗ LINC01559)

+ (0.665009661829924 ∗ LINC01269)
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Fig. 6  A Delta area curve. B Pyroptosis-associated lncRNAs identified using tenfold cross-validated lasso 
analysis. C Survival analysis of high and low risk groups of ARI score for progression-free survival. D The 
performance of anoikis-related lncRNA signatures in the combined group, including the OS survival curve, 
the risk map of survival time, the risk heat map of 7-lncRNAs, and the AUC curve of the model. E The 
performance of anoikis-related lncRNA signatures in the test group, including the OS survival curve, the risk 
map of survival time, the risk heat map of 7-lncRNAs, and the AUC curve of the model. F The performance of 
anoikis-related lncRNA signatures in the test group, including the OS survival curve, the risk map of survival 
time, the risk heat map of 7-lncRNAs, and the AUC curve of the model. G Dual-scoring nomogram with 
ARI and ARG score in TCGA cohort. (H) ROC curve of integrated nomogram. I AUC analysis of integrated 
nomogram



Page 19 of 32Zheng et al. Journal of Big Data          (2023) 10:129 	

the risk score as the cutoff, all HCC patients were stratified into “low-risk” and "high-
risk" groups. Patients with high ARI scores had lower disease-free survival and prognosis 
(Fig. 6C). Meanwhile, the results suggested that a higher risk score predicted a shorter 
OS of HCC patents in the training set, and similar results were confirmed in the valida-
tion set and metacohort. The AUC > 0.7 in the TCGA dataset suggested that the ARI 
signature exhibited excellent sensitivity and specificity for the prognostic prediction of 
HCC patients in the training and validation sets and the metacohort. Similarly, Kaplan‒
Meier analyses revealed that patients with a high ARI had a poor prognosis in the three 
cohorts (p < 0.01) (Fig.  6D–F). Furthermore, by applying principal component analysis 
(PCA) based on all the genes, ARGs, ARlncRNAs, and risk lncRNAs of the lncRNA 
signature, we were able to classify samples from HCC patients from the whole TCGA 
cohort into high-risk and low-risk categories for overall survival (OS) (Additional file 1: 
Fig. S4). Additionally, we included the ARI, age, sex, stage, and American Joint Com-
mittee on Cancer (AJCC) T stage, N stage, and M stage for univariate Cox regression 
analysis of the TCGA cohort to identify significant clinical variables for prognosis. Using 
univariate analysis, we found that the ARI signature score and stage were significantly 
correlated with OS (Additional file 1: Fig. S5A and Additional file 2: Table S9). Multi-
variate regression analysis was performed using the ARI and other clinical features to 
determine whether the ARI signature may be an independent prognostic factor for HCC 
patients. In three cohorts (test, training, and all cohorts), the 7-lncRNA signature was 
shown to be an independent and highly significant predictive factor. The results from 
the multivariate regression analysis showed that only stage and the signature remained 
significantly linked with OS in the whole TCGA cohort (Additional file 1: Fig. S5B and 
Additional file 2: Table S9).

To better demonstrate the predictive ability of the ARI score for liver cancer progno-
sis, a combined nomogram was developed (Fig. 6G) to predict OS at 1 year, 3 years, and 
5 years for individual HCC patients based on multivariate regression analysis incorporat-
ing independent prognostic factors such as age, sex, grade, stage, anoikis score, and ARI. 
The nomogram had an AUC greater than 0.7, enabling it to distinguish between patients 
with better or worse prognoses (Fig. 6H). The discriminant curve analysis (DCA) curve 
and the calibration curve showed that the nomogram could provide useful and beneficial 
information for predicting HCC patient prognosis in all three cohorts (Fig. 6I). Nota-
bly, the comprehensive nomogram, which combined the anoikis signature, the anoikis-
related lncRNA signature, and other clinicopathological characteristics, had an AUC of 
0.772, indicating excellent predictive power that was superior to that of the two models 
alone. Survival analysis based on clinical characteristics showed that the group with high 
ARI scores had a poorer prognosis, with statistically significant differences in survival 
curves between the high-risk and low-risk ARI subgroups of patients across different 
clinical characteristics. (Additional file 1: Fig. S6A–P).

In summary, we constructed a prognostic signature and nomogram based on anoikis-
related lncRNAs that could better predict the prognosis of patients with liver cancer 
with improved accuracy. Our study represents a significant step forward in the devel-
opment of personalized prognostic tools for liver cancer patients. These findings high-
light the potential of incorporating lncRNAs into clinical decision-making algorithms 
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and support the use of our signature and nomogram as valuable tools for guiding patient 
management.

GESA and analysis of the association between ARI subtypes and immune modulators

The tumor’s immunological state determines an mRNA vaccine’s effectiveness. To 
investigate the immune cell components of ARI subgroups, we analyzed the ESTI-
MATEScore, ImmuneScore, StromalScore and TumorPurity to explore the tumor micro-
environment (TME) in the high and low ARI groups. The immune microenvironment 
analysis showed significant differences in the immune status between the two groups. 
Compared to the high ARI score group, the low ARI score group exhibited higher ESTI-
MATEScores, ImmuneScores, and StromalScores and lower TumorPurity. (Additional 
file 1: Fig. S7A–D and Additional file 2: Table S10) Furthermore, single-sample GSEA 
(ssGSEA) was conducted to rank the 28 signature genes that were previously identified 
in the TCGA cohort analysis. As shown in Fig. 7A, the immune cells were classified into 
two clusters, and there was a noticeable difference in the distribution of immune cells 
between the two groups. Immune scores were significantly higher in the low-risk clus-
ter than in the high-risk cluster. CD8 + T cells, inflammation-promoting cells, Th1 cells, 
TILs, HLA, Tfh cells, B cells, pDCs, neutrophils, T helper cells, DCs, and macrophages 
were higher in the low-risk cluster than in the high-risk cluster. These findings suggested 
that the ARI subtype reflects the immune status of HCC and may be used to select suit-
able individuals for mRNA immunization. Patients with low-risk scores, also considered 
to have “immunologically hot” tumors, may have more immune cell infiltration and bet-
ter prognosis after receiving mRNA vaccinations containing these antigens. In the high-
risk cluster, the percentages of NK cells, CD8 T cells, inflammation-promoting cells, 
TILs, B cells, T helper cells, and Treg cells and the levels of check-point molecules and 
T-cell costimulatory molecules were lower. We can speculate that the low-ARI subgroup 
had more tumor antigens and immune cell infiltration, which indicates that mRNA vac-
cination may be more beneficial and more effective in the low-ARI group than in the 
high-ARI group.

The results also showed that increased MHC, costimulatory, and adhesion molecule 
expression was found in the low-ARI group. (Fig. 7B) In further assessments of the asso-
ciation between HLA gene sets and the two ARI subtypes, patients in the ARI-low group 
had significantly higher expression levels than patients in the ARI-high group (Fig. 7C). 
In summary, ARI subtypes reflect the immune microenvironment and ARI score and 
thus can be used to select suitable individuals for mRNA immunization.

Association of ARI with somatic mutations and immune checkpoints in HCC

To explore mutations in HCC patients, we compared the somatic mutation frequen-
cies of the ARI-low and ARI-high subgroups in the TCGA cohorts by using the software 
“maftools”. Figure 7D, E shows that the ARI-high group had a greater tumor mutation 
load than the low-risk score group. The mutant groups exhibited significantly higher 
ARIs than the wild-type groups for all tested altered genes. TP53 was expressed at a 
higher level in the mutant group than in the wild-type group (38% vs. 15%). These find-
ings provide a new perspective for investigating the effects of anoikis modification on 
the TME, immune checkpoint blockade treatment, and somatic mutations in tumors. 
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Furthermore, we observed a significant association between a higher ARI and higher 
TMB in our patient cohort. The tumors with a high-risk score were significantly cor-
related with higher TMB, as demonstrated by TMB quantification analysis (Fig. 7F and 
Additional file 2: Table S8). There was also a significant positive association between the 
ARI and TMB (Fig. 7G). Accumulating data have shown that patients with high TMB 
status have a longer-lasting clinical response to immune checkpoint inhibitor immuno-
therapy and anti-PD-L1 immunotherapy [26].

We analyzed the expression of immune checkpoint molecules in the low-risk and high-
risk groups. The results indicated that CD244, TMIGD2, CD274, BRLA, IDO2, and 
PDCD1LG2 were highly expressed in the low-risk group, whereas TNFSF9, TMFSF9, 
TMFRSF4, VTCN1, TMFRSF15, and HHLA2 were highly expressed in the high-risk group, 
suggesting different expression levels of immune checkpoints in the ARI high- and low-risk 
groups (Fig. 7H). This finding suggests that the patient risk determined based on the ARI 
can be used to make appropriate immune checkpoint treatment decisions. Therefore, these 
findings suggest that variations in tumor anoikis regulatory patterns may play a critical role 
in mediating the clinical response to anti-PD-L1 immunotherapy.

Additionally, we compared the expression levels of PD-L1 in the high and low ARI 
groups. The results showed that patients with a low-risk score also had a high level of 
PD-L1 expression, indicating that patients with low ARI scores would likely benefit from 
anti-PD-L1 treatment (Fig. 7I). These findings indirectly confirmed the benefits of ARI in 
predicting the outcome of immunotherapeutic interventions. Furthermore, TMB has been 
suggested as a biomarker of ICI response [31]. Tumors are typically classified into two 
categories based on their somatic TMB: those with high TMB and a greater likelihood of 
responding to ICIs and those with low TMB and a lower likelihood of response. Previous 
studies have shown that patients with higher somatic TMB who are treated with anti-PD-
L1 immune checkpoint blockade agents tend to experience improved responses, long-term 
survival, and long-lasting therapeutic benefits [31]. Furthermore, our study calculated the 
differences in the sensitivity to 16 representative chemotherapeutic agents between the 
high- and low-risk ARI groups to guide precise chemotherapy (Additional File 1: Fig. S8).

In addition, our research revealed that patients with a combination of a low ARI and high 
mutation load had a significant survival benefit. Patients with a low mutational load had 
better survival rates than those with a high mutational load (Fig. 7J). When the ARI score 
and mutation load were analyzed together, the results showed that patients with low tumor 
mutation load and low ARI score demonstrated the best survival prognosis, while patients 
with high tumor mutation load and high risk had the worst survival, and those in the high 
mutation load + low risk and low mutation load + high risk groups had intermediate sur-
vival. (Fig. 7K) These findings suggest that ARI combined with tumor mutation burden may 
be a more useful biomarker for predicting immunotherapeutic efficacy in patients with 
HCC. To gauge the relationship of ARI with immunogenicity, we further used IPS analy-
sis. The ARI-low group demonstrated higher immune-related molecular biomarkers of IPS, 
IPS-CTLA4-PD1, dysfunction, exclusion, IFNG, MDSCs, MSI, and M2 TAMs. (Fig. 7I–U).

Overall, the HCC mutation analyses in this study revealed that the ARI high-risk group 
had a greater tumor mutation load than the ARI low-risk group and that variations in 
tumor anoikis regulatory patterns may play a critical role in mediating the clinical response 
to anti-PD-L1 immunotherapy, suggesting that ARI combined with tumor mutation burden 
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may be a more useful biomarker for predicting immunotherapeutic efficacy in patients 
with HCC. Additionally, the expression of immune checkpoint molecules and PD-L1 was 
found to be different in the ARI high- and low-risk groups, which suggests that the patient 
ARI risk score may be used to make appropriate decisions regarding immune checkpoint 
treatment.

Discussion
mRNA vaccines had an impressive impact during the COVID-19 pandemic, leading to 
a surge in preclinical and clinical research in both oncology and infectious diseases [32]. 
Hepatocellular carcinoma (HCC) is a particularly lethal cancer with a complex molec-
ular profile and limited treatment options once diagnosed. Although the development 
of mRNA vaccines has revolutionized the therapeutic treatment of HCC, the effects of 
mRNA cancer vaccines in HCC patients are still suboptimal and are not yet fully under-
stood. Malignant cells produce both tumor-specific and non-tumor-specific antigens, 
making mRNA cancer vaccines a potential immunotherapy for the treatment of malig-
nancies. Both types of antigens could be targeted with mRNA vaccines to induce tumor 
regression in preclinical models and humans [33]. However, most cancer vaccines under 
investigation are based on peptides representing only a single tumor-associated antigen, 
which could lead to the selection of T cells with low-affinity T-cell receptors (TCRs), or 
severe autoimmune toxicities can result when antigens are targeted with high-affinity 
engineered TCRs. On the other hand, tumor-specific neoantigens can arise from non-
synonymous somatic mutations that result in the presentation of mutated peptides on 
the cell surface, where they can be recognized by T cells. Nevertheless, since neoan-
tigen-specific T cells recognize peptides unique to tumors, they are not influenced by 
central tolerance and should not cause autoimmunity. Therefore, developing neoantigen 
strategies is a promising goal for immune cell-based cancer therapy.

The discovery of possible tumor-associated antigens (TAAs) and tumor-specific anti-
gens (TSAs) is essential for the development of mRNA vaccines. Huang et al. examined 
prospective tumor antigens for the development of an mRNA vaccine by identifying 
genes that were mutated, amplified, or overexpressed in pancreatic adenocarcinoma and 
cholangiocarcinoma [34, 35]. Gui et al. identified potential antigens expressed in blad-
der cancer that could be used to develop mRNA vaccines for bladder cancer treatment 
and constructed a prognostic risk score model based on anoikis, which could be vital 
for developing personalized oncology therapeutic strategies, and these results enhanced 
the understanding of tumor mutation, tumor death mechanisms, and the tumor micro-
environment [36]. In our study, we integrated the aforementioned methods to discover 
eight candidate tumor antigens (AURKA, CCNB1, CDK1, DNASE1L3, KPNA2, PRC1, 
PTTG1, and UBE2S) by identifying important genes that were amplified, mutated, and 
overexpressed in HCC. The oncogenesis and prognosis of HCC were also found to be 
intimately linked to these seven antigens.

It is worth mentioning that not only was there a significant correlation between 
high expression of tumor antigens and poor prognosis in HCC, but this expres-
sion could also cause the recruitment of APCs, which further supports their viability 
as mRNA vaccine antigen candidates. Du et  al. cited significant evidence supporting 
the potential of AURKA as a therapeutic target for cancer [37]. The combination of 
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AURKA-targeting inhibitors and immunotherapy reduced Myc expression in tumor 
cells, enhanced HLDA1 and p53 protein levels, increased autophagy, caused apoptosis 
(neurofibroma), and significantly inhibited the growth of melanoma [38–40]. In a study 
conducted by another research team, alisertib promoted the development of an antican-
cer immune microenvironment by reducing the number of myeloid-derived suppressor 
cells and increasing the activity of CD8 + and CD4 + T lymphocytes, which showed ali-
sertib combined with an anti-PD-L1 antibody exhibited strong synergistic effects [41]. 
According to a bioinformatics study by Si et al., CCNB1 is a marker for variant genes in 
hepatocellular carcinoma and is linked to variation in p53. The expression of CCNB1 
is associated with a higher proportion of T effector cells, such as CD8 + T cells, which 
include cytotoxic T cells, natural killer cells, and other antitumor immune cells in the 
periphery [38, 42]. Reports have shown a correlation between CDK1 activity and patient 
prognosis, and CDK1 expression is increased in numerous human malignant tumor tis-
sues, making it a crucial molecular target. Xiao and Li et al. demonstrated the impact 
of DNASE1L3 on HCC development, apoptosis, and glucose metabolism reprogram-
ming. Targeting DNASE1L3 may be a viable therapeutic option for HCC, and detect-
ing elevated levels of DNASE1L3 in the blood may help doctors diagnose hepatocellular 
carcinoma caused by the hepatitis B virus [43]. KPNA2 plays a critical role in HCC 
cells, and an inability of KPNA2 to import PLAG1 into the nucleus is a strong predic-
tor of poor survival in HCC patients after hepatectomy [44]. Chen et al. discovered that 
PRC1 is markedly elevated in HCC tumors and highly related to early HCC recurrence 
[45]. In 46 HCC tumor samples, Huang et al. found that PTTG1 was commonly upreg-
ulated and strongly associated with PTTG3P [46]. This research revealed that UBE2S 
was significantly expressed in HCC, particularly in the nucleus, and was linked to HCC 
patients’ clinical prognoses. Through its nuclear localization signal (NLS), UBE2S enters 
the nucleus, interacts with TRIM28, and promotes HCC development by ubiquitinating 
p27 [47]. Anoikis is an inherent protective mechanism in organisms that occurs when 
the connection between epithelial cells and the extracellular matrix (ECM) is broken, 
preventing the readhesion of dead or dying cells to an inappropriate location [48]. This 
mechanism is essential for the organism to respond to harmful intracellular or extra-
cellular stimuli, such as viral infections, DNA damage, exposure to toxins, metabolic, 
oxidative, or hypoxic stressors, or loss of anchoring [49]. However, cancer cells may 
exhibit abnormal execution of anoikis, leading to tumor invasion, migration, distant 
organ metastases, and treatment resistance. In certain pathological circumstances, such 
as malignancies, cells may develop resistance to anoikis. Multiple studies have shown 
that tumor cell resistance to anoikis enables them to metastasize away from the primary 
tumor location via the lymphatic and circulatory systems, where they may continue to 
proliferate [50]. This resistance may also facilitate immune evasion and contribute to 
the development of treatment resistance. Although it has been shown that anoikis is 
involved in the invasion and metastasis of various solid tumors, few studies have thor-
oughly investigated the role of anoikis-related genes and lncRNAs in HCC. Additionally, 
the TME infiltration mediated by the integrated effects of distinct ARGs and anoikis-
related lncRNAs has been underrecognized in the HCC TME. Determining the sig-
nificance of specific anoikis regulatory patterns in TME cell invasion will enhance our 
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knowledge of the TME antitumor immune response and guide the development of more 
efficient immunotherapy approaches.

Using an unsupervised consistency clustering algorithm, patients with HCC were 
categorized, and 28 ARGs were selected to identify two distinct regulatory patterns of 
anoikis. The two clusters were then studied and assessed, revealing a difference in sur-
vival time between the two clusters of HCC patients. Differences in immune cell infil-
tration and immunological targets were examined between the subgroups, and the 
two groups with different patterns of anoikis and cellular infiltration into the tumor 
microenvironment displayed considerable differences. The results showed that ARG 
cluster A had a poor survival time, and anoikis-related genes were highly expressed 
in this cluster. In comparison to cluster B, cluster A exhibited a greater degree of 
immune cell infiltration into the tumor stroma, including infiltration of activated CD4 
T cells, activated dendritic cells, CD56+ natural killer cells, immature dendritic cells, 
MDSCs, natural killer T cells, natural killer cells, plasmacytoid dendritic cells, regula-
tory T cells, T follicular helper cells, and type 2 T helper cells.

Extensive research has shown that programmed cell death serves two roles in mod-
ulating the TME. In addition to its antitumor action, programmed cell death also 
indirectly facilitates immune escape by generating an immunosuppressive micro-
environment [51]. Consistent with previous results, KEGG analysis showed higher 
enrichment of cell cycle pathways in group A (high expression of anoikis genes) 
than in group B, but the activity of metabolic pathways was lower in group A than 
group B, suggesting that group A had a worse prognosis. Although group A had a 
high level of immune cell infiltration, its survival was worse than that of group B, 
and we can reasonably speculate that the high expression of anoikis-resistance genes 
in cluster A created a special immunosuppressive microenvironment that made the 
infiltrating immune cells dysfunctional in the stroma. Previous research has shown 
that the immunosuppressive features of the tumor microenvironment facilitate cyto-
toxic immune cell exhaustion and death, promoting the development of protumoral 
immune cells such as Tregs, M2 macrophages, and myeloid-derived suppressor cells 
(MDSCs) [51]. This supports our findings, and it was therefore not surprising that a 
comprehensive exploration of the cellular infiltration patterns in the tumor micro-
environment defined by the anoikis regulatory model revealed that cluster A had a 
higher level of active immune cells but poorer survival. This again demonstrates the 
complexity and heterogeneity of the role of types of apoptosis, including anoikis, in 
the tumor microenvironment, but further exploration of the role in the hepatocellular 
carcinoma microenvironment is needed.

Notably, recent research has focused on understanding how anoikis affects the acti-
vation of the immune microenvironment. There is now evidence that altered cancer 
metabolism is due, in part, to anoikis resistance. Alteration of kynurenine (Kyn, a key 
metabolic component) triggered a pathway that was increased by TNHCC in sus-
pension culture. In general, Kyn can reduce immune surveillance, but in glioma, it 
reduces antitumor immune responses and enhances tumor cell survival and motility 
by acting in both a paracrine and autocrine mode. Kyn has been shown to act as an 
endogenous ligand to activate AhR in both immune cells and tumor cells [52]. Pre-
vious studies have suggested that HCC tumors with a hypermetabolic phenotype 
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generally have a favorable prognosis. Research conducted by Yang on the metabolic 
subtypes of HCC found that HCCs with high metabolic activity had distinct meta-
bolic signatures and were similar to differentiated nonproliferative HCCs with low 
AFP expression and a favorable prognosis. The subtype with low metabolic activity, 
which was related to immunology profiles and high expression of immune checkpoint 
genes, showed pharmacological sensitivity to CTLA4 inhibitors and cabozantinib. 
This class played a minor role in the formation of metabolic signatures. The interme-
diate metabolic activity subtype, which was associated with a higher level of AFP and 
a poorer prognosis, had lower enrichment of metabolic signatures than the high met-
abolic activity subtype but higher enrichment than the low metabolic activity subtype 
[53]. Similar results were also found in the study by Huo et al. C1 exhibited the high-
est metabolic activity, the best prognosis, and the most eosinophils and natural killer 
cells. C2 had the lowest metabolic activity, the worst prognosis, the highest TP53 
mutation rate, the highest immune checkpoint expression, and substantial regulatory 
T-cell infiltration. C3 displayed strong neutrophil and macrophage infiltration, mod-
erate metabolic activity, and the highest LRP1B mutation rate [54].

Given that mRNA vaccines have shown benefits in only a relatively specialized 
group of cancer patients, we used the expression profiles of anoikis-lncRNAs to divide 
HCC patients into high-risk and low-risk subtypes to select the most promising can-
didates for the vaccine. Additionally, the ARG-based signature contained numerous 
genes, and there is a high degree of heterogeneity in tumor microenvironments, thus 
limiting the role of the signature in predicting liver cancer prognosis. Therefore, we 
constructed a prognostic model based on the ARI. Among the ARGs related to prog-
nosis that we identified, accumulating evidence has shown that the ARGs used to 
build the ARI risk model play a crucial role in cancer. For instance, Zhang et al. found 
that the expression of PMSB8-AS1 was elevated in PC tissues and cell lines, and it 
was inversely correlated with survival in people with PC. Studies of the mechanism 
of PMSB8-AS1 found that the lncRNA promotes pancreatic cancer progression via 
STAT1 by sponging miR-382–3p and is involved in the regulation of PD-L1 [55]. As 
an upregulated lncRNA in liver cancer, ZFPM2-AS1 was identified as a competing 
endogenous RNA (ceRNA), competitively binding to miR-139 and regulating GDF10 
expression. The authors suggested that enhancement of the malignant phenotype in 
liver cancer occurs via the ZFPM2-AS1/miR-139/GDF10 pathway, which has poten-
tial as a target for treatment in HCC [56]. A similar result has been found in gastric 
cancer: Kong et al. analyzed ZFPM2-AS1 and found that it controls the progression 
of gastric cancer and uncovered a new ZFPM2-AS1/MIF/p53 signaling pathway, 
providing insight into the molecular processes underlying the tumorigenicity of cer-
tain malignant gastric cells [57]. In gastric cancer, exosome-transferred LINC01559 
stimulated the phosphatidylinositol 3-kinase/AKT serine/threonine kinase (PI3K/
AKT) pathway by upregulating PGK1 and downregulating PTEN. Other studies have 
shown that LINC01559 recruits insulin-like growth factor 2 mRNA binding protein 
2 (IGF2BP2) to stabilize ZEB1 mRNA in GC cells, thus upregulating ZEB1 [58, 59]. 
Other studies have shown that LINC01559 accelerates pancreatic cancer progression 
by relying on YAP [60]. Our bioinformatics analysis also identified these lncRNAs as 
anoikis-related prognostic markers; these results deepened the understanding of the 
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tumor microenvironment related to anoikis in HCC and supported the practical sig-
nificance of the ARI model.

To verify the model, we conducted KM analysis, ROC curve analysis, random sam-
pling validation, and subgroup analysis in the studied cohorts. These analyses dem-
onstrated that the novel signature had strong prognostic power in predicting the 
outcome of HCC. Additionally, a statistically significant correlation between the ARI 
risk score and immune cell infiltration and immunotherapeutic efficacy was observed. 
The ARI risk score was a valid and practical factor that could be used to character-
ize the heterogeneity of tumor anoikis regulation patterns and to identify TME infil-
tration patterns and tumor immune phenotypes. Furthermore, integrated analysis 
confirmed that the risk score was an effective predictive indicator for liver cancer. 
Patients with a lower risk score had a longer overall survival rate, as assessed in the 
overall, test, and validation groups. The ROC curve analysis showed that the gene sig-
nature based on the lncRNAs had high sensitivity and specificity, demonstrating the 
excellent predictive efficiency of our model.

To further support the practical application and predictive validity of the model in 
clinical practice, we created a nomogram jointly considering the ARG and ARI scores 
as well as clinicopathological factors, including pathological stage, clinical stage, age, 
and sex. The combined ROC analysis demonstrated that the predictive validity of the 
combined nomogram was better than that of the two separate scoring systems alone. 
As a result, the combined nomogram provided a more accurate prediction of 1-, 2-, and 
3-year survival in hepatocellular cancer, with an AUC of 0.723–0.757.

Next, we analyzed the expression of infiltrating immune cells in the ARI high-risk and 
low-risk groups. We found that the types and quantities of infiltrating immune cells in 
the low-risk group were significantly higher than those in the high-risk group, indicat-
ing that the low-risk group had an immunologically hot phenotype; the low-risk group 
was also associated with improved survival. The low-risk group was characterized by 
elevated levels of various immune-related factors, including APC coinhibitory mol-
ecules, checkpoint molecules, cytolytic molecules, HLA molecules, proinflammatory 
molecules, MHC class I molecules, parainflammatory markers, T-cell coinhibitory mol-
ecules, T-cell costimulatory molecules, and indicators of type II IFN responses. These 
findings further supported the hypothesis that the low-risk group possessed a robust 
immune profile. Moreover, we found high expression levels of HLA receptors in the low-
risk group, further emphasizing the strong immune activation properties of this group. 
Finally, our results revealed a significant correlation between the ARI score and tumor 
mutation load: the low-risk ARI group had low TMB levels and high levels of immune 
cell infiltration, a characteristic of an immune hot phenotype, resulting in a more favora-
ble survival prognosis than the high ARI score group. Tumor response to immune check-
point therapy has been observed to vary based on the degree of immune cell infiltration 
and the mutational burden of the tumor. We investigated the relationship between the 
ARI and immune checkpoint signaling, and the results suggested that anoikis can influ-
ence the efficacy of immune checkpoint-based treatments. Generally, cancers classified 
as “hot”, such as melanoma and lung cancer, exhibit greater responsiveness to therapy 
than “cold” tumors, such as pancreatic and prostate cancers. Tumors with a high muta-
tional burden are believed to have more favorable outcomes with ICD therapy. However, 
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our work showed that patients in the low-ARI group had higher expression of PD1 and 
PD-L1, suggesting that ICD treatment may have better outcomes in this group.

Combining immune therapy with the exploration of tumor neoantigens to develop 
tumor antigen vaccines may enhance the efficacy of existing treatments in ARI high-risk 
populations if ICD is ineffective due to very immune-suppressive microenvironments 
or matrix barriers expressed in HCC. For instance, in a study using DCs pulsed with 
autologous tumor lysates in 31 treated patients, 12.9% had a partial response, 54.8% had 
stable disease, and the 1-year survival rate was 10.7% (± 9.4) compared to 63.3% (± 12.0) 
with maintenance therapy. In addition, the administration of monoclonal antibod-
ies, adoptive T-cell therapy, or vaccinations combined with the administration of gene 
therapy vectors encoding monoclonal antibodies and/or immunostimulatory cytokines 
are effective methods for treating HCC. Combining existing tumor therapy models and 
ARI-based stratification in the development of tumor antigen vaccines may be a promis-
ing strategy for achieving a synergistic immunostimulatory effect, leading to significant 
clinical benefits of vaccine therapies.

In summary, this study analyzed the expression of antigens in liver cancer, providing a 
new perspective for developing liver cancer vaccines. Unsupervised clustering of ARGs 
related to anoikis and prognosis and construction of the ARI model revealed innovative 
ideas for enhancing the clinical response of patients to immunotherapy and identified 
distinct tumor anoikis phenotypes that can promote precision cancer immunotherapy. 
This study has some limitations; for example, the feasibility and effectiveness of anti-
gen vaccine development has yet to be verified through experiments, and further fol-
low-up studies are needed to validate its potential due to the absence of available RNA 
sequencing data of HCC immunotherapy cohorts and clinical data. In addition, machine 
learning and feature selection algorithms can be further employed to optimize models, 
enabling better development of liver cancer vaccines and more accurate predictions of 
the prognosis of liver cancer patients [61, 62].

Conclusion
Our study identified anoikis-related regulators, including CCNB1, CDK1, DNASE1L3, 
KPNA2, PRC1, PTTG, and UBE2S, as promising tumor antigens for the development of 
mRNA vaccines for HCC. Moreover, we identified four distinct HCC subtypes related 
to anoikis and suggested that these subtypes could guide the selection of appropriate 
patients for immunotherapies. We also developed a novel lncRNA scoring model related 
to anoikis that could help estimate immunotherapy response, design mRNA vaccines for 
HCC therapy, and identify the most suitable patients for immunization. These findings 
have significant implications for the development of targeted immunotherapies for HCC 
patients.
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