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Abstract

Hepatocellular carcinoma (HCC) represents a formidable malignancy with a high lethal-
ity. Nonetheless, the development of vaccine and the establishment of prognostic
models for precise and personalized treatment of HCC still encounter big challenges.
Thus, the aim of this study was to develop HCC vaccines and explore anoikis-based
prognostic models based on RNA sequencing data in GEO datasets (GSE10143,
GSE76427) and the TCGA-LIHC cohort. Potential HCC antigens were identified using
GEPIA2, cBioPortal, and TIMER2. Anoikis-related subtypes and gene clusters were
defined by consensus clustering of 566 liver cancer samples based on 28 anoikis regu-
lators, and we further analyzed their relationship with the immune microenvironment
of HCC. A predictive model based on anoikis-related long noncoding RNAs (IncRNAs)
was developed to accurately predict HCC prognosis. Seven overexpressed genes
associated with HCC prognosis and tumor-infiltrating antigen-presenting cells were
identified as potential tumor antigens for the development of HCC mRNA vaccines.
Two subtypes based on anoikis-related genes (ARGs) and two gene clusters with differ-
ent characteristics were identified and validated in defined cohorts. The tumor immune
microenvironment between the two subtypes showed different cell infiltration

and molecular characteristics. Furthermore, a prognostic score based on seven IncR-
NAs identified by LASSO regression was constructed, with the low-risk group having
favorable prognosis, a “hot”immune microenvironment, and better response to immu-
notherapy. CCNB1, CDK1, DNASE1L3, KPNA2, PRC1, PTTG, and UBE2S were first identi-
fied as promising tumor antigens for mRNA vaccine development in HCC. Besides, we
innovatively propose anoikis-based molecular subtypes, which not only enable person-
alized prognostic stratification of HCC patients but also provide a blueprint for identify-
ing optimal candidates for tumor vaccines, enhancing immunotherapeutic strategies.

Keywords: HCC, Anoikis, Prognosis, Subtype, TCGA, GEO, Machine learning,
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Introduction
Hepatocellular carcinoma (HCC), the most common primary liver malignancy, ranks
as the seventh most prevalent cancer worldwide, with 905,677 newly diagnosed cases
(4.7%) and 830,180 deaths (8.3%) [1]. Patients with early-stage HCC may qualify for
curative treatments such as surgery and liver transplantation, while those with advanced
HCC, comprising approximately 70% to 80% of patients, generally experience a survival
rate of less than 12% over a 5-year period. This is primarily attributed to the scarcity of
treatment options available and the suboptimal response to initial therapy [2, 3]. There-
fore, identifying innovative approaches for earlier detection is essential for better pre-
diction of therapy response and survival in patients with HCC [4]. Since 2017, immune
checkpoint inhibitors (ICIs) and combinations based on ICIs have emerged as the most
promising approach for improving the prognosis of patients with unresectable HCC.
However, accumulating evidence has shown that the poor pharmacokinetic properties
of antibodies can induce treatment-related adverse events, while off-target immunologi-
cal effects on other organs can trigger immune-related adverse events, which can lead
to treatment cessation and drug-related deaths, thereby limiting the application of this
therapy [5]. Randomized trials assessing the efficacy of anti-PD-1 monotherapy in both
the first-line and second-line setting showed no improvement in overall survival (OS).
Consequently, the development of new combination therapy strategies aimed at activat-
ing the suppressive immune microenvironment in HCC is necessary [6].
Tumor-associated antigens (TAAs) are crucial targets for activating immunotherapy;,
as they are normal self-proteins that are overexpressed or re-expressed by tumors.
Developing effective, minimally invasive, and long-lasting treatments targeting TAAs
has been a long-standing goal in cancer therapy. Cancer vaccines aim to stimulate
tumor-specific immune responses by targeting TAAs and increasing cytotoxic CD8+ T
cells. Additionally, effective immunotherapy responses have been associated with neoan-
tigens, which are novel immunogenic sequences resulting from tumor mutations. Neo-
antigens are also being considered as potential targets for cancer immunotherapies, such
as tumor vaccines, adoptive cell therapy (ACT), and antibody-based treatments, and as
predictors for immune checkpoint blockers (ICBs). Despite the fact that HCC tumor
cells can elicit significant immune responses against a range of mutant antigens, no clini-
cally developed HCC vaccine targeting a tumor antigen currently exists. Therefore, there
is an urgent need to identify novel antigens in HCC and develop HCC vaccines.
Apoptosis is a programmed cell death mechanism that helps maintain tissue homeo-
stasis and prevent the development of cancer. When cells lose contact with neighboring
cells or their extracellular matrix (ECM), they undergo a process called anoikis, which
is a type of apoptosis that is triggered by detachment from the ECM [7]. Cancer cells
detaching from primary sites acquire anoikis resistance and can colonize target organs or
tissues via the circulatory and lymphatic systems [8]. Therefore, anoikis, a new hallmark
of cancer metastasis, has attracted the attention of oncologists [9]. In HCC, strategies
that reverse the anoikis resistance phenotype of HCC cells to inhibit cancer metastasis
may be promising for the treatment of patients with local metastasis and potential vas-
cular invasion. Some studies have elucidated the relationship between tumor resistance
to anoikis and immunity, revealing that anoikis affects the tumor immune microenvi-
ronment and anoikis resistance of cancer cells [10, 11]. Zhang et al. discovered that the
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deactivation of ILIRAP promotes anoikis and suppresses Ewing sarcoma cell metasta-
sis, revealing the promising potential of anoikis-targeted therapy in cancer [11]. Thus,
exploring the role of anoikis in HCC will provide valuable insights into patient prognos-
tic stratification and the development of novel therapeutic targets, which also has the
potential to enhance combination therapy with cancer vaccines and immunotherapy in
HCC.

LncRNAs have been discovered to modulate the expression of genes associated with
anoikis, either by facilitating or impeding anoikis resistance in cancer. Previous studies
have shown that silencing IncRNA ANRIL promotes caspase activity, leading to anoikis-
induced cell death in glioma cells. Additionally, IncRNA-HOX antisense intergenic RNA
(IncRNA-HOTAIR) is highly expressed in various cancers and has been shown to con-
tribute to cell survival and epithelial-mesenchymal transition (EMT) [12]. However, the
molecular role and clinical implications of anoikis in HCC remain unknown. Hence,
deciphering the molecular underpinnings of the relationship between the anoikis phe-
notype and IncRNAs in HCC based on datasets from multiple clinical RNA sequencing
sample cohorts may illuminate the intricate mechanisms underlying HCC progression
and metastasis. Additionally, such investigations may uncover promising therapeutic
targets, paving the way for effective interventions to impede the development of HCC.

In this study, we aimed to identify tumor antigens that could be utilized in the devel-
opment of an mRNA vaccine for HCC. Furthermore, we constructed a prognostic risk
score model based on anoikis-related IncRNAs, which has the potential to predict the
prognosis of HCC patients as well as provide insights into the immunological tumor
microenvironment (TME) of HCC. The risk model can be further employed to facilitate
precision HCC treatment, such as chemoimmunotherapy, and the development of HCC

vaccines.

Methods

Acquisition and preprocessing of HCC datasets

We initially searched the Gene-Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) databases for publicly available RNA-seq data that had
complete clinical information. All adult patients and patients with missing survival
information were excluded from further analysis. Finally, we enrolled a total of 566
patients from three HCC cohorts (GSE10143, GSE76427, and TCGA-LIHC) into a
metacohort for further investigation. Microarray data (GSE10143 and GSE76427
cohorts) were downloaded from the GEO database at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE10143 and https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE76427, and RNA sequencing data (TCGA-LIHC cohort, FPKM
values) were obtained from the Genomic Data Commons (GDC) at https://portal.
gdc.cancer.gov/ [13—15]. The FPKM data were converted to transcripts per kilobase
million (TPM) values, and batch effects due to nonbiological technical biases were
adjusted using the "ComBat" method in the “sva” R package. Table 1 summarizes the
baseline data for all relevant HCC datasets. Only genes with nonzero expression lev-
els in over 50% of samples were retained. Additionally, mutation data were retrieved
from the TCGA-LIHC database. A combined total of 132 anoikis-related genes were
obtained from the GeneCard database (https://www.genecards.org/, Accessed on
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Table 1 Clinical baseline characteristics of HCC patients in TCGA and GEO cohorts

Variable TCGA cohorts GEO cohorts
n=371 GSE10143,n=80 GSE76427,n=115
Age, year 59.22+1342 NA 63.45+£12.68
Gender NA NA
Male 119 NA 93
Female 252 NA 44
Grade NA BCLC stage
G1 55 NA 0 4
G2 180 NA A 74
G3 123 NA B 28
G4 13 NA C 9
Stage NA
| 174 NA 55
Il 85 NA 35
Il 86 NA 21
v 5 NA 3
Unknown 21 NA 1
AJCCT NA
T 184 NA NA
T2 92 NA NA
13 81 NA NA
T4 13 NA NA
Unknown 1 NA NA
AJCC-N NA
NO 256 NA NA
N1 4 NA NA
Nx 110 NA NA
Unknown 1 NA NA
AJCC-M NA
MO 270 NA NA
M1 4 NA NA
Mx 97 NA NA
Overall survival NA
1-year 84.6% 98.6% 88.7%
3-year 72.3% 88.6% 84.3%
5-year 67.4% 78.8% 80.7%
Survival status
Alive 243 48 92
Death 128 32 23

Data are shown as n or n%

AJCC, American Joint Committee on Cancer; GEO, Gene Expression Omnibus; HCC, hepatocellular carcinoma; TCGA, The
Cancer Genome Atlas; NA, not Applicable

25 December 2022) [16] and the Harmonizome portal (https://maayanlab.cloud/
Harmonizome/, Accessed on 25 December 2022) [17]. After performing a regression
analysis of the 132 ARGs (p <0.05), we identified 28 anoikis-related regulators. The
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annotation file was collected from the Ensembl database (http://asia.ensembl.org)
for IncRNA selection.

Identification of tumor antigens and Kaplan-Meier survival analysis

cBioPortal (https://www.cbioportal.org/) was used to merge unprocessed data from
the TCGA cohort in this study [18, 19]. In addition, cBioPortal was utilized to visual-
ize genetic mutations in HCC patients and to identify mutant genes. Differentially
expressed genes (DEGs) in HCC patients were identified using ANOVA and the "Dif-
ferential Genes" module of Gene Expression Profiling Interactive Analysis version 2
(GEPIA2, http://gepia2.cancer-pku.cn/#index), [20] with settings of |log2FC| value>1
and q value <0.01. Additionally, the OS and relapse-free survival (RFS) of HCC patients
were assessed using the “survival analysis” module of GEPIA2 with a median cutoff of
50%, and the log-rank test was used for comparisons. The median value of identified
tumor antigen expression was used to separate HCC patients into high and low expres-
sion groups, and the hazard ratio was calculated by the Cox proportional hazards regres-
sion model. The parameter settings were consistent throughout all analyses, and no p
value adjustments were made. In various comparisons made between three or more
groups, one-way ANOVA and Kruskal-Wallis tests were used, and p values less than
0.05 were considered statistically significant.

Tumor immune microenvironment component analysis

The Tumor Immune Estimation Resource (TIMER) is a web server that provides com-
prehensive analysis of tumor-infiltrating immune cells, including dendritic cells (resting
and activated) and macrophages (MO, M1, and M2) [21]. In this study, we used TIMER-
based purity-adjusted partial Spearman’s correlation analysis to investigate the relation-
ship between tumor antigen expression and APC infiltration. We also utilized analytical
modules for gene expression, somatic mutations, clinical outcomes, and somatic copy
number changes to analyze and visualize the relationship between the number of tumor
immune infiltrating cells (TIICs) and HCC tumor antigen-related genes. The cutoff value
for statistical significance was p <0.05.

Unsupervised clustering and subtype analysis based on 28 ARGs

To uncover distinct anoikis regulatory patterns mediated by ARGs, we identified 28 reg-
ulators from two combined GEO datasets and TCGA cohorts. Based on the expression
of these 28 ARGs, we used unsupervised clustering analysis to categorize patients into
groups with different anoikis regulation patterns for further study. We used the consen-
sus clustering algorithm [19] to estimate the number of clusters and their stability. We
utilized the "ConsensusClusterPlus" packages to perform these processes, with 500 rep-
etitions performed to ensure classification stability.

Gene set variation analysis (GSVA) and functional annotation

We used the R package "GSVA" to conduct GSVA enrichment analysis to evaluate the
differences in the biological process regulatory patterns of anoikis. GSVA is a nonpara-
metric and unsupervised technique commonly used to predict the variation in pathway
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and biological process activity in expression dataset samples [22]. We retrieved “c2.
cp.kegg.v6.2.-symbols” gene sets from the MSigDB database for GSVA. A p value of less
than 0.05 was considered statistically significant. We used the clusterProfiler R package
to perform functional annotation for anoikis-related genes with an FDR threshold of
0.05 [23, 24].

Identification and validation of anoikis subtypes

To classify patients into unique anoikis regulation subtypes, we utilized the expression of
28 ARGs and applied the empirical Bayesian method of the limma R package to identify
DEGs between these types. We set a significance threshold for identifying DEGs at an
adjusted p value of less than 0.001. Next, we quantified the anoikis regulatory patterns
of each tumor sample and developed a scoring system, named the ARG score, to evalu-
ate the anoikis pattern of each patient with HCC. To determine the ARG score, we nor-
malized the DEGs with anoikis regulation pattern-related genes across all samples and
identified the overlapping genes. We then used an unsupervised clustering approach to
categorize the 566 patients into multiple groups for further investigation, and the con-
sensus clustering approach was used to determine the optimal number of gene clusters
and their stability. We conducted prognostic analysis for each gene in the signature using
the univariate Cox regression model and isolated 28 genes with significant prognostic
value for further analysis. We calculated the ARG score using principal component anal-
ysis (PCA), which centered the score on the set containing the largest block of highly
correlated (or uncorrelated) genes and downweighed the contributions of genes that did
not track with other set members.

Further establishment of an anoikis-related IncRNA signature

After performing a differential expression analysis between the high and low ARG score
groups, we identified anoikis-related IncRNAs using the R package "limma." Next, we
used the Wilcoxon test to compare gene expression across 50 normal tissue samples
and 374 HCC samples from TCGA, resulting in the identification of another set of 855
anoikis-related IncRNAs. Then, we investigated the association between overall survival
(OS) and 104 IncRNAs that were differentially expressed and associated with anoikis
in the TCGA training set using univariate Cox survival analysis. The R package "sur-
vival" was utilized to calculate the hazard ratio (HR) and p value, and 44 IncRNAs were
chosen for further analysis using a significance threshold of p<0.001 with the LASSO
approach, aiming to identify hub IncRNAs associated with survival. We also plotted the
partial likelihood deviation against log (lambda), with lambda being a tuning parame-
ter. Multivariate Cox regression analysis was performed to assess the regression coef-
ficients of significant prognostic IncRNAs associated with anoikis in the training set.
These IncRNAs were selected based on their strong correlation with anoikis, and a sig-
nature of seven IncRNAs was ultimately generated using the coefficients. Based on their
individual anoikis risk indices (ARIs), patients in the training set were divided into low-
and high-risk groups using the median ARI value, which was performed by the pack-
age "survminer"” in R. The Kaplan—Meier algorithm was used to compare the differences
in OS between these groups. ROC curves were generated to evaluate the ARI formula’s
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predictive accuracy by examining its sensitivity and specificity. The formula was also
applied to the validation cohorts to ensure its consistency. Since some clinicopathologic
features, such as TNM stage, may affect prognosis in HCC patients, univariate and mul-
tivariate analyses were performed to determine whether the ARI was independent of
these features.

Furthermore, ANOVA was conducted to explore the relationship between anoikis reg-
ulators and their associated molecular and cellular properties. The genes that were most
susceptible to mutation were examined for significant changes using chi-square analysis.
The functional characteristics of each gene module were annotated by analyzing gene
ontologies by DAVID software [25, 26]. To determine the immunological enrichment
score of each sample, which was defined as the number of genes that were upregulated
or downregulated in a coordinated manner within the sample, single-sample gene set

enrichment analysis (ssGSEA) was employed.

Predicting the effective response to immunotherapy and drugs

The IPS of HCC patients was obtained from The Cancer Immunome Atlas (TCIA) web-
site (https://tcia.at/home) and was objectively determined by considering four types of
immunogenicity-determining genes, including genes related to effector cells, immu-
nosuppressive cells, MHC molecules, and immune modulators. To compare the gene
expression levels across the four distinct cell types, z scores were utilized. Higher IPS
scores were found to be associated with increased immunogenicity [27]. In addition, the
TIDE algorithm (http://tide.dfci.harvard.edu/) was employed to predict the response
to immune checkpoint blockade (ICB) and to evaluate neoantigen potential [28, 29]. In
addition, we used the R package “pRRophetic” to predict the sensitivity of chemother-
apeutic agents based on a statistical model constructed based on gene expression and
drug sensitivity data from a very large panel of cancer cell lines [30].

Construction of a nomogram based on the ARl and comparison of its prediction abilities
with clinicopathologic features

With the "rms" package in R, we were able to construct a nomogram that incorporates
independent prognostic criteria to predict 1-, 3-, and 5-year OS rates. The AUC values
were used to evaluate the nomogram’s discriminatory power in predicting survival. The
DCA curve supported the use of the nomogram for making useful and beneficial infer-
ences. In addition to the factors already included in the nomogram, we generated a com-
prehensive nomogram indicator with the clinical and laboratory markers, which was a

better predictor of overall survival.

Statistical analysis

Data processing and analysis were performed using R software (version 4.1.0). For con-
tinuous variables with normal distribution and variance, an independent samples ¢ test
was utilized, whereas for those without normal distribution and variance, the Wilcoxon
rank-sum test was used. The Pearson correlation coeflicient test was employed to ana-
lyze associations. A statistical significance threshold of P <0.05 was considered meaning-
ful. All the R packages and statistical methods were list in Additional file 2: Table S11.
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Fig. 1 The flow diagram of the research process

Results

Identification of potential tumor antigens in HCC

The study flowchart is presented in Fig. 1. To identify potential PAAD antigens,
we screened for aberrantly expressed genes, which resulted in the identification of
2,207 overexpressed genes (as determined by GEPIA) that potentially encode tumor-
associated antigens (Fig. 2A). Next, using cBioPortal, we analyzed genomic changes
and mutation counts in samples and identified a total of 13,054 mutated genes that
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Fig. 2 Recognition potential mRNA antigen associated tumor antigens and scenery of genetic and
expression profiles of anoikis related regulators in hepatocellular carcinoma. A Chromosomal distribution of
potential genes encoding liver cancer antigens. B HCC patients’s samples overlapping in the altered genome
fraction group C HCC patients’s samples overlapping in the mutation count group. D Summary of Potentially
Mutated Genes in Liver Cancer. E Venn diagram of liver cancer antigen gene identification, 8 antigen genes
are highly expressed, mutated, and related to OS and RFS. F The HCC most frequently mutated genes in the
altered genome fraction group. G The HCC most frequently mutated genes mutation count group. H, 1 The
OncoPrint tab of genomic alterations in the TCGA dataset. J The frequency of the top 20 highly mutated
anoikis related genes in HCC. K Heat map of the relationship between the tumor microenvironment and the
identified potential antigen genes for liver cancer in the TCG database. *p < 0.05; **p < 0.01; ***p <0.001
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may encode tumor-specific antigens. Interestingly, most patients had low levels of
genomic changes and mutation counts, indicating that HCC is seemingly not highly
immunogenic (Fig. 2B, C). The top 10 most frequently altered genes in the fractional
genomic alteration and mutation count groups are depicted in Fig. 2F and G, respec-
tively. Notably, alterations to the tumor protein p53 gene were observed in a signifi-
cant proportion of patients in both groups. Furthermore, analysis of hepatocellular
carcinoma mutation data from the TCGA database revealed that deletion mutations
were the most frequently observed type of mutation in liver cancer, with single-
nucleotide polymorphisms being the most common type among these. Among single-
nucleotide mutations, the most common substitution was C to T, followed by T to C,
CtoA, TtoA,CtoG,and T to G in decreasing order of frequency. After analyzing
the mutated genome fraction and mutation count, the top three genes found to be
mutated were TTN, TP53, and CTNNBI. In addition to these genes, MUC16, ALB,
PLCO, RYR2, APOB, OBSCN, and LRP1B were also observed to have mutations in a
significant proportion of hepatocellular carcinomas, with frequencies exceeding 8%.
(Fig. 2D) These genes are likely to have significant research value for further muta-
tion studies. Furthermore, in patients with overlapping mutations, genes such as titin,
transcriptional repressor GATA binding 1, piccolo presynaptic cytomatrix protein,
and usherin also showed a high frequency of mutations. In total, a set of 118 genes
that were both overexpressed and mutated were identified by overlapping these two
gene sets.

Through screening of 11 candidate genes closely related to overall survival (OS) of
HCC, we identified eight genes that were significantly associated with recurrence-free
survival (RES) (Fig. 2E and Additional file 2: Table S1). These genes may play a crucial
role in the progression of HCC and can be exploited in mRNA vaccine production.
The OncoPrint tab presents a summary of the genomic changes in each mutated and
overexpressed gene observed in the TCGA dataset (Fig. 2H, I). For example, overex-
pression of Aurora kinase A (AURKA) in tumor tissues was associated with a lower
survival rate (Additional file 1: Fig. S1A). Ephrin B2 (EFNB2), cyclin B1 (CCNB1),
cyclin-dependent kinase 1 (CDK1), karyopherin subunit alpha 2 (KPNA2), protein
regulator of cytokinesis 1 (PRC1), PTTGI1 and ubiquitin conjugating enzyme E2 S
(UBE2S) all had high expression levels that were correlated with a poor prognosis
(Additional file 1: Fig. SIB-T). One protective gene (AURKA) was found and further
excluded.

The heatmap in Fig. 2K shows the correlation analysis of the infiltration of immune
cells in the microenvironment and the seven genes in HCC. Heatmap analysis showed
statistically significant correlations between seven of the genes (AURKA, CCNBI,
CDK1, KPNA2, PRCI1, PTTGI1, and UBE2S) and tumor purity, neutrophils, mac-
rophages, dendritic cells, and CD8-positive and CD4-positive T cells (p <0.05). A sig-
nificant correlation was found between the infiltration of B cells and the five genes,
but this correlation was not found for AURKA and KPNA2. These findings suggest
that these genes have important correlations with the aforementioned immune cells.
A strong correlation was also observed between the expression of these seven candi-
date genes and B cell, macrophage, dendritic cell, and CD8 T-cell infiltration in HCC
(Additional file 1: Fig. S2A—-G@). Since antigen-presenting cells (APCs) may directly
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process and display these seven tumor antigens to generate an immune response, they
are targets that should be a focus of studies for the development of HCC mRNA vac-
cines. In summary, these seven potential genes that are both mutated and overex-
pressed are important in the progression and tumor microenvironment of HCC.

Mutation and immune microenvironment analysis of the ARGs

We combined two GEO datasets (GSE10143 and GSE76427) and the TCGA-LIHC
cohort into a metacohort with OS data and clinical information (Table 1). Differential
analysis and univariate regression analysis of the ARGs revealed that patients with high
expression of the 28 ARGs had poorer overall survival (OS). (Additional file 1: Fig. S3
and Additional file 2: Table S2) The ARG network (Fig. 3A) revealed the landscape of the
interactions, regulatory connections, and prognostic significance of the top 28 ARGs in
HCC patients. We found a significant statistical relationship between these ARGs. From
the network, it is apparent that all the genes functioned as risk factors for anoikis, with
statistical evidence showing that each gene shared a strong positive regulatory link with
other genes involved in anoikis, and these relationships were significant. High RHOC
expression in tumors correlated with low SKP2 and MTA1 expression.

Based on the expression of these 28 ARGs, we were able to completely distinguish
between HCC and normal samples. To investigate whether the mentioned genetic vari-
ants altered ARG expression in HCC patients, we examined the mRNA expression levels
of anoikis regulators in normal and HCC samples. We found that changes in copy num-
ber variants (CN'Vs) may be the primary factor leading to ARG expression perturbations.
All ARGs with increased CNVs showed significantly higher expression in HCC (Fig. 3B).
In addition, our analysis of the frequency of CNVs showed that 28 ARGs had CNVs.
Copy number variation analysis revealed that copy number gains (CNGs) accounted
for the majority of copy number amplifications, whereas ICASP3, BRCA2, MTA1, and
SMADA4 had a high frequency of deletion (decreased gene or sequence fragment copies
in the genome) (Fig. 3C). Figure 3D depicts the location on the chromosomes where the
CNVs of the ARGs were found. This evidence suggests that an imbalance in the expres-
sion of ARGs plays a critical role in the development of HCC, as our investigations
revealed strikingly different changes in the genetic characteristics and gene expression of
ARGs between normal and liver cancer samples.

Due to the higher frequency of mutations in the FN1 and IGF1R genes than in other
genes, we analyzed how tumors with FN1 and IGF1R mutations and wild-type proteins
expressed other ARGs. Compared to wild-type tumors, FN1-mutant tumors showed
significant downregulation of snail family transcriptional repressor 2 (SNAI2), phos-
phatase and tensin homolog (PTEN), and fibronectin 1 (FN1), while tumor protein P53
and clusterin (CLU) were significantly upregulated and downregulated, respectively, in
insulin-like growth factor 1 receptor (IGF1R)-mutant tumors (Fig. 3E-H). According to
the findings, oncogenes were upregulated in the mutant group, while tumor suppressor
genes were downregulated. These findings suggest that interactions between regulators
of distinct ARGs likely contribute significantly to the development of tumor-specific pat-
terns of anoikis regulation and TME cell infiltration.

We focused on FN1, a regulator, and discovered a highly favorable link between FN1
expression and a wide variety of immune cells that had infiltrated the TME. Subsequent
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analyses revealed that FN1 was related to the tumor immunological microenvironment.
To compare the total number of immune cells present in people with high and low FN1
expression, we used the ESTIMATE method. We analyzed the presence of twenty-two

Page 12 of 32
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immune cells in the TME in patients with high or low FN1 expression. Tumors with high
EN1 expression showed significantly higher infiltration of CD8 T cells, CD4 memory
activated T cells, and immune cells than those with low expression. (Fig. 3I) We also
found that low expression of FN1 led to widespread increases in MHC, costimulatory,
and adhesion molecule expression. Interestingly, the upregulation of the immune check-
point molecule PD-L1 (CD274) in the high FN1 expression group occurred simultane-
ously with enhancement of immune-related pathways (Fig. 3]). To investigate further,
we used Spearman’s correlation analysis to examine the association between individual
types of cells infiltrating the TME and each ARG (Fig. 3K).
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Identification of two anoikis regulation patterns mediated by 28 ARGs

We performed unsupervised clustering based on the expression of 28 ARGs and
were able to identify two distinctive patterns of anoikis regulation in the metacohort
(Fig. 4A—C and Additional file 2: Table S3). Pattern A consisted of 190 cases, while pat-
tern B had 376 cases. Using PCA to show the molecular patterns of different types in
the two groups, we found that the ARG cluster was composed of two groups of samples
with different characteristics (Fig. 4D). We also analyzed the prognosis of the two dis-
tinct anoikis patterns and found that the ARGscluster-B regulatory pattern conferred a
greater advantage for survival than the ARGscluster-A regulatory pattern (Fig. 4E). To
compare the differences in immune cell components between the two anoikis regula-
tion modes, we used CIBERSORT, a deconvolution algorithm based on support vector
regression for identifying immune cell types in malignancies. We found that ARGsclus-
ter-B had a disproportionately high number of immune cells, including gamma delta T
cells, neutrophils, and type 17 T helper cells, while ARGscluster-A had an excessively
high level of immune cells, including activated CD4 T cells, activated dendritic cells,
CD56 natural killer cells, immature dendritic cells, MDSCs, natural killer T cells, natu-
ral killer cells, plasmacytoid dendritic cells, regulatory T cells, T follicular helper cells,
and type 2 T helper cells (Fig. 5F). We also visualized the expression of the 28 regula-
tors of anoikis in the metacohort using unsupervised clustering and a heatmap. Patient
information such as ARG cluster, sex, tumor stage, project, and age were considered.
The majority of ARGs had high expression in group A and low expression in group B, as
illustrated by the heatmap (Fig. 5G). Using GSVA, we investigated the impact of different
regulatory patterns on the biological pathways that are affected by anoikis regulation.
GSVA indicated that ARGscluster-A was highly enriched in the cell cycle pathway, while
ARGscluster-B was significantly enriched in metabolic pathways, including the arginine,
proline, histidine, tyrosine, phenylalanine, glycine, serine, threonine,  alanine, trypto-
phan, propanoate, butanoate, fatty acid, linoleic acid, and retinol metabolism pathways
and xenobiotics by cytochrome P450 pathway; furthermore, ARGscluster-B showed
enrichment of glycolysis, gluconeogenesis, valine, leucine, and isoleucine degradation,
complement and coagulation cascades, steroid hormone biosynthesis, and drug metab-
olism by cytochrome P450. (Fig. 4H) The findings from the GSVA indicated that the
regulatory pattern found in cluster B was significantly associated with a high metabolic
activity phenotype of HCC.

Gene scoring and functional annotation for the anoikis phenotype

We utilized the R package “limma” to identify 5588 DEGs associated with the anoikis
phenotype to investigate the potential biological activity of each anoikis regulatory
pattern. The DEGs were subjected to GO enrichment analysis with the "clusterPro-
filer" package, and Fig. 5A summarizes the significantly enriched biological processes
(Additional file 2: Table S4). Interestingly, these genes were enriched in biological pro-
cesses related to anoikis and immunometabolic pathways, providing further evidence
for the crucial role of anoikis in the tumor microenvironment. KEGG analysis of the
genes revealed the top seven pathways with activity counts greater than 40: the cell
cycle, focal adhesion, regulation of actin cytoskeleton, PI3K-Akt signaling pathway,
human papillomavirus infection, proteoglycans in cancer, and human T-cell leukemia
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virus 1 infection. These pathways are closely linked to tumor cell proliferation, apop-
tosis, and metastasis, thus indicating the relevance of the model to the cancer-related
anoikis phenotype (Fig. 5B and Additional file 2: Table S5). To verify this regulatory
mechanism, we performed unsupervised clustering analysis of the 28 genes related to
the anoikis phenotype and classified patients into distinct genomic subtypes. Unsu-
pervised clustering identified two distinct anoikis genomic phenotypes, which we
designated anoikis gene clusters A and B, consistent with the clusters identified based
on anoikis regulatory patterns (Fig. 5C, D). Consistent with the predicted anoikis
regulatory patterns, significant differences in the expression of ARGs were observed
between the two ARG clusters (Fig. 5G and Additional file 2: Table S6).

The expression levels of anoikis gene cluster A were higher, while the expression
levels of anoikis gene cluster B were lower, indicating two distinct phenotypic gene
clusters related to anoikis. For example, differential analysis revealed significant dif-
ferences in the expression of PLK1, YWHAZ, RHOA, HMGA1, HK2, ITGA5, CASP2,
RHOC, SKP2, CSNK2A1, PAK4, DAP3, MAPK1, ITGB1, SMAD4, IGF1R, CSAPS,
CAV1, TGFBI1, BRCA2, CD63, SH3GLB1, MTA1, PRKD1, SIRPA, CASP3, and
PRKCA between the two groups, with group A showing significantly higher expres-
sion levels than group B (Fig. 5H). Considering the role of these genes in the tumor
microenvironment, it is speculated that group A has a higher level of tumor antigen
activity, and the expression of these genes remodels the tumor microenvironment of
HCC. Subsequently, we conducted a comparison between the ARGcluster and gene-
cluster and found that the risk score of group A in both ARGcluster and geneclus-
ter was higher than that of group B, indicating that the patients in gene cluster A
had a worse prognosis and higher risk (Fig. 51, J). The expression levels of anoikis-
related genes that were significantly different between the two groups were also
observed to be higher in the high-risk group than in the low-risk group (Fig. 5K). The
tumor microenvironment (TME) of HCC was evaluated using three scores: stromal,
immune, and ESTIMATE scores. The results revealed that group A had higher stro-
mal, immune, and ESTIMATE scores, demonstrating the intricate nature of the TME
in this group. Notably, group A showed an increased level of immune activity, empha-
sizing the importance of considering the complexity of the TME for understanding
the regulatory patterns of anoikis in HCC (Fig. 5L and Additional file 2: Table S7).

To assess the anoikis pattern of individual HCC patients, we developed a scoring
system called the anoikis-related gene (ARG) score based on these phenotype-related
genes. A Sankey diagram was used to depict the attribute changes of individual
patients (Fig. 5F). Next, we aimed to determine the value of the ARG score in pre-
dicting the outcome of patients. Patients were classified as having a low or high ARG
score based on the cutoff value, which was calculated using the “survminer” pack-
age in R. The results confirmed that patients with HCC could be classified into two
groups with unique anoikis phenotype-related gene regulation modes. Patients with
a favorable status (179 of 566 patients) for 7 years were mostly classified into anoikis
gene cluster B, while those with a poor prognosis (387 patients) were clustered in
anoikis gene cluster A. The anoikis gene clusters indicated that HCC has three unique
anoikis phenotype-related gene regulation modes. The 5-year survival rate was found
to be significantly higher among patients with a low ARG score than in those with a
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high ARG score, as evidenced by the data presented in Fig. 5E. Additionally, the heat-
map in Fig. 5M shows the gene expression differences between the ARGs and gene
clusters. The results demonstrate that group A had a higher level of gene expression
than group B, which is consistent with the previous findings.

Furthermore, the correlation analysis revealed a significant association between the
ARG score and the proportions of immune cells present in HCC. For instance, the infil-
tration of activated B cells, CD8 T cells, CD56 natural killer cells, eosinophil y§ T cells,
immature B cells, immature dendritic cells, monocytes, neutrophils, type 1 helper T
cells, type 17 helper T cells, and type 2 helper T cells was lower when the ARG score was
higher, as demonstrated in Fig. 5N.

Development of a IncRNA signature associated with anoikis for diagnosis and treatment
The analysis of differences between 50 normal tissue samples and 374 HCC samples
from TCGA was accomplished by “limma” packages in R, and a total of 16,773 IncRNAs
were identified. Subsequently, the 370 HCC samples were randomly split into a "train-
ing" set comprising 185 samples and a "testing" set consisting of 185 samples for fur-
ther analysis. Pearson’s correlation analysis was utilized to determine the relationships
between IncRNAs and ARGs, which led to the identification of 855 IncRNAs with a cor-
relation coefficient greater than 0.4 and a p value less than 0.01, indicating their associa-
tion with ARGs.

In the training group, the prognostic value of 28 ARG-related IncRNAs in liver can-
cer patients was then determined by using univariate Cox regression analysis (p <0.001).
To construct a prognostic anoikis-related IncRNA model, least absolute shrinkage and
selection operator (LASSO) regression and cross validation were applied, resulting in
the identification of prognostic IncRNAs (RNF216P1, AP002449.1, NRAV, AC100847.1,
LINC01871, PSMB8-AS1, HMGN3-AS1, ZFPM2-AS1, TMEM220-AS1, AL590705.3,
AC025176.1, AC027097.1, LINC01559, LINC01269A, and L117336.2) (Fig. 6A, B and
Additional file 2: Table S8). Subsequently, multivariate Cox regression analysis was
performed and revealed seven IncRNAs, which were included in the risk model score
(AC100847.1, PSMB8-AS1, ZFPM2-AS1, AL590705.3, AC025176.1, LINC01559, and
LINC01269), along with their corresponding hazard ratios (HRs) and 95% confidence
intervals (CIs).

Each patient’s anoikis risk index (ARI) was established using the following formula:

ARI = (0.616675640597704 x+ AC100847.1)
+ (—0.797818424476765 x PSMB8 — AS1)
+ (0.441031959395331 * ZFPM?2 — AS1)
+ (0.777545279336812 x AL590705.3)
+ (1.35551255903678 x AC025176.1)
+ (0.5062856764437 x LINC01559)
+ (0.665009661829924 x LINC01269)

We performed survival analysis with ARI scores for HCC patients in TCGA. All the
IncRNAs had positive associations with OS risk (p <0.0001). Using the median value of
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the risk score as the cutoff, all HCC patients were stratified into “low-risk” and "high-
risk" groups. Patients with high ARI scores had lower disease-free survival and prognosis
(Fig. 6C). Meanwhile, the results suggested that a higher risk score predicted a shorter
OS of HCC patents in the training set, and similar results were confirmed in the valida-
tion set and metacohort. The AUC>0.7 in the TCGA dataset suggested that the ARI
signature exhibited excellent sensitivity and specificity for the prognostic prediction of
HCC patients in the training and validation sets and the metacohort. Similarly, Kaplan—
Meier analyses revealed that patients with a high ARI had a poor prognosis in the three
cohorts (p<0.01) (Fig. 6D—F). Furthermore, by applying principal component analysis
(PCA) based on all the genes, ARGs, ARIncRNAs, and risk IncRNAs of the IncRNA
signature, we were able to classify samples from HCC patients from the whole TCGA
cohort into high-risk and low-risk categories for overall survival (OS) (Additional file 1:
Fig. S4). Additionally, we included the ARI, age, sex, stage, and American Joint Com-
mittee on Cancer (AJCC) T stage, N stage, and M stage for univariate Cox regression
analysis of the TCGA cohort to identify significant clinical variables for prognosis. Using
univariate analysis, we found that the ARI signature score and stage were significantly
correlated with OS (Additional file 1: Fig. S5A and Additional file 2: Table S9). Multi-
variate regression analysis was performed using the ARI and other clinical features to
determine whether the ARI signature may be an independent prognostic factor for HCC
patients. In three cohorts (test, training, and all cohorts), the 7-IncRNA signature was
shown to be an independent and highly significant predictive factor. The results from
the multivariate regression analysis showed that only stage and the signature remained
significantly linked with OS in the whole TCGA cohort (Additional file 1: Fig. S5B and
Additional file 2: Table S9).

To better demonstrate the predictive ability of the ARI score for liver cancer progno-
sis, a combined nomogram was developed (Fig. 6G) to predict OS at 1 year, 3 years, and
5 years for individual HCC patients based on multivariate regression analysis incorporat-
ing independent prognostic factors such as age, sex, grade, stage, anoikis score, and ARI.
The nomogram had an AUC greater than 0.7, enabling it to distinguish between patients
with better or worse prognoses (Fig. 6H). The discriminant curve analysis (DCA) curve
and the calibration curve showed that the nomogram could provide useful and beneficial
information for predicting HCC patient prognosis in all three cohorts (Fig. 6I). Nota-
bly, the comprehensive nomogram, which combined the anoikis signature, the anoikis-
related IncRNA signature, and other clinicopathological characteristics, had an AUC of
0.772, indicating excellent predictive power that was superior to that of the two models
alone. Survival analysis based on clinical characteristics showed that the group with high
ARI scores had a poorer prognosis, with statistically significant differences in survival
curves between the high-risk and low-risk ARI subgroups of patients across different
clinical characteristics. (Additional file 1: Fig. S6A-P).

In summary, we constructed a prognostic signature and nomogram based on anoikis-
related IncRNAs that could better predict the prognosis of patients with liver cancer
with improved accuracy. Our study represents a significant step forward in the devel-
opment of personalized prognostic tools for liver cancer patients. These findings high-
light the potential of incorporating IncRNAs into clinical decision-making algorithms
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and support the use of our signature and nomogram as valuable tools for guiding patient

management.

GESA and analysis of the association between ARI subtypes and immune modulators

The tumor’s immunological state determines an mRNA vaccine’s effectiveness. To
investigate the immune cell components of ARI subgroups, we analyzed the ESTI-
MATEScore, ImmuneScore, StromalScore and TumorPurity to explore the tumor micro-
environment (TME) in the high and low ARI groups. The immune microenvironment
analysis showed significant differences in the immune status between the two groups.
Compared to the high ARI score group, the low ARI score group exhibited higher ESTI-
MATEScores, ImmuneScores, and StromalScores and lower TumorPurity. (Additional
file 1: Fig. S7A-D and Additional file 2: Table S10) Furthermore, single-sample GSEA
(ssGSEA) was conducted to rank the 28 signature genes that were previously identified
in the TCGA cohort analysis. As shown in Fig. 7A, the immune cells were classified into
two clusters, and there was a noticeable difference in the distribution of immune cells
between the two groups. Immune scores were significantly higher in the low-risk clus-
ter than in the high-risk cluster. CD8 + T cells, inflammation-promoting cells, Th1 cells,
TILs, HLA, Tth cells, B cells, pDCs, neutrophils, T helper cells, DCs, and macrophages
were higher in the low-risk cluster than in the high-risk cluster. These findings suggested
that the ARI subtype reflects the immune status of HCC and may be used to select suit-
able individuals for mRNA immunization. Patients with low-risk scores, also considered
to have “immunologically hot” tumors, may have more immune cell infiltration and bet-
ter prognosis after receiving mRNA vaccinations containing these antigens. In the high-
risk cluster, the percentages of NK cells, CD8 T cells, inflammation-promoting cells,
TILs, B cells, T helper cells, and Treg cells and the levels of check-point molecules and
T-cell costimulatory molecules were lower. We can speculate that the low-ARI subgroup
had more tumor antigens and immune cell infiltration, which indicates that mRNA vac-
cination may be more beneficial and more effective in the low-ARI group than in the
high-ARI group.

The results also showed that increased MHC, costimulatory, and adhesion molecule
expression was found in the low-ARI group. (Fig. 7B) In further assessments of the asso-
ciation between HLA gene sets and the two ARI subtypes, patients in the ARI-low group
had significantly higher expression levels than patients in the ARI-high group (Fig. 7C).
In summary, ARI subtypes reflect the immune microenvironment and ARI score and
thus can be used to select suitable individuals for mRNA immunization.

Association of ARI with somatic mutations and immune checkpoints in HCC

To explore mutations in HCC patients, we compared the somatic mutation frequen-
cies of the ARI-low and ARI-high subgroups in the TCGA cohorts by using the software
“maftools”. Figure 7D, E shows that the ARI-high group had a greater tumor mutation
load than the low-risk score group. The mutant groups exhibited significantly higher
ARIs than the wild-type groups for all tested altered genes. TP53 was expressed at a
higher level in the mutant group than in the wild-type group (38% vs. 15%). These find-
ings provide a new perspective for investigating the effects of anoikis modification on
the TME, immune checkpoint blockade treatment, and somatic mutations in tumors.
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Fig. 7 A Immune cell infiltration landscape map under ARl classification in the TCGA cohort. B Differences in
immune-related pathways between ARI high-risk group and low-risk group. C Gene expression differences
in HLA-associated gene sets within two apparently distinct ARI risk groups. D Waterfall plot of tumor somatic
mutations in the ARI high-risk group. E Waterfall plot of tumor somatic mutations in the ARI low-risk group. F
Comparison of tumor mutation burden between high and low risk groups. G Correlation between mutation
burden and ARI score in TCGA database. H Expression of immune checkpoint molecules in ARI high- and
low-risk groups. I Differential PD-L1 expression in ARI high- and low-risk groups. J Survival analysis in high
and low tumor mutational burden in the TCGA database. K Survival analysis in TCGA database stratified by
high and low tumor mutation burden combined with ARI high risk group. L-U Correlation analysis of ips,
dysfunction, exclusion, IFNG, MDSC, MSI and TAM.M2 in ARI high and low risk groups in TCGA database
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Furthermore, we observed a significant association between a higher ARI and higher
TMB in our patient cohort. The tumors with a high-risk score were significantly cor-
related with higher TMB, as demonstrated by TMB quantification analysis (Fig. 7F and
Additional file 2: Table S8). There was also a significant positive association between the
ARI and TMB (Fig. 7G). Accumulating data have shown that patients with high TMB
status have a longer-lasting clinical response to immune checkpoint inhibitor immuno-
therapy and anti-PD-L1 immunotherapy [26].

We analyzed the expression of immune checkpoint molecules in the low-risk and high-
risk groups. The results indicated that CD244, TMIGD2, CD274, BRLA, IDO2, and
PDCD1LG2 were highly expressed in the low-risk group, whereas TNFSF9, TMFSEF9,
TMERSF4, VTCN1, TMFRSF15, and HHLA2 were highly expressed in the high-risk group,
suggesting different expression levels of immune checkpoints in the ARI high- and low-risk
groups (Fig. 7H). This finding suggests that the patient risk determined based on the ARI
can be used to make appropriate immune checkpoint treatment decisions. Therefore, these
findings suggest that variations in tumor anoikis regulatory patterns may play a critical role
in mediating the clinical response to anti-PD-L1 immunotherapy.

Additionally, we compared the expression levels of PD-L1 in the high and low ARI
groups. The results showed that patients with a low-risk score also had a high level of
PD-L1 expression, indicating that patients with low ARI scores would likely benefit from
anti-PD-L1 treatment (Fig. 7I). These findings indirectly confirmed the benefits of ARI in
predicting the outcome of immunotherapeutic interventions. Furthermore, TMB has been
suggested as a biomarker of ICI response [31]. Tumors are typically classified into two
categories based on their somatic TMB: those with high TMB and a greater likelihood of
responding to ICIs and those with low TMB and a lower likelihood of response. Previous
studies have shown that patients with higher somatic TMB who are treated with anti-PD-
L1 immune checkpoint blockade agents tend to experience improved responses, long-term
survival, and long-lasting therapeutic benefits [31]. Furthermore, our study calculated the
differences in the sensitivity to 16 representative chemot