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Abstract 

The k-means, one of the most widely used clustering algorithm, is not only faster 
in computation but also produces comparatively better clusters. However, it has two 
major downsides, first it is sensitive to initialize k value and secondly, especially 
for larger datasets, the number of iterations could be very large, making it compu-
tationally hard. In order to address these issues, we proposed a scalable and cost-
effective algorithm, called R-k-means, which provides an optimized solution for better 
clustering large scale high-dimensional datasets. The algorithm first selects O(R) initial 
points then reselect O(l) better initial points, using distance probability from data-
set. These points are then again clustered into k initial points. An empirical study 
in a controlled environment was conducted using both simulated and real datasets. 
Experimental results showed that the proposed approach outperformed as compared 
to the previous approaches when the size of data increases with increasing number 
of dimensions.
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Introduction
Clustering plays a crucial role in unsupervised learning, encompassing a wide array of 
applications across various domains. The primary goal of clustering is to organize data in 
a manner that promotes grouping of similar datapoints within the same clusters, while 
ensuring that dissimilar clusters are well-separated. It is presumed that the number of 
clusters and the initial points are known. There are several clustering techniques devel-
oped to find the patterns in unlabeled data such as Partition based clustering [1], Hier-
archical Agglomerative clustering (HAC) [2], DBSCAN [3], Gaussian Mixture Models 
(GMM) [4], and Spectral Clustering [5].

The clustering problem is commonly defined as the problem of minimizing objective 
function while clustering the datapoints. The most commonly used objective function 
in clustering is sum of squared error (SSE) [6], which is computed as the squared dis-
tance between the datapoints and their respective clusters centroid. Thus, the aim of 
the objective function is to find the clusters with minimum internal variance. Generally, 
the selection of an appropriate objective function depends on the specific problem, data 
characteristics, and the desired outcome of the clustering task.
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The k-means [7] is one of the simplest and familiar clustering algorithms, based on 
Lloyd’s algorithm [8]. It works by dividing the data points into k clusters, where k is 
specified by the user. The algorithm assigns each data point to the cluster whose mean 
(centroid) is closest to the datapoint. The k-means clustering is a popular and easy-to-
implement algorithm that can be used for a variety of applications, such as image pro-
cessing [9] and image segmentation [10], data summarization [11], text clustering [12] 
and sound source angle estimation [13]. However, it has some limitations, including the 
need to specify the number of clusters in advance, and the sensitivity of the results to the 
initial placement of the centroids.

Although k-means widely used in clustering, its non-probabilistic nature and adoption 
of a simple radial distance metric to assign cluster membership make it challenging in 
terms of performance, especially for high dimensional large scale datasets [14]. It thus 
really becomes challenging for existing k-means based clustering algorithms, in the big 
data domain [15], to cluster the data in an optimal way [16]. One of the main problems 
with k-means is the cluster initialization as the initial selection of centroids greatly influ-
ences the performance of K-means. Different initializations can lead to different final 
clustering results. If the initial centroids are randomly chosen, the algorithm may con-
verge to a suboptimal solution or get stuck in local optima. Due to its iterative nature of 
k-means, the algorithm may converge to local optima rather than the global optimum. 
Poor initialization can also lead to clusters with unequal size. There has been a signifi-
cant emphasis in recent research on cluster initialization methods specifically designed 
for large-scale, high-dimensional datasets as better initialization dramatically improved 
the performance of Lloyd iteration in terms of convergence and quality [17].

A significant advancement in this direction was made by k-means++ algorithm 
[18], in which the initial point is chosen randomly, and subsequent points are selected 
using probability distribution that ensures the selected center is dissimilar to the ones 
already chosen. The downside of k-means++ is that the initialization phase requires k 
sequential passes over data. This is because the selection of new points relies on the pre-
viously selected points, making it challenging to parallelize. Another approach, known 
as k-means|| [19], proposed a variant of k-means++, specifically designed for parallel 
initialization of cluster centroids. The algorithm speeds up the process of k-means++ 
by sampling l times more points in each round independently. Independent sampling 
speeds up the process of the initialization but the quality of selected centers is not good 
as k-means++ leading to increase in Lloyd iteration for convergence.

In this work, we propose a variant of the k-means++ clustering algorithm, which is 
comparatively scalable and cost-effective for clustering large scale high-dimensional 
datasets. Keeping k-means|| as a baseline, the proposed algorithm introduces one more 
optimization factor R, which ensures the selected clusters are far away from each other.

The proposed algorithm aims to minimize the problem of centroid local minima by 
proposing an R = θk optimization factor. The R is an optimization factor that selects 
the center more than desired centers i.e. R ≥ k. The main idea behind our algorithm is 
to select O(k) points in each round and pass these points to k-means++ to select O(l) 
points that are far away from each other. The process repeats for O(logn) times and 
finally leaves with O(llogk) points which then again reclusters into k points. The algo-
rithm guarantees to reduce the cost of Lloyd’s step.
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In order to evaluate the proposed algorithm, an experimental evaluation is conducted 
using some real and artificial datasets to compare the clustering quality of R-k-means 
with the state-of-the-art clustering techniques. The SSE, a very popular internal evalua-
tion metric, is calculated before and after initialization process. For statistical evaluation, 
the one-way analysis of variance (ANOVA) is used to determine whether there is any 
significant difference between the performance of the proposed algorithm as compared 
to k-means++ and k-means||.

The main contributions of this study are the following:

• In “The proposed algorithm: R-k-means” section, we introduce a scalable algorithm 
named R-k-means, specifically designed for clustering large-scale datasets. Our algo-
rithm incorporates a novel factor R, which enhances the initialization process in 
k-means, leading to improved clustering results.

• In “Algorithm evaluation” section, we present an empirical evaluation of our pro-
posed algorithm, showcasing its effectiveness in the context of clustering large data-
sets. The evaluation encompasses various datasets, highlighting the algorithm’s per-
formance and its capability to handle big data.

• In “Result validation” section, we provide a statistical evaluation of the performance 
of our proposed algorithm.

The rest of the paper is organized as follows; in “Related work” section we present a 
detailed discussion of related works to show the research gap. In “The proposed algo-
rithm: R-k-means” section, we present our proposed algorithm with detailed illustration. 
In “Empirical evaluation of proposed algorithm” section, we discuss the results of our 
empirical experiments. Finally, in “Conclusion” section conclusion is presented.

Related work
The problem of Clustering has been addressed in a variety of contexts. There are several 
different variants for the k-means algorithm available in the literature, covering from ini-
tial k parameter selection to generating proper “seeding” with different objective func-
tion and data reduction schemes to reduce the number of iterations.

The k-means clustering has emerged as one of the most rated data mining algorithms 
[20] due to its simplicity and ease of usage. However, the algorithm usually influenced by 
the number of clusters and how each cluster is initialize. In general the validity indices 
can be used to find the optimal number of clusters, divided into two categories: inter-
nal and external index [21]. External indices uses the prior structure or reference results 
label to find the number of clusters [22, 23]. Internal indices used the internal data for 
finding the goodness of cluster structure. Silhouette Width (SW), Dunn’s index, Davies–
Bouldin index (DB), Bayesian information criteria, Calinski and Harabasz index (CH) 
and Gap statistic are popular internal validity indices for k-means clustering algorithm. 
Other approaches are also proposed in literature, MM [24], U-k-means [25], X-means 
[26], G-means [27] uses validity indices as a model and range of cluster numbers.

Cluster with different k initial values produce different clustering results especially for 
large scale datasets. In many k-means investigations, the best initial values of k are deter-
mined using a subsample of the data. The continuous k-means algorithm [28] selects 
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referenced points as a random sample from the whole datasets and in each iteration 
examines only random sample of datapoints. The algorithm is faster but the result is not 
necessarily global minimum. In [29] the k-means Mod algorithm is applied on the J ran-
dom subsample of dataset to choose k centroids and again run k-means algorithm on 
selected points for each subsample. The final k centers are chosen based on the minimal 
distortion value. The algorithm perform better for small datasets. Similarly, the algo-
rithm [30] divides each attribute of the datasets into k fixed number of cluster and com-
pute the percentile. The attribute values calculated using mean and standard deviation 
that serves as the seed for that attributes. The density-based data condensation method 
is used to merge the resulting centroids into k cluster. The algorithm reduces the cost 
of Lloyd’s step however handling high dimensional data is challenging. In [31] greedy 
deletion procedure is used to select k centroids from the bulk of random points in the 
dataset. The Ball-k-means seeding step that considers the ball of radius around each 
center and moves the center to the centroid of the ball, is used to obtain the final cent-
ers. They also showed that Lloyd’s algorithm performs well if the data satisfies a natural 
separation condition of clustering and return optimal clustering. The algorithm provides 
the optimal initial centers that required no or minimum Lloyd iteration. But the over-
all running time is O(nkd+3kd). In the same context [32], the input datasets is divided 
into m number of groups and runs k-means++ in each group. The algorithm selects 
3log(k) points in each iteration and at the end, it reclusters these 3mlog(k) points into k 
using s scheme or any of the k-means algorithm. The advantage of this algorithm over 
k-means++ is that it can be implemented in parallel, as each group of input is assigned 
to different machines but the running time of partition does not improve when the num-
ber of machines surpasses the threshold. In [33], the data is sampled from t-mixture 
distribution. The t-mixture distribution is heavy tailed Gaussian distribution. This t-mix-
ture model based distributed data is then analyzed from the aspect of loss function. The 
proposed method is stable in terms of variance of multiple results.

Some approaches also focus on the overall computational complexity associated with 
the Lloyd’s step in k-means algorithm. The QuicK-means [34], which is based on the 
Fast Transform by reducing the complexity of applying linear operators in high dimen-
sion by approximately factorizing the corresponding matrix into few sparse factors. The 
approach more focuses on fast convergence of clusters and hence optimizes Lloyd’s 
steps, however ignoring cluster initialization. The Ball k-means algorithm [35] divides 
different cluster, represents as ball, into active, stable and annular area. The distance 
calculation is performed only on annular area of neighboring clusters. Another notable 
approach presented in a literature I-k-means-+ [36], which iteratively remove and divide 
pair of clusters and perform re-clustering. The solution used to minimize the objective 
function of clustering. The PkCIA [37] computes initial cluster centers by using eigen-
vector as an indexes. The approach enable to identify meaningful clusters.

To overcome the issue of accelerating the clustering process, many parallelization 
techniques are employed. The parallel k-means clustering algorithm [38] use MapRe-
duce framework to handle large scale data clustering. The map function assigns each 
point to closest center and reduce function updates the new centroids. To demonstrate 
the wellness of algorithm, different experiments perform on scalable datasets. Another 
MapReduce based method [39], reduces the MapReduce job as it uses one MapReduce 
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job to select k initial centers. The k-means++ initialization phase runs on mapper and 
the weighted k-means++ runs on the reducer phase. It overcomes the problem of 
k-means|| to run multiple Map-Reduce jobs for initialization. Parallel batch k-means 
[40] divide the dataset into equal partition by preserving the characteristics of the data. 
The k-means apply on each partition to reduce computational complexity of big data-
set but not provide accurate no of clusters. In the same environment, two initialization 
methods for the k-means [41] were proposed. The first method used the divide and con-
quers strategy on k-means|| approach using subset sampling. In the second approach 
random projection was used along with subsampling, to project high dimension space 
into lower dimension space and then initialization perform. The algorithm guarantees 
to perform better than state-of-the-art methods. In [42], another recent entropy based 
initialization method is proposed. The algorithm uses Shannon’s entropy based objective 
function for similarity measure. The proposed algorithm also aims to detect the opti-
mal no of k for faster convergence. In [43], the random initialization method is merging 
the bootstrap technique. First, the algorithm applies k-means to B number of bootstrap 
replications of data and selects k initial centers from each bootstrap dataset. Then clus-
tering is performed on B∗k set of centers, to get the k new clusters. Instead of select-
ing the average points, the deepest point is considered a cluster center. The algorithm 
aims to perform better than the previous proposal algorithm of initialization. In [44] an 
algorithm named as pattern-based clustering for categorical datasets, uses MFIM (Max-
imal frequent item sets mining) algorithm to find list of MFIs for initial cluster. Then 
it uses a kernel density estimation (KDE) method to estimate the local density of data-
points for the formation of cluster. Another technique [45] employs KDE, to create the 
balance between majority and minority clusters by estimating the better approximation 
of the distribution. In general, KDE based clustering techniques perform well for data 
with complex distribution however require high computation. In [46] the density based 
clustering algorithm (DBSCAN) used as a preprocessing step, to find the initial cluster 
center before applying k-means algorithm. In [47] K-means9+ model the comparison 
steps after randomly chosen centroids improved, by comparing with the current and 
eight nearest neighbor cluster partitions. The algorithm improve the efficiency by reduc-
ing the unnecessary comparison. In [48] the new algorithm FC-K-means improved the 
clustering performance by preventing some cluster centroids from updating in all itera-
tion by fixing them on real world condition. In [49] power k-means++ the combination 
of power k-means and k-means++ presented to improve the clustering performance. 
The algorithm utilizes the k-means++ for good initial starting points then final alterna-
tive cluster centers using power k-means algorithm.

In summary, the aforementioned approaches highlight the strengths and limitations 
of different variants of k-means, aiming to enhance the overall performance of cluster-
ing. However, it is important to note that no single approach is universally applicable 
to all situations, and there are still numerous research gaps and challenges that need to 
be addressed. One significant challenge is the cluster initialization step, as the selection 
of initial centroids profoundly impacts the performance of k-means. Different initializa-
tion methods can lead to varying clustering outcomes, with random initialization often 
resulting in suboptimal solutions or local optima convergence. Inadequate initializa-
tion can also lead to clusters of unequal sizes. Recent research has placed considerable 
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emphasis on developing cluster initialization methods tailored for large-scale, high-
dimensional datasets. Improved initialization techniques, such as the k-means|| [19], 
have shown good results in terms of convergence and clustering quality. The paper pro-
poses an algorithm that aims to minimize the problem of centroid local minima, ensur-
ing cost-effective and comparatively scalable improvements in the initialization phase 
to achieve better clustering results with comparatively good performance, especially for 
large scale high-dimensional datasets.

The proposed algorithm: R‑k‑means
The algorithm, known as R-k-means (k, l, R), is a variant of k-means++ inspired by 
k-means|| for initializing the centers. While the proposed algorithm is largely inspired 
by k-means||, it also uses an oversampling factor l and proposed optimization factor 
R. In (1) step the proposed algorithm chooses l, R constants and k number of desired 
clusters. It then picks an initial center (say, uniformly at random) and computes the 
ψ ← φX(C) i.e. the sum of all smallest 2-norm distances (Euclidean Distance) from all 
points set X to all points from C. In other words, for each point in X, the algorithm will 
find the distance to the closest point in C. In the end, it computes the sum of all those 
minimal distances, one for each point in X. It then runs log(ψ) iterations as mentioned 
in (3) step. In each iteration, it selects l∗R center points using probability distance meas-
urement and then runs log (l*R) times and reclusters the selected C′ point into l points 
by using k-means++ to ensure that intra-cluster distance between points is far away 
from each other. In each iteration, the algorithm includes selected points from C″ into 
C. After the completion of the iteration, the algorithm reclusters the selected weighted 
points into k clusters. For reclustering of Step 8 k-means++ is used.

Empirical evaluation of proposed algorithm
In this section, the results of R-k-means, k-means++, and k-means|| have been analyzed 
on 08 different datasets using the same control environment.

Experimental setup

The sequential version of the k-means algorithm is evaluated on a single machine quad-
core 2.5 GHz processor and 16 GB memory. The parallel version of the algorithm is run 
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by using a Hadoop cluster of 40 nodes, created on Microsoft Azure, each with 16 GB of 
memory. The datasets used in the experiment are discussed in the next section.

Datasets

The datasets that are used in the experiments are the same as those are used in [18, 19, 
29] algorithms. A number of the datasets analyzed in previous work were not particu-
larly large, the main objective of the proposed algorithm is to cluster large datasets, 
which are difficult to fit in the main memory. Three large datasets ActivityRecogni-
tion, 3DRoadNetwork, and the AlltheNews datasets along with 3 benchmark datasets 
are used for the experiments. These datasets are taken from the UCI Machine learning 
repository. Two other synthetic datasets are also used. The Summary of all datasets is 
presented in Table 1.

Optimal number of k

As discussed before, in k-means clustering the number of clusters k is already randomly 
selected prior to running the algorithm. There are different ways to determine the right 
number of k. To demonstrate the performance and quality evaluation of the proposed 
algorithm in a more transparent manner, we select the initial value of k that fits the data. 
To determine which number of clusters k is more optimum for the dataset, or find clus-
ter fitness, two well-known techniques on a random subset (samples) of data are used, 
i.e., the Silhouette Score and Elbow Method using SSE. These methods are standard 
evaluation methods for choosing the optimum number of clusters.

An Elbow analysis is used to visually observe the number of clusters in each dataset. 
The Fig. 1 demonstrates the number of k (x-axis) for each dataset against computed SSE 
values. An optimum number of k can be obtained with minimum SSE value. It should be 
noted here that after determining the range of k from 2 to 14 according to the empiri-
cal rules, WCSS (Within-Cluster Sum of Square) is the sum of the squared distance 
between each point and the centroid in a cluster is calculated for each value of k. When 
plotting the WCSS against the number of clusters, the resulting graph exhibits an elbow 
shape. The point where the graph’s slope exhibits a sudden change indicates the optimal 
number of clusters. For example, in the case of the iris dataset, k = 3 represents the opti-
mal number of clusters, while for the News dataset, k = 5 is deemed optimal.

Table 1 Summary of dataset

Dataset No of instances Dimensions

Iris 150 4

Sonar 208 60

Wine 178 13

Activity recognition (AR) 43,930,257 16

3D road network (3DSN) 434,874 4

All the news (News) 143,000 184,933

Norm10 10,000 5

Norm25 10,000 15
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The Table  2 presents Silhouette analysis to cross validate the result of Elbow 
method. This technique provides a measure of how well each data point fits within its 
assigned cluster and aids in determining the number of clusters. The Table 2 shows 
the Silhouette score of each dataset. The highest silhouette coefficient value suggests 
that the point is well-matched to its own cluster and poorly matched to another clus-
ter. For instance, values like 0.84 (k = 2) and 0.75 (k = 3) in ‘iris’ dataset. It is impor-
tant to note that in our analysis, we examined the results of both techniques and 
selected the most appropriate value for k that satisfies both approaches.

Fig. 1 Elbow analysis on different dataset



Page 9 of 19Gul and Rehman  Journal of Big Data          (2023) 10:120  

Algorithm evaluation

In order to demonstrate a comparative evaluation, all eight datasets were utilized to 
compute and compare the objective functions, namely inter-cluster and intra-cluster 
sum of squared errors (SSEs), for three algorithms: k-means++, k-means||, and the 
proposed algorithm R-k-means, using various threshold values for l and R factors (“The 
proposed algorithm: R-k-means” section). The evaluation of these approaches was con-
ducted in two phases, which include the initialization phase and the final cluster forma-
tion phase, as better initialization leads to improved cluster formation. In initialization 
phase of R-k-means, multiple data points, say R, are drawn in each iteration Ci from the 
dataset and producing l estimates of the true cluster locations using k-means++. To find 
the best initial centroids, these l points (C solutions, each having l clusters) are weight 
into k centroids in an “optimal” fashion.

The Fig. 2 and Table 3 demonstrate the evaluation of initialization phase using inter-
cluster SSEs (y-axis), threshold value of l (x-axis), indicating dissimilarities between 
clusters. In the smaller datasets, k-means|| demonstrates good performance in the 
‘iris’ dataset with SSE = 61.608 when l = 4. However, R-k-means performs well with 
SSE = 84.63 when l = 6 and R = 10 in the same dataset. In the ‘sonar’ dataset, R-k-means 
outperforms other algorithms with SEE = 50.9349 at l = 5 and R = 15. The performance 
improvement is even more significant, with higher SSEs, in the larger document datasets 
(3D SN, News, and Activity), where R-k-means consistently outperforms k-means|| and 
k-means++ algorithms.

Figure  3 and Table  4 illustrate the evaluation results of the final cluster formation 
phase using the intra-cluster SSEs (y-axis) and the threshold value of l (x-axis), indicat-
ing similarities within clusters. In all datasets, R-k-means outperforms other algorithms 
by achieving the smallest SSE values when larger values of l and R are selected. This sug-
gests that R-k-means algorithm consistently produces better quality clusters compared 
to the other approaches.

Result validation

To conduct a statistical evaluation of the results obtained from the proposed algo-
rithm compared to k-means++ and k-means||, a one-way ANOVA test is employed. 
The null hypothesis  (H0) in Eq. (4) assumes that there is no improvement in the clus-
tering results, and all approaches perform equally. The alternative hypothesis  (HA) 

Table 2 Silhouette analysis on different dataset

Dataset/k 2 3 4 5 6 7 8 9 10 11 12 13 14

Iris 0.75 0.84 0.68 0.60 0.56 0.50 0.44 0.43 0.47 0.48 0.47 0.43 0.46

Sonar 0.33 0.31 0.30 0.27 0.26 0.28 0.26 0.24 0.22 0.22 0.21 0.20 0.19

Wine 0.81 0.82 0.72 0.73 0.71 0.73 0.71 0.68 0.67 0.66 0.68 0.67 0.66

3D SN 0.83 0.84 0.73 0.85 0.78 0.76 0.72 0.75 0.67 0.71 0.68 0.6 0.70

News 0.61 0.53 0.43 0.67 0.24 0.17 0.22 0.16 0.16 0.17 0.27 0.22 0.23

AR 0.71 0.47 0.63 0.74 0.64 0.63 0.57 0.56 0.56 0.57 0.52 0.48 0.51

Norm10 0.23 0.24 0.24 0.23 0.23 0.24 0.27 0.22 0.23 0.28 0.23 0.23 0.22

Norm25 0.10 0.10 0.19 0.19 0.10 0.08 0.09 0.07 0.09 0.09 0.08 0.06 0.06
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states that there is a statistically significant difference in performance between the 
proposed approach and the other two methods.

The one-way ANOVA test compares the means of multiple groups and determines 
whether there is a significant difference among them. In this case, the group means 

(1)H0 = µ1 = µ2 = µ3 �= HA

Fig. 2 Inter-cluster SSE (initialization phase)



Page 11 of 19Gul and Rehman  Journal of Big Data          (2023) 10:120  

being compared are the results obtained by k-means++ ( µ1 ), k-means|| ( µ2 ), and the 
proposed approach ( µ3).

Figure 4 shows the result of the ANOVA test. To perform the one-way ANOVA test, 
the performance metric (Intra-Cluster SSE) is collected for each algorithm across 
multiple datasets presented in Table 3. The null hypothesis is then tested by analyzing 
the variance between the groups (algorithms) and the variance within each group. The 

Table 3 Inter-cluster SSE

Dataset l k-means++ k-means || R-k-means

R = 5 R = 10 R = 15

Iris (k = 3) 2 6.1616 26.7986 27.7711 30.6586 24.6123

3 35.9525 42.9021 49.8446 38.6484

4 61.6088 52.2022 56.2073 54.6286

5 61.7990 72.3874 71.5324 64.7145

6 67.1798 84.4240 84.6325 76.5402

Sonar (k = 2) 2 5.8666 14.5736 17.4731 18.8364 17.7819

3 23.8098 25.1271 23.5792 24.5343

4 38.7443 35.8578 33.0370 33.5313

5 37.4966 44.7290 42.0556 50.9349

6 49.2615 49.1634 48.6287 48.2908

wine (k = 3) 2 250.9660 229.6661 7676.1558 7284.0679 11,915.8242

3 452.9283 10,663.0315 9865.4811 11,915.8242

4 560.4012 12,216.4932 15,047.1598 14,934.4016

5 667.6036 16,447.1180 18,236.0528 17,421.5611

6 778.0889 21,710.9044 20,372.1126 22,901.5713

3D SN (k = 5) 2 109,336,880 2,168,104,903.3345 48,660,297.0000 2,247,790,621.4291 2,314,450,425.5880

3 53,853,088.0000 101,224,306.0000 2,107,780,481.0000 3,508,908,898.8092

4 85,897,954.0000 114,341,298.6666 3,167,177,199.0000 4,691,745,030.8011

5 108,397,304.0000 123,914,049.0000 4,432,592,406.0000 5,637,602,936.0409

6 331,134,543.0000 556,311,668.0000 6,783,567,832.4096 6,939,717,354.0766

News (k = 5) 2 114.3128 1178.0515 2360.5534 2113.9152 2006.8279

3 2156.5824 3144.6057 3360.4814 3236.0935

4 3163.3691 4404.6432 4359.0314 4689.82083

5 4072.5487 5349.1998 5265.0942 5228.0226

6 6176.2299 6383.6909 6057.0527 6280.4491

Activity (k = 5) 2 23.4528 121.2921 527.6653 569.1061 822.1117

3 218.7024 536.2599 626.7691 828.0986

4 231.9427 550.8495 633.4962 917.1622

5 333.8185 624.6799 724.9864 927.2576

6 461.4125 730.1079 819.8806 1028.3068

Norm10 (k = 4) 2 24.3682 636.3063 709.4414 667.8098 608.8425

3 851.1451 1041.1056 1060.4802 1049.3394

4 1138.5454 1356.5306 1350.7130 1355.4381

5 1555.7457 1673.0125 1774.5042 1773.9882

6 1857.9609 2084.9132 2142.4280 2115.3574

Norm25 (k = 5) 2 214.9796 1229.5679 1223.6761 1165.7223 1291.2499

3 1856.8133 1939.1858 1791.1910 1893.9185

4 2429.2542 2378.6777 2469.8412 2465.6334

5 2888.2870 3115.1088 3158.8707 3122.1037

6 3760.7232 3755.8775 3743.6885 3665.1731
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result of the statistical test showed that the proposed approach in fact performed well 
as p-value (0.019) is smaller than the alpha (0.05). So the H0 hypothesis is rejected.

Conclusion
Clustering large-scale data is a challenging task. This work addressed the problem of 
initialization of the k-means clustering algorithm for the large datasets, especially for 
the document data. The traditional k-means algorithm largely depends on the choice 

Fig. 3 Intra-cluster SSE (cluster formation phase)
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of cluster initial centers. The k-means++ is the most popular technique to deal with 
the issue of initialization in k-means, however due to its sequential nature, it is hard to 
apply in big data scenarios. A promising approach, known as k-means||, has recently 
emerged to address the issue of initialization in k-means for big datasets. This paper 

Table 4 Intra-cluster SSE

Dataset L k-means++ k-means || R-k-means

R = 5 R = 10 R = 15

Iris (k = 3) 2 5.7119 9.7201 6.9859 6.50141 5.9335

3 9.5087 6.2300 4.94409 5.8526

4 8.8875 5.7965 4.88033 4.0785

5 8.6536 5.7509 6.99476 6.1276

6 7.5775 5.3867 6.35059 5.5642

Sonar (k = 2) 2 3.3063 23.7412 3.4541 3.8480 3.6334

3 18.2249 3.1234 3.4419 3.5586

4 17.9539 2.7326 3.1443 3.5812

5 13.4780 3.2455 2.9392 3.4850

6 12.7424 2.7532 2.3037 2.9509

wine (k = 3) 2 485.2552 491.5231 514.2313 449.5273 451.9927

3 469.4520 494.9853 435.3800 413.7944

4 466.3222 466.3913 403.3321 412.7368

5 456.3817 445.4646 390.8077 376.2936

6 423.4088 418.8286 327.0550 366.0236

3D SN (k = 5) 2 35,774,691.2030 63,158,109.2354 65,386,303.8797 37,779,415.4668 33,818,355.0888

3 55,670,026.2025 56,386,320.7979 36,065,470.1777 32,102,586.3758

4 47,881,019.6847 45,789,201.6702 33,133,511.8313 30,977,219.6847

5 39,122,421.3758 38,423,140.1365 31,410,769.4442 29,458,130.3463

6 31,666,529.8399 32,459,008.2043 30,822,221.3333 26,777,827.2025

News (k = 5) 2 224.7326 9082.4200 835.5889 581.1772 501.8262

3 7001.9904 753.8404 496.2172 476.0039

4 6541.1025 684.8287 385.8096 359.0314

5 4467.0103 537.8884 244.5760 265.0942

6 2970.6630 495.4273 220.2111 201.4371

Activity (k = 5) 2 14.0528 112.1903 39.8633 47.4728 45.2055

3 94.2314 34.8781 45.9747 44.9542

4 85.6380 31.6925 33.0593 35.0243

5 69.1579 26.9614 42.4164 33.7983

6 52.1811 24.1458 34.3696 32.5727

Norm10 (k = 4) 2 107.6781 1048.8821 110.6411 113.1431 111.2958

3 931.2911 109.8669 111.2486 110.7953

4 757.3920 106.3967 108.3090 110.3505

5 612.9243 106.6067 106.5647 105.5661

6 447.1270 104.9621 103.4869 104.7452

Norm25 (k = 5) 2 227.3719 3264.0002 268.6444 273.4111 267.8086

3 2765.1543 260.5138 261.8034 261.0960

4 2314.9855 255.6187 257.9374 264.5306

5 1819.8593 249.0356 254.3362 256.0727

6 1268.7172 244.7055 246.3955 250.6534
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proposes an algorithm, called R-k-means as a variant of k-means++, to offer a com-
paratively better solution to the problem of cluster initiation for big datasets. Using 
inter and intra cluster SSEs as an evaluation metrics, experimental results show that 
the proposed approach performs comparatively better. At each iteration of cluster ini-
tialization process, SSE of proposed approach is greater than that of k-means++ and 
k-means||, which shows that the centers selected in each iteration are far away from 
each other, thus reducing the cost of convergence in Lloyd’s algorithm. The quality 
of final clusters was also assessed by using intra SSE, a very popular metric for clus-
ter evaluation. The results also shows that SSE of proposed approach is much lesser 
than that of others, suggesting better clusters. Finally, in order to statistically validate 
the performance, one-way ANNOVA was performed. The result of the statistical test 
shows that the proposed approach in fact performs well as p-value (0.019) is smaller 
than the alpha (0.05).

Appendix
In this section, the overview of the basic composition of the existing clustering algo-
rithms is discussed.

k-means

The k-means, depicted in Algorithm 2, clustering method, based on expectation max-
imization (EM) algorithm, divides the group of n objects into k partition clusters and 
measures similarity by calculating the distance between each of the items with its 
mean value i.e. centroid. The k-means clustering splits objects n into clusters k with 
each object in a cluster matching the nearest mean; for k-means clustering k (the clus-
tering mean) must be picked before the clustering process and computed from data. 
The k must be chosen prior to clustering and must be computed from data. The aim is 

Fig. 4 ANOVA analysis
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to produce exactly k different clusters of greatest possible distinction by minimize the 
objective function O and maximize the L i.e. inter-cluster distance.

Definition 1 The equation below represents the objective function O where k is 
the number of centroids and m is the number of object assign to a particular cluster 
centroid.

Here O is the distance between points within the cluster i.e. Sum of squared distances. 
We use Euclidean metric for distance measurement, which is defined as:

Definition 2 Let we have X =  x1,  x2,  x3,…,  xn data points, assuming that n objects are 
clustered into k clusters, the inter-cluster distance is defined as the sum of the difference 
of mean distances of all clusters to the mean of the entire samples.

Here L is calculated using  mi the mean of cluster  ci and the m the mean of all n data 
points. The k-means algorithm is defined as follow:

Initially, the algorithm chooses the k centroids randomly from the space of data and 
assigns each object from data space to the centroid which has the minimum distance 
from the point. When all objects are assigned to the group, then the position of these k 
centroids is recomputed by calculating the mean of the points assigned to them on the 
basis of distance measure. These steps have to be repeated until convergence or until the 
centroids no longer move. The k-means algorithm is based on the famous Lloyd’s algo-
rithm. The k-means algorithm is scalable, computationally faster, and produces a tighter 
cluster for small-scale datasets but there are two major issues when it is applied to big 
data. It is sensitive to initialize k value and for large datasets, the number of iterations 
can be very large, making it computationally expensive. Respectively, each step of the 

(2)O =

k
∑

j=1

m
∑

i=1

d
(

i, j
)

(3)d
(

i, j
)

=

√

(

xi1 − xj1
)2

+
(

xi2 − xj2
)2

· · · +
(

xim − xjm
)2

(4)L =

k
∑

i=1

|mi −m|



Page 16 of 19Gul and Rehman  Journal of Big Data          (2023) 10:120 

method needs computation of the distance between every pair of the data points and the 
inter-distance comparisons.

k-means++
Various methods have been devised to solve the problems of k-means, for instance, 
k-means++, depicted in Algorithm  3, proposed an improved local potential version of 
k-means with the D2 weighting. The algorithm focuses on the initialization of k clus-
ters, to improve the quality of the cluster and to minimize the number of iterations. The 
k-means++ chooses centers one by one in a controlled fashion. It selects the first center 
randomly from the dataset and then each subsequent center is selected using the probabil-
ity proportional to the overall SSE given by the previously selected centroids. Preferably the 
algorithm achieves good clustering by preferring the centers that are far away from the pre-
viously selected points.

The algorithm chooses a center xi randomly from a dataset then other k-1 centers are 

chosen one by one from the dataset with probability D(x)2
/

∑

x∈X

D(x)2.

The process is sequential, it thus repeats until k objects are selected for centers, making 
the complexity O (n k d), for n points in d dimension, same as that of a single Lloyd itera-
tion. The central downside of k-means++, from a scalability point of view, is of inherent 
sequential nature—the choice of the next center is conditioned to the current set of centers.

k-means||

Another improved form of k-means is k-means||, basically designed to overlay the draw-
back of k-means++ in terms of scalability. The k-means||, depicted in Algorithm 4, uses 
oversampling factor l = ω(k) for choosing k centers. Like k-means++ the algorithm selects 
the first center randomly from the dataset and then other centers are chosen with probabil-

ity l D(x)2
/

∑

x∈X

D(x)2.

The algorithm selects first point  xi randomly and then computes the initial cost (ψ) after 
this selection. It then iterates for log (ψ) times, in each iteration it selects l centroids from 
the X dataset. The number of centroids is expected to be l time log(ψ) + 1, which is more 
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than the number of k. In order to reduce the selected centroids, the algorithm assigns 
weight to these selected centers and then recluster the weighted points into k. The k-means 
parallel runs in the fewer number of iterations, better in terms of running time, and cluster-
ing cost is expected to be much better than random initialization but it is not guaranteed 
that selected centroids are far away from each other, increasing the cost of re-clustering.
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