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Abstract 

Users on social networks such as Twitter interact with each other without much 
knowledge of the real-identity behind the accounts they interact with. This anonym-
ity has created a perfect environment for bot accounts to influence the network 
by mimicking real-user behaviour. Although not all bot accounts have malicious intent, 
identifying bot accounts in general is an important and difficult task. In the litera-
ture there are three distinct types of feature sets one could use for building machine 
learning models for classifying bot accounts. These feature-sets are: user profile 
metadata, natural language features (NLP) extracted from user tweets and finally 
features extracted from the the underlying social network. Profile metadata and NLP 
features are typically explored in detail in the bot-detection literature. At the same time 
less attention has been given to the predictive power of features that can be extracted 
from the underlying network structure. To fill this gap we explore and compare two 
classes of embedding algorithms that can be used to take advantage of information 
that network structure provides. The first class are classical embedding techniques, 
which focus on learning proximity information. The second class are structural embed-
ding algorithms, which capture the local structure of node neighbourhood. We show 
that features created using structural embeddings have higher predictive power 
when it comes to bot detection. This supports the hypothesis that the local social net-
work formed around bot accounts on Twitter contains valuable information that can 
be used to identify bot accounts.
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Introduction
Internet and social media impact all aspects of our lives. We use them to read news, 
connect with friends and family, share opinions, buy products, and entertain us. It 
affects our beliefs, behaviour and so it shapes our political, financial, health, and other 
important decisions. Unfortunately, as a result, social networks created an information 
platform in which automated accounts (including human-assisted bot accounts and 
bot-assisted humans) can try to take advantage of the system for various opportunis-
tic reasons: trigger collective attention [12, 28], gain status [10, 43], monetize public 
attention [9], diffuse disinformation [5, 16, 34], or seed discord [47]. It is known that 
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a large fraction of active Twitter users are bots [44] and they are responsible for much 
disinformation—see, [48] for many examples of manipulation of public opinion. Hav-
ing said that, not all bot accounts are designed to harm or take advantage of other users. 
Some of them are legitimate and useful tools such as chatbots that respond to common 
questions of users, or knowbots that are designed to automatically retrieve some useful 
information from the Internet. On the other hand, human accounts may also spread dis-
information and be responsible for some other malicious behaviour. Detecting bots and 
understanding roles they play within the system falls into a common machine learning 
task of node classification. It is important to note that in this work, we do not focus on 
the intent of the bot accounts (whether they are benign or malicious); determining this is 
outside the scope of our study.

The objectives of this paper are to investigate: (1) whether graph embeddings extract 
information from the associated network that can be successfully used for node clas-
sification task, (2) what is the relative value of classical vs. structural node embeddings 
for bot detection, (3) does the predictive power of embeddings depend on their com-
plexity (measured by the dimension of the embedding). To achieve these goals, we start 
with defining classical and structural embedding techniques. Classical embedding tech-
niques, such as Node2Vec [21] and DeepWalk [37] learn information related to prox-
imity of nodes in the network. On the other hand, structural embedding algorithms such 
as Role2Vec [1] and Struc2Vec [39] learn representations of the local structure sur-
rounding each node. In our work, we build features using both classical and structural 
embedding techniques and use those features to train models for classifying bots.

In our experiments, we concentrate on Twitter data and the task of identifying bot 
accounts, but our questions (and answers) are broader and so potentially more influ-
ential. They are applicable to all kinds of networks and data sets that are naturally rep-
resented as graphs which, of course, includes social media platforms such as Twitter. 
Moreover, they are applicable to a much wider class of machine learning tasks: node 
classification algorithms train a model to learn in which class a node of the graph belongs 
to. Bot detection is a specific example of this class of problems in which a binary classifi-
cation is performed (nodes are categorized into bots and humans). However, in general, 
multi-class classifications is also often considered and needed. Other important applica-
tions of this nature include, for example, identifying nodes associated with users that 
might be interested in some specific product, or detecting hostile actors. For this reason 
there is an increasing need for effective methods of analysis data represented as graphs. 
For more details we direct the reader to a recent survey [30] and a book [25]. Lastly, we 
point out that although our study focuses on bot detection on Twitter social network, 
bot detection in general is a domain specific task. Users (including bots) on other social 
networks may interact with one another in different ways, which could impact the pre-
dictive information captured by the underlying social network.

There are many approaches that can be used to perform node classification in graphs. 
Most techniques attempt to detect bots at the account level by processing many social 
media posts and analyzing them using various NLP techniques with the goal to extract 
some important and distinguishing features. These features are usually complemented 
with user metadata, friend metadata, content and language sentiment, as well as tem-
poral features [13]. In this paper, we will refer to these features as NLP and P (Profile). 
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These techniques are very powerful, but a supervised machine learning algorithm is 
only as good as the data used for training. Unfortunately, good quality datasets with 
the ground-truth are rarely available. Additional challenge is that bot accounts evolve 
rapidly and so one needs to constantly update datasets and evolve the set of features to 
keep up with the other side. In particular, hot topics discussed on social media evolve 
rapidly; for example, NLP features that were important for bot detection before presi-
dential elections in some country might become quickly outdated after the election. 
Similarly, results of NLP analysis cannot be easily transferred from one language to 
another or across differ geographical regions or countries. Furthermore, recent develop-
ments in Large-Language-Models (LLMs) such as GPT-4 [35] will make it more difficult 
to detect human versus bot generated language. Language derived features, which may 
have helped identify bots, may be obsolete as bots take advantage of more sophisticated 
LLMs. As a result, a collaborated effort of many researchers and data scientists is needed 
to maintain bot detection models. One successful example is Botometer, bot detection 
tool developed at Indiana University using various labelled datasets and 1, 209 features 
(current, 3rd version of the model) [48]; see also [42] for a new supervised learning 
method that trains classifiers specialized for each class of bots and combines their deci-
sions through the maximum rule (ensemble approach). Botometer handles over a quar-
ter million requests every day! However, since the bot score is intended to be used with 
English-language accounts, what can one do with non-English accounts? What if the 
content or metadata is not easily available? Finally, how about other node classification 
tasks which cannot enjoy such powerful tools such as Botometer?

An alternative approach is to use some features of nodes that can be calculated exclu-
sively using graph data. The main advantage of this approach is that such information is 
easier to obtain and is typically less sensitive as it does not include the analysis of user 
messages and metadata associated with them. More importantly, it can be hypothesised 
that the signal is more stable in time and graph space, that is, if some topological struc-
ture of the network indicates that some nodes are likely to be bots, then such signal is 
likely to loose its predictive power slower than, for example, discussion topics extracted 
from NLP features. Typical features concentrate on local properties of nodes such as 
node degree, various node centralities, local clustering coefficient, etc. We will call fea-
tures derived using this approach as GF (Graph Features). The idea behind is that bots 
need to use some strategies to form an audience. They employ various algorithms to 
gather followers and expand their own social circles such as following popular accounts 
and ask to be followed back [2], generating specific content around a given topic with 
the hope to gain trust and catch attention [17], or even interacting with other users by 
engaging in conversation [24]. These algorithms create networks around the bots that 
should be structurally and topologically distinguishable from the ones around real 
human beings which, in turn, affect the extracted graph features. The same rationale 
applies to other applications of node classification.

The above approach, based on analysis of predefined graph features, was proved 
to be useful in various node classifications tasks but it has a few issues. First of all, 
very often features of one node alone are not enough to adequately classify the node. 
Indeed, bots typically work in a coordinated way and are not usually suspicious when 
considered individually. Hence, bot detection requires combining information about 



Page 4 of 37Dehghan et al. Journal of Big Data          (2023) 10:119 

multiple bots and analyzing them together [11]. This often is very challenging, both 
conceptually as well as computationally, as it requires to consider at least a quadratic 
number of pairs of nodes. features capture properties that are rather local whereas 
some embedding algorithms aim to extract more global and structural properties. 
properties Moreover, we often do not have access to a complete network but rather 
sample it using some sampling method. Unfortunately, the choice of a sampling algo-
rithm may substantially affect GF. The features that are to be analyzed need to be pre-
defined by the analyst. Therefore, the result of this approach depends heavily on skills, 
knowledge, or just sheer luck of the user.

To solve at least some of these problems, we propose to utilize node embedding 
algorithms that assign nodes of a graph to points in a low dimensional space of real 
numbers. The goal of the embedding is to decrease the dimension but, at the same 
time, to extract the most important features of nodes and ignore noise. We will call 
features obtained based on this approach EMB. As mentioned, we consider two 
classes of embedding techniques. One, which we call classical embeddings, focus on 
learning local and global proximity information about nodes. Such techniques can 
be used to identify communities and groups in networks. The second class of algo-
rithms, called structural embeddings, learn representations of the local graph struc-
ture around each node. Structural embedding techniques are often used to identify 
what roles nodes play in their local environment. These algorithms (both classical and 
structural) have quickly became an intensely researched topics in recent years; see, 
for example, [8] or a recent book [25], and the list of potential applications constantly 
increases. After reducing the dimension via node embeddings, node classification can 
be done more efficiently compared to extracting graph features and using the orig-
inal network to identify synchronized behaviour. On the other hand, synchronized 
behaviour should create similar network structure around the involved nodes and 
so should be captured by the embedding. Such group of nodes may be then poten-
tially extracted (even in an unsupervised way) by some machine learning tools such 
as DBSCAN that are able to identify dense regions of the embedded space. Some 
embedding algorithms not only capture local properties of graphs but also try to pay 
attention to global structure and different roles the nodes play within the network 
[14, 39] which might carry more predictive power than local GF. Additional benefit 
of such approach, in comparison to using GF, is that features are identified automati-
cally in an unsupervised way by the algorithm, as opposed to having to identify them 
manually by the analyst. Finally, embeddings seem to be less sensitive to sampling 
techniques and so they might be used as a foundation for more robust classification 
algorithms. There are many different node embedding algorithms considered in the 
literature. Additionally these embeddings have many hyperparameters, of which 
a common among all embedding approaches is their target dimension. Although 
embeddings were considered for various tasks in the earlier literature, an analysis of 
how useful they can be for bot detection remains an open field that we investigate 
in this paper. To answer this question we report on predictive power of NLP, P, GF, 
and EMB features. This investigation also allows us to compare classical and struc-
tural embeddings to find which of them are more useful for this task. Additionally, 



Page 5 of 37Dehghan et al. Journal of Big Data          (2023) 10:119  

we check how target embedding dimension hyperparameter affects their predictive 
power.

Research motivation and goals
As we have highlighted in the introduction, there are many aspects of a user data that 
one could leverage in building models for identifying whether a user is bot or non-bot. 
In this work, we categorize these features into four groups. The first are features cap-
tured from user profile data and features derived using natural language models from 
user tweets (NLP and P). The second are simple graph features, computed for nodes like 
degree or eigenvalue centrality (denoted GF). The third are features extracted from the 
user’s social network using embedding algorithms (EMB). EMB features are further bro-
ken down into classical and structural embeddings. We build bot classification models 
using various combinations of the above feature sets, for two different datasets (as will 
be highlighted in the coming sections). It is important to note that our focus is not on 
identifying whether bot accounts are malicious or benign. Also, we are not introducing a 
new bot classification model, rather our aim is to compare the predictive power of these 
feature sets (NLP, P, GF and EMB) with the focus on node (classical) and structural fea-
tures extracted using embedding algorithms as a new and novel source of predictive fea-
tures. More specifically, we compare the predictive power of structural versus classical 
embeddings and show that bot accounts on Twitter often form local social structures, 
which can be captured by structural embedding techniques.

The main contributions of our paper are as follows:

• By analyzing the performance of bot detection models, using various combinations 
of feature sets we show that all three feature sets (NLP, P, GF and EMB) have predic-
tive power for identifying bot accounts.

• Addition of classical and structural features enhances the performance of bot detec-
tion models, hinting at the fact that there are clues for detecting bot accounts in the 
graph features extracted from the structure of the social network of the users that are 
not captured by other types of features.

• By analyzing six different embedding algorithms (EMB) and comparing their perfor-
mance to human engineered features (GF), we show that embedding algorithms can 
capture features having predictive power in an unsupervised way that is difficult to 
design manually.

• Using two different Twitter datasets, we show that features extracted using structural 
embedding techniques have higher predictive power as compared to features learned 
using classical embedding techniques.

• We perform dimensionality analysis on both structural and classical embeddings 
and show that increasing dimensionality of embeddings does not bring much value 
added. Already low-dimensional embeddings are useful for bot detection.

• Lastly, we perform stability analysis against our embedding features and show that 
models built using embedding algorithms can be resistant to the addition of noise in 
the underlying network.



Page 6 of 37Dehghan et al. Journal of Big Data          (2023) 10:119 

Finally, let us stress that despite the fact that these results are optimistic and show a 
potential of algorithms based on graph embeddings, this is an early stage of research in 
this direction. We finish the paper with a discussion of future work that will deepen our 
understanding of the power (as well as potential issues) of embedding algorithms.

Related work
In this section, we provide a brief overview of various studies focusing on bot detection 
algorithms as well as feature sets used for building such models. There are numerous 
studies focusing on feature engineering and feature extraction from user information on 
social media networks such as Twitter [18, 27, 30, 33, 45]. For example, in their work 
Minnich et  al. [33] categorize the feature sets used for detecting bots into the follow-
ing categories: metadata-based features, content-based features, temporal-based fea-
tures, and network-based features. In this work, the authors mention the importance of 
including information about the social network of bot accounts such as the number of 
followers captured by node out-degrees. Similar feature sets were used by Lee et al. [26], 
where the authors focus on extracting features from user generated information such as 
tweets and profile data, in addition to first degree graph features such as node degree. 
Indeed, many of the research efforts on extracting network features are focused on first 
degree features that can be mapped to real-world metrics such as the number of follow-
ers or friends, in addition to network of users who directly interact with user’s tweets via 
liking or re-sharing them. As we will show in our work, higher order network features 
such as the network structure of a user’s followers (follower’s of your followers) can have 
additional predictive power when comes to building bot classification algorithms. There 
are also a number of studies focused on using node and graph embeddings as features 
(in addition to other types of features mentioned above) for building bot detection algo-
rithm [3, 4, 22, 29, 38]. For example, Alkulaib et al. [4] build a bot detection technique 
using the anomalous properties of certain nodes in the graph. The authors use a graph 
transformer as a self-attention encoder to learn both node and structural representa-
tions of nodes. In another work, Hamdi et  al. [22] investigate fake news detection on 
Twitter using node and graph embeddings. Although the studies mentioned here high-
light the fact that embeddings can be used as a source of features with predictive power 
for building classifiers on the social network, they do not explore the difference between 
structural versus classical (node) embedding techniques.

Although the majority of the effort has been focused on identifying bots, there has 
been some recent research that focuses on identifying whether bot accounts are mali-
cious or benign. For example, Mbona et al. [31] use features generated from user infor-
mation to predict whether a user account is malicious or benign. In their paper, Mbona 
et al. [31] use similar feature sets such as user information and tweet data for analyzing 
their models. Other recent research such as Tan et al. [44] work on estimating the num-
ber of bots in a given twitter community. In this work, the authors use user data, tweet 
data in addition to graph data to build models that estimate the number of bots in a vari-
ous twitter communities. Of course the success of any classification model relies heav-
ily on how the underlying dataset was constructed and the quality of the ground truth 
labels. In the following section, we will introduce two datasets, which will be used in this 
work for benchmarking the predictive power of various extracted feature sets.
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Datasets
Developing and evaluating bot detection algorithms relies on the availability of unbiased 
labeled datasets. Although there are numerous datasets used for building and bench-
marking bot detection algorithms, we mainly focus on using two recently curated Twit-
ter datasets by Feng et  al. [15] [TwiBot-20] and Stella et  al. [43] [Italian Election]. 
We recognize that labeled bot-datasets often contain some level of bias, since the real 
ground-truth is not readily available. In general, labels are identified by careful analysis 
of humans or by cleverly designed algorithms. Throughout our study, we ensure to stay 
aware of this fact and highlight any impact this may have on our findings.

In the TwiBot-20 dataset, the authors focus on building a comprehensive Twitter 
dataset composed of semantic, property, and neighbourhood information. Here, seman-
tic is the Tweet text generated by the user; property is the information related to user 
profile such as number of followers and following, and finally, neighbourhood is the net-
work structure of the user. We highlight the features used from this dataset below. To 
capture a natural representation of the ground-truth Twittersphere, the authors imple-
mented a breadth-first search algorithm, to sample and build the dataset. In this meth-
odology, a user is selected as the root of the tree and subsequent layers are built using 
the directed follow edges of each user. This process is repeated up to layer 3, creating a 
sample network with a selected user at its root [15]. The sampling algorithm used by the 
authors builds a directed graph, where nodes are users and edges are follow relationship. 
As highlighted by Feng et al., this method of sampling does not focus on any particular 
topic or pattern and should be a more natural representation of the Twittersphere.

Table 1 Feature list for TwiBot-20 dataset

*Note that the graph features are calculated by us and not available in the original dataset

Type Feature Description

Profile protected When true, indicates that this user has chosen to protect their Tweets.

Profile followers_count The number of followers this account currently has.

Profile friends_count The number of users this account was following (AKA their “followings”) at the 
time.

Profile listed_count The number of public lists that this user is a member of.

Profile favourites_count The number of Tweets this user has liked in the account’s lifetime.

Profile statuses_count The number of Tweets (including retweets) issued by the user.

Profile geo_enabled When true, indicates that this user enables geolocation (deprecated in today’s 
API).

Profile default_profile When true, indicates that the user has not altered the theme or background of 
their user profile.

Profile default_profile_image When true, indicates that the user has not uploaded their own profile image and 
a default image is used instead.

Profile business User interest domain: business (from [15]).

Profile entertainment User interest domain: entertainment (from [15]).

Profile politics User interest domain: politics (from [15]).

Profile sports User interest domain: sports (from [15]).

Profile verified True, if the user if verified by Twitter. This is the blue check-mark indicator in user’s 
profile.

NLP raw_tweets The raw recent 200 tweets for each root user.

Graph graph* Degree Centrality, Strength, Eigen Centrality, Closeness, Harmonic Centrality, 
Betweenness, Authority, Hub Score, Constraint, Coreness, Eccentricity, PageRank
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We compile a list of raw features available from the TwiBot-20 dataset in Table  1. 
Note that the values for these features are a snapshot captured at the time of sampling. 
We categorize each feature into three types: Profile, NLP and Graph. The profile features 
are datapoints available through Twitter’s API, and highlight some properties of each 
user. As pointed out by Feng et al., the followers and following are randomly selected. 
We use the raw user Tweets as the input to our NLP feature engineering. We provide 
more detail in our NLP feature analysis section. Lastly, graph features are build using the 
raw edge list provided in the TwiBot-20 dataset. As mentioned before, an edge between 
two nodes indicated a follow relationship between the nodes. Although the original net-
work provided by Feng et al. is a directed graph, we convert it to undirected graph for 
our analysis. Lastly, we note that the profile feature verified is excluded from the bot clas-
sification process. This is done for two main reasons. Firstly, most users accounts are not 
subject Twitter’s verification process, where an account is confirmed to be owned by the 
user it claims to be. This process would inherently exclude bots from being verified. Sec-
ondly, due to the nature of the verification process, this feature could introduce bias for 
any classifier, thus making the discovery other meaningful features more difficult.

In the Italian Election dataset, Setlla et  al. [43] aim to investigate the online social 
interactions during a 2018 Italian election and how it helps to understand the political 
landscape. In their work, the authors study relationship between real users and bots, 
using the Twitter network. Unlike the TwiBot-20 dataset, the authors build a sample 
of the social network by focusing on tweets containing a list of political topics; such as 
“#ItalyElection2018”, “#voto”, etc. The sampling technique used by Setlla et al. results in 
a network with a vastly different graph topology than that created by Feng et al. By sam-
pling the TwitterSphere based on topics, the authors created a dataset in which nodes 
are users and edges represent interactions between users, such as retweets or mentions. 
Although this makes it difficult to compare the performance of bot detection algorithm 
between these two datasets, having diversity in how a social network is constructed 
helps us understand how bots manifest themselves within a network. The Italian Elec-
tion dataset also contains labels indicating if a user is identified as a bot or not. As 
described by the authors, the bot/not-bot labels were generated by using an a classifier 
trained using Twitter user’s profile information [43]. Although the original dataset used 
by Setlla et al. [43] contains user profile and raw Tweet data, in this work we only have 
access to the network data and thus we can only focus on features extracted from the 
underlying network structure. Similar to the TwiBot-20 network, the Italian Election 
graph is directed, with edges pointing from users who interact with other user’s content. 
We also convert the Italian Election graph into an undirected graph for the purpose of 
our study.

We summarize some high-level statistics of both networks in Table  2. It is impor-
tant to note that we apply additional data cleansing and filtering to provided dataset. 
For example, we run our analysis on the largest component of each graph, and convert 
both graphs into undirected networks. The reason for converting these graphs to undi-
rected networks is that some embedding algorithms only take undirected graphs as 
input. Using undirected network ensures that comparison between the performance of 
each embedding is fair. It is important to note however that by converting graphs from 
directed to undirected we lose some (potentially predictive) information. Lastly, we 
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note that the sampling technique used to construct the above two networks has poten-
tial impact on the level predictive information captured by featured built using node/
graph statistics and embedding algorithms. One could construct a social network based 
a variety of information, for example edges could represent follow/friend relationship or 
retweet or like relationship. Nodes themselves could represent users or tweets.

Profile and NLP features
In this section we focus on features extracted from user’s profile information and their 
tweets. We perform feature engineering, specially on the raw tweets using various NLP 
techniques. Since we only have profile and tweet data from the Twibot-20, our analysis 
is centered around this dataset. To maximize their impact on a social network, bots aim 
to mimic real-user behaviour. To this end, bots aim to create accounts and content that 
seem natural, such that it was generated by a real user. An example of such actions could 
include following other users, tweeting about relevant topics and engaging in conversa-
tions. Despite their effort, as we will discuss in this section, bots often leave behind signs 
that allow us to distinguish them from non-bots. Starting with the profile Twitter API 
data named in "Datasets" section, the number of public lists that a user is a member 
of, listed_count , is strikingly different for the two groups (bots vs. non-bots)—see Fig. 1 
and Table 3. It is a measure of user’s popularity, and it turns out that humans tend to be 
added to Twitter lists by other users of the platform more often than bots are. It means 
that in general Twitter users value human-generated tweets and intuitively prefer this 
type of content.

It is worth noting the difference between the number of users that follow them 
( followers_count ) and the number of accounts the user follows ( friends_count)—see 
Fig. 2 and Table 3. There is a clear asymmetry here. In general, humans follow less users 
and get followed more than bots do. The reason behind this could be that bots become 
friends with many users in order to seem more legitimate and, at the same time, human 
users are less interested in bot-generated content than the one created by humans.

In addition to the original profile data from the Twitter API we listed in "Datasets" sec-
tion, we have extracted a number of features from user tweets in the Twibot-20 dataset. 
This was done by sampling each user’s tweets and running NLP feature extraction on 
them. For language detection we utilized fastText python module [6], whereas for the 

Table 2 Graph statistics for the Twibot-20 and Italian Election datasets

Metric Twibot-20 Italian Election

Number of Nodes 156,115 12,404

Number of Edges 166,764 21,029

Size of Largest Connected Component 142,280 7,807

Number of Components 646 586

Avg Degree (Bots) 20.13 3.59

Avg Degree (Not-Bot) 20.38 3.28

Number of Isolated Nodes 0 0

Avg Community Size [Louvain] 172.3 19.7

Number of Communities [Louvain] 906 631

Modularity [Undirected] 0.945 0.796
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Table 3 Statistics for the profile features belonging to the Twibot-20’s bot and non-bot accounts

Feature KS p-value Bot Non-Bot

Mean STD Median Mean STD Median

friends_count 5.069e-25 5,084.816 24,215.345 839.0 8,732.032 87,998.503 614.0

followers_count 9.999e-01 20,735.2 182,269.0 724.0 1,490,368.1 6,465,366.5 27,322.0

listed_count 9.999e-01 112.172 642.845 4.0 3,366.707 14,049.919 212.0

statuses_count 8.457e-97 15,546.791 51,880.579 1,971.0 29,356.907 110,080.653 6,577.0

links_per_tweet 9.075e-08 0.517 0.376 0.420 0.531 0.359 0.464

mentions_per_tweet 1.049e-63 1.164 1.07 1.11 0.961 0.6 0.940

av_tweet_len 1.763e-18 112.831 39.384 109.5 114.993 45.373 109.98

std_tweet_len 9.151e-64 49.543 21.826 46.883 54.8 19.039 54.627

no_langs 3.759e-28 4.2 3.079 3.0 5.083 3.804 4.0

perc_en 8.082e-79 0.916 0.182 0.975 0.77 0.345 0.955

no_odd_langs 9.992e-25 3.11 3.06 2.0 3.897 3.723 3.0

perc_legit 1.253e-18 0.964 0.045 0.98 0.954 0.053 0.97

av_sent 1.122e-34 -0.371 0.342 -0.414 -0.316 0.378 -0.331

std_sent 4.457e-27 0.788 0.224 0.859 0.785 0.259 0.886

positive_sent_perc 2.538e-35 0.311 0.174 0.289 0.339 0.193 0.333

links_no 1.6e-33 84.432 73.847 66.0 98.386 74.241 83.0

mentions_no 9.141e-26 196.124 210.408 194.0 174.355 124.118 172.0

tweets_no 1.031e-90 163.465 66.833 199.0 178.841 54.876 200.0

Fig. 1 Histogram of listed_count , number of public lists that users are a member of, for bots and non-bots

Fig. 2 Histogram of followers_count , number of users that follow the account (left), and friends_count , 
number of user’s followings (right), for bots and non-bots
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sentiment analysis (only for the English tweets) we used HuggingFace, transformer 
pre-trained model [46]. Here is the list of extracted features:

• links_no - total number of hyperlinks in user tweets
• mentions_no - total number of references to other users in user tweets
• tweets_no - total number of tweets generated by user
• links_per_tweet - average number of hyperlinks per tweet1

• mentions_per_tweet - average number of references to other users per tweet1

• av_tweet_len - average tweet length (in characters)
• std_tweet_len - standard deviation of tweet length
• no_langs - number of dominant languages used in tweets (it is assumed that each 

tweet has exactly one dominant language)
• perc_en - percentage of tweets written in English
• no_odd_langs - number of languages present in less than 10% of tweets
• perc_legit - percentage of tweets written in languages present in more than 10% of 

tweets
• av_sent - average sentiment score (using the scores of the dominant labels)
• std_sent - standard deviation of sentiment score (using the scores of the dominant 

labels, e.g., taking −0.9 for 0.9 score for negative sentiment)
• positive_sent_perc - percentage of English tweets with positive sentiment assigned

Based on exploratory data analysis, there are some noticeable differences between bots 
and non-bots. First of all, as reported in [15], bots in Twibot-20 generate fewer tweets 
than humans do—see Fig. 3 (left). This is quite surprising and in contrast with earlier 
findings reported in [36]. This difference may be attributed to the fact that bots change 
behaviour with time, they are constantly getting more clever. Currently, they interact 
with the system only to achieve a very specific goal and often disappear shortly after, 
generating fewer tweets in total. This indicates that NLP approach cannot be easily gen-
eralized and might require constant re-training.

It seems that bots tag other users more frequently than humans do—see Fig. 3 (right). 
The reason behind might be that some types of bots do not produce much of their own 

Fig. 3 Histogram of tweets_no , total number of tweets (left), and mentions_per_tweet , average number of 
references to other users per tweet (right), for bots and non-bots

1 Redundant feature—it may be computed from the other features but it is explicitly included in the model.
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content but, instead, tag many different users to generate their attention and hope for a 
potential link click. This is reflected in mentions_per_tweet (the average number of refer-
ences to other users per tweet) depicted in the figure but also in mentions_no , its cumu-
lative counterpart. We used the former value in further analyses.

Perhaps surprisingly, Fig.  4 suggests that the same reasoning cannot be as eas-
ily applied to links_no and its counterpart links_per_tweet , focusing on the number 
of hyperlinks generated by users. The two charts are more ambiguous. For links_no , it 
seems that humans include more hyperlinks in total than bots do. The lowest values of 
this feature (less than 80) are dominated by bots and the largest ones are non-conclusive 
(interchanging between bots and humans dominance). However, if one looks at the per 
tweet counterpart, the largest values in the distribution are visibly assigned to bots more 
often than to humans. Bots achieve the extreme values of links_per_tweet about twice 
as frequently as non-bots even though the direction was not obvious for the absolute 
value—the conclusion is that humans generate more hyperlinks because they generate 
more tweets. For this reason, we will exclude links_no from the analysis and work using 
per tweet features instead.

In both examples above, we removed two features that are highly correlated, without 
affecting the quality of the model. Of course, one does not need to do it and let the clas-
sifier to deal with this situation. Removing redundant features is, however, a good prac-
tice and the main reason to perform EDI. It reduces the dimension of the problem and 
so improves scalability. It is another evidence that NLP approach requires supervision of 
domain experts and careful investigation.

Fig. 4 Histogram of links_no , the total number of hyperlinks (left), and links_per_tweet , the number of 
hyperlinks per tweet (right), for bots and non-bots

Fig. 5 Histogram of av_sent , average sentiment score (left), and positive_sent_perc , percentage of positive 
tweets (right), for bots and non-bots
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One of the most noticeable differences seems to be the one in the sentiment of 
the posts. In Fig. 5 there is a visible mismatch between bots and non-bots, both in 
terms of sentiment score (left) and sentiment label (right). While for both groups 
the histograms are right-skewed, tweets posted by non-humans in general tend to 
be more negative than those created by real people. Bots may be present on social 
media platforms to lead a campaign against some product, company or political 
fraction and their actions are deterministic, not affected by external sources. On 
the other hand, humans seem to react more strongly to negative stimuli, that is, we 
believe in negative opinions more so than praise [41]. It may explain the observed 
phenomenon.

As one would expect, the way tweets are written seems to be different linguistically 
between bots and non-bots. Language detection performed on tweets suggests that 
humans may write in a more convoluted way in which case the fastText model 
fails to detect tweet language properly. In Fig. 6 (left) we present the number of lan-
guages that the user used in less than 10% of their tweets, i.e. no_odd_langs . Larger 
fraction of bots use zero or only one rare language. The same result holds for no_langs 
and perc_legit . Moreover, bots seem to use mostly English as can be observed in Fig. 6 
(right). There are only a few bots in the dataset for which the percentage of tweets 
written in English ( perc_en ) is low.

With recent advances in Transformer models, computer generated text is becom-
ing evermore human like. The current state-of-the-art is the OpenAI’s GPT-3 [7], a 
generative model for NLP tasks with 175 billion parameters! GPT-3 has been demon-
strated to be effective on a variety of few-shot tasks: due to its extensive pre-training 
and size, it is able to learn rapidly from very few training examples. It generates texts 
that are nearly indistinguishable from human-written texts: Humans correctly distin-
guished GPT-3 generated texts from real human texts approximately 52% of the time, 
which is not significantly higher than a random chance [7]. For more details on GPT-3 
and other related topics we direct the reader to, for example, a recent survey [30].

Another potential source of information for identifying bot accounts lies within the 
raw tweet text produced by each user. To this end, we perform topic modeling using 
BERTopic (BERT for Topic Modelling) [20]. BERTopic is a topic modelling tech-
nique that uses transformers and the c-TF-IDF to produce dense clusters that allow 
for clearly understandable topics while maintaining key phrases in the topic descrip-
tions. This is done to gain insight into difference in the type of topics bot and non-bot 

Fig. 6 Histogram of no_odd_langs , number of languages present in less than 10% of user tweets (left), and 
perc_en , percentage of tweets written in English (right) for bots and non-bots
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account focus on while interacting with other users. In Figs. 7 and 8 we highlight the 
score of various topics used by bot and non-bot accounts. The graph represents rela-
tive c-TF-IDF scores between and within topics. The darker shades basically means 
that the tweets in which the words from a particular topic appeared are strongly 
related with each other. Topics extracted here are tokenized and used in the bot clas-
sification models, as we will highlight in later sections. Note that topics for bots and 
non bots are not the same (e.g. topic 0 for bots is roughly topic 1 for non bots).

Graph derived features
We showed in "Profile and NLP features" section that there are statistically significant 
differences in NLP and P features between bot and non-bot accounts. Another poten-
tially independent source for extracting features is rooted in the way users/bots inter-
act with others in the network. One can capture this information by analyzing various 
graph properties derived from the underlying social-network. This can be done in 
two ways. One, by carefully designing statistical features of the nodes. Second, using 
unsupervised methods to learn node and structural representations of the nodes. In 
this section, we provide a detailed analysis of node feature engineering in addition to 
features extracted using various embedding techniques.

Fig. 7 Topic scores for tweets made by bots

Fig. 8 Topic scores for tweets made by non-bots
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Node features

In this section, we build node features derived from the underlying network structure 
using both TwiBot-20 and Italian Election datasets. For extracting features we use 
NetworkX as well as igraph python packages depending on the efficiency of the 
corresponding algorithms. Here is the list of extracted node-features that were com-
puted for all nodes. For detailed definition we direct the reader to, for example, [25] 
or any other textbook on network science. - 

• degree_centrality - degree (the number of edges the vertex has)
• strength - minimum ratio of edges removed/components created during graph 

decomposition process
• eigen_centrality - eigenvector centrality, a measure of the importance of the vertex 

(using relative scores)
• closeness - closeness centrality, a measure of the importance of the vertex cal-

culated using the sum of the length of the shortest path between the vertex and 
other vertices

• harmonic_centrality - harmonic centrality (another variant of closeness centrality, 
calculated similarly)

• betweenness - betweenness centrality, a measure of the importance of the vertex 
calculated using number of shortest paths that pass through the node

• authority - authority score, sum of the scaled hub values that have edge to the 
given node

• hub_score - hub score, sum of the scaled authority values of the nodes it has edge 
to

• constraint - Burt’s constraint, an index that measures the extent to which a per-
son’s contacts are redundant

• coreness - coreness (unique value of k such that a node belongs to the k-core but 
not to the (k + 1)-core)

• eccentricity - eccentricity (the maximum distance from a given node to other 
nodes)

• pagerank - another way of measuring node importance - invented by Google 
Search to rank web pages in Google search engine output

In addition to the above list of features, we compute average, standard deviation, min-
imum and maximum of every feature for the neighbouring nodes of each vertex. A 
full list of these features is given in Tables 6 and 7.

As we highlighted in "Datasets" section, there are major differences in how the 
TwiBot-20 and Italian Election datasets were constructed. Firstly, the underlying 
network constructed in the TwiBot-20 captures follower-following relationship, while 
the network in the Italian Election dataset represents interactions between users. 
Secondly, the sampling technique used in the TwiBot-20 dataset results in much 
more uniform graph topology since at each sampling layer a fix number of nodes (fol-
lowers) were sampled. This is in contrast to the Italian Election dataset, were nodes 
were more randomly sampled. The difference in the network topology between these 
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Fig. 9 Histogram of closeness centrality measure for bots and non-bot users’ neighbours for TwiBot-20 (left) 
and Italian Election dataset (right)

Fig. 10 Histogram of closeness centrality measure for bots and non-bot users’ neighbours for TwiBot-20 
(left) and Italian Election dataset (right)

Fig. 11 Histogram of harmonic centrality measure for bots and non-bot users’ neighbours for TwiBot-20 
(left) and Italian Election dataset (right)

Fig. 12 Histogram of pagerank measure for bots and non-bot users’ neighbours for TwiBot-20 (left) and 
Italian Election dataset (right)
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two datasets is reflected in the values captured using the node-features, as shown 
in Figs.  9, 10,  11, and  12. This is indeed an important observation, since one could 
extract more meaningful node-features by resampling the same underlying graph 
using different techniques.

Secondly, the features which calculation did not involved neighbours (Figs. 9, 10, 11, 
and 12) indicate only slight differences between bots and non-bots, both in terms of 
feature count and magnitude of discrepancies. Nevertheless, in the case of harmonic 
and closeness centrality (Figs. 11 and 9) the difference is more visible on the Italian 
Election dataset: bots seem to be more likely to take extreme values. Regarding the 
TwiBot-20 dataset, the discrepancies between bot and non-bots are less visible, but 

Fig. 13 Histogram of neighbours’ mean betweenness measures for bots and non-bot users’ neighbours for 
TwiBot-20 (left) and Italian Election dataset (right)

Fig. 14 Histogram of neighbours’ max closeness measures for bots and non-bot users’ neighbours for 
TwiBot-20 (left) and Italian Election dataset (right)

Fig. 15 Histogram of neighbours’ mean authority measures for bots and non-bot users’ neighbours for 
TwiBot-20 (left) and Italian Election dataset (right)
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all closeness, degree, harmonic centrality, and pagerank measure distributions seem 
to be more left-skewed for non-bots. (Figs. 9, 10, 11, and 12).

Figures 13, 14, 15, and 16 reveal that discrepancies between bot and non-bots groups 
are more visible on the distributions of features involving particular nodes’ neighbours’ 
during calculation. Similarly to the previous group of characteristics, differences are 
more visible on the Italian Election data and again, values in this dataset seem to have 
lower variance (Figs. 13, 14, and 15) or variance among groups (Fig. 16). In particular, 
values for bots’ features seem to have even lower standard deviation (Figs. 14 and 16), 
which may be an indicator of the fact that bots constitute a homogenous group. Nev-
ertheless, as different conclusions may be drawn on the basis of TwiBot-20 dataset 
(Figs. 13, 14, 15, and 16), so this observation may be attributed to different sampling or 
annotating method.

The fact that node features constructed on the basis of data about vertices’ neighbours 
may help in explaining being bot versus non-bot (at least more than pure node features) 
indicates the purposefulness of node embeddings usage. However, as this assumption is 
based solely on graphical analysis, one may be interested in modelling the relationship of 
node features and “being a bot”. This is done in the following sections.

Classical and structural embeddings

There are over 100 algorithms proposed in the literature for classical and structural 
embeddings which are based on various approaches such as random walks, linear alge-
bra, and deep learning [19, 25]. Moreover, many of these algorithms have various param-
eters that can be carefully tuned to generate embeddings in some multidimensional 
spaces, possibly in different dimensions. In this paper, we typically set all parameters but 
the dimension to the default values recommended by their authors. Once parameters 
are fixed, the algorithms learn the embedding in an unsupervised way. Having said that, 
some algorithms are randomized and so the outcome might vary. For our experiments, 
we selected 6 popular algorithms that span different families and includes both node as 
well as structural embeddings.

The first two algorithms, Deep Walk [37] and Node2Vec [21], are based on random 
walks performed on the graph. This approach was successfully used in NLP; for example 
the Word2Vec algorithm [32] is based on the assumption that “words are known by 
the company they keep”. For a given word, embedding is achieved by looking at words 

Fig. 16 Histogram of neighbours’ mean eccentricity measures for bots and non-bot users’ neighbours for 
TwiBot-20 (left) and Italian Election dataset (right)
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appearing close to each other as defined by context windows (groups of consecutive 
words). For graphs, the nodes play the role of words and “sentences” are constructed via 
random walks. The exact procedure how one performs such random walks differs for the 
two algorithms we selected.

In the Deep Walk algorithm, the family of walks is sampled by performing ran-
dom walks on graph G, typically between 32 and 64 per node, and for some fixed 
length. The walks are then used as sentences. For each node vi , the algorithm tries to 
find an embedding ei of vi that maximizes the approximated likelihood of observing 
the nodes in its context windows obtained from generated walks, assuming inde-
pendence of observations.

In Node2Vec, biased random walks are defined via two main parameters. The 
return parameter (p) controls the likelihood of immediately revisiting a node in the 
random walk. Setting it to a high value ensures that we are less likely to sample an 
already-visited node in the following two steps. The in-out parameter (q) allows the 
search to differentiate between inward and outward nodes so we can smoothly inter-
polate between breadth-first-search (BFS) and depth-first search (DFS) exploration.

The above algorithms primarily capture proximity among the nodes, nodes that are 
close to one another in the network are embedded together. But proximity among 
the nodes does not always imply similarity, as in the specific application we consider 
in this paper, bot detection. A role the nodes play within the network depends more 
on the structure of the network around them more than the distance between them. 
(See [40] for a survey on roles.) The next four algorithms aim to create embeddings 
that capture structural properties of the network.

The first algorithm from this family, Role2Vec [1], generalizes the above tech-
niques based on traditional random walks. To capture whether two nodes have the 
same role within the network, the notion of attributed random walks is introduced 
which is not tided to node identity but is instead using a function that maps a node 
attribute vector to a role. As a result, the algorithm learns associations among sub-
sets of nodes (that is, roles) instead of properties of individual nodes.
RolX [23] is another approach to explicitly identify the role of nodes using exclu-

sively the network structure. This algorithm is based on enumerating various struc-
tural features for nodes in an unsupervised way, and finding the most suited basis 
vector for this joint feature space. Then, the algorithm assigns every node with a 
distribution over the identified roles (basis), allowing for mixed membership across 
the roles.

The next algorithm, Struc2Vec [39] uses a hierarchy to measure node similar-
ity at different scales. As a result, it constructs a multilayer graph to encode struc-
tural similarities and generate structural context for nodes. This hierarchical view 
is useful as it provides a sequence of more restricted notions of what it means to be 
structurally similar. At the bottom of the hierarchy, similarity between nodes depend 
exclusively on their degrees whereas at the top of the hierarchy similarity depends 
on the entire network.

The last algorithm we tested, GraphWave [14] uses techniques from graph signal 
processing. It learns structural embeddings by propagating a unit of energy from a 
given node and characterizes its neighbouring topology based on the response of the 
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network to this probe. The runtime of this algorithms scales linearly with the num-
ber of edges.

As mentioned earlier, we fix most of the hyperparamters of each algorithm to their 
default value, and only adjust the embedding dimension. Of course, it is important 
to note that it is possible to optimize the outcome of each algorithm by searching for 
the ideal set of parameters for the task at hand, however our goal is not to optimize 
for the best metrics, but rather learn whether embeddings can help us in identifying 
bots in a social network.

Bot classification
Thus far, we have focused on engineering and analyzing features built using user-profile, 
NLP, node-features and embeddings. In effort to understand the predictability of these 
features in identifying bot accounts, we train and test various classification models using 
the TiwBot-20 and Italian Election datasets. Since the underlying data for these data-
sets are different, we divide our analysis into two section accordingly, focusing on each 
dataset separately. In both cases, datasets are sampled such that bot/non-bot classes are 
balanced (50/50). Furthermore, we use a 80/20 split for the train/test datasets. A 5-fold 
cross-validation process is then used to arrive the best performing model and avoid any 
overfitting. All metrics are then computed using the test-set.

Bot detection using TwiBot-20 dataset

In this section, we use NLP, P, GF and EMB features to build a bot classification model. 
Our goal is not to optimize for the best performing model, but rather understand the 
predictive power of each feature-set. We build five models using various combinations of 
feature-sets. A summary of the performance of each model is highlighted in Table 4. As 
shown, the best performing model (based on accuracy) is the one trained on all features 
combined, achieving an accuracy of 81.76% . Furthermore, we note that models trained 
on EMB perform slightly better than those trained on GF alone. This enforces the 
fact that unsupervised embedding algorithms have the potential to learn complex and 
meaningful node features. More importantly, a model built on a combined GF+EMB 
performs better than GF and EMB separately, hinting that embedding features capture 
incremental predictive information about the nodes. Lastly, we note that models built 
using features extracted from the underlying network (GF and EMB) suffer from the 
uniform topology of the TwiBot-20 dataset, as described previously. A different sam-
pling technique could potentially result in a boost in the predictive power of features 
built using the network structure.

Table 4 Performance measure for models trained using TwiBot-20 dataset

Procedure Accuracy Precision Recall F1 MCC

NLP+P 0.8036 0.8059 0.8675 0.8356 0.5952

GF 0.6352 0.6357 0.8563 0.7297 0.2274

EMB 0.6481 0.6562 0.8153 0.7271 0.2594

GF+EMB 0.6620 0.6599 0.8507 0.7433 0.2905

NLP+P+GF+EMB 0.8176 0.8256 0.8657 0.8452 0.6246
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There are various strengths and weaknesses of the embedding algorithms, which we 
need to address. In terms of strengths, node and structural embedding algorithms are 
often unsupervised and generalizable techniques that can be applied to any network. 
This however may not be the case for profile meta-data and NLP features, as they 
depend on the specifics of the data source. For example, NLP techniques applied to 
texts written in English may not apply to other languages. Furthermore, it is more 
challenging for sophisticated bots to mimic the network properties of a real user as 
it requires the participation of other users in building their social network. On the 
other hand, it is much easier for bots to use the cutting edge natural language tech-
niques to generate text, indistinguishable from real humans. There are, however, some 
issues with using embeddings as a new source of feature-set for training bot detection 
machine learning models. One of the major challenges with some embedding tech-
niques is that they will require us to use the entire, or at least a large portion of the 
graph, to build node and structural embeddings. This introduces a problem when it 
comes to large social networks. To overcome this, one could sample the underlying 
network. Unlike profile metadata and NLP features that only depend on a single user, 
embeddings rely on the connections between users. This introduces another chal-
lenge, which is that one cannot run an embedding algorithm on a single user, but 
rather requires us to reconstruct the network surrounding that user. Lastly, embed-
ding algorithms are often computationally expensive, as compared to models built 
on profile data and simple NLP techniques. In the case of large social networks, one 
often needs to sample the underlying network to arrive a computationally reasonable 
system to study.

Expanding on the analysis of predictive power of embeddings, we focus on the dif-
ference in the predictive power between structural versus classical embedding algo-
rithms. Our hypothesis indicates that some bots on social media such as Twitter 

Fig. 17 Accuracy as a function of embedding size for structural and classical embeddings. Simulations are 
performed using the TwiBot-20 dataset. The solid line corresponds to the mean accuracy for 50 runs, and 
the band correspond to the standard deviation of the results
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behave similarly to one another, which can be captured in the role those bots (nodes) 
play in their local network. This manifests itself in the structure of the local network 
surrounding a bot. One could capture this using structural embedding algorithms, 
which are designed to learn representations of the local structure around a given 
node. On the other hand, classical embedding techniques, which capture proximity 
within the graph, would learn representations of nodes which should have less pre-
dictive power as compared to structural embeddings. To test this hypothesis, we run 
experiments using both structural and classical embeddings, on the TwiBot-20 data-
set. We embed every node using both classical and structural embedding algorithms, 
and measure the accuracy of a model designed to classify bots, using only the embed-
dings as features. The results for these experiments are shown in Fig.  17. We note 
that in these experiments, structural embeddings are a combination of LSME and 
Role2Vec, while classical embeddings correspond to a combination of DeepWalk 
and Node2Vec. For each experiment, we build 50 models, and mean and standard 
deviation of the accuracy values produced by each model is reported. Lastly, for every 
experiment, classes (bot and non-bot) are balanced to 50/50 and data is split into 
train, test and validation sets.

As the first observation, we can see that the performance of the models built using 
structural embeddings as features is better (by roughly 0.02) than models built using 
classical embeddings as features. This supports our hypothesis that bots are better iden-
tified by the role they play in their local social network, which can be captured using 
structural embedding techniques. Secondly, we point out that the predictive power in 
the embeddings (for both classical and structural) increases with the increase in the size 
of the embeddings, up to a certain size. In our experiments, as seen in Fig. 17, accuracy 
increases up to embedding size of roughly 35, beyond which the accuracy converges. 
This result can be interpreted in the following way. The structural and proximity infor-
mation captured by embedding dimensions greater than 35 do not have any predictive 
power when it comes to our particular task of bot detection. This information is useful 

Fig. 18 Variable importance for the H2O AutoML leader model built on the basis of node features 
(exclusively) (TwiBot-20)
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for practitioners in the field, since larger embeddings are computationally more time 
consuming to train, and one could train smaller embeddings with similar end-result per-
formance. Of course, this will change for every dataset and sampling technique, as the 
information available for embedding algorithms to capture would be different.

Next, we use feature importance analysis to explore the contribution of various 
features in the GF + NLP + P feature-sets to the performance of models. Since the 
embedding algorithms learn continuous representation of nodes in an unsupervised 
way, it is not easy to reverse engineer what each embedding dimension represents. 
Starting with feature importance using GF feature-set, we highlight in Fig.  18, that 
top two most predictive features for the TwiBot-20 datasets are degree_centrality and 
pagerank. Given the high overlap in the performance of models built using GF and 
EMB datasets, one could postulate that embedding algorithms learn some form of 
centrality measure about the nodes.

Next, we apply similar feature importance analysis to the NLP and P feature-sets. 
According to top 20 variable importances in Fig. 19 the set of the top three predic-
tor features are two original Twitter API variables, followers_count , listed_count , and 
the percentage of English tweets, perc_en extracted in the course of this study. This 
feature’s importance has manifested in the basic EDA too. Further behind, we can 
see three variables with a similar importance, i.e, friends_count , links_per_tweet and 
av_tweet_len . Quite noticeable impact was noted for user mentions per tweet as well 
as for sentiment related features.

A complementary feature importance analysis can be done using Shapley technique. 
We present Shapley values for the NLP and P features in Fig. 20. It is confirmed that 
the more followers users have, the least chance of them being a bot. As in Fig. 2, even 
though bots are not generally as followed on Twitter as bots are, the relationship is 
opposite for Twitter friendships—the extreme values for friends_count are generally 

Fig. 19 Variable importances for an XGBoost bot classifier on profile and NLP features
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associated with bots in the ML classifier as well. Another significant distinction between 
bots and humans can be found in listed_count . Large number of public lists that this 
user is a member of is associated with being a human. The percentage of tweets written 
in English is not as monotonously related to being a bot, but the highest values are char-
acteristic exclusively for bots. These users also seem not to be keen on using geographi-
cal tagging when they’re posting (this was an opt-in feature on Twitter). The links and 
mentions per tweet tend to be higher for the identified bots, even though the initial basic 
EDA could not detect this tendency clearly for the links feature.

In summary the analysis of the TwiBot-20 dataset confirms our hypothesis. First, 
graph embeddings give an additional information for bot detection on top of NLP, P 
and GF information. Additionally a comparative analysis of EMB vs. GF shows that 
embeddings are more useful in this task. Secondly we find that structural embeddings 
are better than classical embeddings for bot detection. Finally, we learn that embeddings 
of moderate dimensionality (35 dimensions in our results) are enough and adding more 
dimensions does not noticeably improve their predictive power.

Fig. 20 Shapley values for an XGBoost bot classifier on profile and NLP features
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Bot detection using Italian-election dataset

In this section, we build and analyze bot classification models using the Italian Election 
dataset. As pointed out earlier, we do not have user profile or tweet data for the Italian-
Election dataset, and thus all models are built using only the GF and EMB features. As 
before, we train our models on balanced datasets containing 50/50 proportion of bot 
and non-bot examples. Test, train split is kept consistent to 80/20 split. Furthermore, 
we keep the model architecture and all hyperparameters the same for all runs, to keep 
performance comparison consistent across all feature sets. We measure a number of 
metrics when comparing the performance of each feature set, including accuracy, recall, 
precision and Matthews correlation coefficient (MCC). Since some embeddings such as 
Node2Vec and DeepWalk are randomized (rely on random walks), we run those algo-
rithms multiple times (sample size 100) and report our findings on the sample.

We summarize the result of our classification analysis in Table 5, highlighting the met-
rics used for comparing the performance measures. As a reference, we plot the model 
accuracy for each feature set in Fig. 21. We note that the goal for this analysis was not 

Table 5 Bot classification performance summary for the Italian-Election dataset

Feature-Set Accuracy Precision Recall f1-Score MCC

Node Features 0.66 0.65 0.66 0.66 0.31

All Embeddings 0.69 0.70 0.64 0.67 0.38

Node2Vec 0.61 0.62 0.57 0.59 0.22

DeepWalk 0.62 0.62 0.59 0.60 0.23

LSME 0.64 0.64 0.65 0.64 0.29

Struc2Vec 0.63 0.66 0.55 0.60 0.27

GraphWave 0.64 0.65 0.61 0.63 0.29

Role2Vec 0.67 0.68 0.61 0.65 0.34

Fig. 21 Accuracy for bot classification for the Italian-Election dataset. Distributions are over 10 runs of each 
embedding algorithm and 10 runs of classifier
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to optimize the model performance, but rather learn about the predictive power of each 
algorithm. In addition, for every embedding algorithm, we run that algorithm 10 times 
with the same parameters. This is done to build a distribution over embeddings, since 
random-walk based algorithms have stochastic nature to them. Furthermore, we train 
our classifier (built using Neural Network model) 10 times to capture appropriate sta-
tistic over measured metrics. We randomly initialize our neural-network model and use 
drop-out and L1 and L2 regularization. All models are train for 50 epochs using standard 
learning rate.

As highlighted, using carefully designed node features (as noted in the previous sec-
tion), one could achieve accuracy of 66% in detecting bot vs. non-bot accounts. As we 
highlighted in Fig. 23, features such as pagerank and coreness show predictive power as 
compared with other node features. One could use this information to design similar 
features related to node centrality and coreness to capture additional predictive power, 
however this process is time consuming and could miss important features. As we have 
suggested, a different approach is to leverage unsupervised machine learning techniques 
to capture various properties on nodes, without time consuming featuring engineering. 
As we show in this section, one could utilize node and structural embedding to learn dif-
ferent types of representations of node, and combine them to gain even greater predic-
tive power.

We see in Fig. 21 that models trained exclusively on features extracted using embed-
dings perform inline with a model trained using engineered node features. Node 
embeddings, such as Node2Vec and DeepWalk, could learn information about the 
node’s local community and proximity, while structural embeddings could learn infor-
mation about the local structure of the network around each node. As we can see, a 
combination of these features could capture a broader representation of nodes, and in 
fact perform as well, or even better than a model trained on node features. In this case, 
All Embedding is a model trained on a feature set built by combining all the embed-
dings together. We note that to make our comparison fair, we apply Principal Compo-
nent Analysis (PCA) to this combined feature set to reduce the dimensionality to 64 
(same as embedding dimension of the embedding algorithms). We also highlight the 
fact that models trained using Role2Vec embedding outperforms all other embedding, 
indicating that for the Italian Election dataset, the structural property of the nodes is a 
better indicator if an account is bot vs. non-bot. Other metrics in presented in Table 5 
tell similar stories, where models trained on all embedding perform best in our study. 
Lastly, we point out that the comparison in Fig.  21 is designed to analyze predictive 
performance of various embedding algorithms against one another and models train 
using node features exclusively. The presented results highlight the fact that unsuper-
vised embedding techniques (such as the ones studied here) can be used to extract fea-
tures from the underlying social network that have predictive power when it comes to 
tasks such as bot detection. A comparison between embeddings and other types of fea-
tures is shown in Table 5.

To understand why features generated from embedding algorithms have predictive 
power for bot classification, one needs to focus on the behaviour of bots in a social net-
work. Similar to real users, bots interact with the social network by following, tweet-
ing and engaging with users. Most of this activity requires engagement from real users 
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in addition to the actions that bot accounts take. One could measure this by studying 
the structure of the local network surrounding each user. For example who each user 
is connected to, and who their friends are connected to and so on. Although it may be 
trivial for bot accounts to generate human realistic content and profile, given the current 
advances in machine learning, it is much more difficult to encourage other users to inter-
act with the content in an organic way. This manifests itself in how the local structure of 
the social network around each is formed. We use this fact as motivation to capture pre-
dictive features which could help us identify bot accounts. In Fig. 21 we show that these 
structural properties have predictive power by both creating structural features manually 
using node structural features (Node Feature) and by capturing them using structural 

Fig. 22 Accuracy as a function of embedding size for structural and classical embeddings. Simulations 
performed using the Italian Election dataset. The solid line correspond to the mean accuracy for 50 runs, 
and the band correspond to the standard deviation of the results

Fig. 23 Variable importance for the H2O AutoML leader model built on the basis of node features 
(exclusively) (Italian-Election dataset)
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embedding algorithms (LSME, Struc2Vec, GraphWave, and Role2Vec). This idea 
is further emphasized by the fact that classical embedding algorithms, such as Node-
2Vec and DeepWalk, do not perform as well, since they capture information about the 
proximity rather than structural. In Fig. 22 we present a comparison of classical vs struc-
tural embeddings performance as a function of embedding dimension. Similar to the 
TwiBot-20 case structural embeddings are consistently better than classical ones and 
increasing embedding dimension above 35 does not improve predictive performance.

Lastly, we perform feature importance analysis on the GF feature-set. The results 
are presented in Fig. 23. Similar to the TwiBot-20 dataset, pagerank appear in the top 
two most predictive features. Given the difference in the topology of the two graphs, 
TwiBot-20 and Italian Election, it is interesting to observe pagerank appearing as 
one of the most important features. However, unlike TwiBot-20, we observe a num-
ber of important features derived from statistics of node-features from neighbouring 
nodes of each vertex. This indicates that identifying bots using node-features requires 
more than local properties of nodes. This further supports the use of embeddings, 
since many embedding algorithms can learn global properties of nodes.

We conclude this section by emphasizing that the performance of each embedding 
on this dataset (Italian-Election) is not an indication that they perform in similar 
range if applied to other datasets. In general, embeddings are very application specific. 
This can also be said about hand-designed node features. Given the diversity amongst 
datasets, one should aim to use techniques that learn a wide range of representa-
tion of nodes in an unsupervised way. For this reason, an embedding technique (or 
a combination of them) could be power tool that could generalize well across various 
applications.

Predictive stability
One of the main challenges with building scalable and stable machine learning systems is 
understanding the impact of data noise on the outcome of the model. One would expect 
that as the level of noise (feature variability due to randomness) increases, the performance 
of the model would decline. To combat model degradation due to noise, one could either 
design or search for models that are resilient to randomness, or engineer features with bet-
ter signal to noise ratio. In this section, we aim in investigate the impact of synthetically 
added noise on the performance of the bot detection classifier. The idea is to learn whether 
features extracted via embedding algorithms could perform as well as engineered features 
when subject to increase in randomness in the system. To study the stability of the features, 
we use the Italian Election dataset and incrementally increase the amount of noise in the 
system by randomly adding and removing edges between the nodes. We measure the noise 
on a scale that ranges from α = 0 to α = 100 . The process of introducing noise in the sys-
tem is as follows. For every edge in the original network (for example eab ), we compute a 
random number p between 0 and 100. If p ≤ α we remove the edge eab , and add another 
edge between one of the original nodes (a or b) to another random node in the graph (e.g. 
eab → eac ). In this process, α = 0 corresponds to the original graph, and α = 100 corre-
sponds to a graph where every edge is replaced with a random edge. This process mimics a 
synthetic addition and removal of follower-following relationships. For every iteration (level 
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of added noise), we embed every node in the graph using the selected algorithms and use 
the resulting features to build a model for identifying bots. Here, we use the model ROC-
AUC to measure the impact of increase in randomness on the system. It is important to 
note that for systems with randomness of α = 100 there are still structures that could have 
predictive power when it comes to detecting bots, meaning that α = 100 does not corre-
spond to a random graph. Users (nodes) with large number of friends (high degree) would 
still have many friends, but their local network structure would have been randomized.

The results for our simulations are presented in Fig. 24. As expected, increase in the 
level of noise in the system results in a decline in the quality of features and thus a poorer 
performing model. For every sub-plot, the ROC-AUC for models built using node-fea-
tures in plotted in red, those built using selected embedding algorithm plotted in blue, 
and the combined embedding feature set in yellow. Based on our simulations, features 
built using all embedding algorithms decline in performance at the same rate as models 
built using node-features. This highlights the fact that node representations leaned by 
embeddings are generally as resilient to noise, as hand-crafted features. The utility of 
using unsupervised embedding algorithms for learning node-representations is shown 
to be resilient to added noise in the network. This is important since the underlying net-
work (Twitter network in this case) is dynamic and changes overtime. Nodes that may 
be connected at a given snapshot in time may not be connected at later dates. Therefore, 
the local and global structure of the network is constantly changing and therefore mod-
els and features need to be flexible to adjust to the dynamic of the system.

Fig. 24 Stability of ROC-AUC score: ROC-AUC of node features (red), ROC-AUC of specific embedding (blue), 
and ROC-AUC of all embeddings combined (yellow)
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Conclusion
In this work, we examined four distinct feature-sets extracted from the Twitter social 
network for identifying bot accounts. We divided the features into those captured 
directly from the Twitter network, NLP and user-profile data (NLP and P), and those 
derived from the underlying network structure, node-features (GF) and embeddings 
(EMB). The main aim of the analysis was to understand the performance of embed-
dings in this task. As an initial data analysis task we verified, following the earlier 
literature, that NLP and user profile features have strong predictive power. However, 
we argue that they may suffer from the lack of generalizability. For example, language 
models trained for identifying bot accounts in an English speaking region can not 
be used to other regions. Similarly, clever bot accounts can modify their user pro-
files to appear more natural (non-bot like), and avoid being detected as bots. A much 
more difficult task however is altering the topology of the social network surrounding 
an account to appear as if it was created organically. Building on this intuition, we 
showed that the features extracted by mining graph structures indeed holds predic-
tive power in helping us identify bots.

We analyzed features extracted from two Twitter datasets, one (Twibot-20) built 
using the follower as well as following relationships between users, and the other 
(Italian Election) constructed based on the interactions between users. We saw that 
in both networks, features mined from the underlying graph, either through node-
feature engineering or learned in an unsupervised way via embedding algorithms, 
have predictive power. This positively verifies our first hypothesis that bot behaviour 
in a social network is distinguishable from non-bot users in both how they (bots) 
build relationships with other users and how they interact with them.

We compared usefulness for bot prediction of two types of embeddings: classical 
and structural. Our findings show that structural embeddings consistently perform 
better than classical ones. Additionally we found that for bot detection task using 
very-highly dimensional embeddings is not needed. For both analyzed data sets 
beyond 35 dimensions the predictive power of embeddings stopped increasing. As 
an additional finding we showed that one can combine features learned from various 
node and structural embeddings to a hybrid feature set. Such an approach improves 
prediction quality, which show that different embeddings capture different network 
characteristics and that contain complementary information for bot detection.

Finally, we showed that using embeddings is as resistant to noise in data as using hand-
crafted node features, which shows that this approach can be useful for networks that are 
dynamic and evolving over time. The TwiBot-20 and Italian-Election graphs are signifi-
cantly different in their construction and interpretation, although in both of them nodes 
represent users. However, for both of them we found embeddings to be a useful tool for 
bot detection. Therefore an interesting future research question would be to study the 
impact of combining features gathered various network definitions, for example one built 
on follower/following and another on user-user interaction, for identifying bots.

Appendix
See Tables 6 and 7
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Table 7 Statistics for the Italian Election dataset node features

KS p–
value

Mean STD Median

Not-Bot Bot Not-Bot Bot Not-Bot Bot

degree_centrality 1.332e–15 2.600e–04 2.874e–04 2.572e–03 1.489e–03 8.063e–05 8.063e–05

authority 1.000e+00 1.298e–04 1.024e–04 1.134e–02 8.611e–05 2.221e–17 1.748e–04

closeness 1.000e+00 2.993e–01 4.539e–01 2.292e–01 2.093e–01 2.172e–01 5.001e–01

betweenness 1.332e–15 7.929e+03 1.356e+04 5.707e+04 1.347e+05 0.000e+000.000e+00

hub_score 1.000e+00 1.298e–04 1.024e–04 1.134e–02 8.611e–05 2.221e–17 1.748e–04

constraint 1.332e–15 7.483e–01 8.606e–01 3.367e–01 2.930e–01 1.000e+001.000e+00

coreness 1.332e–15 1.986e+00 1.474e+00 2.042e+00 1.561e+00 1.000e+001.000e+00

eccentricity 1.000e+00 8.513e+00 4.277e+00 3.151e+00 3.701e+00 1.000e+012.000e+00

harmonic_centrality 1.000e+00 1.159e–01 1.049e–01 5.474e–02 4.228e–02 1.363e–01 1.111e–01

pagerank 1.000e+00 7.513e–05 8.992e–05 1.160e–03 3.302e–04 4.123e–05 4.359e–05

nb_mean_degree_centrality 1.000e+00 9.788e–03 1.314e–01 2.077e–02 1.080e–01 3.697e–03 2.221e–01

nb_min_degree_centrality 1.000e+00 7.782e–03 1.311e–01 2.087e–02 1.084e–01 1.129e–03 2.221e–01

nb_max_degree_centrality 1.000e+00 1.307e–02 1.322e–01 2.198e–02 1.071e–01 5.563e–03 2.221e–01

nb_std_degree_centrality 1.332e–15 6.683e–03 2.365e–03 6.537e–03 3.973e–03 4.903e–03 7.982e–04

nb_mean_authority 1.000e+00 7.069e–03 5.861e–01 8.378e–02 4.926e–01 7.639e–16 1.000e+00

nb_min_authority 1.000e+00 7.069e–03 5.861e–01 8.378e–02 4.926e–01 2.132e–16 1.000e+00

nb_max_authority 1.000e+00 7.069e–03 5.861e–01 8.378e–02 4.926e–01 1.124e–15 1.000e+00

nb_std_authority 1.332e–15 1.321e–15 4.721e–16 1.271e–15 7.874e–16 9.460e–16 1.582e–16

nb_mean_closeness 1.000e+00 3.573e–01 7.583e–01 2.622e–01 3.518e–01 2.594e–01 1.000e+00

nb_min_closeness 1.000e+00 3.464e–01 7.525e–01 2.656e–01 3.595e–01 2.471e–01 1.000e+00

nb_max_closeness 1.000e+00 3.689e–01 7.660e–01 2.605e–01 3.422e–01 2.742e–01 1.000e+00

nb_std_closeness 1.332e–15 2.897e–02 3.192e–02 2.835e–02 3.601e–02 2.395e–02 2.580e–02

nb_mean_betweenness 1.000e+00 6.903e+05 2.331e+06 9.976e+05 1.785e+06 2.028e+053.794e+06

nb_min_betweenness 1.000e+00 5.158e+05 2.298e+06 9.820e+05 1.818e+06 3.925e+043.794e+06

nb_max_betweenness 1.000e+00 1.025e+06 2.418e+06 1.307e+06 1.735e+06 3.349e+053.794e+06

nb_std_betweenness 1.332e–15 6.359e+05 2.543e+05 6.725e+05 4.793e+05 4.200e+057.926e+04

nb_mean_hub_score 1.000e+00 7.069e–03 5.861e–01 8.378e–02 4.926e–01 7.639e–16 1.000e+00

nb_min_hub_score 1.000e+00 7.069e–03 5.861e–01 8.378e–02 4.926e–01 2.132e–16 1.000e+00

nb_max_hub_score 1.000e+00 7.069e–03 5.861e–01 8.378e–02 4.926e–01 1.124e–15 1.000e+00

nb_std_hub_score 1.332e–15 1.321e–15 4.721e–16 1.271e–15 7.874e–16 9.460e–16 1.582e–16

nb_mean_constraint 1.000e+00 1.923e–01 1.673e–01 2.834e–01 3.030e–01 5.828e–02 3.630e–04

nb_min_constraint 1.000e+00 1.489e–01 1.208e–01 2.757e–01 2.743e–01 2.362e–02 3.630e–04

nb_max_constraint 1.000e+00 2.660e–01 2.239e–01 3.516e–01 3.794e–01 8.484e–02 3.630e–04

nb_std_constraint 1.332e–15 1.427e–01 2.290e–01 1.698e–01 1.794e–01 6.639e–02 2.427e–01

nb_mean_coreness 1.000e+00 6.150e+00 2.254e+00 3.997e+00 2.689e+00 6.688e+001.000e+00

nb_min_coreness 1.000e+00 5.190e+00 1.839e+00 4.016e+00 2.336e+00 4.000e+001.000e+00

nb_max_coreness 1.000e+00 6.918e+00 2.752e+00 4.465e+00 3.535e+00 8.000e+001.000e+00

nb_std_coreness 1.332e–15 2.131e+00 1.956e+00 1.869e+00 1.836e+00 2.041e+001.708e+00

nb_mean_eccentricity 1.000e+00 7.858e+00 3.543e+00 3.018e+00 3.868e+00 9.000e+001.000e+00

nb_min_eccentricity 1.000e+00 7.641e+00 3.397e+00 2.948e+00 3.658e+00 9.000e+001.000e+00

nb_max_eccentricity 1.000e+00 8.065e+00 3.652e+00 3.124e+00 4.037e+00 9.000e+001.000e+00

nb_std_eccentricity 1.332e–15 5.647e–01 5.983e–01 3.995e–01 4.102e–01 5.774e–01 5.964e–01

nb_mean_harmonic_centrality 1.000e+00 1.425e–01 1.754e–01 6.839e–02 7.325e–02 1.677e–01 2.221e–01

nb_min_harmonic_centrality 1.000e+00 1.348e–01 1.720e–01 6.665e–02 7.481e–02 1.523e–01 2.221e–01

nb_max_harmonic_centrality 1.000e+00 1.505e–01 1.802e–01 7.232e–02 7.251e–02 1.767e–01 2.221e–01

nb_std_harmonic_centrality 1.332e–15 1.960e–02 1.792e–02 1.241e–02 1.241e–02 1.909e–02 1.839e–02

nb_mean_pagerank 1.000e+00 2.587e–03 6.013e–02 8.740e–03 4.995e–02 8.351e–04 1.021e–01

nb_min_pagerank 1.000e+00 2.156e–03 6.006e–02 8.771e–03 5.003e–02 2.732e–04 1.021e–01
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