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Introduction
Recently, with the increasing development of deep convolutional neural networks, 
many deep convolutional neural network models have been proposed which perform 
very SOTA in vision tasks, such as VGGNet [1], GoogleNet [2], ResNet [3], Con-
vNeXt [4], Vision Transformer [5], and Swin- Transformer [6] perform well in clas-
sification, semantic segmentation, and object detection task. The application fields 
of computer vision are becoming more and more widespread, but it is not advanced 
enough in domains of traditional Chinese medicine(TCM). Since the outbreak of the 
neo-coronavirus epidemic, the traditional Chinese medicine has played an increas-
ingly important role in the fight against the epidemic, and there is evidence that TCM 
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combinations can be effective against the neo-coronavirus. In order to promote infor-
mationization in the field of TCM and provide technical support for the intellectu-
alization development of TCM construction, the development of technologies and 
methods for TCM recognition and detection is one of the emerging applications of 
computer vision. Currently, there are some research works on deep learning models 
in the field of Chinese herbal medicine recognition, but are just only some attempts 
for single-object classification tasks. Some datasets are created in the literature [7–9], 
but small size. And the effective deep learning models are not constructed, the exist-
ing models(ResNet, VGG, MobileNets, ShuffleNet, etc.) are used to accomplish the 
attempt of Chinese medicine classification task. Due to the limitations of the dataset 
and models, the accuracy of Chinese medicine classification in the preliminary works 
is not good performance. In addition, the application scenario of single-target rec-
ognition in traditional Chinese medicine is the variety identification process, which 
often happens in the transactions of Chinese medicine market, retailing in Chinese 
medicine stores, and public use of medicine. It is more suitable to use portable mobile 
devices. Therefore, further research is needed to promote the development of TCM 
recognition.

The present approaches for model lightweight are mainly model compression algo-
rithms [10], neural network architecture search (NAS) [11] and artificial design. Among 
them, compression algorithms for convolutional neural networks [10] include rule-based 
neural network model compression (weight pruning, weight quantization, low-rank 
decomposition, knowledge distillation, and others), and automatic machine learning-
based automatic neural network model compression (AMC algorithm).

The representative one is the knowledge distillation model. Although the knowledge 
distillation model is weightlighted, the number of parameters is still large. Neural archi-
tecture search [11] (NAS) refers to the automatic design of a high-performance neural 
network architecture to solve a specific task in a specific search space (global, local, etc.) 
based on a search strategy (reinforcement learning, evolutionary algorithms, etc.). The 
representative models are MobileNetV3 [12], EfficientNet [13], NasNet [14], etc. Arti-
ficial designed lightweight neural network model compression techniques rely on heu-
ristic and rule-based strategies, and the representative models are MobileNetV1 [15], 
MobileNetV2 [16], SqueezeNet [17], GhostNet [18], ShuffleNet [19], MobileNext [20], 
etc. The performances of them are relatively invariant when the number of parameters is 
significantly reduced. However, they do not yet meet the classification needs of all prac-
tical applications. Transformer-based lightweight models are also developing rapidly, 
and their main work is the lightweight of multi-headed self-attention module, and the 
representative of the Transformer-based model is MobileVit [21]. However, Transformer 
is computation complex and resource intensive, so it is not suitable for deploying appli-
cations on edge mobile devices.

On the other hand, due to the relative lag in the development of TCM intelligence 
technology, the public datasets for TCM have not yet been established. The preliminary 
literature [7–9] have made some attempts to classify and identify TCM and built some 
datasets, but the datasets are not publicly available. No new lightweight models have 
been built for TCM classification. Therefore, we decided to create a traditional Chinese 
medicine classification dataset and build a novel lightweight model.
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Our aims is to design a model with fewer number of parameters and higher accuracy, 
and applied in the field of the traditional Chinese medicine classification task. The major 
contributions of this paper are as follows.

(1) A novel lightweight model CCNNet is proposed, and the accuracy of the model 
outperforms the existing lightweight models mentioned in this paper.

(2) An effective lightweighting module component GCIR block and attention mecha-
nism MDCA are designed.

(3) According to the catalog of the Pharmacopoeia of the People’s Republic of China 
on Chinese medicine and drinking tablets, a fine-grained dataset(TCM-100) is cre-
ated.

(4) The proposed model is applied to the field of traditional Chinese medicine recogni-
tion and achieves an accuracy of 92.5% on TCM-100.

Related work
Lightweight convolutional neural network model

In recent years, with the development of deep learning, many lightweight deep convo-
lutional neural network classification models have emerged within the field of computer 
vision. It mainly includes two types of lightweight deep convolutional neural network 
models based on artificial design and neural architecture search, among which the 
deep learning models based on artificial design is MobileNet[15], MobileNetV2 [16], 
SqueezeNet [17], GhostNet [18], ShuffleNet [19], MobileNeXt [20], MobileVit [21], 
DenseNet [22], NASNet [23], ShuffleNetV2 [24], SENet [25], PP-LCNet [26], etc. They 
design the lightweight convolutional operations or modular structures, including small 
convolutional kernels instead of large convolutional kernels[17], feature reuse[18, 22], 
grouped convolutional and channel shuffle[19, 24], depthwise separable convolution 
[15], bottleneck structure and inverted residual structure[16], and other modules or 
components to reduce the model parameters. And use attention mechanism to improve 
the model performance [25]. The models based on neural architecture search are [12, 13, 
27, 28], etc. They can only be searched on a known search space, i.e., the module struc-
ture or basic operation units are known. Neural architecture search can obtain light-
weight models with balanced model width, depth, resolution, and other factors. But it 
cannot obtain models on unknown search spaces, i.e., neural architecture search cannot 
obtain new efficient basic operations or units.

Regardless of any lightweight models, the design aims to reduce the number of param-
eters and speed up computations while balancing the model accuracy. The above-men-
tioned papers have done a lot of work in reducing the number of model parameters and 
improving the classification accuracy of the model by designing convolutional opera-
tions or module structures, but further research work is needed to obtain a lightweight 
classification model with higher performance. In addition, all of the above lightweight 
models are designed for convolutional operations or module structures, but there 
are not many researches on the overall framework of lightweight models, and further 
research is needed to optimize the overall framework of model to reduce the number of 
parameters and improve model speed and performance.
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In order to significantly reduce the number of model parameters and inference time 
while improving the accuracy of the model, the overall model architecture of modern 
CNNs is compressed, and a new lightweight module GCIR and MDCA attention is 
designed to improve the model accuracy.

Attention mechanism

Recently, many attention mechanisms have been proposed, including channel atten-
tion SE [25], efficient channel attention (ECA) [29], convolutional block attention 
module (CBAM) [30], Shuffle Attention [31], Triplet Attention (TA) [32], Coordinate 
Attention(CA) [33], SimAM [34] non-referential attention mechanism, self attention(SA) 
[35]. Among them, SE [25], ECA [29] are channel-based attention which captures infor-
mation about channel features. SA [35]is a spatial-based attention which gets global 
information relations. CBAM [30], Shuffle Attention [31] are attention based on com-
bination of channel and spatial, which extract local and global important features. Tri-
plet Attention [32] and Coordinate Attention (CA) [33] are a 3D(channel, width, height) 
cross-complementary attention which can selects important feature information. In 
addition, we also see a graph attention mechanism GAM [36], which can reduce spatial 
information loss and enhance feature representation.

Although all attention mechanisms can improve model performance, different models 
and scenarios use different attention mechanisms to achieve different effects. Therefore, 
further research work on attention mechanism is needed to adapt different models.

In summary, a large amount of literature has been carried out on model lightweight 
methods and attention mechanisms. We will design a new lightweight block, attention 
mechanism and construct a new model.

Approach
Motivation

In order to applied in traditional Chinese medicine classification and detection, we apply 
the design rules and methods of lightweight convolutional neural networks to design a 
lightweight neural network model. Although the MobileNets [12, 15, 16], GhostNet [18], 
ShuffleNet [19], SqueezeNe [17] reduce the number of parameters, but also the classifi-
cation accuracy is reduced. These methods all significantly reduce the number of param-
eters on the modular components but do not optimize the overall model framework. To 
further reduce the number of model parameters, the ConvNeXt [4] model is compressed 
from 4 to 3 stages by using the downsampling rate 3, but the performance of model do 
not descend significantly. Subsequently, we observed the downsampling of some classi-
cal models, including the head downsampling method, downsampling rate, number of 
channels, etc., as shown in Table 1.

The performance of the models is generally good with a downsampling rate of 1, 2, or 
4 as shown in Table 1. To demonstrate that the performance of the model is still excel-
lent using downsampling rate 3, we take some experiments on ConvNeXt [4] to validate 
the performance with downsampling rate 3. We set the downsampling rate of the Con-
vNeXt [4] model to 3, which causes a series of changes in the model, the feature map 
size of the middle layer of the model shrinks at an accelerated rate, and its four stages 
are compressed into three stages, which results in a significant reduction in the number 
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of parameters of the model. The compressed model architecture is similar to the frame-
work of ShuffleNetV1, ShuffleNetV2 [19, 24], i.e., the middle layers of the model are 3 
stages. We train it on the public datasets cifar-10 and cifar-100, and the results show that 
the accuracy of the compressed model is not significantly reduced. To compensate for 
the degradation of the performance of the compressed model and improve the accuracy 
of the compressed model, we fully consider the principles and strategies of the light-
weight network to design the lightweight module GCIR, MDCA attention mechanism 
and construct the CCNNet (Compressed Convolution Neural Network) model. The 
SRFBN mechanism [37] is referenced. The structure of the model is shown in Fig. 1.

Firstly, CCNNet feeds the input image (3 × 216 × 216) into the stem layer, performs a 
downsampling operation using a 3 × 3 convolution with stride 3 and two 3 × 3 depth-
wise separable convolutions, the output is 128 × 72 × 72. Depthwise separable convolu-
tion is used to extract rich fine-grained features, which are then put into GCIR block 
of stage1 for transform stacking to make the features richer. The GCIR module uses 
residual structure, depthwise separable convolutions, and inverted bottleneck structure 
to extract local feature information, which greatly reduces the number of parameters. To 
enhance the capability of channel feature perceiving and global relationship capturing, 
the GCIR module embeds the MDCA (multidimensional channel attention mechanism). 

Table 1 Comparison of downsampling layer in classical model

Model Stemlayer Kernelsize Downsample 
rate(stride)

Output Feature 
map size

Stages Channels

AlexNet conv11 × 11 4 56 × 56 4 96

GoogleNet conv7 × 7 2 112 × 112 4 64

ResNet conv7 × 7 4 56 × 56 4 64

VGGNet conv3 × 3 1 224 × 224 4 64

ConvNeXt conv4 × 4 4 56 × 56 4 96

ShuffleNetV2 conv3 × 3 4 56 × 56 3 24

GhostNet conv3 × 3 2 112 × 112 4 16

EfficientNet conv3 × 3 2 112 × 112 4 32

Fig. 1 The CCNNet Architecture
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According to the idea of GhostNet [18], it is known that the features captured in stage 1 
are rich but redundant, so we compress the features in downsample layer to reduce the 
redundancy, i.e., the number of channels becomes half. In stage2, the input is stacked 
9 times by GCIR module, and the output is 64 × 24 × 24. Subsequently, the output of 
stage2 is downsampled to extend the dimension using the downsample layer, and an 
128 × 8 × 8 output is obtained. In stage3, we get high-level semantic information by 3 
times GCIR module stacking operation. Subsequently, the output is performed by the 
classification head module. The logits for classification is obtained after a global average 
pooling and 1 × 1 convolution operation. The classification task is completed. Overall, 
it seems that the variation of channels in CCNNet is a bottleneck architecture, which 
achieves the purpose of reducing the number of parameters.

Overall architecture

We designed a lightweight convolutional neural network model CCNNet, whose overall 
architecture is shown in Fig. 1(a). It consists of a stem layer, 3 stages in intermediate lay-
ers, and an output classification layer. From the perspective of model width, the number 
of channels in the model varies from 128 → 64 → 128, and it is a bottleneck architecture. 
This architecture can greatly reduce the number of parameters.

We used a threefold downsampling rate with feature maps of sizes from 
216 → 72 → 24 → 8, respectively, making the middle layers of the model into 3 stages. 
Given the SOTA model ConvNeXt [4], we adopted its stacking setup method, i.e., set-
ting the ratio of the number of stacks per stage to 3:9:3. Such a design inspired by revis-
iting some design laws of ResNet [3], SwinTransform [6], ConvNeXt [4], ShuffleNet 
[19], and ShuffleNetV2 [24]. In ResNet, the number of blocks stacked in the middle 
stage(stage2-3) is big, and the number of blocks stacked from stage1 to stage4 is (3, 4, 6, 
3), i.e., the ratio of stage1: middle layer (stage2, stage3): stage4 is 3:10:3, which is about 
1:3:1. The Swin-T of Swin-Transformer [6] model is 1:1:3:1, which is approximately 1:3:1 
ignoring stage1. And the number of stacking in ConvNeXt [4] is (3, 3, 9, 3), and analo-
gously its ratio is also approximately 1:3:1. The lightweight models ShuffleNet[19] and 
ShuffleNetV2[24] directly adopt three stages, and the stacking times ratio of each stage 
is 3:7:3, approximately 1:3:1. We find that it is feasible to compress the hidden layer of 
the model to three stages. The stacking ratio of the three stages is 1:3:1. The three stages 
model can greatly reduce the number of parameters of the model.

Using modern CNN model design concepts [3–6], our model uses three stages for gen-
erating stacked transformations of feature maps at different scales, which are important 
for dense prediction tasks [38]. To generate multi-scale features, a downsampling(DS) 
layer consisting of a 3 × 3 convolution with a stride of 3 and a batch normalization (BN) 
[39] is applied before each stage to reduce the size of the middle layer feature map and 
project it to the dimension of next stage. In each stage, several GCIR (Group convolu-
tion inverted Residual) modules are sequentially stacked to perform feature transforma-
tion while keeping the input feature map resolution constant. As an example, the third 
stage of CCNNet contains three GCIR modules, as shown in Fig. 1(b), and we embed 
MDCA attention into the GCIR module to capture more feature representatives. We 
will describe the GCIR module and MDCA attention in detail in Sect. "GCIR Block" and 
Sect.  "MDCA (Multi Dimension Channel Attention)", respectively. The final output of 
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the model is a classification head consisting of a global average pooling layer, a projec-
tion layer, and a softmax classification layer.

Given an input image, we can obtain three different resolutions of hierarchical feature 
maps, and the span of the above feature maps are 3, 9, and 27. The proposed model can 
get a multi-scale representation of the input image, which can be well applied to down-
stream tasks such as object detection and semantic segmentation. The specific structure 
of the network is shown in Table 2.

Stem layer

GoogleNet[2] and ResNet[3] use 7 × 7 convolution with 2 × downsampling rate and 
3 × 3 maximum pooling with stride 2 to get the result of fourfold downsampling, which 
will lead to overlapping sampling regions, and the redundancy of perceived features will 
increase. While in ConvNeXt [4] model, the 4 × 4 convolution with stride 4 and non-
overlapping downsampling operation are used. This may result in less detailed features 
captured and loss of fine-grained information. The 3 × 3 convolution operation proposed 
in the VGGNet model to extract fine-grained depth feature information works best. To 
capture rich and redundant fine-grained features, the stem module is designed. First, the 
3 × 3 standard convolution operation with stride 3 is performed on the input features 
and gets the output of 72 × 72 feature map with 128 channels. The reason for the larger 
model width (number of channels 128) is that more channels can capture much richer 
features [13, 18]. Then followed by two 3 × 3 depthwise separable convolution with 
stride 1 which can increase the perception field while better extracting local fine-grained 
feature information [38]. Each of the 3 × 3 depthwise separable convolutions is followed 
a group normalization and GELU activation [40] operation. This operation can improve 

Table 2 The specific structure of the CCNNet

Outsize Layer CCNNet1.0X CCNNet1.5X CCNNet2.0X CCNNet3.0X

72× 72 Stem 3× 3, 128, stride = 3

[3× 3, 128]× 2

3× 3, 160, stride = 3

[3× 3, 160]× 2

3× 3, 192, stride = 3

[3× 3, 192]× 2

3× 3, 256, stride = 3

[3× 3, 256]× 2

Stage1 GCIR






3× 3, 128

MDCA
1× 1, 512

1× 1, 128






× 3







3× 3, 160

MDCA
1× 1, 640

1× 1, 160






× 3







3× 3, 192

MDCA
1× 1, 768

1× 1, 192






× 3







3× 3, 256

MDCA
1× 1, 1024

1× 1, 256






× 3

24× 24 DS 3× 3, 64, stride = 3 3× 3, 80, stride = 3 3× 3, 96, stride = 3 3× 3, 128, stride = 3

Stage2 GCIR






3× 3, 64

MDCA
1× 1, 256

1× 1, 64






× 9







3× 3, 80

MDCA
1× 1, 320

1× 1, 80






× 9







3× 3, 96

MDCA
1× 1, 384

1× 1, 96






× 9







3× 3, 128

MDCA
1× 1, 512

1× 1, 128






× 9

8× 8 DS 3× 3, 128, stride = 3 3× 3, 160, stride = 3 3× 3, 192, stride = 3 3× 3, 256, stride = 3

Stage3 GCIR






3× 3, 128

MDCA
1× 1, 512

1× 1, 128






× 3







3× 3, 160

MDCA
1× 1, 640

1× 1, 160






× 3







3× 3, 192

MDCA
1× 1, 768

1× 1, 192






× 3







3× 3, 256

MDCA
1× 1, 1024

1× 1, 256






× 3

1× 1 GAP AvgPool(1× 1)

1× 1 FC 1× 1, 1000

Parameter 1.4 M 2.2 M 3.1 M 5.4 M

Flops 0.36B 0.46B 0.55B 0.74B
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the accuracy of the model. The experiments show that our stem can improve the model 
performance by 0.2% counter to the stem operation of ConvNeXt [4] which not using 
GELU activation.

GCIR block

The proposed GCIR module consists of a deformed inverted residual block, a MDCA 
attention block, and a Droppath, as shown in Fig. 1(b) and specifically described below. 
It consists of a 3 × 3 depthwise separable convolution with stride 1, batch normaliza-
tion, a 1 × 1 convolution to ascend fourfold dimension, GELU [40] activation, and a 1 × 1 
convolution to descend fourfold dimension, and a DropPath [41]. The 3 × 3 depthwise 
separable convolution can extract fine-grained feature information while reducing the 
number of parameters. The role of the MDCA module is to learn the features from three 
dimensions, i.e., channel, height, and width, respectively, and fuse them to generate 
the MDCA attention. It will be described in Sect.  "MDCA (Multi Dimension Channel 
Attention)". The 1 × 1 convolution raises the channel dimension to four times the origi-
nal. Followed by a GELU activation operation at the higher dimension, and then reduces 
the channel dimension to the original by 1 × 1 convolution. The linear inverted bottle-
neck structure [12, 16] is very important because the GELU activation operation causes 
a more loss of low-dimensional feature information, but the linear expansion module 
prevents the non-linear activation from destroying too much information [12]. The role 
of the subsequent DropPath [41] operation is to prevent overfitting, and DropPath is a 
regularization tool that can randomly "delete" the multi-branch structure from the deep 
learning model. When the drop rate is 0, the multi-branch structure in the model is an 
identity projected. If the drop rate is a probability value greater than zero, a random 
deactivation operation of the branch structure is performed with the drop rate prob-
ability. Finally, there is a residual operation. The above operations can be formulated as 
below:

where, X is the input feature map, X ∈ RH×W×d , H ×W  is the input feature map reso-
lution of the current stage, and d is the number of channels of the feature. DWConv() 
is a depthwise separable convolution,MDCA() indicates the multidimensional chan-
nel attention mechanism, Convd→4d signify that using the 1 × 1 convolution to ascend 
the dimension from d to 4d, Conv4d→d express that descend the dimension from 4d to 
d by using the 1 × 1 convolution, BN () means the batch normalization, Act() denotes 
the GELU activation function, Drop() operation will randomly deactivate multi-branch 
structure of the model according to the probability.

The GCIR module is inspired by the SandGlass module, which is shown in Fig.  2a, 
and the GCIR module is shown in Fig. 2b. The performance of the SandGlass module 
has been demonstrated in the MobileNeXt[20] model. We embed the MDCA attention 
mechanism into the SandGlass module and drop the final depthwise separable convolu-
tion. To promote the performance of the model, we add a BN normalization operation 
before the inverted bottleneck structure and activation at the higher dimension. It will 
reduce the loss of feature information. Finally, we give a Droppath operation to prevent 

(1)Output = X + Drop (Conv4d→d(Act(Convd→4d(BN (MDCA(Conv(X)))))))
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overfitting. The accuracy of the model rose by 0.25% on CIFAR-10 dataset and 0.15% on 
CIFAR-100 dataset by using the GCIR module.

Downsample layer

The downsample layer consists of a 3 × 3 convolution with stride 3 and a batch normali-
zation. In ResNet [3], ConvNeXt [4], and SwinTransform [6] models, spatial downsam-
pling is implemented by separating the layers separately, using a normalization layer and 
a 2 × 2 convolution with stride 2. Separate downsampling layers are added between the 
stages separately. We adopted a similar strategy of spatial downsampling using a nor-
malization layer and a 3 × 3 convolution layer with stride 3. Subsequently, experiments 
show that adding normalization layers in which the spatial resolution changed help the 
training to be stable.

MDCA (Multi dimension channel attention)

Depthwise separable convolution is used in the GCIR module, so the weights of each chan-
nel are very important in the feature representation. To enhance the ability of the CCNNet 
model to perceive local features and global dependencies, we investigated SE [25], CBAM 
[30], ECA [29], SIMAM [34], CA(Coordinate Attention) [33], SPM [42], TA (Triplet Atten-
tion) [32], SA (Shuffle Attention) [31], etc. Considering low consumption, the proposed 
model using the SE channel attention after depthwise separable convolution leads to good 
performance in training. The SE channel attention obtains the relationship between chan-
nels to reweight the importance of each channel, but ignores the possible influence of spa-
tial height dimension features and spatial width dimension features on channel attention. 
Our motivation is to lightweight and optimize the SE attention by considering the influence 
of the height dimensional features and the width dimensional features on channels. Firstly, 
our method performs a 2D (spatial width and channel) global pooling and global max 

Fig. 2 Comparison between Sandglass and GCIR



Page 10 of 21Gang et al. Journal of Big Data          (2023) 10:114 

pooling from the view of height dimension to extract the features that represent the rela-
tionship between height and channel with feature shape H × 1 × 1, and then a 2D (spatial 
height and channel) global pooling and global max pooling from the view of width dimen-
sion to extract the features that represent the relationship between height and channel with 
feature shape W × 1 × 1. These two features are then projected to the channel dimension 
and then summed with the SE channel dimension attention, thus injecting the influence 
factor of spatial features into the SE channel attention and also bringing in some global 
information for optimizing the SE channel attention. This helps the channel attention to 
represent the weights of each channel more accurately.

Drawing on Coordinate Attention [33] and Triplet Attention [32] attention mechanism 
methods, the multidimensional channel attention(MDCA) is proposed. As shown in Fig. 1c, 
the specific method is as follows: input feature maps X ∈ RH×W×C , C, H, W denote chan-
nel, height, and width, respectively. 2D global average pooling GAP() and global maximum 
pooling GMP() are performed along three different dimensions, such as channel dimen-
sion, spatial height dimension, and spatial width dimension, respectively. Then the results 
of global average pooling and global maximum pooling are summed up, and this operation 
is referred to as Z − pooli . That is Z − pooli(X) = GAP(X)+ GMP(X) , i indicates that 
the operation is performed in the corresponding dimension, and i takes the values C, H, 
W indicating the channel, height, and width, respectively. BN () denotes the normalization 
operation,  sigmoid() denotes the nonlinear activation operation, and Conv1×1() denotes 
the 1 × 1 convolution to ascend dimension operation.

The channel dimension attention AC can be described as,

The height dimension attention AH can be shown as,

The width dimension attention AW can be expressed as,

Finally the feature information of channel dimension AC , height dimension AH and 
width dimension AW  are fused to generate MDCA attention. As shown in the Fig. 1(c), it 
can be expressed formally as

where f () indicates a summation operation.
The results of the ablation experiments show that the MDCA multidimensional chan-

nel attention module is better than SE attention module at capturing focal information and 
focusing on a wider area. The MDCA multidimensional channel attention module instead 
of the SE attention module in the CCNNet model can rise the accuracy of the model by 
about 0.5% on Imagenet dataset.

(2)AC = sigmoid(BN (Z − poolC(X)))

(3)AH = sigmoid(BN (Conv1×1(Z − poolH (X))))

(4)AW = sigmoid(BN (Conv1×1(Z − poolW (X))))

(5)AttentionMDCA = f (AC ,AH ,AW )
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Experimental
In this section, we investigate the effectiveness of the CCNNet model by experimenting 
with classification tasks on image classification datasets CIFAR-10 [43], CIFAR-100 [43]
and ImageNet1K [44]. We compare the performance of the proposed CCNNet model 
with existing lightweight models on classification task. The CCNNet model is compared 
and validated on the Chinese medicine recognition dataset to demonstrate that its appli-
cation is effective and feasible in the field of traditional Chinese medicine recognition.

Experimental environment

The experimental environment: Win10, 64-bit OS with pytorch1.10 environment, 
Intel(R) Core(TM) i9-10900 K CPU, NVIDIA GeForce RTX 3090 GPU, 32G RAM. The 
datasets are CIFAR-10, CIFAR-100 [43] and ImageNet1K [44]. We split the training sets 
and validation sets on CIFAR-10, CIFAR-100 [43], and ImageNet1K [44] in the same 
environment with a ratio of 8:2, and use the same training method for MobileNetv3small 
[12], ShuffleNetV2 [24], MobileNext [20], respectively. Each model has been trained and 
their accuracies on the test set are compared under the same conditions.

Datasets

In this paper, all experimental comparisons are performed on four datasets, including 
three publicly available datasets and one self-built TCM recognition dataset. CIFAR-10, 
CIFAR-100 [43] and ImageNet1K [44] were chosen as the public datasets. And Image-
Net1K is an image classification benchmark, i.e., the ILSVRC2012 dataset. Currently, the 
improved traditional method [45] based on SVM achieves 75.64% classification accuracy 
on ImageNet1K dataset, while the deep learning method Swin-Transformer [6] achieves 
87.3% classification accuracy. It demonstrators that deep learning methods have better 
classification accuracy.

The TCM dataset (TCM-100) is a dataset with fine-grained features, in which 100 cat-
egories of TCM images are collected. In the 2020 edition of the Pharmacopoeia of the 
People’s Republic of China, there are 2711 categories of Chinese herbal medicines and 
more than 1000 categories of common Chinese herbal medicines and tablets. According 
to the outline catalog of the classification of Chinese herbal medicines and indexes in the 
Pharmacopoeia of the People’s Republic of China, we create a fine-grained features data-
set with 100 categories for Chinese herbal medicines classification.

According to the description of the Pharmacopoeia of the People’s Republic of China 
on the standard of Chinese medicine tablets, the raw materials of Chinese medicine tab-
lets are generally from the roots and stems, bark, flowers, leaves, and fruits of plants 
[7–9, 46]. The leaves and flowers of plants are dried and shaped into finished Chinese 
medicine tablets, the roots and stems of Chinese medicine tablets are mostly made in 
the form of slices, which are classified into thin slices, thick slices, slanted slices, straight 
slices, filaments, blocks, etc. Although they are both slices, the shapes of slices are round 
slices, cylindrical thick slices, round-like slices, oval slices, irregular slices, etc. The fruits 
of Chinese medicine tablets are also mostly in the form of seeds and granules, which are 
smaller in volume. The large fruits are generally round slices or irregular slices, such as 
hawthorn slices and hedgehog slices, see the Pharmacopoeia of the People’s Republic 
of China for details. In addition to the above-mentioned shapes and irregularities, the 
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color and texture of the Chinese medicine tablets are also very similar. Small discrep-
ancy inter-class and large discrepancy intra-class is an important characteristic of Chi-
nese medicine images, which makes the identification more difficult.

We organized the staff to collect 100 species of traditional Chinese medicine 
images, accumulating more than 60,000 images. It includes approximately 40,000 
images that were taken and labeled by ourselves and about 20,000 images that were 
publicly available on the Internet. The differences between some of the herbal medi-
cine are so slight that it is often difficult for the human eye to identify their species. 
Some of the images in the traditional Chinese medicine dataset are shown in Fig. 3.

Experimental results and analysis

The validation of CCNNet model

For a fair comparison with recent work, we used the same training approach and data 
augmentation strategy as in the ConvNeXt [4] model and trained the models for 200 
epochs using the AdamW [47] optimizer. The models have been trained with a sin-
gle NVIDIA 3090 GPU on CIFAR-10, CIFAR-100, and ImageNet for classification 
experiments. Table  3 and Fig.  4 shows the performance of the CCNNet model on 
the classification datasets. Compared with other convolution-based or transformer-
based models, our model achieves relatively better accuracy with fewer parameters 
and flops. In particular, with a similar number of parameters, the proposed CCNNet 
achieves a top-1 accuracy of 70.1% on the ImageNet dataset with only 1.4 M number 
of parameters, and its top-1 Acc is 2.7% higher than the baseline model MobileNetv3-
small [12], 2.4% higher than MobileNeXt0.5X [20], and 1.0% higher than MobileVit-
XXS [21]. This indicates that the GCIR module and the MDCA attention mechanism 

large discrepancy intra-class

Chrysanthemums

Chinese atractylodes

Small discrepancy inter-class

Honeysuckle Wild Honeysuckle Flower

Honeysuckle compares with
Wild Honeysuckle

Slice of Ginseng Slice of American Ginseng

Slice of Ginseng compares 
with American Ginseng

Fig. 3 Display of the traditional Chinese medicine recognition Dataset
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are superior in capturing channel feature information and global information. This 
proves the effectiveness of the proposed CCNNet model.

The CCNNet expanded model is trained on ImageNet [44], CIFAR-10, CIFAR-100 
[43], and TCM-100 datasets to verify its robustness and generalization, the experi-
mental results show that the CCNNet expanded model has better robustness and 
generalization. The comparison of the top-1 accuracy of CCNNet expanded models 
on 4 datasets is shown in Table 4.

Table 3 Comparison to some baseline models on ImageNet-1 k, CIFAR-10 and CIFAR-100

Model Parameters/M Flops/B Top-1 acc

ImageNet (%) cifar-10 (%) cifar-100 (%)

MobileNetV3small 2.5 0.3 67.4 89.6 74.2

Shuffle NetV2 0.5X 1.4 0.15 61.1 88.9 71.4

GhostNet 0.5X 2.6 0.14 66.2 89.8 74.1

MobileNeXt 0.5X 1.8 0.3 67.7 89.9 75.2

MobileVit-XXS 1.3 0.7 69.0 90.2 76.3

CCNNet(Ours) 1.4 0.36 70.1 90.8 77.6

Fig. 4 Comparison to some baseline models on ImageNet-1 k, CIFAR-10 and CIFAR-100. The red indicates our 
model performance
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The CCNNet model compare with the advanced lightweight convolutional neural 
network model MobileNeXt[20] and the 3-stages ShuffleNetV2 [24] model on Ima-
geNet dataset and find that the CCNNet model performs better with similar number 
of parameters. As shown in Fig. 5.

In case of similar number of parameters, we compare the expanded model 
CCNNet2.0X with other classical lightweight models on ImageNet-1  K dataset, 
including the latest lightweight model PP-LCNet[26]. It verified that the performance 
of CCNNet model is better, as shown in Table 5.

The CCNNet model validation experiments on TCM‑100

The CCNNet is a classification model. We will conduct model classification accuracy 
experiments on the TCM-100 dataset. In order to prove that the CCNNet model can 
satisfy the requirements of model classification accuracy in traditional Chinese medicine 
recognition scenarios, we compare the performance of ShuffleNetV2 [24], MobileNeXt 
[20] and CCNNet on the traditional Chinese medicine dataset(TCM-100) respectively. 

Table 4 Comparison of experimental data of CCNNet expanded models on 4 datasets

Model Parameters/M Flops/B Top-1 accuracy

ImageNet (%) cifar-10 (%) cifar-100 (%) TCM-100 (%)

CCNNet(1.0X) 1.4 0.36 70.1 90.8 77.6 86.8

CCNNet(1.5X) 2.1 0.46 73.2 91.9 79.4 87.3

CCNNet(2.0X) 3.1 0.55 75.1 93.8 80.1 89.2

CCNNet(3.0X) 5.4 0.74 76.3 94.7 81.6 92.5

Fig. 5 The CCNNet(ours) Compare with ShuffleNetV2 and MobileNeXt
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The ratio of the training set and validation set is 5:1, i.e., 50000 images in the training 
set and 10000 images in the test set. Their training accuracy and loss, validation accu-
racy and loss are shown in Fig. 6. We found that the gap between the training accuracy 

Table 5 The comparison of accuracy between CCNNet2.0X and other models on ImageNet

Model Parameter/M MAdd/M Top1-Acc (%)

CCNNet2.0X(ours) 3.1 546 M 75.1

MobileNeXt(1.0x) 3.4 300 M 74.0

MobileNetV2 3.6 340 M 72.3

ShuffleNetV2(1.5) 3.4 292 M 72.6

MobileNetV1 3.6 578 M 70.9

MobileNetV3small-1.25x 3.6 100 M 70.6

PP-LCNet-1x 3.0 161 M 71.3

Fig. 6 Comparison of CCNNet (ours), ShuffleNetV2, and MobileNeXt on TCM-100 dataset
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and the validation accuracy may be large, and we analyze the reason is due to the 
images in the dataset is not big enough, and the TCM-100 dataset should be extended 
subsequently.

The training and testing of ShuffleNetV2 [24], MobileNeXt [20] and CCNNet on 
TCM-100 dataset are shown in Table 6. The CCNNet model has the best performance 
and achieved 86.8% accuracy on the validation set.

In order to match the dual requirements of TCM recognition application scenarios and 
recognition accuracy, we adopt the CCNNet3.0X model to train and test on the TCM-100 
dataset, and the classification accuracy reached 92.5%. In addition, the ROC curve is one 
of the evaluation criteria for the performance of the binary classification model. The ROC 
curve is a curve based on a series of different binary classification methods (cut-off values 
or thresholds), with the true positive rate(TPR) or sensitivity as the vertical coordinate and 
the false positive rate (FPR) as the horizontal coordinate.

We generalized the ROC curves of the dichotomous model and used two metrics, the 
Micro-ROC curve, and the Macro-ROC curve, as evaluation criteria [48–50]. The formulas 
of TPR and FPR are as follows.

In Eqs. 6 and 7, where TP represents the number of samples that are actually positive and 
predicted to be positive. FP denotes the number of samples that are actually positive but 
predicted to be negative. FN refers to the number of samples that are actually negative but 
evaluated to be positive. TN indicates the number of samples that are actually negative but 
predicted to be negative. The Micro method is to count the TP, FP, FN, and TN of each cat-
egory, accumulate the TP, FP, FN, and TN of the whole non-categories sample set, and then 
calculates Micro-TPR, Micro-FPR. While the Macro method is to count the TP, FP, FN, and 
TN of each category, calculate their TPR and FPR respectively, and then take the average to 
get Macro-TPR, Macro-FPR. The formula is as follows.

(6)TPR =

TP

TP + FN

(7)FPR =

FP

FP + TN

(8)Micro− TPR =

N
∑

i=1

TPi

N
∑

i=1

TPi +
N
∑

i=1

FNi

Table 6 The accuracy and loss of ShuffleNetV2, MobileNeXt, and CCNNet on TCM-100 dataset

Metrics ShuffleNetV2 MobileNeXt CCNNet1.0X(ours)

Training accuracy 0.970 0.952 0.9706

Training loss 0.098 0.159 0.100

Testing accuracy 0.836 0.829 0.868

testing loss 0.599 0.633 0.421
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In Eqs. 8, 9, 10, 11, N represents the total number of categories in the samples, and TPi , 
FPi , FNi , and TNi denote the number of TP, FP, TN and FN in the samples of category i, 
respectively. We plotted the ROC curve to verify classification effect, as shown in Fig. 7. 
It can be seen that the model has a good classification performance on the TCM-100 
dataset.

Ablation study

The downsampling rate

The training is performed on CIFAR-10, CIFAR-100, and ImageNet-1 K datasets follow-
ing the same method as ConvNeXt [4]. We change the stem layer with 2 × downsam-
pling, 3 × downsampling, and 4 × downsampling for training and comparison, and find 
that their model accuracies are comparable, and the gap of the model accuracy is not 
more than 0.1%. The results are shown in Table 7.

(9)Micro− FPR =

N
∑

i=1

FPi

N
∑

i=1

FPi +
N
∑

i=1

TNi

(10)Macro− TPR =

1

N
∗

N
∑

i=1

TPRi

(11)Macro− FPR =

1

N
∗

N
∑

i=1

FPRi

Fig. 7 The ROC curve of CCNNet3.0X model in TCM-100 validation set
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Table 7 Comparison of the accuracy of ConvNeXt with different downsampling rates

Model Downsample rate Epochs Top-1 acc

ImageNet (%) Cifar-10 (%) Cifar-100 (%)

ConvNeXt 2 200 83.42 90.73 76.52

3 200 83.39 90.69 76.48

4 200 83.27 90.63 76.43

Table 8 The comparison of accuracy of the CCNNet1.5X embedding different attentions

Setting Parameters/M M-Adds/M top-1Acc (%)

CCNNet + MDCA 2.2 366 73.2

CCNNet + SE 2.2 366 72.7

CCNNet + CBAM 2.2 366 72.3

CCNNet + CA 2.35 381 73.3

CCNNet + SimAM 2.2 366 71.8

Original image

Model+S

Model+MDC

Model+S

Original image

Model+MDC

Images from  ImageNet

Images from TCM-100

Fig. 8 The visualization of the Feature map by Grad-CAM
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MDCA attention module

The performance of CCNNet-1.5X with various attentions on the ImageNet dataset 
is validated as shown in Table 8, where the model with CA [33] has the highest accu-
racy, but CA leads to an increment in the number of parameters. Adding MDCA after 
the depthwise separable operation of the GCIR module obtains 73.2% model accuracy 
with no increase in the number of parameters. This indicates that MDCA performs 
better without increasing the number of parameters.

Visualization of the MDCA attention module. We select some images from the 
ImagNet dataset and the TCM-100 dataset for visualization by Grad-CAM [51], 
respectively. The Grad-CAM feature maps with SE attention and the Grad-CAM fea-
ture maps with MDCA attention are shown in Fig. 8.

The results indicate that MDCA channel attention is more focused on the image 
features of interest, with a wide range of attention and a higher level attention com-
pared to SE channel attention.

Conclusion
In this paper, a lightweight model CCNNet is proposed for traditional Chinese medi-
cine image classification, which consists of a GCIR module and a MDCA attention 
module, the GCIR module mainly extracts fine-grained feature information, and the 
MDCA attention module makes the model focus more on the feature information of 
interest. Thus, the model can extract the fine-grained feature information of interest, 
which is important for image classification and its downstream tasks such as object 
detection and semantic segmentation. Compared with existing lightweight clas-
sification models, the CCNNet model has higher accuracy and stronger robustness 
on ImageNet-1  K, CIFAR-10, and CIFAR-100 datasets with the approximate num-
ber of parameters, and the model can be scalable. Its expanded model CCNNet3.0X 
achieves 92.5% classification accuracy on the self-built TCM-100 dataset, which also 
indicates that our proposed CCNNet model has better generalizability. Compared 
with other lightweight models, the proposed model has the least number of param-
eters and higher accuracy, is more suitable for mobile deployment and applications.
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