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Abstract 

The generation of synthetic data can be used for anonymization, regularization, over-
sampling, semi-supervised learning, self-supervised learning, and several other tasks. 
Such broad potential motivated the development of new algorithms, specialized in 
data generation for specific data formats and Machine Learning (ML) tasks. However, 
one of the most common data formats used in industrial applications, tabular data, 
is generally overlooked; Literature analyses are scarce, state-of-the-art methods are 
spread across domains or ML tasks and there is little to no distinction among the main 
types of mechanism underlying synthetic data generation algorithms. In this paper, 
we analyze tabular and latent space synthetic data generation algorithms. Specifi-
cally, we propose a unified taxonomy as an extension and generalization of previous 
taxonomies, review 70 generation algorithms across six ML problems, distinguish the 
main generation mechanisms identified into six categories, describe each type of 
generation mechanism, discuss metrics to evaluate the quality of synthetic data and 
provide recommendations for future research. We expect this study to assist research-
ers and practitioners identify relevant gaps in the literature and design better and more 
informed practices with synthetic data.

Keywords: Synthetic Data, Tabular data, Data privacy, Regularization, Oversampling, 
Active Learning, Semi-supervised Learning, Self-supervised Learning

Introduction
Tabular data consists of a database structured in tabular form, composed of columns 
(features) and rows (observations) [1]. It is one of the most commonly used data struc-
tures within a wide range of domains. However, ML techniques developed for tabular 
data can be applied to any type of data; input data, regardless of its original format, can 
be mapped into a manifold, lower-dimensional abstraction of the input data and mapped 
back into its original input space [2, 3]. This abstraction is often referred to as embed-
dings, encodings, feature space, or latent space. In this paper, we will refer to this con-
cept as latent space.

Synthetic data is obtained from a generative process based on properties of real 
data [4]. The generation of synthetic data is essential for several objectives. For 
example, it is used as a form of regularizing ML classifiers (i.e., data augmenta-
tion) [5]. One form of anonymizing datasets is via the production of synthetic 
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observations (i.e., synthetic data generation) [6]. In settings where only a small por-
tion of training data is labeled, some techniques generate artificial data using both 
labeled and unlabeled data with a modified loss function to train neural networks 
(i.e., semi-supervised learning) [7]. In imbalanced learning contexts, synthetic data 
can be used to balance the target classes’ frequencies and reinforce the learning of 
minority classes (i.e., oversampling) [8]. Some active learning frameworks use syn-
thetic data to improve data selection and classifier training [9]. Other techniques 
employ data generation to train neural networks without labeled data (i.e., self-
supervised learning) [10].

The breadth of these techniques spans multiple domains, such as facial recognition 
[11], Land Use/Land Cover mapping [12], medical image processing [13], Natural 
Language Processing (NLP) [14] or credit card default prediction [15]. Finding appro-
priate data generation techniques varies according to the domain and data type. In 
addition, several synthetic data generation methods are specific to the domain, data 
type, or target ML task. Generally, these methods rely on the domain data’s structure 
and are not easily transferable to tabular data.

Overall, synthetic data generation techniques for tabular data are not as explored 
as image or text data, despite their popularity and ubiquity [16]. Furthermore, these 
techniques are invariant to the original data format; they can be applied to both the 
latent space [3] or tabular data. On one hand, data generation in the latent space uses 
a generative model to learn a manifold, lower-dimensional abstraction over the input 
space [2]. At this level, any tabular data generation mechanism can be applied and 
reconstructed into the input space if necessary. On the other hand, synthetic data 
generation on tabular data can be applied to most problems. Although, the choice 
of generation mechanism depends on (1) the importance of the original statistical 
information and the relationships among features, (2) the target ML task, and (3) the 
role synthetic data plays in the process (i.e., anonymization, regularization, class bal-
ancing, etc.). For example, when generating data to address an imbalanced learning 
problem (i.e., oversampling), the relationships between the different features are not 
necessarily kept, since the goal is to reinforce the learning of the minority class by 
redefining an ML classifier’s decision boundaries. If the goal is to anonymize a data-
set, perform some type of descriptive task, or ensure consistent model interpretabil-
ity, statistical information must be preserved.

Depending on the context, evaluating the quality of the generated data is a complex 
task. For example, for image and time series data, perceptually small changes in the 
original data can lead to large changes in the Euclidean distance [4, 17]. The evalua-
tion of generative models typically accounts primarily for the performance in a spe-
cific task, since good performance in one criterion does not imply good performance 
on another [17]. However, in computationally intensive tasks it is often impracticable 
to search for the optimal configurations of generative models. To address this limita-
tion, other evaluation methods have been proposed to assist in this evaluation, which 
typically use statistical divergence metrics, averaged distance metrics, statistical simi-
larity measurements, or precision/recall metrics [18, 19]. The relevant performance 
metrics found in the literature are discussed in Sect. "Evaluating the Quality of Syn-
thetic Data".
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Motivation, scope and contributions

We focus on data generation techniques in the tabular and latent space (i.e., embedded 
inputs) with a focus on classification and associated ML problems. Related literature 
reviews are mostly focused on specific algorithmic or domain applications, with little 
to no emphasis on the core generative process. For this reason, these techniques often 
appear “sandboxed”, even though there is a significant overlap between them. There are 
some related reviews published since 2019 [4]. Provides a general overview of synthetic 
data generation for time series data anonymization in the finance sector [20]. Reviews 
data generation techniques for tabular health records anonymization [21]. Reviews syn-
thetic data anonymization techniques that preserve the statistical properties of a dataset. 
[22] reviews GAN-based oversampling methods for tabular data, with a focus on cyber-
security and finance [23]. Reviews data augmentation techniques for brain-tumor seg-
mentation [24]. Distinguishes augmentation techniques for text classification into latent 
and data space, while providing an extensive overview of augmentation methods within 
this domain. However, the taxonomy proposed and latent space augmentation methods 
are not necessarily specific to the domain. [25, 26, 14] and [27] also review data augmen-
tation techniques for text data [28]. Reviews GAN architectures for imbalanced learning 
in computer vision tasks. [13] review Generative Adversarial Network architectures for 
medical imaging [29]. Reviews face data augmentation techniques [30, 31] and [32]. Dis-
cuss techniques for image data augmentation [33] and [34] also review time series data 
augmentation techniques. Ref. [35] review data augmentation techniques for graph data. 
The analysis of related literature reviews .1 is shown in Table 1.

This literature review focuses on generation mechanisms applied to tabular data 
across the main ML techniques where tabular synthetic data is used. We also discuss 
generation mechanisms used in the latent space, since the generation mechanisms in 
tabular data and latent space may be used interchangeably. In addition, we focus on the 
ML perspective of synthetic data, as opposed to the practical perspective; according to 
the practical perspective, synthetic data is used as a proxy of real data when it is inacces-
sible, essential, and a secondary asset for tasks like education, software development, or 
systems demonstrations [36]. The ML perspective focuses on the generation of synthetic 
data based on existing, naturally occurring data to either improve a ML task or replace 
the original data.

The different taxonomies of synthetic data generation established in the litera-
ture follow a similar philosophy but vary in terminology and are often specific to 
the technique discussed. Regardless, it is possible to establish a broader taxonomy 
without giving up on specificity. This study provides a joint overview of the different 
data generation approaches, domains, and ML techniques where data generation is 
being used, as well as a common taxonomy across domains. It extends the analyses 
found in these articles and uses the compiled knowledge to identify research gaps. We 
compare the strengths and weaknesses of the models developed within each of these 

1 Results obtained using Google Scholar, limited to articles published since 2019, using the search query  (“syn-
thetic data generation” OR “oversampling” OR “imbalanced learning” OR “data aug-
mentation”) AND (“literature review” OR “survey”) Retrieved on August 11th , 2022. More articles 
were added later whenever found relevant.
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fields. Finally, we identify possible future research directions to address some of the 
limitations found. The contributions of this paper are summarized below:

• Bridge different ML concepts that use synthetic data generation techniques (Sec-
tions "Background" and "Algorithmic applications");

• Propose a synthetic data generation/data augmentation taxonomy to address the 
ambiguity in the various taxonomies proposed in the literature (Section  "Data 
generation taxonomy");

• Characterize all the relevant data generation methods using the proposed taxon-
omy (Sections "Data generation taxonomy" and "Algorithmic applications");

• Consolidate the current generation mechanisms across the different techniques 
and methods to evaluate the quality of synthetic data generation (Sections "Gen-
eration mechanisms" and "Evaluating the quality of synthetic data");

Table 1 Related literature reviews published since 2019

A field containing “—” indicates that the corresponding literature review does not focus on a particular data type, ML 
problem or domain

Reference Data type ML problem Domain Observations

 [4] — Data privacy Finance Analysis of applications, motivation and properties 
of synthetic data for anonymization.

 [20] Tabular Data privacy Healthcare Focus on GANs.

 [21] Tabular Data privacy Statistics Focus on general definitions such as differential 
privacy and statistical disclosure control.

 [22] Tabular Imbalanced learning Various Focus on oversampling with GANs in cybersecurity 
and finance.

 [24] Text Classification — Distinguish 100 methods into 12 groups.

 [25] Text Deep learning — General overview of text data augmentation.

 [26] Text Few-shot learning — Augmentation techniques for machine learning 
with limited data

 [14] Text — — Overview of augmentation techniques and applica-
tions on NLP tasks.

 [27] Text — Various Analysis of industry use cases of data augmentation 
in NLP. Emphasis on input level data augmentation.

 [23] Image Segmentation Medicine Analysis of algorithmic applications on a 2018 
brain-tumor segmentation challenge.

 [28] Image Imbalanced learning — Emphasis on GANs.

 [13] Image — Medicine Emphasis on GANs.

 [29] Image Deep learning — Regularization techniques using facial image data. 
Emphasis on Deep Learning generative models.

 [30] Image Deep learning — Emphasis on data augmentation as a regularization 
technique.

 [31] Image — — Broad overview of image data augmentation. 
Emphasis on traditional approaches.

 [32] Image — Various General overview of image data augmentation and 
relevant domains of application.

 [33] Time series Classification — Defined a taxonomy for time series data augmenta-
tion.

 [34] Time series Various — Analysis of data augmentation methods for clas-
sification, anomaly detection and forecasting.

 [35] Graph Various — Graph data augmentation for supervised and self-
supervised learning.
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• Highlight the main challenges of synthetic data generation and discuss possible 
future research directions (Sections "Discussion"and "Future work").

Bibliometric data collection

Considering the goals determined in this study, the literature collection is more complex 
than usual; the wide range of domains and ML problems where synthetic data is used 
involved considering different naming conventions for the same concepts. In addition, 
it involved the identification of such domains and ML problems and checking for less 
popular mechanism combinations (some of which do not show up in any general query, 
unless purposefully looked up). To achieve this, we followed a 2-step approach: 

1 Collection of related literature reviews/surveys/systematic studies: Allowed us 
to understand which domains and ML problems to discuss, naming conventions 
(for example, latent vs. embeddings vs. econdings vs. feature space; or synthetic 
vs. anonymized vs. augmented vs. artificial vs. resampled data), differences in tax-
onomies across domains, and importance of this study. Based on the rate at which 
research is being developed in ML, we considered exclusively studies from 2019 
onward since any literature review prior to this date can be deemed outdated and 
overlapping with more recent literature reviews.

2 Individual queries according to specific domains, ML problems, concepts, and tax-
onomy proposed. The large amount of queries performed at this stage involved a 
case-by-case screening of the studies’ relevancy, searching through the bibliogra-
phies of existing papers as well as papers citing the original study and the inclusion of 
studies that were a priori known by the authors.

The studies included in this literature review were collected from Google Scholar. Com-
pared to other sources, such as Scopus, Web of Science, Dimensions or OpenCitation’s 
COCI, several studies found Google Scholar to be the most complete source for litera-
ture search. According to [37], it contains 88% of all citations, many of which are not 
found in other sources, and contains 89% to 94% of the citations found by the remaining 
sources. Another study found even higher disparities [38]; Google Scholar found 93% 
to 96% of citations across all areas, far more complete than the remaining options, and 
found 95% and 92% of Web of Science’s and Scopus’ citations, respectively. Since a large 
percentage of the journals/repositories considered are high-impact journals, conference 
proceedings, or well-known repositories, it is reasonable to assume all the targeted stud-
ies were readily available via Google Scholar.

Paper organization

The rest of this paper is organized as follows: Sect.  "Background" defines and formal-
izes the different concepts, goals, trade-offs, and motivations related to synthetic data 
generation. Section "Data generation taxonomy" defines the taxonomy used to catego-
rize all the algorithms analyzed in this study. Section "Algorithmic applications" analyses 
all the algorithms using synthetic data generation, distinguished by learning problem. 
Section  "Generation mechanisms" describes the main generation mechanisms found, 
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distinguished by generation type. Section  "Evaluating the Quality of Synthetic Data" 
reviews performance evaluation methods of synthetic data generation mechanisms. Sec-
tion "Discussion" summarizes the main findings and general recommendations for good 
practices on synthetic data usage. Section "Future Work" discusses limitations, research 
gaps, and future research directions. Section  "Conclusions" presents the main conclu-
sions drawn from this study.

Background
In this section, we define basic concepts, common goals, trade-offs, and motivations 
regarding the generation of synthetic data in ML. We define synthetic data generation 
as the production of artificial observations that resemble naturally occurring ones within 
a certain domain, using a generative model. It requires access to a training dataset, a 
generative process, or a data stream. However, the constraints imposed on this process 
largely depend on the target ML task. For example, to generate artificial data for regu-
larization purposes in supervised learning (i.e., data augmentation) the training dataset 
must be annotated. The production of anonymized datasets using synthetic data gen-
eration requires synthetic datasets to be different from the original data while following 
similar statistical properties. Domain knowledge may also be necessary to encode spe-
cific relationships among features into the generative process.

Relevant learning problems

The breach of sensitive information is an important barrier to the sharing of datasets, 
especially when it concerns personal information [39]. One solution for this problem 
is the generation of synthetic data without identifiable information. Generally speak-
ing, ML tasks that require data with sensitive information are not compromised when 
using synthetic data. The experiment conducted by [6] using relational datasets showed 
that in 11 out of 15 comparisons ( ≈ 73% ), practitioners performing predictive modelling 
tasks using fully synthetic datasets performed the same or better than those using the 
original dataset. Optionally, anonymized synthetic data may be produced with theoreti-
cal privacy guarantees, using differential privacy techniques. This topic is discussed in 
Sect. "Privacy".

A common problem in the training of ML classifiers is their capacity to generalize [40] 
(i.e., reduce the difference in classification performance between known and unseen 
observations). This is particularly true for deep neural networks since they require the 
estimation of high amounts of parameters. Data augmentation is a common method to 
address this problem for any type of ML classifier. The generation of synthetic obser-
vations increases the range of the input space used in the training phase and reduces 
the difference in performance between known and new observations. Although other 
regularization methods exist, data augmentation is a useful method since it does not 
affect the choice in the architecture of the ML classifier and does not exclude the usage 
of other regularization methods. In domains such as computer vision and NLP, data aug-
mentation is also used to improve the robustness of models against adversarial attacks 
[41, 42]. These topics are discussed in higher detail in Sect. "Regularization".

In supervised learning, synthetic data generation is often motivated by the need to bal-
ance target class distributions (i.e., oversampling). Since most ML classifiers are designed 
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to perform best with balanced datasets, defining an appropriate decision boundary to 
distinguish rare classes becomes difficult [43]. Although there are other approaches to 
address imbalanced learning, oversampling techniques are generally easier to implement 
since they do not involve modifications to the classifier. This topic is discussed in higher 
detail in Sect. "Oversampling".

In supervised learning tasks where labeled data is not readily available, but can be 
labeled, an Active Learning (AL) method may be used to improve the efficiency of the 
labeling process. AL aims to reduce the cost of producing training datasets by finding the 
most informative observations to label and feed into the classifier [44]. In this case, the 
generation of synthetic data is particularly useful to reduce the amount of labeled data 
required for a successful ML project. This topic is discussed in Sect. "Active learning".

Two other techniques reliant on synthetic data generation are Semi-supervised 
Learning (Semi-SL) and Self-Supervised Learning (Self-SL). The former leverages both 
labeled and unlabeled data in the training phase, simultaneously, while several methods 
apply perturbations on the training data as part of the training procedure [45]. The lat-
ter, Self-SL, is a technique used to train neural networks in the absence of labeled data. 
Several Semi-SL and Self-SL methods use synthetic data generation as a core element. 
These methods are discussed in Sects. "Semi-supervised Learning" and "Self-supervised 
Learning".

Problem formulation

The original dataset, D = DL ∪DU , is a collection of real observations and is distin-
guished according to whether a target feature exists, DL = ((xi, yi))

l
i=1 , or not, 

DU = (xi)
u
i=1 . All three datasets, D , DL and DU consist of ordered collections with 

lengths l + u , l and u, respectively. Synthetic data generation is performed using a gen-
erator, fgen(x; τ ) = xs , where τ defines the generation policy (i.e., its hyperparameters), 
x ∈ D is an observation and xs ∈ Ds is a synthetic observation. Analogous to D , the syn-
thetic dataset, Ds , is also distinguished according to whether there is an assignment of a 
target feature, Ds

L = ((xsj , y
s
j ))

l′

j=1
 , or not, Ds

U = (xsj )
u′

j=1
.

Depending on the ML task, it may be relevant to establish metrics to measure the qual-
ity of Ds . In this case, a metric fqual(Ds,D) is used to determine the level of similarity/
dissimilarity between D and Ds . In addition, a performance metric to estimate the per-
formance of a model on the objective task, fper , may be used to determine the appropri-
ateness of a model with parameters θ , i.e., fθ . The generator’s goal is to generate Ds with 
arbitrary length, given D ∼ P and Ds ∼ P

s , such that Ps ≈ P , xi  = xj∀xi ∈ D ∧ xj ∈ Ds . 
fgen(x; τ ) attempts to generate a Ds that maximizes either fper , fqual , or a combination of 
both.

Data generation taxonomy
The taxonomy proposed in this paper is a combination of different definitions found 
in the literature, extended with other traits that vary among domains and generation 
techniques. Within image data studies, [30] and [32] divide data augmentation tech-
niques into “basic” or “classical” approaches and deep learning approaches. In both 
cases, the former refers to domain-specific generation techniques, while the latter 
may be applied to any data structure [33]. Proposes a time-series data augmentation 
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taxonomy divided into four families: (1) Random transformation, (2) Pattern mix-
ing, (3) Generative models, and (4) Decomposition. Except for generative models, 
the majority of the methods presented in the remaining families are well-established 
and domain-specific [20]. Defines a taxonomy for synthetic tabular data generation 
approaches divided into three types of approaches: (1) Classical, (2) Deep learning, 
and (3) Others. Most taxonomies follow similar definitions while varying in termi-
nology or distinction criteria. In addition, all taxonomies with categories defined 
as “basic”, “traditional”, or “classical” use these to characterize domain-specific 
transformations.

Within the taxonomies found, none of them consider how a generation mechanism 
employs D into the generation process or, if applicable, the training phase. However, 
it is important to understand whether a generation mechanism randomly selects x 
and a set of close neighbors, thus considering local information only, or considers the 
overall dataset or data distribution for the selection of x and/or generation of xs . Our 
proposed taxonomy is depicted in Fig. 1. It characterizes data generation mechanisms 
using four properties: 

1 Architecture. Defines the broader type of data augmentation. It is based on domain 
specificity, architecture type, or data transformations using a heuristic or random 
perturbation process. Data generation based on data sampling from a probability 
function is considered probability-based. Generation techniques that apply a form 
of random perturbation, interpolation, or geometric transformation to the data 
with some degree of randomness are considered randomized approaches. Typi-
cal, domain-specific data generation techniques are considered domain-specific 
approaches. These techniques apply transformations to a data point leveraging rela-
tionships in the structure of the data (which is known a priori). Generative models 
based on neural network architectures are defined as network-based. These architec-
tures attempt to either generate observations in the latent space and/or by producing 
observations that are difficult to distinguish from the original dataset.

Fig. 1 General taxonomy of data generation mechanisms proposed in this paper
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2 Application level. Refers to the phase of the ML pipeline where the generative pro-
cess is included. Generative models are considered internal if used alongside the pri-
mary ML task, whereas models used before the development of the primary ML task 
are considered external.

3 Scope. Considers the usage of the original dataset’s properties. Generative models 
that consider the density of the data space, statistical properties of D , or attempt to 
replicate/manipulate specific relationships found in D are considered to have a global 
scope, whereas generative models that consider a single observation and/or a set of 
close neighbors are considered to have a local scope. On the one hand, generative 
models with a local scope do not account for Ps but allow for the generation of xs 
within more precise regions in the latent/input space. On the other hand, generative 
models with a global scope have a higher capacity to model Ps but produce xs with 
less precision within the latent/input space.

4 Data space. Refers to the type of data representation used to apply the generative 
model. Generation mechanisms can be applied using the raw dataset (i.e., on the 
input space), an embedded representation of the data (i.e., on the latent space), or 
based on the target feature (i.e., on the output space). Although some studies discuss 
the need to generate synthetic data on the input space [6, 39], various studies suc-
cessfully apply synthetic data generation techniques on a latent space.

Throughout the analysis of the different types of generation mechanisms, all relevant 
methods were characterized using this taxonomy and listed in Table 2.

Algorithmic applications
In this section, we discuss the data generation mechanisms for the different contexts 
where they are applied. We emphasize the constraints in each problem that condition 
the way generation mechanisms are used. The literature search was conducted with the 
Google Scholar database, using multiple keywords related to each learning problem. 
Additional studies were collected by checking the citing and cited articles of each study 
found initially. The related work discussed in these studies was used to check for addi-
tional missing methods. Although a larger preference was given to studies published in 
or after 2019, our analysis includes relevant papers from previous years, including semi-
nal/classical publications in the field. All the steps involved in the literature collection 
were conducted manually and individually for each learning problem.

Privacy

Synthetic data generation is a technique used to produce synthetic, anonymized versions 
of datasets [39]. It is considered a good approach to share sensitive data without com-
promising significantly a given data mining task [92, 107]. Dataset anonymization via 
synthetic data generation attempts to balance disclosure risk and data utility in the final 
synthetic dataset. The goal is to ensure observations are not identifiable and the relevant 
data mining tasks are not compromised [108, 109].

The generation of synthetic datasets allows a more flexible approach to implement 
ML tasks. To do this, it is important to guarantee that sensitive information in D is 
not leaked into Ds . Differential privacy (DP), a formalization of privacy, offers strict 
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Table 2 Summary of the synthetic data generation methods discussed in this work. A field 
containing “—” indicates that the it is either not applicable to the corresponding method, and/or 
applies its own unique approach

Algorithm ML problem Type Architecture Level Data space Scope

SDV [6] Anon. PDF Probabilistic External Input Global

MST [46] DP PGM Probabilistic External Input Global

MWEM [47] DP Other Probabilistic External Input Global

MWEM-PGM [48] DP PGM Probabilistic External Input Global

PrivBayes [49] DP PGM Probabilistic External Input Global

DPGAN [50] DP GAN Network External Latent Global

DPCTGAN [51] DP GAN Network External Latent Global

PATE-GAN [52] DP GAN Network External Lat. + Out. Global

PATECTGAN [51] DP GAN Network External Lat. + Out. Global

FEM [53] DP Perturb. Probabilistic External Input Global

RAP [54] DP Perturb. Probabilistic External Input Global

PDF [55, 56] — PDF Probabilistic External Input Global

Kamino [57] DP PDF Probabilistic External Input Global

RON-GAUSS [58] DP PDF Probabilistic Internal Latent Global

HDMM [59] DP Perturb. Probabilistic External Input Global

DualQuery [60] DP Other Probabilistic External Input Global

ROS(E) [61] Ovs Perturb. Randomized External Input Local

SMOTE [62] Ovs Linear Randomized External Input Local

SMOTENC [62] Ovs Linear Randomized External Input Local

SMOTEN [62] Ovs — — External Input Local

Borderline-SMOTE [63] Ovs Linear Randomized External Input Local

G-SMOTE [64] Ovs Geometric Randomized External Input Local

ADASYN [65] Ovs Linear Randomized External Input Local

KernelADASYN [66] Ovs PDF Probabilistic External Input Local

MOKAS [67] Ovs Other Network External Latent Global

SOMO [68] Ovs Linear Net.+Rand. External Input Global

G-SOMO [69] Ovs Geometric Net.+Rand. External Input Global

GMM-SENN [70] Ovs PDF Probabilistic External Input Global

GMF-SMOTE [71] Ovs Linear Randomized External Input Global

C-VAE [72] Ovs AE Network External Latent Global

Safe-level SMOTE [73] Ovs Linear Randomized External Input Local

LR-SMOTE [74] Ovs Linear Randomized External Input Global

K-means SMOTE [75] Ovs Linear Randomized External Input Global

DBSMOTE [76] Ovs Linear Randomized External Input Local

CGAN [77] Ovs GAN Network External Latent Global

K-means CTGAN [78] Ovs GAN Network External Latent Global

SMOTER [79] Ovs + Reg Linear Randomized External Input Local

G-SMOTER [80] Ovs + Reg Linear Randomized External Input Local

RACOG [81] Ovs PGM Probabilistic External Input Global

wRACOG [81] Ovs PGM Probabilistic External Input Global

RWO [82] Ovs PGM Probabilistic External Input Global

PDFOS [83] Ovs PDF Probabilistic External Input Global

Mixup [84] DA Linear Randomized External In.+Out. Local

M-Mixup [85] DA Linear Network Internal Lat.+Out. Global

NL-Mixup [86] DA Geometric Randomized External In.+Out. Local

AE-DA [87] DA AE Network External In./Lat.+Out. Local

MODALS [88] DA — Network Internal Latent Global

LSI [89] DA AE Network External Lat.+Out. Global
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theoretical privacy guarantees [51]. A differentially private generation mechanism pro-
duces a synthetic dataset, regulated by the privacy parameter ǫ , with statistically indis-
tinguishable results when using either D or neighboring datasets D′ = D\{x} , for any 
x ∈ D . A synthetic data generation model ( fgen ) guarantees (ǫ, δ)-differential privacy if 
∀S ⊆ Range(fgen) all D,D′ differing on a single entry [47]:

In this case, ǫ is a non-negative number defined as the privacy budget. A lower ǫ guaran-
tees a higher level of privacy but reduces the utility of the produced synthetic data. DP 
synthetic data is especially appealing since it is not affected by post-processing; any ML 
pipeline may be applied on Ds while maintaining (ǫ, δ)-differential privacy [110].

Choosing an appropriate DP synthetic data generation technique is generally challeng-
ing and depends on the task to be developed (if known) and the domain. However, mar-
ginal-based algorithms appear to perform well across various tests [111]. A well-known 
method for the generation of DP synthetic datasets is the combination of the Multiplica-
tive Weights update rule with the Exponential Mechanism (MWEM) [47]. MWEM is an 
active learning-style algorithm that maintains an approximation of Ds . At each time step, 
MWEM selects the worst approximated query (determined by a scoring function) using 
the Exponential Mechanism and improves the accuracy of the approximating distribu-
tion using the Multiplicative Weights update rule. A known limitation of this method 
is its lack of scalability. Since this method represents the approximate data distribution 
in datacubes, this method becomes infeasible for high-dimensional problems [48]. This 

(1)Pr[fgen(D) ∈ S] ≤ eǫ · Pr[fgen(D′) ∈ S] + δ

Table 2 (continued)

Algorithm ML problem Type Architecture Level Data space Scope

Gibbs [16] DA PGM Probabilistic External Input Global

MedGAN [90] DA GAN Network External Latent Global

GANBLR [91] DA PGM Probabilistic External Input Global

Table-GAN [92] DA GAN Network External Latent Global

CTGAN [93] DA GAN Network External Latent Global

TVAE [93] DA AE Network External Latent Global

AE [94] DA AE Network External Latent Global

InfoMixup [9] AL Linear Network Internal Lat.+Out. Global

VAEACGAN [95] AL AE Network Internal Latent Global

AL-G-SMOTE [44] AL Geometric Randomized Internal Input Local

DAE [96] Semi-SL AE Network Internal Input Global

�-model [97] Semi-SL Perturb. Randomized Internal In.+Lat. Local

Mean Teacher [98] Semi-SL Perturb. Randomized Internal In.+Lat. Local

ICT [99] Semi-SL Linear Randomized Internal Input Local

Mixmatch [100] Semi-SL Linear Randomized Internal Input Local

SDAT [101] Semi-SL AE+PDF Net.+Prob. Internal Latent Global

MCoM [102] Semi-SL Linear Randomized Int.+Ext. Inp.+Lat. Global

C-Mixup [103] Semi/Self-SL AE+Lin. Net+Rand. Internal Latent Global

VIME [1] Semi/Self-SL Perturb. Randomized Internal Input Local

SubTab [104] Self-SL Perturb. Rand.+Prob. Internal Input Local

Scarf [105] Self-SL Perturb. Randomized Internal Input Local

A-SFS [106] Self-SL Perturb. Randomized Internal Input Local
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limitation was addressed with the integration of a Probabilistic Graphical Model-based 
(PGM) estimation into MWEM (MWEM-PGM) and a subroutine to compute and opti-
mize the clique marginals of the PGM, along with other existing privacy mechanisms 
[48]. Besides MWEM, this method was used to modify and improve the quality of other 
DP algorithms: PrivBayes [49], HDMM [59] and DualQuery [60].

PrivBayes [49] addresses the curse of dimensionality by computing a differentially pri-
vate Bayesian Network (i.e., a type of PGM). Instead of injecting noise into the dataset, 
they inject noise into the lower-dimensional marginals. The high-dimensional matrix 
mechanism (HDMM) [59] mechanism is designed to efficiently answer a set of linear 
queries on high-dimensional data, which are answered using the Laplace mechanism. 
The DualQuery algorithm [60] is based on the two-player interactions in MWEM and 
follows a similar synthetic data generation mechanism as the one found in MWEM.

FEM [53] follows a similar data generation approach as MWEM. It also uses the expo-
nential mechanism and replaces the multiplicative weights update rule with the follow-
the-perturbed-leader (FTPL) algorithm [112]. The Relaxed Adaptive Projection (RAP) 
algorithm [54] uses the projection mechanism [113] to answer queries on the private 
dataset using a perturbation mechanism and attempts to find the synthetic dataset that 
matches the noisy answers as accurately as it can.

Kamino [57] introduces denial constraints in the data synthesis process. It builds on 
top of the probabilistic database framework [55, 56], which models a probability distri-
bution function (PDF) and integrates denial constraints as parametric factors, out of 
which the synthetic observations are sampled. RON-GAUSS [58] combines the random 
orthonormal (RON) dimensionality reduction technique and synthetic data sampling 
using either a Gaussian generative model or a Gaussian mixture model. The motivation 
for this model stems from the Diaconis-Freedman-Meckes effect [114], which states that 
most high-dimensional data projections follow a nearly Gaussian distribution. Since 
RON-GAUSS includes a feature extraction step (using RON) and the synthetic data gen-
erated is not projected back into the input space, we consider RON-GAUSS an internal 
approach to the ML pipeline.

The Maximum Spanning Tree (MST) algorithm [46] is a marginal estimation-based 
approach that produces differentially private data. It uses the Private-PGM mechanism 
[48] that relies on the PGM approach to generate synthetic data. PGM models are most 
commonly used when it is important to maintain the pre-existing statistical properties 
and relationships between features [115].

Another family of DP synthetic data generation techniques relies on the usage of Gen-
erative Adversarial Networks (GAN). DPGAN [50] modifies the original GAN architec-
ture to make it differentially private by introducing noise to gradients during the learning 
procedure. This approach was also applied on a conditional GAN architecture directed 
towards tabular data (CTGAN) [93], which resulted in the DPCTGAN [51] algorithm. 
Another type of GAN-based DP data synthesis method is based on the combination of 
a GAN architecture and the Private Aggregation of Teacher Ensembles (PATE) [116] 
approach. Although the PATE method generates a DP classifier, it served as the basis 
for PATE-GAN [52], a DP synthetic data generation mechanism. PATE-GAN replaces 
the discriminator component of a GAN with the PATE mechanism, which guarantees 
DP over the generated data. The PATE mechanism is used in the learning phase to train 
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an ensemble of classifiers to distinguish real from synthetic data. As a second step, the 
predicted labels are passed (with added noise) to another discriminator, which is used to 
train the generator network.

Finally, there are also popular synthetic data-based anonymization approaches to 
perform anonymization without DP guarantees. For example, the Synthetic Data Vault 
(SDV) [6] anonymizes databases using Gaussian copula models to generate synthetic 
data. However, this method allows the usage of other generation mechanisms. A poste-
rior extension of SDV was proposed to generate data using a CTGAN [93] and to handle 
sequential tabular data using a conditional probabilistic auto-regressive neural network 
[117].

Regularization

When the training data is clean, labeled, balanced, and sampled from a fixed data source, 
the resulting ML classifier is expected to achieve good generalization performance [118]. 
However, if one or more of these assumptions do not hold, the ML model becomes 
prone to overfitting [119]. Regularization techniques are used to address problems like 
overfitting, small training dataset, high dimensionality, outliers, label noise, and cata-
strophic forgetting [120–123]. One of these techniques is data augmentation. It is used 
to increase the size and variability of a training dataset, by producing synthetic obser-
vations [124, 125]. Since it is applied at the data level, it can be used for various types 
of problems and classifiers [126]. Although data augmentation is commonly used and 
extensively studied in computer vision [30] and natural language processing [14], its 
research on tabular data is less common.

Mixup [84] consists of a linear interpolation between two randomly selected observa-
tions and their target feature values, (xi, yi), (xj , yj) ∈ DL , such that given � ∼ Beta(α,α) , 
xs = �xi + (1− �)xj and ys = �yi + (1− �)yj , where α is a predetermined hyperpa-
rameter. This method was the source of Manifold Mixup (M-Mixup) [85]. It gener-
ates synthetic data in the latent space of a neural network classifier’s hidden layers. 
Another Mixup-based data augmentation approach, Nonlinear Mixup (NL-Mixup) 
[86], applies a nonlinear interpolation policy. In this case, � is a set of mixing poli-
cies sampled from a beta distribution applied to each feature. This approach modi-
fies the original mixup approach to generate data within a hyperrectangle/orthotope: 
xs = �⊙ xi + (1−�)⊙ xj , where ⊙ denotes the Hadamard product.

Ref. [87] proposed an autoencoder-based data augmentation (AE-DA) approach where 
the training of the autoencoder is done for each target class, non-iteratively, which 
reduces the amount of time required compared to the batch processing approach. The 
decoding weights of an autoencoder are scaled and linearly combined with an observa-
tion from another class using a coefficient that follows a beta distribution. The latter step 
varies from typical interpolation-based approaches since this coefficient is usually drawn 
from a uniform distribution.

The Modality-Agnostic Automated Data Augmentation in the Latent Space model 
(MODALS) [88] leverages on the concept discussed by [3], as well as the Latent Space 
Interpolation method (LSI) [89] and M-Mixup [85]. However, MODALS introduces a 
framework for data augmentation internally. It contains a feature extraction step, trained 
using a combination of adversarial loss, classification loss, and triplet loss, where latent 
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space generation mechanisms are applied. The classifier is trained using the original and 
the synthetic observations generated in the latent space. In this study, the authors dis-
cuss the difference transform augmentation method (among others already described in 
this study). It generates within-class synthetic data by selecting a xc and two random 
observations within the same class, xi, xj , to compute xs = xc + �(xi − xj) . In addition, 
they also experiment with Gaussian noise and Hard example extrapolation, determined 
by xs = xc + �(xc − µ) , where µ is the mean of the observations within a given class.

In the model distillation approach proposed in [16] the student model is trained with 
synthetic data generated with Gibbs sampling. Although Gibbs sampling is infrequently 
used in recent literature, two oversampling methods using Gibbs sampling appear to 
achieve state-of-the-art performance [81]. However, probabilistic-based approaches 
for data augmentation are uncommon; there are some methods proposed for the more 
specific case of oversampling, but no more related methods for data augmentation were 
found.

A well-known approach to GAN-based data augmentation is Table-GAN [92]. It uti-
lizes the vanilla GAN approach to the generation of synthetic data. However, vanilla 
GAN does not allow the controlled generation of synthetic data given conditional attrib-
utes such as the target feature values in supervised learning tasks and may be the cause 
for aggravated categorical feature imbalance. These limitations were addressed with the 
CTGAN [93] algorithm, which implements the conditional GAN approach to tabular 
data. Another GAN-based architecture, MedGAN [90], can also be adapted for tabu-
lar data and is used as a benchmark in related studies (e.g., [91, 93]). When compared 
to the remaining GAN-based approaches, MedGAN’s architecture is more complex and 
generally underperforms in the experiments found in the literature. The GANBLR [91] 
modifies vanilla GAN architectures with a Bayesian network as both generator and dis-
criminator to create synthetic data. This approach benefits from its interpretability and 
reduced complexity while maintaining state-of-the-art performance across various eval-
uation criteria.

Another less popular approach for network-based synthetic data generation is autoen-
coder architectures. TVAE, proposed in [93] achieved state-of-the art performance. 
It consists of the VAE algorithm with an architecture modified for tabular data (i.e., 
1-dimensional). However, as discussed by the authors, this method contains limitations 
since it is difficult to achieve DP with AE-based models since they access the original 
data during the training procedure, unlike GANs [94]. Studies the impact of data aug-
mentation on supervised learning with small datasets. The authors compare four differ-
ent AE architectures: Undercomplete, Sparse, Deep, and Variational AE. Although all 
of the tested AE architectures improved classification performance, the deep and vari-
ational autoencoders were the best overall performing models.

Oversampling

Since most supervised ML classifiers are designed to expect classes with similar fre-
quencies, training them over imbalanced datasets can result in limited classification 
performance. With highly skewed distributions in DL , the classifier’s predictions tend 
to be biased towards overrepresented classes [8]. For example, one can predict correctly 
with over 99% accuracy whether credit card accounts were defrauded using a constant 
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classifier. One way to address this issue is via oversampling [12], which can be consid-
ered a specific setting of data augmentation. It is an appropriate technique when, given 
a set of n target classes, there is a collection Cmaj containing the majority class obser-
vations and Cmin containing the minority class observations such that DL =

⋃n
i=1 Ci . 

The training dataset DL is considered imbalanced if |Cmaj| > |Cmin| . An oversampler is 
expected to generate a Ds

L =
⋃n

i=1 C
s
i  that guarantees |Ci ∪ Cs

i | = |Cmaj|, ∀i ∈ {1, . . . , n} . 
The model fθ will be trained using an artificially balanced dataset D′

L = DL ∪Ds
L.

Random Oversampling (ROS) is considered a classical approach to oversampling. It 
oversamples minority classes by randomly picking samples with replacement. It is a 
bootstrapping approach that, if generated in a smoothed manner (i.e., by adding pertur-
bations to the synthetic data), is also known as Random Oversampling Examples (ROSE) 
[61]. However, the random duplication of observations often leads to overfitting [127].

The Synthetic Minority Oversampling Technique (SMOTE) [62] attempts to address 
the data duplication limitation in ROS with a two-stage data generation mechanism: 

1 Selection phase. A minority class observation, xc ∈ Cmin , and one of its k-nearest 
neighbors, xnn ∈ Cmin , are randomly selected.

2 Generation phase. A synthetic observation, xs , is generated along a line segment 
between xc and xnn : xs = αxc + (1− α)xnn,α ∼ U(0, 1).

Although the SMOTE algorithm addresses the limitations in ROS, it brings other prob-
lems, which motivated the development of several SMOTE-based variants [64]: (1) it 
introduces noise when a noisy minority class observation is assigned to xc or xnn , (2) 
it introduces noise when xc and xnn belong to different minority-class clusters, (3) it 
introduces near duplicate observations when xc and xnn are too close and (4) it does not 
account for within-class imbalance (i.e., different input space regions should assume dif-
ferent importance according to the concentration of minority class observations).

Borderline-SMOTE [63] modifies SMOTE’s selection mechanism. It calculates the 
k-nearest neighbors for all minority class observations and selects the ones that are going 
to be used as xc in the generation phase. An observation is selected based on the number 
of neighbors belonging to a different class, where the observations with no neighbors 
belonging to Cmin and insufficient number of neighbors belonging to Cmaj are not con-
sidered for the generation phase. This approximates the synthetic observations to the 
border of the expected decision boundaries. Various other methods were proposed since 
then to modify the selection mechanism, such as K-means SMOTE [75]. This approach 
addresses within-class imbalance and the generation of noisy synthetic data by generat-
ing data within clusters. The data generation is done according to each cluster’s imbal-
ance ratio and dispersion of minority class observations. DBSMOTE [76] also modifies 
the selection strategy by selecting as xc the set of core observations in a DBSCAN clus-
tering solution.

The Adaptive Synthetic Sampling approach (ADASYN) [65] uses a comparable 
approach to Borderline-SMOTE. It calculates the ratio of non-minority class observa-
tions within the k-nearest neighbors of each x ∈ Cmin . The number of observations to 
be generated using each x ∈ Cmin as xc is determined according to this ratio; the more 
non-minority class neighbors an observation contains, the more synthetic observations 
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are generated using it as xc . The generation phase is done using the linear mechanism in 
SMOTE. However, this approach tends to aggravate the limitation (1) discussed previ-
ously. A second version of this method, KernelADASYN [66], replaces the generation 
mechanism with a weighted kernel density estimation. The weighing is done according 
to ADASYN’s ratio and the synthetic data is sampled using the calculated Gaussian Ker-
nel function whose bandwidth is passed as an additional hyperparameter.

Modifications to SMOTE’s generation mechanism are less common and generally 
attempt to address the problem of noisy synthetic data generation. Safe-level SMOTE 
[73] truncates the line segment between xc and xnn according to a safe level ratio. Geo-
metric-SMOTE (G-SMOTE) [64] generates synthetic data within a deformed and trun-
cated hypersphere to also avoid the generation of near-duplicate synthetic data. It also 
modifies the selection strategy to combine the selection of majority class observations as 
xnn to avoid the introduction of noisy synthetic data.

LR-SMOTE [74] modifies both the selection and generation mechanisms. The set of 
observations to use as xc contains the misclassified minority class observations using 
an SVM classifier, out of which the potentially noisy observations are removed. The 
k-means clustering method is used to find the closest observations to the cluster cen-
troids, which are used as xc . The observations with a higher number of majority class 
neighbors are more likely to be selected as xnn . Although the generation mechanism syn-
thesizes observations as a linear combination between xc and xnn , it restricts or expands 
this range by setting α ∼ U(0,M) , where M is a ratio between the average euclidean 
distance of each cluster’s minority class observations to xc and the euclidean distance 
between xc and xnn.

The Minority Oversampling Kernel Adaptive Subspaces algorithm (MOKAS) [67] 
adopts a different approach when compared to SMOTE-based mechanisms. It uses the 
adaptive subspace self-organizing map (ASSOM) [128] algorithm to learn sub-spaces 
(i.e., different latent spaces for each unit in the SOM), out of which synthetic data is 
generated. The synthetic data is generated using a lower dimensional representation of 
the input data to ensure the reconstructed data is different from the original observa-
tions. Overall, the usage of SOMs for oversampling is uncommon. Another two exam-
ples of this approach, SOMO [68] and G-SOMO [69] use a similar approach as K-means 
SMOTE. In the case of G-SOMO, the SMOTE generation mechanism is replaced by 
G-SMOTE’s instead.

Oversampling using GMM was found in a few recently proposed algorithms. GMM-
SENN [70] fits a GMM and uses its inverse weights to sample data, followed by the 
application of SMOTEENN to leverage the Edited Nearest Neighbors (ENN) methods as 
a means to reduce the noise in the training dataset. The GMM Filtering-SMOTE (GMF-
SMOTE) [71] algorithm applies a somewhat inverse approach; a GMM is used to detect 
and delete boundary samples the synthetic data is generated with SMOTE.

The contrastive learning-based VAE approach proposed in [72], designed for oversam-
pling, was adapted from the architecture proposed in [129]. They address a limitation 
found in most oversampling methods, where these methods focus almost exclusively on 
the distribution of the minority class, while largely ignoring the majority class distribu-
tion. Their VAE architecture uses two encoders trained jointly, using both a majority and 
a minority class observation. The synthetic observation is generated by sampling from 
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one of the sets of latent variables (which follows a Gaussian distribution) and projecting 
it into the decoder.

Another set of network-based methods that fully replace SMOTE-based mechanisms 
is GAN-based architectures. One example of this approach is CGAN [77]. It uses an 
adversarial training approach to generate data that approximates the original data dis-
tribution and is indistinguishable from the original dataset (according to the adver-
sarial classifier). A more recent GAN-based oversampler, K-means CTGAN [78] uses a 
K-means clustering method as an additional attribute to train the CTGAN. In this case, 
cluster labels allow the reduction of within-class imbalance. These types of approaches 
benefit from learning the overall per-class distribution, instead of using local informa-
tion only. However, GANs require more computational power to train, their perfor-
mance is sensitive to the initialization, and are prone to the “mode collapse” problem.

Statistical-based oversampling approaches are less common. Some methods, such 
as RACOG and wRACOG [81] are based on Gibbs sampling, PDFOS [83] is based on 
probability density function estimations and RWO [82] uses a random walk algorithm. 
Although oversampling for classification problems using continuous features appears as 
a relatively well-explored problem, there is a general lack of research on oversampling 
using nominal features or mixed data types (i.e., using both nominal and continuous fea-
tures) and regression problems. SMOTENC [62] introduces a SMOTE adaptation for 
mixed data types. It calculates the nearest neighbors of xc by including in the Euclid-
ean distance metric the median of the standard deviations of the continuous features 
for every nominal feature value that is different between xc and xnn . The generation is 
done using the normal SMOTE procedure for the continuous features and the nominal 
features are determined with their modes within xc ’s nearest neighbors. The SMOTEN 
[62] is an oversampling algorithm for nominal features only. It uses the nearest neighbor 
approach proposed in [130] and generates xs using the modes of the features in xc ’s near-
est neighbors. Solutions to oversampling in regression problems are generally also based 
on SMOTE, such as SMOTER [79] and G-SMOTER [80].

Active learning

AL is an informed approach to data collection and labeling. In classification problems, 
when |DU | ≫ |DL| and it is possible to label data according to a given budget, AL meth-
ods will search for the most informative unlabeled observations. Once labeled and 
included in the training set, these observations are expected to improve the performance 
of the classifier to a greater extent when compared to randomly selected observations. 
AL is an iterative process where an acquisition function facq(x, fθ ) : DU → R com-
putes a classification uncertainty score for each unlabeled observation, at each iteration. 
facq provides the selection criteria based on the uncertainty scores, fθ and the labeling 
budget [9].

One way to improve an AL process is via the generation of synthetic data, since the 
generation of informative, labeled, synthetic observations reduces the amount of data 
labeling required to achieve a certain classification performance. In this case, synthetic 
data is expected to improve classification with a better definition of the classifier’s deci-
sion boundaries. This allows the allocation of the data collection budget over a larger 
area of the input space. These methods can be divided into AL with pipelined data 
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augmentation approaches and AL with within-acquisition data augmentation [9]. Pipe-
lined data augmentation is the more intuitive approach, where at each training phase the 
synthetic data is produced to improve the quality of the classifier and is independent of 
facq . In [44], the pipelined approach in tabular data achieves superior performance com-
pared to the traditional AL framework using the G-SMOTE algorithm and the oversam-
pling generation policy. Other methods, although developed and tested on image data, 
could also be adapted for tabular data: in the Bayesian Generative Active Deep Learning 
framework [95] the authors propose VAEACGAN, which uses a VAE architecture along 
with an auxiliary-classifier generative adversarial network (ACGAN) [131] to generate 
synthetic data.

The Look-Ahead Data Acquisition via augmentation algorithm [9] proposes an acqui-
sition function that considers the classification uncertainty of synthetic data generated 
using a given unlabeled observation, instead of only estimating the classification uncer-
tainty of the unlabeled observation itself. This approach considers both the utility of the 
augmented data and the utility of the unlabeled observation. This goal is achieved with 
the data augmentation method InfoMixup, which uses M-Mixup [85] along with the 
distillation of the generated synthetic data using facq . The authors additionally propose 
InfoSTN, although the original Spatial Transform Networks (STN) [132] were originally 
designed for image data augmentation.

Semi‑supervised learning

Semi-supervised learning (Semi-SL) techniques modify the learning phase of ML 
algorithms to leverage both labeled and unlabeled data. This approach is used when 
|DU | ≫ |DL| (similarly to AL settings), but additional labeled data is too difficult to 
acquire. In recent years, the research developed in this area directed much of its focus 
to neural network-based models and generative learning [45]. Overall, Semi-SL can be 
distinguished between transductive and inductive methods. In this section, we will focus 
on synthetic data generation mechanisms in inductive, perturbation-based Semi-SL 
algorithms, applicable to tabular or latent space data.

The ladder network [96] is a semi-supervised learning architecture that learns a mani-
fold latent space using a Denoising Autoencoder (DAE). The synthetic data is generated 
during the learning phase; random noise is introduced into the input data and the DAE 
learns to predict the original observation. Although this method was tested with image 
data, DAE networks can be adapted for tabular data [133].

The �-model simultaneously uses both labeled and unlabeled data in the training 
phase [97]. Besides minimizing cross-entropy, they add to the loss function the squared 
difference between two input-level transformations (Gaussian noise and other image-
specific methods) in the network’s output layer. Mean Teacher algorithm [98] built upon 
the �-model, which used the same types of augmentation. The Interpolation Consist-
ency Training (ICT) [99] method combined the mean teacher and the Mixup approach, 
where synthetic observations are generated using only the unlabeled observations and 
their predicted label using the teacher model. In Mixmatch [100], the Mixup method is 
used by randomly selecting any pair of observations and their true labels (if it’s a labeled 
observation) or predicted label (if it’s unlabeled).
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The Semi-SL Data Augmentation for Tabular data (SDAT) algorithm [101] uses an 
autoencoder to generate synthetic data in the latent space with Gaussian perturbations. 
The Contrastive Mixup (C-Mixup) [103] algorithm generates synthetic data using the 
Mixup mechanism with observation pairs within the same target label. The Mixup Con-
trastive Mixup algorithm (MCoM) [102] proposes the triplet Mixup method using three 
observations where xs = �ixi + �jxj + (1− �i − �j)xk , where �i, �j ∼ U(0,α) , α ∈ (0, 0.5] 
and xi , xj and xk belong to the same target class. The same algorithm also uses the 
M-Mixup method as part of the latent space learning phase.

Self‑supervised learning

Self-supervised learning (Self-SL), although closely related to Semi-SL, assumes DL = ∅ . 
These models focus on representation learning using DU via secondary learning tasks, 
which can be adapted to multiple downstream tasks [134]. This family of techniques 
allows the usage of raw, unlabeled data, which is generally cheaper to acquire when com-
pared to processed, curated, and labeled data. Although not all Self-SL methods rely 
on data augmentation (e.g., STab [135]), the majority of state-of-the-art tabular Self-SL 
methods use data augmentation as a central concept for the training phase.

The value imputation and mask estimation method (VIME) [1] is a Semi-SL and Self-
SL approach that introduces Masking, a tabular data augmentation method. It is moti-
vated by the need to generate corrupted, difficult-to-distinguish synthetic data in a 
computationally efficient way for Self-SL training. They replace with probability pm the 
feature values in xi with another randomly selected value of each corresponding fea-
ture. To do this, the authors use a binomial mask vector m = [m1, . . . ,md]⊥ ∈ {0, 1}d , 
mj ∼ Bern(pm) , observation xi and the noise vector ǫ (i.e., the vector of possible replace-
ment values). A synthetic observation is produced as xs = (1−m)⊙ xi +m⊙ ǫ . A 
subsequent study that proposed the SubTab [104] framework presents a multi-view 
approach; analogous to cropping in image data or feature bagging in ensemble learn-
ing. In addition, the authors propose an extension of the masking approach proposed in 
VIME by introducing noise using different approaches: Gaussian noise, swap-noise (i.e., 
the approach proposed in VIME) and zero-out noise (i.e., randomly replace a feature 
value by zero).

The Self-supervised contrastive learning using random feature corruption method 
(Scarf ) [105] uses a similar synthetic data generation approach as VIME. Scarf differs 
from VIME by using contrastive loss instead of the denoising auto-encoder loss used 
in VIME. A-SFS [106] is a Self-SL algorithm designed for feature extraction. It achieved 
higher performance compared to equivalent state-of-the-art augmentation-free 
approaches such as Tabnet [136] and uses the masking generation mechanism described 
in VIME.

Generation mechanisms
In this section, we provide a general description of the synthetic data generation mecha-
nisms found in the learning problems in Sect. "Algorithmic applications". Table 3 sum-
marizes the assumptions and usage of the generation mechanisms across the selected 
works and learning problems.
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We focus on 2 key conditions for the data generation process, smoothness, and mani-
fold space (adapted from the background in [45]). The smoothness condition requires 
that if two observations xi, xj are close, then it’s expected that yi, yj have the same 
value. The manifold condition requires synthetic data generation to occur within local 
Euclidean topological spaces. Therefore, a generation mechanism with the smoothness 
requirement also requires a manifold, while the opposite is not necessarily true.

In the remaining subsections, we will describe the main synthetic data generation 
mechanisms found in the literature, based on the studies discussed in Sect. "Algorithmic 
applications".

Perturbation mechanisms

The general perturbation-based synthetic data generation mechanism is defined as 
xs = xi + ǫ , where ǫ is the noise vector sampled from a certain distribution. The random 
perturbation mechanism can be thought of as the non-informed equivalent of PGMs 
and PDFs. It samples |ǫ| values from a uniform distribution, i.e., ei ∼ U(·, ·), ∀ei ∈ ǫ , 
while the minimum and maximum values depend on the context and level of perturba-
tion desired, typically centered around zero.

Laplace (commonly used in DP algorithms) and Gaussian perturbations sample ǫ with 
ei ∼ Lap(·, ·) and ei ∼ N (·, ·) , respectively. Within the applications found, in the pres-
ence of categorical features, these methods tend to use n-way marginals (also known 

Table 3 Analysis of synthetic data generation mechanisms

Type Mechanism Smoothness Manifold Priv. Reg. Ovs. AL Semi‑SL Self‑SL

Perturbation Random � � × × � × × ×
Laplace � � � × × × × ×
Gaussian � � � � × × � �

Swap-noise × × × × × × � �

Zero-out noise × × × × × × × �

PDF Gaussian Gen. × � � × � × × ×
Gaussian Mix. × � � × � × × ×
KDE × � × × � × × ×

PGM Bayesian Net. × × � � × × × ×
Gibbs × × × � � × × ×
Random Walk × × × × � × × ×

Linear Between-class Int. × � × � × � � ×
Within-class Int. � � × � � � � ×
Extrapolation � � × � � × × ×
Hard Extra. � � × � � × × ×
Inter.+Extra. � � × × � × × ×
Difference Transf. � � × � × × × ×

Geometric Hypersphere � � × × � � × ×
Triangular � � × × × × � ×
Hyperrectangle × � × � × × × ×

Neural nets. GAN × × � � � � × ×
AE × × × � � � � ×

Others Exponential M. × × � × × × × ×
Reconstruction err. × × × × � × × ×
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as conjunctions or contingency tables [60]) to ensure the generated data contains vari-
ability in the categorical features and the distribution of categorical feature values fol-
lows some given constraint. Although various other distributions could be used to apply 
perturbations, the literature found primarily focuses on introducing noise via uniform, 
Laplace, and Gaussian distributions.

Masking modifies the original perturbation-based approach by introducing a binomial 
mask vector, m = [m1, . . . ,md]⊥ ∈ {0, 1}d ,mi ∼ Bern(pm) and the generation mecha-
nism is defined as xs = (1−m)⊙ xi +m⊙ ǫ [1]. The ǫ variable is defined according to 
the perturbation used. The Gaussian approach generates the noise vector as ǫ = xi + ǫ′ , 
where e′i ∼ N (·, ·), ∀e′i ∈ ǫ′ . The swap-noise approach shuffles the feature values from all 
observations to form ǫ , while the zero-out noise approach sets all ǫ values to zero. Intui-
tively, the masking technique modifies an observation’s feature values with probability 
pm , instead of adding perturbations over the entire observation. Figure 2 shows a visual 
depiction of the masking technique.

Probability density function mechanisms

The Gaussian generative model, despite being infrequently used when compared to the 
remaining Probability Density Function mechanisms discussed in this subsection, is an 
essential building block for these mechanisms. In particular, we focus on the multivari-
ate Gaussian approach, which follows near-Gaussian distribution assumptions, which is 
rarely reasonable on the input space. However, for high-dimensional data, it is possible 
to motivate this approach via the Diaconis-Freedman-Meckes effect [114], which states 
that high-dimensional data projections generally follow a nearly Gaussian distribution. 
The Gaussian generative model produces synthetic data from a Gaussian distribution 
xs ∼ N (µ,�) , where µ ∈ R

d is a vector with the features’ means and � ∈ R
d×d is the 

covariance matrix. It follows the following density function [58]:

Consequently, to define a Gaussian generative model it is only necessary to estimate the 
dataset’s mean and covariance matrix.

A Gaussian mixture model (GMM) comprises several Gaussian distributions that aim 
to represent subpopulations within a dataset. Its training procedure allows the model to 
iteratively learn the subpopulations using the Expectation Maximization algorithm. A 
GMM becomes more appropriate than the Gaussian generative model when the data is 
expected to have more than one higher-density region, leading to a poor fit of unimodal 
Gaussian models.

(2)f (x) = 1
√

(2π)ddet(�)
exp

(

−1

2
(x − µ)T�−1(x − µ)

)

Fig. 2 Examples of synthetic observations generated with different masking approaches
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Kernel Density Estimation (KDE) methods use a kernel function to estimate the den-
sity of the dataset’s distribution at each region of the input/latent space. Despite the vari-
ous kernel options, the Gaussian kernel is commonly used for synthetic data generation 
[66]. The general kernel estimator is defined as follows:

Where N = |D| , h is a smoothing parameter known as bandwidth and K is the kernel 
function. The Gaussian kernel is defined as follows:

Therefore, the Gaussian KDE approach can also be expressed as p̂(x) = 1
N+h

∑N
i=1Gi(x) , 

while the data is sampled from the estimated probability distribution. Figure 3 shows a 
visualization of the PDF mechanisms discussed, applied to a mock dataset.

Probabilistic graphical models

A Bayesian network can be thought of as a collection of conditional distributions. It rep-
resents the joint probability distribution over the cross-product of the feature domains 
in D . It is a directed acyclic graph that represents D ’s features as nodes and their con-
ditional dependencies as directed edges. The set of features pointing directly to feature 
v ∈ V , d = |V | via a single edge are known as the parent variables, pa(v). A Bayesian net-
work calculates p(x) as the product of the individual density functions, based on the con-
ditional probabilities of the parent variables:

Since the construction of a directed acyclic graph can be labor intensive, different ML 
approaches were developed for the learning of these structures [137]. Bayesian networks 
can be used for synthetic data generation when the relationship between variables is 
known (or can be learned) and when the data is high-dimensional, making the sampling 
process non-trivial.

(3)p̂(x) = 1

N + h

N
∑

i=1

K

(

x − xi

h

)

(4)Gi(x) = K

(

x − xi

h

)

= 1

(
√
2πh)d

exp

(

−1

2

(x − xi)
T (x − xi)

h

)

(5)p(x) =
∏

v∈V
p(xv|xpa(v))

Fig. 3 Examples of PDF mechanisms fitted to a mock dataset. Legend: a Original dataset, b Gaussian 
generative model, c Gaussian Mixture Model and d Gaussian Kernel Density Estimation  
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Random walk algorithms comprise the general process of iterating through a set of 
random steps. Although uncommon, random walk approaches may be used to sample 
data. The random walk approach described in [82] uses the Gaussian noise mech-
anism over minority class observations to create synthetic observations. The Gibbs 
sampling mechanism also performs a random walk by iterating through sampled fea-
ture values.

Gibbs sampling is a Markov Chain Monte Carlo algorithm that iteratively samples 
a synthetic observation’s feature values. It is a suitable method to sample synthetic 
data from a Bayesian network. The process starts with an initial observation selected 
from D , x0 , and is used to begin the sampling process. In its original format, the sam-
pling of each feature value v in xsi  is conditioned by xsi−1 and the feature values already 
sampled from xsi  , such that xsi,v ∼ p(xsi,v|xsi,1, . . . , xsi,v−1, x

s
i−1,v+1, . . . , x

s
i−1,d) . Therefore, 

Gibbs sampling is a special case of the Metropolis-Hastings algorithm.

Linear transformations

Linear interpolation mechanisms can be split into two subgroups: between and 
within-class interpolation. Both mechanisms follow a similar approach; they use a 
scaling factor � , typically sampled from either U(0, 1) or Beta(α,α):

The within-class interpolation mechanism selects two observations from the same class, 
while the between-class interpolation mechanism selects two observations from differ-
ent classes and also interpolates the one-hot encoded target classes yi and yj . However, 
the approach to select observations might vary according to the ML task and data gen-
eration algorithm. For example, most SMOTE-based methods select a center observa-
tion and a random observation within its k-nearest neighbors belonging to the same 
class, while the Mixup method selects two random observations, regardless of their class 
membership.

The observation-based linear extrapolation mechanism modifies Eq.  6 such 
that xs = xi + �(xi − xj) , while the hard extrapolation mechanism uses the mean 
of a class’ observations, µc and a randomly selected observation to generate 
xs = xci + �(xci − µc) . Some methods also combine both interpolation and extrapola-
tion. This can be achieved using Eq. 6 and modifying � ’s range to either decrease its 
minimum value below zero or increase its maximum value above one.

The difference transform mechanism uses two observations to compute a transla-
tion vector (multiplied by the scaling factor � ) and apply it to a third observation:

Although there are various linear transformation mechanisms in the literature, the 
majority of the studies applied linear interpolation mechanisms. Within-class interpola-
tion was frequently found in oversampling methods, while between-class interpolation 
was found most often in regularization methods. A depiction of the linear transforma-
tion mechanisms found in the literature is presented in Fig. 4.

(6)xs = �xi + (1− �)xj = xj + �(xi − xj)

(7)xs = xi + �(xj − xk)
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Geometric transformations

Overall, geometric transformation mechanisms were not frequently found in the lit-
erature. They are primarily used to develop Mixup or SMOTE-based variants. Fig-
ure 5 shows a visual example of the related mechanisms.

The hypersphere mechanism generates data within a distorted, n-dimensional hyper 
spheroid. It is formed using an observation to define the center of the geometry and 
another to define its edge. It is defined with two hyperparameters, the deformation 
factor, αdef ∈ [0, 1] , and the truncation factor, αtrunc ∈ [−1, 1] . The deformation factor 
deforms the hypersphere into an elliptic shape, where αdef = 1 applies no deformation 
and αdef = 0 creates a line segment. The truncation factor limits the generation area 
of the hyper spheroid within a subset of the hypersphere, where αtrunc = 0 applies 
no truncation, αtrunc = 1 uses the half of the area between the two selected observa-
tions and αtrunc = −1 uses the opposing area. In Fig. 5a, the two generation areas were 
formed using approximately αtrunc = αdef = 0.5.

The triangular mechanism selects three observations to generate 
xs = �ixi + �jxj + (1− �i − �j)xk , where �i, �j ∼ U(0,α) , α ∈ (0, 0.5] . The hyperrec-
tangle mechanism uses an approach similar to Eq.  6. However, the scaling factor is 
changed into a scaling vector, � = [�1, . . . , �d] ∈ [0, 1]d , �i ∼ Beta(α,α) , where α is a 
hyperparameter used to define the Beta distribution. A synthetic observation is gen-
erated with xs = �⊙ xi + (1−�)⊙ xj , where ⊙ denotes the Hadamard product. This 
operation originates a generation area like the ones presented in Fig. 5c.

Fig. 4 Examples of linear transformation mechanisms. Legend: a Between-class interpolation, b Within-class 
interpolation, c Observation-based extrapolation, d Hard extrapolation, e Combination of interpolation and 
extrapolation and (f ) Difference transform

Fig. 5 Examples of geometric transformation mechanisms. Legend: a hypersphere mechanism, b triangular 
mechanism and c hyperrectangle mechanism
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Neural networks

Generative Adversarial Network (GAN) architectures are structured as a minimax two-
player game composed of two models, a generator, and a discriminator. Both models are 
trained simultaneously throughout the learning phase, to learn to generate data with 
similar statistical properties when compared to the original data. The generative model 
captures the data distribution, while the discriminator estimates the probability of an 
observation coming from the training data. The goal of the generator model is to pro-
duce synthetic observations that are capable of fooling the discriminator, making it diffi-
cult for the discriminator to distinguish real from synthetic observations. Although they 
were originally developed in an unsupervised learning setting [138], subsequent con-
tributions proposed GANs with several different architectures, for semi-SL, supervised 
learning (for both regularization and oversampling), and reinforcement learning.

An autoencoder (AE) is a type of neural network architecture that learns manifold rep-
resentations of an input space. These models are typically trained by regenerating the 
input and are designed with a bottleneck in the hidden layers that correspond to the 
learned latent space. It contains two parts, an encoder, and a decoder. The encoder trans-
forms the input data into lower-dimensional representations (i.e., the latent space), while 
the decoder projects these representations into the original input space. Since it was first 
proposed [139], many variants were developed for multiple applications. However, based 
on the literature found, the variational AE architecture appears to be the most popular 
approach.

Evaluating the quality of synthetic data
The vast majority of synthetic data generation models are evaluated on an ML utility 
basis. Compared to research on the development of actual synthetic data generation 
algorithms, there is a general lack of research on the development of metrics to evaluate 
their quality beyond performance metrics such as Overall Accuracy (OA) or F1-score. 
One motivation to do this is the ability to anticipate the quality of the data for the target 
task before training an ML classifier, which may be expensive and time-consuming. This 
is a challenging problem since the usefulness of synthetic data generators depends on 
the assumptions imposed according to the dataset, domain, and ML problem [18]. This 
section focuses on the main evaluation approaches found in the literature beyond classi-
fication performance, as well as recently proposed methods. For a more comprehensive 
analysis of performance metrics for synthetic data evaluation, the reader is referred to 
[140] and [17].

The GANBLR model [91] was evaluated on three aspects: (1) ML utility, (2) Statistical 
similarity, and (3) Interpretability. In [93], the authors evaluate the CTGAN and TVAE 
models using a likelihood fitness metric (to measure statistical similarity) and ML effi-
cacy (i.e., utility). [141] evaluate synthetic data generators using a 2-step approach: Simi-
larity comparison and data utility. According to [19], the evaluation of generative models 
should quantify three key aspects of synthetic data: 

1 Fidelity. Synthetic observations must resemble real observations;
2 Diversity. Synthetic observations should cover D ’s variability;
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3 Generalization. Synthetic observations should not be copies of real observations;

Ensuring these properties are met will secure the objectives defined in Sect.  "Problem 
formulation": Ps ≈ P and xi  = xj∀xi ∈ D ∧ xj ∈ Ds . However, this is a relatively recent 
consideration that was not commonly found in the literature. The only study found to 
explicitly address all three aspects was [19], although all other studies and metrics dis-
cussed in Section "Quantitative approaches" address (implicitly or explicitly) at least one 
of these aspects.

The effective evaluation of synthetic data generation methods is a complex task. Good 
performance on one evaluation method does not necessarily imply a good performance 
on the primary ML task, results from different evaluation methods seem to be inde-
pendent, and evaluating the models directly onto the target application is generally rec-
ommended [17]. Therefore, each evaluation procedure must be carefully implemented 
and adapted according to the use case.

Quantitative approaches

The Kullback–Leibler (KL) divergence (and equivalently the log-likelihood) is a common 
approach to evaluate generative models [17]. Other commonly used metrics, like Parzen 
window estimates, appear to be a generally poor quality estimation method and are not 
recommended for most applications [17]. KL divergence is defined as follows:

Where X  is a probability space, P and Q are estimated probability distributions based on 
P and Ps , respectively. The KL divergence is a non-symmetric measurement that repre-
sents how a reference probability distribution (P) differs from another (Q). A DKL close 
to zero means Q is similar to P. However, metrics like the KL divergence or the log-likeli-
hood are generally difficult to interpret, do not scale well for high dimensional data, and 
fail to highlight model failures [19]. Another related metric, used in [142], is the Jensen-
Shannon (JS) divergence. It consists of a symmetrized and smoothed variation of the KL 
divergence. Having M = P+Q

2  , it is calculated as:

The Wasserstein Distance is another relevant metric to estimate the distance between 
two distribution functions. It was also used to develop GAN variants since it improves 
the stability in the training of GANs [143, 144].

In past literature, the propensity score was considered an appropriate performance 
metric to measure the utility of masked data [145]. This metric is estimated using a 
classifier (typically a logistic regression) trained on a dataset with both the original and 
synthetic data, using as a target the source of each observation (synthetic or original). 
The goal of this classifier is to predict the likelihood of an observation being synthetic. 
Therefore, this approach guarantees observation-level insights regarding the faithfulness 
of each observation. [145] suggest a summarization of this metric, also defined as the 
propensity Mean Squared Error (pMSE) [18]:

(8)DKL(P||Q) =
∑

x∈X
P(x) log

P(x)

Q(x)

(9)DJS(P||Q) = DKL(P||M)+ DKL(Q||M)

2
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Where N = |D ∪Ds| , c = |Ds|
N  and p̂i is the estimated propensity score for observation i. 

When a synthetic dataset is indistinguishable from real data, pMSE will be close to zero. 
Specifically, when the data source is indistinguishable, the expected pMSE is given by 
[146]:

Where k is the number of parameters in the logistic regression model (including bias). 
When the synthetic dataset is easily distinguishable from the original dataset, Up will 
be close to (1− c)2 . [39], established a generally consistent, weak negative correlation 
between Up and OA.

[18] proposed TabSynDex to address the lack of uniformity of synthetic data evalua-
tion, which can also be used as a loss function to train network-based models. It is a sin-
gle metric evaluation approach bounded within [0, 1] that consists of a combination of 
(1) the relative errors of basic statistics (mean, median, and standard deviation), (2) the 
relative errors of correlation matrices, (3) a pMSE-based index, (4) a support coverage-
based metric for histogram comparison and (5) the performance difference in an ML 
efficacy-based metric between models trained on real and synthetic data.

The three-dimensional metric proposed by [19] presents an alternative evaluation 
approach. It combines three metrics ( α-Precision, β-Recall, and Authenticity) for various 
application domains. It extends the Precision and Recall metrics defined in [147] into 
α-Precision and β-Recall, which are used to quantify fidelity and diversity. Finally, the 
authenticity metric is estimated using a classifier that is trained based on the distance 
(denoted as d) between xs and its nearest neighbor in D , xi∗ ; if d(xs, xi∗) is smaller than 
the distance between xi∗ and its nearest neighbor in D\{xi∗} , xs will likely be considered 
unauthentic. This approach provides a threefold perspective over the quality of Ds and 
allows a sample-level analysis of the generator’s performance. Furthermore, there is a 
relative trade-off between the two metrics used to audit the generator and the synthetic 
data; a higher α-Precision score will generally correspond to a lower Authenticity score 
and vice versa.

A less common evaluation approach is to attempt to replicate the results of stud-
ies using synthetic data [148–150]. Another method is the computation of the average 
distance among synthetic observations and their nearest neighbors within the original 
dataset [141]. The Confidence Interval Overlap and Average Percentage Overlap metrics 
may be used to evaluate synthetic data specifically for regression problems [151, 152].

Visual and qualitative approaches

One of the qualitative approaches found in the literature is the comparison of the fea-
tures’ distributions with synthetic data and the original data using histogram plots [141]. 
This comparison can be complemented with the quantification of these distribution dif-
ferences [148]. A complementary approach is the comparison of correlation matrices via 
heat map plots [141].

(10)Up = pMSE = 1

N

N
∑

i=1

(p̂i − c)
2

(11)E(pMSE) = (k − 1)(1− c)2c

N
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Another way to assess the quality of synthetic data is to evaluate individual, synthetic 
data points and collect subjective evaluations by domain experts [148]. The goal of such 
a test is to understand whether domain experts are able to distinguish synthetic from 
real data, which could be quantified with classification performance metrics. A low clas-
sification performance implies synthetic data that is difficult to distinguish from real 
data.

Discussion
The generation of tabular and latent space synthetic data has applications in multiple ML 
tasks and domains. Specifically, we found six areas that were shown to benefit from syn-
thetic data: data privacy, regularization, oversampling, active learning, semi-supervised 
learning, and self-supervised learning. Synthetic data may be used either as an accessory 
task to improve an ML model’s performance over a primary task (e.g., regularization and 
oversampling), an intermediate task (e.g., feature extraction), or as a final product itself 
(e.g., data anonymization). The analysis of data generation algorithms for each relevant 
learning problem led to the proposal of a general-purpose taxonomy primarily focused 
on the underlying mechanisms used for data generation. We characterized every algo-
rithm discussed in this work into four categories: (1) architecture, (2) application level, 
(3) data space, and (4) scope. The successful implementation of synthetic data generation 
generally requires a few considerations: 

1 Ensuring the dataset’s features are comprised within similar, fixed boundaries. For 
example, any method using a neighbors-based approach will rely on distance meas-
urements (typically the Euclidean distance), which is sensitive to the scale of the data 
and a nearest-neighbors estimation may vary depending on whether the data was 
scaled a priori. This can be achieved with data scaling.

2 Various generation mechanisms require a manifold. There are two approaches to 
address non-manifold input data: (1) Adopt methods sensitive to the presence of 
non-metric features, or (2) project the input data into a manifold (i.e., a latent space).

3 The smoothness assumption is prevalent in linear and perturbation-based data gen-
eration mechanisms. If a classification problem has low class separation and it is dif-
ficult to solve, the choice in the design of the generator algorithm is also difficult. 
Generally, generation algorithms with a global scope might adapt better to classifica-
tion problems with low separability. On the other hand, problems with higher sepa-
rability might require a definition of more uniform decision boundaries to prevent 
overfitting, which can be achieved with generation algorithms with a local scope.

4 Considering the trade-off between performance and computational power. It is gen-
erally understood that computationally-intensive approaches tend to produce syn-
thetic data with higher quality. When trained properly, neural network mechanisms 
typically lead to synthetic data that is more difficult to distinguish compared to the 
remaining approaches. Geometric mechanisms have also achieved good results 
but often require careful tuning of their hyperparameters. Linear and perturbation 
mechanisms do not require much training and use fewer hyperparameters but have 
been known for often producing low diversity synthetic data (vis a vis the original 
dataset).
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This work focused primarily on the mechanisms used to generate synthetic observa-
tions; preprocessing, learning phase design, latent space learning, and ML task-specific 
contributions were secondary objectives for analysis. Consequently, understanding how 
the constraints within each task condition the choice and design of the synthetic data 
generator is a subject of future work.

Throughout the analysis of the literature, we identified six types of generation mech-
anisms and discuss more specific methods used in classical and state-of-the-art tech-
niques. Techniques for data privacy via synthetic data rely primarily on perturbation 
mechanisms, PDFs, PGMs, and Neural networks. Regularization approaches frequently 
employ Linear mechanisms. Other less commonly used mechanisms are PGMs, Neural 
network approaches, geometric, and perturbation mechanisms. Various Oversampling 
algorithms have been proposed using each of the mechanisms found. However, the most 
prevalent mechanisms used were linear-based. AL methods rarely employ synthetic 
data. The few studies found employ primarily linear and geometric mechanisms, and a 
minority used AE models for latent space augmentation. Most Semi-SL methods used 
perturbation and linear mechanisms, while geometric mechanisms are rarely used. All 
tabular Self-SL methods used perturbation mechanisms.

Designing an approach to measure the quality of synthetic data depends on the tar-
get ML problem. A holistic evaluation approach for synthetic data should consider the 
analysis of (1) ML utility, (2) Statistical similarity, and (3) interpretability. The analysis 
of statistical similarity can be further divided into (1) fidelity, (2) diversity, and (3) gen-
eralization. However, balancing the analysis between these three perspectives is not a 
straightforward task. For example, duplicating a dataset to form a synthetic dataset will 
result in the best possible fidelity and diversity, but bad generalization. Overall, there is a 
paucity of research into the development of comprehensive analyses of synthetic data, as 
well as understanding the balance between the different types of analyses.

Future work
As discussed throughout our analysis, it appears that synthetic data generation research 
is generally isolated within ML problems and/or domains. Given the breadth and com-
plexity of input-level and latent-level data generation mechanisms, it is increasingly 
important to find an a priori approach to efficiently determine appropriate data gen-
eration policies and techniques. However, the complexity of this task is determined by 
various factors: different data types, ML problems, model architectures, computational 
resources, performance metrics, and contextual constraints. Auto-augmentation and 
meta-learning aim to address this challenge and are still subject to active research.

Finally, various synthetic data generation algorithms are research-based, and might 
not be usable or feasible to be implemented by practitioners [24]. One way to address 
this problem is to publish the code developed, and ideally make them available as open-
source libraries for out-of-the-box usage.

Latent space learning

 It is understood that, if learned properly, the latent space is expected to be convex and 
isotropic. In that case, using linear generation techniques in the latent space would pro-
duce synthetic data without introducing noise [88]. However, it is unclear which types of 
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model/architectures and training procedures contribute to the learning of a good latent 
space according to the context. Furthermore, we found a limited amount of research on 
tabular data augmentation using auto-encoder architectures. Although there are stud-
ies performing data augmentation on tabular data in various domains [94], defining the 
architecture and learning phase of an AE is not an intuitive task. Generally, autoencod-
ers are used to learn a manifold for more complex data types. As long as the method 
used to generate the latent space is appropriate, the methods discussed in this study 
could be used in the latent space regardless of the type of data.

Selection of generation mechanisms

 It remains an open question which generation mechanisms, or types of mechanisms, 
create better synthetic data [88]. Although there is not necessarily a one-size-fits-all 
solution, a general set of rules of thumb could be explored, such as understanding how 
certain characteristics of a problem will affect the choice of the generation policy, which 
types of mechanisms are more appropriate for different types of dataset, ML model 
architecture, domains, and target ML problem, or the trade-offs between the different 
types of generation mechanism. A better understanding of the relationship between 
recently proposed methods for evaluating synthetic data (as discussed in Sect.  "Evalu-
ating the quality of synthetic data") and the performance over the target ML problem 
might contribute to answering this question. Furthermore, determining the use cases, 
quality, and general performance of data generation on the input, latent, and output 
space should be further developed. Finally, it is still unclear why synthetic data genera-
tion works for each of the ML tasks discussed. Research on this topic lacks depth and 
fails to address the theoretical underpinnings [14, 154].

Data privacy

 The evaluation of anonymization techniques lacks standardized, objective, and reliable 
performance metrics and benchmark datasets to allow an easier comparison across clas-
sifiers to evaluate key aspects of data anonymization (resemblance, utility, privacy, and 
performance). These datasets should contain mixed data types (i.e., a combination of 
categorical, ordinal, continuous, and discrete features) and the metrics should evaluate 
the performance of different data mining tasks along with the anonymization reliability. 
This problem appears to be universal across domains. For example, [20] observed the 
lack of a universal method or metric to report the performance of synthetic data gen-
eration algorithms for tabular health records. Therefore, in order to facilitate the usage 
of these techniques in industry domains, these benchmarks must also be realistic [51]. 
Attempts to address this problem by proposing a standardized evaluation methodology 
using standard datasets and real-world industry applications.

Regularization in supervised learning

Unlike data privacy solutions, studies on data augmentation techniques generally do 
not consider the similarity/dissimilarity of synthetic data. The study of quality metrics 
for supervised learning may reduce computational overhead and experimentation time. 
Only one study related to the relationship between quality metrics and performance in 
the primary ML task was found in [39], which was done only for the pMSE metric.
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Consistency and interpretability

Neural network mechanisms typically involve a higher computational cost compared to 
the remaining types of mechanisms. This problem is further aggravated by their incon-
sistent performance, since different initializations may result in very different perfor-
mances. This problem may be observed in [77]. More generally, representing training 
data in the latent space raises the challenge of interpretability; the ability to interpret 
latent space representations could guide the design of data generation techniques.

Ensembles of generation mechanisms

 In non-tabular data domains, a common approach for data augmentation is the com-
bination of several data augmentation methods to increase the diversification of syn-
thetic data. This is true for both text classification [24] and image classification [10]. 
However, for tabular data, no studies were found that discuss the potential of ensem-
bles of generation mechanisms on tabular data, i.e., understanding how selecting with 
different probabilities different generation mechanisms to generate synthetic data 
would affect the performance of the primary ML task. The formalization and analysis 
carried out in this work, regarding the different types of synthetic data generation 
mechanisms and quality metrics for latent and tabular synthetic data at an observa-
tion level, may facilitate this work.

Oversampling

Various oversampling methods have been proposed to address imbalanced learning lim-
itations. However, there is still a major limitation in the literature regarding the over-
sampling of datasets with mixed data types or with exclusively non-metric features at the 
input space. In addition, research on oversampling using PDFs or PGMs is scarce.

Tabular few‑shot learning

 To the best of our knowledge, research on few-shot learning for tabular data is infre-
quent. Few-shot learning research using synthetic data generation techniques has 
been extensively developed using image [155, 156] and text data [157], but they are 
rarely adapted or tested for tabular data. One of the few studies found achieved a 
good performance in both few-shot and zero-shot learning through the adaptation of 
a Large Language model for tabular data [158].

Fairness and bias

 Oversampling does not seem to be a relevant source of bias in behavioral research 
and does not appear to have an appreciably different effect on results for directly ver-
sus indirectly oversampled variables [159]. However, most oversampling methods do 
not account for the training dataset’s distribution, which is especially important for 
features with sensitive information (e.g., gender or ethnicity). Therefore, the applica-
tion of oversampling methods on user data may further increase the bias in classifica-
tion between genders or ethnicity groups.

The quality of synthetic data generation in high-dimensional scenarios appears as 
a prevailing limitation in various applications, especially within linear and geometric 
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mechanisms. This limitation can be addressed with dimensionality reduction tech-
niques [153], as well as latent space learning. However, research on data generation 
in the latent space is mostly focused on GAN architectures, which require signifi-
cant computational power. Other methods to learn manifold latent spaces could be 
explored to address this limitation.

Conclusions
This literature review analyses various synthetic data generation-based algorithms for 
tabular data, with a focus on external-level applications. Since synthetic data genera-
tion is a crucial step for various ML applications and domains, it is essential to under-
stand and compare which techniques and types of algorithms are used for each of these 
problems. The usage of synthetic data is an effective approach to better prepare datasets 
and ML pipelines for a wide range of applications and/or address privacy concerns. Our 
work proposed a taxonomy based on four key characteristics of generation algorithms, 
which was used to characterize 70 data generation algorithms across six ML problems. 
This analysis resulted in the categorization and description of the generation mecha-
nisms underlying each of the selected algorithms into six main categories. Finally, we 
discussed several techniques to evaluate synthetic data, as well as general recommenda-
tions and research gaps based on the insights collected throughout the analysis of the 
literature.

Despite the extensive research developed on several methods for synthetic data gener-
ation, there are still open questions regarding the theoretical underpinnings of synthetic 
data adoption for each of the techniques, as well as limitations in the different types of 
generation mechanisms and evaluation procedures. However, the empirical work pre-
sented in the literature shows significant performance improvements and promising 
research directions for future work.
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