
Detecting unregistered users 
through semi‑supervised anomaly detection 
with similarity datasets
Dong Hyuk Heo1, Sung Ho Park2 and Soon Ju Kang1* 

Introduction
Anomaly user detection is an essential system for automating user addition in user 
recognition systems. There are two ways to add users in a user recognition system: 
manually collecting user data and retraining the model [1–4] or determining whether 
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the input data is from a new user or an existing user and retraining the model accord-
ingly [5–8]. The former method can achieve high accuracy because a supervisor rec-
ognizes new users, collects high-quality data, and retrains the existing model, but it 
requires many steps because a supervisor must do it manually [9, 10]. Therefore, vari-
ous methods using anomaly detection to classify data into existing users and new users 
and retrain the model have been researched recently, despite the disadvantage of hav-
ing slightly lower accuracy than the former method [7, 8, 11, 12]. The existing anomaly 
detection methods can be classified into machine learning algorithm-based methods 
[13–16] and deep learning algorithm-based methods [17–22]. Each algorithm is further 
divided into supervised learning [23, 24], semi-supervised learning [25, 26], and unsu-
pervised learning [27, 28]. Among various techniques, semi-supervised learning meth-
ods are gaining considerable attention in research [15, 16, 18, 25, 26]. These methods 
utilize only existing user data to establish a discriminative boundary. This boundary is 
then tightened to identify any data outside of it as abnormal. Therefore, as the mod-
els currently under investigation are trained exclusively on the data of existing users, 
new users data that exhibits high similarity to the training data is likely to be mistak-
enly classified as belonging to an existing user [29, 30]. Additionally, existing anomaly 
detection models based on semi-supervised learning require high-performance serv-
ers due to their large model size, making a system capable of transmitting data to the 
server also necessary [31]. Therefore, there is a real-time performance degradation [32, 
33] caused by the overhead of transmitting user data from the edge node to the server 
after measurement. Consequently, this paper proposes a system that directly recognizes 
new users on the edge node, rather than on the server, in order to achieve real-time 
detection of new users. This system involves measuring data and incorporates a semi-
supervised learning-based anomaly detection model that relies solely on existing user 
data to determine new users. This paper proposes a system that detects anomaly data 
to identify new users in a user recognition system. Unlike sending data to a dedicated 
server for training, the system runs on an STM32F207ZG MCU-based edge node for 
real-time inference. The edge node includes a system [34] for measuring and general-
izing users’ foot pressure data. This paper proposes a system that augments the existing 
system by incorporating a model for classifying new users using multiple images and the 
LeNet-5 model [35–38], which is a CNN algorithm known for its low number of weights 
and high accuracy in image recognition. To determine a new user with multiple images, 
the captured images were inputted into the user recognition model, and the mean of all 
predicted values and the threshold value were compared. The model was trained using 
existing user data because it cannot have advance knowledge of new user data. So, it was 
trained based on the Semi-Supervised Learning approach to detect abnormal data. For 
the experiments, datasets with different levels of similarity were used to compare their 
accuracy. High similarity datasets, such as the foot pressure dataset, and low similarity 
datasets, such as Fashion-MNIST and Digit-MNIST, were utilized. As a result, the exist-
ing Anomaly Detection models exhibited an average accuracy of 83% on low similar-
ity datasets. However, on the high similarity foot pressure dataset, there was a decrease 
of approximately 22%, resulting in an average accuracy of 61%. To overcome this issue, 
the model size needs to be adjusted, but this is limited by the edge node’s comput-
ing resources. However, the model proposed in this paper demonstrated an accuracy 
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increase of approximately 29% compared to existing Anomaly Detection models when 
using datasets with high similarity. It achieved an accuracy of 89%. Additionally, when 
Quantization and Pruning [39] were performed for accuracy measurement on the Edge 
node, there was a slight decrease in accuracy by approximately 3%, resulting in an accu-
racy of 86% for new user classification. Additionally, this model utilizes the LeNet-5 
model [35–38] on the edge node, enabling real-time recognition of both existing and 
new users. Consequently, it is possible to utilize the model in various systems, such as 
a system that automatically adds new users, by transmitting only abnormal data to the 
server for transfer learning and receiving the model from the server. The main achieve-
ments of this paper can be summarized as follows.

1. The proposed system is capable of accurately recognizing new users based on simi-
lar datasets with high similarity.

2. The system can recognize new users in real-time with high accuracy, using limited 
computing resources on the edge node.

Research motivation
In an automated user recognition system that adds new users automatically, anomaly 
detection is essential to determine whether the current data belongs to a new user or an 
existing user [5–8]. The most effective approach is to utilize open-set recognition [5, 6, 
29, 40, 41], where the system can identify the user when provided with data from exist-
ing users and classify data from new users as unknown individuals. However, open-set 
recognition heavily relies on the distance between logit vectors, making it highly influ-
enced by data similarity [29]. In other words, if the similarity between classes is high, 
accurate judgment cannot be made. Moreover, anomaly detection models trained using 
traditional semi-supervised learning approaches are significantly affected by similarity 
[30]. Therefore, a model capable of anomaly detection in datasets with high similarity, 
such as fingerprints, iris, or foot pressure, is required. One approach to achieve this is 
by using large-scale models, but it is essential to have a high-performance server [42–
44]. Additionally, there is a need for data transmission from the client to the server for 
execution [31]. However, there is a disadvantage of reduced real-time inference due to 
the predictability degradation caused by data transmission [32, 33]. Therefore, in this 
paper, we aimed to address the anomaly detection in the high similarity foot pressure 
dataset at the edge node. To achieve this, we utilized the LeNet-5 model [35–38], which 
has a relatively low number of weights. This choice enables faster execution at the edge 
node and offers satisfactory performance. Additionally, we employed the LeNet-5 model 
multiple times to tackle this issue. Additionally, in this paper, to ensure predictability, 
we applied pruning and quantization techniques [39] to the LeNet-5 model. By pruning, 
we reduced the number of weights, and through quantization, we reduced the bit size of 
the weights. This enabled the edge node to directly determine the presence of abnormal 
data. Therefore, by utilizing this model, we can distinguish between existing users and 
new users, enabling the provision of real-time personalized services. Ultimately, in the 
planned research system, which includes the automation of user addition, the user rec-
ognition system will be capable of determining whether the current user is an existing 
user or a new user.
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Related research
The proposed model in this paper operates on the edge node and serves as a model 
that identifies new users by detecting abnormal data in datasets with high similarity. 
Therefore, this paper describes research on detecting Unregistered users [5–8] and 
explores relevant studies to select the optimal anomaly detection model from the per-
spective of the edge node [11, 12, 36–38, 42–45].

Detection models for unregistered users

Detecting new users can be done through two methods: manual detection by a super-
visor [1–4], and using Anomaly Detection [7, 8, 13–22, 25, 26, 30, 45] or Open-Set 
Recognition models [5, 6, 29] to detect and identify new users. When a supervisor 
collects the data, high-quality data can be obtained, and there is potential for achiev-
ing high accuracy through transfer learning [1, 4]. However, this approach necessi-
tates the presence of a supervisor throughout the data collection process. However, 
when using open-set recognition or anomaly detection models to detect new users, it 
is not possible to classify with 100% accuracy. This can lead to potential data contami-
nation, and consequently, a decrease in accuracy when performing transfer learning 
[40, 41]. However, one advantage of these methods is that they do not require the 
presence of a supervisor, reducing the need for human intervention. Therefore, there 
has been a significant amount of research in recent years on models that can distin-
guish between existing and new users in order to develop systems that automatically 
add new users by detecting abnormal data. The methods of open-set recognition and 
anomaly detection, which are used for recognizing new users, can be described as 
follows.

Open‑set recognition

Existing user recognition models tend to classify unknown class data as existing users 
with high probability. Open-set recognition [5, 6, 29] is a method that supplements 
existing user recognition models by adding a process of classifying unknown class 
data as an unknown class. This is achieved by calculating a Logit Vector at the layer 
just before the softmax layer of the existing user recognition model when unknown 
class data is input. Then, the calculated value is compared with the mean value of 
each class’s training data that has been pre-calculated, and the results including the 
unknown class are output, and the final probability is obtained using the softmax 
layer. This method has the advantage of being able to recognize users and detect new 
users simultaneously. However, because this method uses the mean of the Logit Vec-
tors between each class, it shows good performance in datasets with a low degree 
of similarity between classes, but the performance deteriorates in datasets with 
high degrees of similarity between classes [29]. In addition, there are unnecessary 
operations, such as computing the Logit Vector for each input data, and unneces-
sary resources are consumed by storing the mean Logit Vector for each class sepa-
rately. Therefore, it is not suitable for use on edge nodes with limited computing 
performance.



Page 5 of 22Heo et al. Journal of Big Data          (2023) 10:100  

Anomaly detection

Anomaly detection [7, 8] is a method of determining whether input data belongs to 
an existing or new user. There are various algorithms depending on the presence or 
absence of labels in the dataset and whether new label data is available during train-
ing. In this paper, we used a semi-supervised learning approach to detect abnormal 
data by labeling an existing dataset since new user data was not available. The Semi-
Supervised learning [25, 26] approach aims to detect abnormal data using only exist-
ing datasets. The key idea is to narrow down the boundary surrounding the normal 
data as much as possible, classifying external data as abnormal. Therefore, the loss 
function becomes a combination of supervised loss and unsupervised loss. In other 
words, instead of reducing the loss by classifying as many normal data as possible, 
the model is trained to classify both normal and abnormal data as accurately as pos-
sible. Isolation Forest, SVM, Auto-Encoder, Auto-Encoder with K-NN, and CBIR with 
K-NN are representative models that use the semi-supervised learning approach [25, 
26] to detect abnormal data. Isolation Forest [13, 14] represents the training data as 
a decision tree and uses the feature of finding abnormal data at the top to identify it. 
SVM [15, 16] uses one-class SVM to cluster the data and identifies data as abnormal 
when it is far from the clustered data. Neither method is suitable for image datasets 
as their accuracy decreases with increasing number of dimensions. Deep learn-
ing algorithms are being studied to supplement these methods. Auto-Encoder [17, 
18] trains the internal algorithm as MLP or CNN layers to create data similar to the 
training data and then compares the difference in the results to determine abnormal 
data. In addition, there is a method to determine abnormal data by using K-NN to 
extract N data from the compressed middle layer of the Auto-Encoder [19, 20] or the 
Convolution Layer of CNN-based algorithms [21, 22] like LeNet-5 and counting the 
number of classes to which they belong. However, existing models cannot guarantee 
performance for datasets with high similarity [30], such as the open-set recognition 
method. Moreover, to ensure good accuracy, they require many layers and weights, 
making it difficult to guarantee good accuracy on edge nodes with limited computing 
performance [45].

Optimal anomaly detection model on edge node

Previous research on anomaly detection on edge nodes has utilized models [11, 12, 
45] based on Sparsity Profile or Echo State Networks. These studies involve statistical 
algorithms or multilayer perceptron-based approaches. However, these methods may 
not guarantee performance in datasets with high similarity unless the model size is 
increased. Additionally, they may not be suitable for extracting and classifying features 
in image datasets. Furthermore, anomaly detection models based on machine learning 
algorithms such as LightGBM or XGBoost, which are currently being explored, require 
a significant number of weights and take more than 0.4  s for prediction on high-per-
formance servers [42–44, 46]. Even if the weights are pruned to make them feasible on 
edge nodes, the execution time on the edge node remains excessively long, making it 
impractical for deployment. However, instead of such models, using a model based on 
CNN algorithms [5, 6, 17, 18, 21, 22], which can effectively extract features from images, 



Page 6 of 22Heo et al. Journal of Big Data          (2023) 10:100 

is more suitable for detecting abnormal data. Furthermore, a classification model [5, 
6, 21, 22, 47, 48], which is less dependent on data similarity, would be more appropri-
ate. However, since it needs to be executed on an edge node, it is important to select 
a model that has minimal weights and demonstrates satisfactory performance. Among 
models with low weights and good performance, two prominent examples are LeNet-5 
[35–38] and AlexNet [36, 37]. Although the accuracy of LeNet-5 is approximately 4% 
lower than that of AlexNet [36, 37], its weight count is about 1/100 times compared to 
AlexNet [38]. This makes LeNet-5 the most suitable model for execution on edge nodes, 
considering its minimal weight requirement. Therefore, in this paper, we propose a sys-
tem for detecting new users on datasets with high similarity using multiple images from 
the moment a user steps on the footpad to the moment their foot leaves the footpad. We 
utilize the LeNet-5 user recognition model, which ensures satisfactory performance with 
minimal weights.

Problems definition
In this paper, experiments were conducted to compare the accuracy based on the simi-
larity using three different datasets. The models used in the experiments included six 
existing models and the proposed model. Each dataset consists of 48 × 48 grayscale 
image data. The characteristics of each dataset are shown in Fig. 1.

In this paper, we analyzed the similarity of the datasets used in the experiments based 
on the similarity within the datasets belonging to the same class and between the classes. 
The similarity within the datasets belonging to the same class was measured by ran-
domly selecting representative data for each class and calculating the distance between 
the datasets, then calculating the mean and standard deviation. The similarity between 
each class was calculated by measuring the distance between the datasets of two dif-
ferent classes and calculating the mean. The Euclidean Distance algorithm was used to 
measure the distance, as shown in Eq. (1).

When looking at the Digit-Mnist [49] and Fashion-Mnist [50] datasets, we can see that 
the similarity between datasets belonging to the same class is relatively low due to the 
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Fig. 1 Comparison of similarities



Page 7 of 22Heo et al. Journal of Big Data          (2023) 10:100  

large distance between them. Additionally, the similarity between each class is spread 
out and if the absolute value is high, we can determine that they are not similar. There-
fore, in terms of similarity, the Fashion-Mnist dataset exhibits a relatively wide distribu-
tion and higher values, resulting in the lowest similarity between classes. Following that 
is the Digit-Mnist dataset, which also has higher values. In contrast, the Foot Pressure 
dataset shows lower similarity values compared to the other two datasets. The reason for 
this is as follows: the foot pressure measurement system [34] used in this study selects 
intact foot pressure data that satisfies the conditions, rather than using all of the user’s 
data, and generalizes the angle and position through a preprocessing process. Therefore, 
the similarity between datasets belonging to the same class is very low, and since every-
one’s feet do not differ much from each other, such as with numbers or types of clothing, 
the similarity between each class is also very low. Therefore, when evaluating the perfor-
mance of the existing anomaly detection models using the low similarity Digit-Mnist and 
Fashion-Mnist datasets, they demonstrate high performance with an accuracy of 83%. 
However, when applied to the high similarity Foot Pressure dataset, the performance is 
significantly lower, with an accuracy of 61% or less, indicating poor performance. Addi-
tionally, this study had to use a model that utilizes a maximum of 1Mb of flash memory 
and 128 Kb of memory for distinguishes new users on the edge node, so the size of the 
model is limited. Therefore, this study proposes an anomaly detection model that can 
guarantee the accuracy of similar datasets on edge nodes to overcome this issue.

Overview of entire system
The following is the proposed anomaly detection system for automating the addition of 
users in this paper.

The flow chart of this paper is presented in Fig. 2. When a user steps on the foot-
pad, their foot pressure data is measured. The collected data is then normalized and 

Fig. 2 System flow chart
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stored. If a sufficient number of normalized data, referred to as threshold1 , are gath-
ered, the LeNet-5 model is utilized to calculate the accuracy of each data point. Sub-
sequently, the average accuracy for each class is computed. If the maximum value 
among the average values for each class is greater than threshold2 , it means that all the 
data predicts the same person, indicating an existing user. On the other hand, if the 
maximum value is less than threshold2 , it means that one or more data points predict 
a different person, indicating a new user. The method for data normalization and set-
ting threshold1 is as follows.

This paper accumulates N2 datasets, such as the blue box identified through the pre-
processing process, from N1 datasets measured from the moment a user enters the 
foot pad and until they exit, as shown in Fig.  3. The proposed system in this paper 
measures the user’s foot pressure using an edge device in Fig. 4, and the preprocess-
ing process [34] involves verifying intact data (presence of toes, front and rear centers 
of gravity, and a ratio between the distance of centers of gravity and the total meas-
ured cells being equal to or greater than the threshold), as well as generalizing angles 
and positions. Then, the preprocessed datasets are accumulated and input into the 

Fig. 3 Measurement of foot pressure as the user walks on the pad

Fig. 4 Edge based foot pressure measure device
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LeNet-5 model, and the results are used for anomaly detection. The method for deter-
mining anomaly detection is described in Algorithm 1

Algorithm  1 is the method for detecting anomaly data, where the detection begins 
when the accumulated number of intact data is equal to or greater than threshold1 and 
restarts measurement when the number is less. The method for setting threshold1 in this 
paper is as follows.

This paper compared the total number of measured data and the accumulated intact 
data during walking on the foot pad to set threshold1 . For instance, when User A walked 
on the foot pad as shown in Fig. 3, 11(N1 ) pressure measurements were taken, and 3(N2 ) 
intact data were accumulated. This paper conducted experiments by randomly selecting 
100 data from the measured data of 20 users during walking, and found that on average, 
12 measurements were taken and about 3 intact data were judged, as shown in Fig. 5. 
Therefore, since the system accumulates an average of 3 intact data, threshold1 was set 
to 3, and if the number of data sets was less than that, the measurement was restarted. 
Then, user identification was performed using the three intact data. Finally, the accuracy 
of the user identification results was calculated as the average for each class, and if the 
highest average value was threshold2 or higher, all three data were recognized as belong-
ing to the same user with a high probability, and judged as an existing user. Otherwise, it 
was judged as a new user. threshold2 was selected as the threshold value that maximizes 
the model’s F1-score when varying the threshold.

Fig. 5 The dataset collected from the moment the user steps onto the foot pad until they exit it, and the 
number of intact datasets determined from it
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Anomaly detection experiment
Data construction

This paper used three datasets to compare the performance of the proposed model with 
the existing model on datasets with different similarities. Each dataset has a different 
level of similarity, and the foot pressure dataset consists of data collected directly from 
20 users. The construction method of all datasets is the same, and the data construction 
method is described based on the foot pressure dataset. The foot pressure dataset was 
used to evaluate the performance of the anomaly detection model using data from 20 
users. The dataset consists of intact data with generalized angles from the measured data 
while the user walked on the pad, and each user has over 1000 data. This paper randomly 
selected 1000 data from each user’s data and combined them, and the dataset construc-
tion is shown in Fig. 6.

This paper divided 20 users into two groups: 10 known users and 10 unknown users, 
and created a dataset for model training using existing user datasets and a dataset for 
performance evaluation of the anomaly detection model consisting of data from all 
users. The dataset for model training was divided into Train dataset, Validation dataset, 
and Test dataset in a ratio of 7:1:2 using the data of 10 users. The anomaly detection 
model was trained using the train and validation datasets. Then, if the model was trained 
well, the test dataset of the training dataset was labeled as normal data, and the remain-
ing dataset of the 10 users, randomly selecting 20%, was labeled as anomalous data to 
create a dataset for evaluation. Using this method, all datasets were separated, and the 
accuracy of the models was compared based on the data similarity.

Evaluation methodology

In this paper, we performed training of the anomaly detection model on a server and then 
optimized it by applying pruning and quantization using the TFLM library [51] for exe-
cution on an edge node. Consequently, on the training server, we evaluated the accuracy, 

Fig. 6 The system train dataset and anomaly test dataset
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ROC curves, and AUC of all models. The top two models including the ones proposed in 
this paper were further optimized and evaluated for execution speed, accuracy, and model 
size on the edge node, validating the excellence of this paper’s approach. The following out-
lines the methodology used to evaluate the accuracy, ROC curves, and AUC of the models.

Accuracy

The accuracy of the model varies depending on the threshold, so the following method was 
used to determine the threshold. The threshold value is adjusted by evaluating the F1-score 
based on the results obtained from applying the anomaly test dataset to the model trained 
on the existing user dataset. The threshold value was set at the point where the F1-score is 
maximum, and the F1-score is calculated using Recall and Precision, which are determined 
as follows:

Precision is the probability of correctly identifying positive data among the data pre-
dicted as positive. Recall is the probability of correctly identifying positive data among 
all actual positive data. The F1-score is calculated by multiplying the precision and 
recall, and then dividing the result by the sum of precision and recall. Finally, the result 
is multiplied by 2. Therefore, the F1-score is the harmonic mean of precision and recall. 
The F1-score ranges between 0 and 1, where higher values indicate better performance.

ROC curve

The ROC curve is a graphical representation that shows the performance of a binary clas-
sifier model, such as anomaly detection, across different thresholds. It allows us to visualize 
the performance of multiple models at a glance. The ROC curve is created by plotting the 
recall (true positive rate) on the y-axis against the false positive rate (1 − specificity) on the 
x-axis, as the threshold is varied.

AUC 

AUC is a metric calculated from the area under the ROC curve. It provides a measure 
of the overall performance of a model. AUC ranges from 0 to 1, where a value closer to 

(2)Precision =
True Positive

True Positive + False Positive

(3)Recall =
True Positive

True Positive + False Negative

(4)F1− score = 2 ∗
Precision ∗ Recall

Precision+ Recall

(5)ROCx =
False Positive

False Positive + True Negative

(6)ROCy =
True Positive

True Positive + False Negative
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1 indicates a better-performing model. Higher AUC values indicate a higher degree of 
separability between the classes and represent a more optimal classification model.

Baseline anomaly detection algorithms

The model proposed in this paper is a semi-supervised learning-based model [25, 26] 
that utilizes the results of 3 user foot pressure data measurements taken as the user 
passes through the foot pad and input into LeNet-5. This paper compared the proposed 
model’s performance with an anomaly detection model [13, 15, 17–19, 21] commonly 
used in recent Semi-Supervised Learning approaches to evaluate its performance.

Isolation forest

Isolation Forest [13, 14] is a method of finding anomaly data by specifying the depth of 
search as a threshold, because normal data can be found at the bottom of the decision 
tree, and abnormal data can be found at the top. Therefore, in this paper, the Isolation 
Forest model of scikit-learn [52] was used, with 100 decision trees, 256 features, and 0.1 
contamination. As shown in Fig. 7 of the foot pressure dataset, the F1-score was high-
est at 0.01, so the threshold was set to 0.01. As a result of the test, the model showed an 
accuracy of 84.6% for the train dataset, 83% for the validation dataset, and 51.9% for the 
test dataset.

Support vector machine

This paper constructed a one-class SVM model [15, 16] based on Semi-Supervised 
Learning for anomaly detection. This model determines whether the input data is an 
anomaly by calculating the distance between the input data and the clustered training 
data. Therefore, this paper used the OneClassSVM model from scikit-learn [52], using 
rbf kernel for non-linear boundaries, setting gamma to auto, and nu to 0.1 to minimize 

(7)AUC =

1
∫

0

ROCx d(ROCy)

Fig. 7 Threshold for all algorithms
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the training error rate. The test results using the user’s foot pressure dataset showed an 
accuracy of 90.1% for the train dataset, 91.4% for the validation dataset, and 50.2% for 
the test dataset.

Auto‑encoder

This paper used an Auto-Encoder model [17, 18] that produces an output data identical 
to the input data for anomaly detection. The detection method involves calculating the 
Euclidean Distance between the input data and the output data, and comparing it with 
the threshold value. Therefore, this paper compared the internal structure of the Auto-
Encoder model using MLP and CNN methods, as shown in Fig. 8. The optimizer used 
was Adam, and the loss function used was Mean Squared Error. Additionally, experi-
mental results using user foot pressure data showed that the MLP-based model had a 
threshold of 1.13, with 77% accuracy for the train dataset, 73.9% for the validation data-
set, and 58.9% for the test dataset. The CNN-based model had a threshold of 1.09, with 
77.6% accuracy for the train dataset, 75% for the validation dataset, and 56.7% for the 
test dataset.

Auto‑encoder with K‑nearest neighbor

Auto-Encoder with K-NN [19, 20] is a method that adds the K-NN algorithm to improve 
the traditional Auto-Encoder approach. It involves using the compressed hidden layer 

Fig. 8 Auto-encoder model using CNN and MLP
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obtained while training the MLP-based Auto-Encoder approach as input data to the 
K-NN algorithm for anomaly detection. For performance evaluation, this paper con-
structed the entire model as shown in Fig. 9, and used the same Auto-Encoder model as 
the MLP-based model in Fig. 8. Additionally, instead of using the results directly from 
the Dense_2 layer, normalization was applied as shown in Eq. (8), and then additional 
training was performed using the K-NN algorithm with k=100 and Euclidean Dis-
tance. When the test data was input, the result from the Dense_1 layer was input into 
the K-NN algorithm that was trained, and if the maximum number of predicted labels 
was below the threshold, it was classified as an anomaly data. Using user foot pressure 
data for experimentation to find the optimal Threshold value, the value was set to 60 as 
shown in Fig. 7. The accuracy for the train dataset was 81.8%, for the validation dataset 
was 80.7%, and for the test dataset was 79.7%.

CBIR with K‑nearest neighbor

CBIR with K-NN [21, 22] is a method that adds the K-NN algorithm to the CBIR method 
used in existing image searches to detect anomaly data. The method involves training 
the K-NN algorithm with the results of the convolution layer, with the aim of detecting 
anomaly data. In this paper, the last convolutional layer of LeNet-5 was used to compare 
the results, as this allows for resource optimization and faster processing on edge node. 
The training method was the same as the Auto-Encoder with K-NN method, with the 
exception that the results of the convolutional layer were used as the input layer. Experi-
mental results using user foot pressure data showed that the optimal threshold value was 
69, as shown in Fig. 7, with an accuracy of 62.6% for the train dataset, 61.3% for the vali-
dation dataset, and 67.4% for the test dataset.

LeNet‑5 based multi‑image

The proposed model for anomaly detection in this paper is as follows. The collected 
foot pressure data of the users as they walk, as shown in Fig. 3, consists of an average 

(8)x1, . . . , x128 =
x1, . . . , x128

(
∑128

i=1 |xi|
2)

1
2

Fig. 9 Auto-encoder with K-nearest neighbor
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of three complete data. These three complete data are preprocessed and normalized to 
determine whether the user is abnormal or not. The determination method is shown in 
Fig. 10. The obtained three data are individually input into the LeNet-5 model trained to 
recognize 10 users, resulting in obtaining results similar to Eq. (9).

In this paper, by inputting 3 images into the model trained to recognize 10 users, Eq. 
(9) is given with i = 1, 2, 3 and Eq. (10) is given with j = 1, 2,..., 10. In this process, the 
class averages are calculated using the results of the same class from the 3 image outputs 
as described in Equation x. If the maximum value among the class averages is equal to 
or above the threshold, it indicates that all 3 images have been predicted as belonging 
to the same class, suggesting that it corresponds to an existing user. Conversely, if the 
maximum value is below the threshold, it implies that there are predictions of different 
classes among the 3 images, indicating an new user. Experimental results using user foot 
pressure data showed that the threshold was 78%, with 97.7% accuracy for the train data-
set, 92.7% for the validation dataset, and 89.2% for the test dataset.

Experimental results

Experimental results on the training server

This paper evaluated the proposed model and the existing model using three differ-
ent datasets with varying similarities: Fashion-MNIST dataset, Digit-MNIST dataset, 
and Foot Pressure dataset, in that order of similarity. Each dataset was divided into 
Training Dataset, Validation Dataset, and Test Dataset. The results are presented in 
Table 1. The Fashion-MNIST dataset, which has the lowest similarity, showed good 
performance with an average accuracy of 83% and good AUC in the existing anomaly 
detection model. Furthermore, the Digit-Mnist Dataset, which exhibits a similarity 
similar to the Fashion-Mnist Dataset, showed a slight decrease in average accuracy 
and AUC. However, the Foot Pressure dataset, which has a high similarity, experi-
enced a significant decrease in average accuracy by 22% and a sharp decline in AUC. 
Therefore, the existing model can guarantee good performance for datasets with low 
similarity, but not for datasets with high similarity [29, 30]. This is because lower sim-
ilarity requires fewer features and can show better performance, while higher similar-
ity requires more detailed and complex features. Therefore, it is possible to improve 

(9)Outputi = xi,1, xi,2, xi,3, ..., xi,10

(10)Averagej =
1

3

3
∑

k=1

xk ,j

Fig. 10 LeNet-5 based multi-image
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performance by adjusting the model size, as shown in Fig. 11, but the model size is 
limited by the computing resources due to the edge node with the user’s foot pressure 
measuring system, not a high-performance server, which is used to judge new users.

However, the evaluation results using the proposed model in this paper show an 
average accuracy and AUC of 89% across all datasets, regardless of their similarity. 
Particularly, the Foot Pressure dataset, which has high similarity, exhibits an accuracy 
of 89% and AUC. Moreover, when examining the ROC curve Fig.  12 of the overall 
model generated using the high similarity Foot Pressure dataset, it shows superior 
performance compared to the baseline model. Therefore, we have confirmed that our 
proposed model can achieve high performance regardless of the dataset’s similarity 
without increasing the model’s size.

Table 1 Experiment result

Dataset Algorithm Threshold Train 
accuracy 
(%)

Validation 
accuracy 
(%)

Test 
accuracy 
(%)

F1‑Score AUC (%)

Digits Mnist Isolation forest 0.03 79.5 75.6 78.9 78.9 79

SVM – 89.8 88.2 78.6 78.6 79.5

MLP-based
Auto-Encoder

4.22 96.2 89.4 92.5 92.5 92.7

CNN-based
Auto-Encoder

3.79 99.7 94.8 95.2 95.2 95.2

Auto-Encoder with
K-Nearest Neighbor

63 79 76.4 72.3 72.3 72.5

CBIR with
K-Nearest Neighbor

95 80 80.6 79.6 79.6 79.6

ReNet-5 based
Multi-Image

88 100 95 92 92.7 92.7

Fashion Mnist Isolation Forest − 0.02 94.4 95.8 87.2 87.2 88.03

SVM – 90.2 91.4 83.9 83.9 84.3

MLP-based
Auto-Encoder

4.07 95.6 92.6 87.7 87.7 87.9

CNN-based
Auto-Encoder

3.77 95.9 94.8 87 87 87.3

Auto-Encoder with
K-Nearest Neighbor

64 81.2 78.8 78.3 78.3 78.3

CBIR with
K-Nearest Neighbor

89 61.8 59.6 73.3 73.3 75.4

ReNet-5 based
Multi-Image

66 92.2 85.4 84.7 84.7 84.7

Foot Pressure Isolation Forest 0.01 84.6 83 51.9 51.9 53.6

SVM – 90.1 91.4 50.2 50.2 50.62

MLP-based
Auto-Encoder

1.13 77 73.9 58.9 58.9 59.8

CNN-based
Auto-Encoder

1.09 77.6 75 56.7 56.7 57.3

Auto-Encoder with
K-Nearest Neighbor

60 81.8 80.7 79.7 79.7 79.7

CBIR with
K-Nearest Neighbor

69 62.6 61.3 67.4 67.4 67.7

ReNet-5 based
Multi-Image

78 97.7 92.7 89.2 89.2 88.95
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Experimental results on the edge node

To evaluate the performance from the perspective of the edge node, we selected the 
proposed model and the top two models based on their average test accuracy across all 
datasets. Then, we trained each model using the Foot Pressure dataset. Subsequently, we 
performed pruning and quantization using the TFLM library to create compressed 8-bit 
integer weights. These compressed weights were loaded onto the flash memory of the 
edge node, and experiments were conducted directly on the edge node. The MCU (STM-
32F207ZG) used in the experiment has 128 Kb of SRAM and 1Mb of flash memory, but 
since the user’s foot pressure measurement system is installed, the model’s flash memory 
must be below 869 Kb and the required memory during operation must be below 90 Kb. 
Table  2 shows the experimental results, where the MLP-based Auto-Encoder requires 
low operating memory of about 2 Kb but requires about 304 Kb of flash memory, while 
the CNN-based Auto-Encoder requires low flash memory of about 78 Kb but requires 
90 Kb of operating memory. Due to the limitations of computing resources, it is not 

Fig. 11 ROC curve for MLP-based auto-encoder with varying sizes of the hidden layer with foot pressure 
dataset

Fig. 12 ROC curve for all models with foot pressure dataset
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possible to significantly scale up both models, and therefore, the accuracy cannot be 
improved. If we increase the model size by using more weights, it would result in infer-
ence times exceeding 66  s, similar to the Auto-Encoder CNN model. However, it was 
confirmed that the proposed model using intact data and LeNet-5 allows for anomaly 
detection within 3 s using 204 Kb of flash memory and 16 Kb of operating memory. Fur-
thermore, by performing Pruning and Quantization for execution on the edge node, 
there was a loss of approximately 3% in accuracy. However, it demonstrated a good 
performance of 86% accuracy within 2.7  s, which is considered acceptable. Therefore, 
the proposed model in this paper requires less memory compared to existing anomaly 
detection models and shows a performance improvement of 53% in datasets with high 
similarity. Thus, it can be concluded that this model guarantees high accuracy in similar 
datasets and is considered the optimal model for detecting new users on the edge node.

Conclusion
This paper proposes a system capable of detecting new users even in datasets with 
high similarity, such as foot pressure datasets. The system is designed to ensure pre-
dictability and enable real-time predictions by being executed on edge nodes with 
user foot pressure measurement systems, rather than relying on high-performance 
servers. Therefore, to guarantee high data similarity, it is recommended to avoid 
using Auto Encoder-based anomaly detection models, which have been widely used 
recently. Furthermore, due to the execution on edge nodes, the inference speed of 
models with a large number of weights increases significantly, limiting the possibil-
ity of increasing the model size. Therefore, this paper conducted anomaly detection 
based on the LeNet-5 algorithm, which is an image classification algorithm with a 
small number of weights. It satisfied the resource limitations of edge nodes, which 
include flash memory of 869 Kb or less and memory of 90 Kb or less. Also, the paper 
demonstrated the reliability of the experiments by applying the proposed method 
to various datasets, not limited to a single dataset. Additionally, the use of the F1 
score to select the threshold reduced the risk of decreased accuracy. The experimen-
tal results showed that the proposed model achieved an accuracy of over 89% not 
only on low similarity datasets such as digit MNIST and fashion MNIST but also on 
a high similarity dataset like foot pressure. By optimizing the model through prun-
ing and quantization using TFLM, there was a slight decrease of approximately 3% in 

Table 2 Accuracy comparison on STM32F207ZG

Algorithm Threshold Train 
accuracy 
(%)

Validation 
accuracy 
(%)

Test 
accuracy 
(%)

TFLM 
accuracy(%)

Model size 
(Kb)

Used 
memory 
(Kb)

Inference 
speed 
(Ms)

MLP-based
Auto-
Encoder

1.13 77 73.9 58.9 58.7 304.1953125 2.3125 198

CNN-based
Auto-
Encoder

1.09 77.6 75 56.7 56.2 78.1953125 90 66415

ReNet-5 
based
Multi-Image

78 97.7 92.7 89.2 85.7 206.390625 16.875 2742



Page 19 of 22Heo et al. Journal of Big Data          (2023) 10:100  

accuracy. However, the model could make predictions within 2.7 s on an edge node, 
utilizing 204 Kb of flash memory and 16 Kb of memory. As a result, compared to the 
existing anomaly detection models, the proposed model achieved a significant reduc-
tion of approximately 530% in memory usage and around 40% in flash memory usage 
on the high similarity foot pressure dataset. Moreover, the accuracy was improved by 
approximately 53%. The proposed system has the capability to detect abnormal data 
in real-time on edge nodes. This opens up various possibilities for providing services 
using foot pressure data, such as non-contact authorization based on foot pressure, 
or sending alerts to administrators when abnormal users are detected in unauthor-
ized areas. Furthermore, it can be used as a model for detecting new users in a system 
aimed at automating the addition of new users in future development. This system 
detects new users at the edge node and sends their data to the training server. The 
training server performs transfer learning to incorporate the data of the new users 
and further train the model. The optimized model weights are then transmitted back 
to the edge node, enabling real-time user addition functionality in the system. To 
achieve that, it is necessary to improve the inference speed, which is currently a limi-
tation of the existing anomaly detection model. To improve the inference speed, it 
is necessary to reduce the number of model weights, which may result in a decrease 
in accuracy. Therefore, in order to improve the inference speed of the model in the 
future, we plan to enhance the preprocessing system by compressing images and 
reducing their size, aiming to reduce the model size. We will compare the accuracy 
and inference speed to evaluate the improvements.
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