
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Gebretsadik et al. Journal of Big Data (2023) 10:102
https://doi.org/10.1186/s40537-023-00790-9

Journal of Big Data

eBF: an enhanced Bloom Filter for intrusion
detection in IoT
Fitsum Gebreegziabher Gebretsadik1,2*, Sabuzima Nayak2 and Ripon Patgiri2 

Abstract 

Intrusion Detection is essential to identify malicious incidents and continuously alert
many users of the Internet of Things (IoT). The constant monitoring of events gener-
ated from many devices connected to the IoT and the extensive analysis of every
event based on predefined security policies consumes enormous resources. Accord-
ingly, performance enhancement is a crucial concern of Intrusion Detection in IoT
and other massive Big Data Applications to ensure a secure environment. Like many
Big Data Applications, the Intrusion Detection system of the IoT needs to employ the
fast membership filter, Bloom Filter, to quickly identify possible attacks. Bloom Filter
is an admiringly fast and space-efficient data structure that quickly handles elements
of extensive datasets in small memory space. However, the trade-off between the
query performance, the number of hash functions, memory space, and false positive
probability remains an issue of Bloom Filter. Thus, this article presents an enhanced
Bloom Filter (eBF) that remarkably improves memory efficiency and introduces new
techniques to accelerate the filtering of malicious URLs. We experimentally show the
efficacy of eBF using a real Intrusion Detection dataset. The experimental result shows
that the proposed filter is remarkably memory efficient, faster, and more accurate than
the state-of-the-art filters. eBF requires 15.6x, 13x, and 8x less memory compared with
Standard Bloom Filter, Cuckoo filter, and robustBF, respectively. Therefore, this new sys-
tem significantly enhances the performance of Intrusion Detection of IoT that concur-
rently monitors several billion events crosschecking with the defined security policies.

Keywords:  Bloom filter, Intrusion detection system, IoT, Big data

Introduction
The Internet of Things (IoT) refers to the massive network of integrated “Things” on
the Internet. The “Things” refers to the physical objects that vary from simple house-
hold objects to sophisticated industrial tools embedded with mechanical and digital
machines, computing devices, sensors, and people or animals provided with biochip [1,
2]. IoT is a combination of many synchronized technologies that efficiently support the
day-to-day activities of human beings [3].

IoT interlinked 11.3 billion devices by 2021 and forecasts the number will increase
to 29 billion by 2030 [4]. This massive interaction handles Big Data and supports
every human activity. The rapid growth of IoT connectivity and ubiquitous technology

*Correspondence:
fitsum_rs@cse.nits.ac.in

1 School of Computing, Mekelle
University, Mekelle, Tigray,
Ethiopia
2 Department of Computer
Science and Engineering,
National Institute of Technology,
Silchar 788010, India

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00790-9&domain=pdf

Page 2 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

integration creates a conducive ecosystem for the applications of smart cities, logis-
tics, transportation, health care, and home appliances. However, as the network inter-
links heterogeneous sources with correlating events, the risk of exposure to intruders
becomes high [5]. So, ensuring the security of IoT networks from attackers is a signifi-
cant concern for IoT development [1, 2, 6].

Several Intrusion Detection systems (IDSs) have already been proposed to protect the
IoT from attackers [7]. Figure 1 depicts the conventional model of IDS. The IDS moni-
tors every event in the network and analyzes it as per the predefined possible indications
of security policy threats or violations. Intrusion is prevented by determining the sign
and stopping the detected incident. IDS plans to notify network users about incoming
attacks by continuously monitoring the network traffic. Nevertheless, the vast amount of
data accessed and analyzed according to defined signs needs advanced techniques that
enhance processing efficiency. The fast and compact membership data structure- Bloom
Filter [8]—supports an efficient Intrusion Detection process providing a true or false
match based on hashed bits. Bloom Filter is well known for supporting several Big Data
processing systems [9].

Bloom Filter is a space-efficient data structure implemented to boost the perfor-
mance of searching an element in an extensive dataset using small memory space with
high speed. Bloom Filter applies bit-wise data representation, consuming low memory
space to handle a large number of queries of Big Data applications. Besides, Bloom Filter
implements hash functions to generate a separate digest for every element representa-
tion efficiently and uniquely. So, data entry to and data extraction from the filter based
on the hashing requires linear complexity of time O(1) [10].

Standard Bloom Filter supports insertion and lookup operations. The introduction
of variants changes the classical features to allow deletion operation and speed up the
processing capacity. Moreover, this progress reduces the memory space requirement
to a relatively better size. Nevertheless, using small memory space for a Big Data key
representation creates a false positive error. Because Bloom Filter is a probabilistic
data structure, it can return a true or false result with a certain probability. The prob-
ability of returning a true result for a key not existing in the data set is known as
the false positive probability (FPP). Thus, the advantage of using low memory repre-
sentation in a bit representation causes a problem of determining a non-existent ele-
ment as a member of the set. Besides, the trade-off between time and space requires

Fig. 1  Conventional intrusion detection system as a component of network security

Page 3 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

careful remedy. Accordingly, several studies [10–14] proposed variants of Bloom Fil-
ter. Cuckoo filter [15] was introduced to replace the standard Bloom Filter by avoid-
ing the efficiency and accuracy limitations. robustBF [14] is a space and time-efficient
multidimensional Bloom Filter variant compared to the Standard Bloom Filter,
Counting Bloom Filter, and cuckoo filter. robustBF is also more accurate than these
filtering variants. So, the introduction of powerful variants makes Bloom Filter an
essential performance optimization data structure for Big Data processing.

Contribution

The main goal of our proposed system is to enhance the current bloom filter variants
to efficiently and effectively support Intrusion Detection in IoT. Our key objectives
are as follows-

•	 To significantly reduce memory space consumption of the Intrusion Detection
system.

•	 To enhance insertion and lookup speed by implementing efficient algorithms.
•	 To preserve the lowest rate of false positive occurrences without sacrificing the

memory footprint and performance of the filter.

The Intrusion Detection system is a central traffic filtering system. However, the con-
nected device also requires an Intrusion Detection system at their end, for instance,
smartphones. Bloom Filter can fulfill such demands. Therefore, we propose a Bloom
Filter-based model for an Intrusion Detection system that fits with IoT devices. This
article presents eBF, an Intrusion Detection system that implements a new highly effi-
cient Bloom Filter variant with a deep learning model. Training a deep learning model
requires enormous computation resources such as GPU; however, testing is faster and
does not require many computational resources as compared to the training process.
A trained deep learning model can be deployed in IoT devices for Intrusion Detec-
tion. However, the deep learning models are heavyweight and it demands a reduction
of the load on the deep learning model. Therefore, it requires additional data struc-
tures to reduce memory consumption and faster lookup performance. Consequently,
we use a Bloom Filter with a deep learning model that can be deployed in IoT devices.
The Bloom Filter can respond to the queries already learned and reduces the unneces-
sary loads on the deep learning model. Notably, we use the deep learning model as a
black box and focus more on Bloom Filter for enhancement of the Intrusion Detec-
tion System. This new system introduces a new method to significantly improve the
efficiency of previous Bloom Filter variants. In addition to controlled synthetic data-
sets, eBF uses real Intrusion Detection datasets from IoT to test its applicability in
Intrusion Detection for IoT and other major Big Data applications.

We summarized the contribution of our proposed work by comparing it with the
Standard Bloom Filter [8], Cuckoo Filter [15], and robustBF [14] as follows-

Page 4 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

•	 eBF is a memory-efficient variant that uses only 15.6x, 13x, and 8x less memory
space compared to Standard Bloom Filter, Cuckoo Filter, and robustBF, respec-
tively.

•	 The insertion speed of eBF is the fastest of all the tested state-of-the-art membership
filters. It reveals that eBF demands 5x, 1.25x, and 1.28X less time than the time used
by the Standard Bloom Filter, Cuckoo Filter, and robustBF, respectively.

•	 eBF exhibits its sole advantage in avoiding unwanted searches by minimizing the
searching time of disjoint data sets to 3.45X less than the Standard Bloom Filter time,
1.69X less than the Cuckoo Filter searching time, and1.31X less than the robustBF
searching time.

•	 eBF speed advantage increases with the increase in the dataset sze. This confirms
that eBF is relevant to Big Data processing.

•	 eBF yields almost zero False Positive Probability

Organisation

This article consists of corresponding sections that illustrate the importance and sig-
nificance of the proposed system. Section 2 precisely demonstrates the fundamental
features and basic operations of a Standard Bloom Filter. Section 3 discusses related pre-
vious studies and explains the relevance of the new system. Section 4 also demonstrates
the model of the proposed method by presenting the algorithms. Besides, section 5
depicts the experimental outcome by presenting comparison graphs. Section 6 precisely
discusses the distinctive features of the proposed Bloom Filter variant. Finally, section 7
winds up the presentation of this article with conclusive messages.

Bloom filter
Bloom Filter is a probabilistic data structure for efficient membership testing of an ele-
ment from an extensive dataset. Bloom Filter implements bit-wise data representation
to avoid fetching the big dataset from permanent storage to memory. So it uses mini-
mal memory space to run millions of search operations on an extensive dataset. Besides,
Bloom Filter applies fast and robust hash functions to generate representation hashes
with the lowest collision probability.

Parameters of bloom filter definition

The main parameters on which Bloom Filter’s definition and performance depend are
memory size (M), number of hash functions (K), and the probability of false positive
occurrences (FPP). The maximum limit of FPP can be predefined based on the system’s
behavior. The increase in the number of elements (N) that the Bloom Filter represents
directly affects the memory size and the number of hash functions. Equations 1 and 2
deliver the optimal memory space and the number of hash functions required to develop
a powerful Bloom Filter [14].

(1)M = −
N lnFPP

(ln2)2

Page 5 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

The increase in K diminishes the time efficiency of the Bloom Filter. The decrease in K
also has the probability of increasing FPP. So the optimal number of hash functions is
computed as:

If the system developer does not predefine the FPP, equation 3 computes the maximum
false positive errors compromised to ensure the optimal time and memory efficiency of
the Bloom Filter.

Bloom filter operations

Standard Bloom Filter allows insertion and searching operations. Figure 2 visualizes
the architectural model of a Standard Bloom Filter. The insertion function adds a rep-
resentation of an element to the allocated memory space of the Bloom Filter, and the
search function checks the existence of an element representation in the Bloom Filter.

(2)K =
M

N
ln2

(3)FPP =

(

1−

(

1−
1

M

)KN
)K

Fig. 2  Architecture and operations of Standard Bloom Filter

Page 6 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

Introducing several variants of the Bloom Filter with the intention of efficiency and
accuracy enhancement adds various features to the standard Bloom Filter. However, the
basic features and operations remain core factors in the enhanced Bloom Filter variants
to implement an appropriate computational optimization algorithm for several Big Data
Applications.

Next to memory space allocation for the Bloom Filter, every memory unit is initialized
to zero. To insert new elements, Bloom Filter uses one or more hash functions. Based on
the hash functions’ result, the 0 value of the corresponding cells of the filter is changed
to 1. Figure 2 shows that three hash functions ( h1 , h2 , and h3 ) are used to insert A, B and
C into the Bloom Filter. Similarly, searching employs these three functions to check the
existence of A, R, and S. So, both insertion and searching operations of a standard Bloom
Filter use the same hash functions. In the case of searching the Bloom Filter, the element
is hashed by the hash functions. The corresponding cells of the filter are checked. If all
cell values are 1, then the element exits.

Correct results of membership filter

Big Data System employs Bloom Filter to check the existence of an element in the stor-
age. So, the expected output of the Bloom Filter algorithm is either True (confirming
the existence of the requested element) or False (denying the existence of the element).
Accordingly, from Fig. 2 we can observe that search(A) returns true because A was
inserted by insert(A). Moreover, the figure depicts that search(S) returns false denying
the membership of S. This result is a true answer because the cells expected to be hashed
by h1 (S) and h2(S) both hold 0 s, showing that S is not a member of the dataset inserted
in the Bloom Filter.

Probabilistic data structure

Probabilistic data structures compromise uncertain answers to lessen the trade-offs
between space and time. Probabilistic behavior is relevant for developing customized
algorithms per the system’s need. Some access control systems may allow visible false
positives for account creation to avoid similarities of accounts. Unlikely, customer ser-
vice that can serve hundreds of millions of clients may strictly diminish false positives
near zero to prevent intruders and discard unwanted processes. As a result, using proba-
bilistic data structure has a vital role in enhancing computational efficiency.

Bloom Filter applies probabilistic components to efficiently process the data it holds
but cannot provide a definite answer (exactly true/false). Though it is possible to reduce
the degree of uncertainty to near insignificant impact, the “true” result may not always
mean the element is a member of the specified set. Standard Bloom Filter does not have
an issue with false negatives. Nevertheless, Unlike the standard Bloom Filter, some vari-
ants, such as the Counting Bloom Filter, face a probability of denying the availability of
an existing element giving out a false negative [16]. Hence, several research works deliver
plenty of solution schemes to enhance the accuracy of the algorithms.

False positive

The main challenge of a Bloom Filter on which many researchers have been working
is false positive [17, 18]. When the number of elements N stored in the bit array with

Page 7 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

a fixed size M increases, the probability of representing two or more elements using a
single bit increases due to hashing collision. Consequently, membership of all the ele-
ments hashed to the same location Mi will always reply true for the existence of the not
inserted element. That is why the name of this problem is known as false positive. In
Fig. 2, search(R) returns true confirming the presence of R. However, the result is incor-
rect because all 1’s hashed in the cells corresponding to the hash functions of element R
( h1(R), h2(R), and h2(R)) map representation of elements from A, B and C not representa-
tion of element R.

Consequently, in addition to enhancing time and memory efficiency, minimizing FPP
is the main issue of studies related to Bloom Filters. The formula to find optimal FPP
based on N number of elements inserted to an M size array of Bloom Filter based on K
different hash functions is eq. 3.

Hash function

Hash function digests a data input to its compressed size to significantly enhance the
processing performance. Cryptographic techniques implement hashing algorithms
to secure data. However, non-cryptographic hash functions, including JenkinsHash
and MurmurHash, are more time-efficient than cryptographic hash functions [10, 19].
Accordingly, Bloom Filter algorithms prefer implementing non-cryptographic hash
functions because cryptographic hash functions reduce the processing speed and do not
reduce the false positives [20]. For instance, the Bloom Filter in Fig. 2 uses three hash
functions ( h1 , h2 , and h3 ) to insert and to lookup an element to and from the Bloom Fil-
ter respectively. Hashing helps the Bloom Filter to handle Big Data of complex systems
concisely.

Performance and accuracy trade‑off

Bloom Filter must always deal with how to overcome the competitive challenge between
efficiency and accuracy. The accuracy of a Bloom Filter degrades when FPP increases.
Increasing the number of hash functions to insert an element is a remedy for reducing
FPP. However, increasing the number of hash functions increases computational over-
load and consumes more memory space, negatively affecting the critical advantage of
using a Bloom Filter in small memory space. Hence, a better system that can balance this
trade-off without significant negligence on performance and accuracy is the dominant
research topic on Bloom Filter. Hence, this article introduces an extraordinarily efficient
and accurate Bloom Filter that can enhance the processing performance of Intrusion
Detection in IoT and other Big Data Applications.

Related works
Intrusion Detection is a highly active research area with several implications. Studies
show that Intrusion Detection has a significant economic impact on the computerized
industries [5]. The employment of the classical data structures is not sufficient to effi-
ciently and effectively handle the extremely increasing size of data in cyberspace [21].
Consequently, various advanced techniques and algorithms have evolved for decades.
Probabilistic data structures are among the advanced data structures that highly sup-
port the applications that manage Big Data processing [22]. Probabilistic data structures

Page 8 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

are essential approaches to resolving the delay that occurs due to the extremely large
size of data processing in systems like cloud computing, financial systems, and social
media that simultaneously engage billions of users’ interactions. Probabilistic data struc-
tures use non-encryption hash functions, including murmur hash, to facilitate the access
of elements in a lower memory space [10]. So the advantage of using probabilistic data
structures to handle the searching process is more critical in terms of time and space
efficiency when compared with traditional data structures. However, the issue of deliv-
ering inaccurate results remains a trade-off with the time and space advantages. So, the
probability of error occurrences needs minimization to an insignificant level. Big Data
applications widely employ Bloom Filter and its variants as basic time and space efficient
probabilistic data structure techniques [23, 24].

A Bloom Filter in Intrusion Detection uses to determine if a given event’s data (e.g.,
network packet) is a member of the predefined set of threats stored in the database. A
standard Bloom Filter uses bit arrays to store the representations of the set of threats.
The hash result of the predefined threat is used as an index of the bit array to set the
value of the memory unit to 1. As a result, Intrusion Detection systems implement the
Bloom Filter to efficiently and effectively identify possible security attacks. Hence, using
an enhanced Bloom Filter is very important to protect the billions of devices linked to
the IoT from malicious attacks [25, 26].

Artan et al. [27] proposed a variant of Bloom Filter known as Aggregate Bloom Filter
to support network Intrusion Detection systems efficiently.

Groza and Murvay [26] implemented Bloom Filer on an Intrusion Detection system
to identify potential attacks in the controller area network that monitors and reports a
large number of traffic attacks. The result shows that Bloom Filter is a vital tool for effec-
tively handling Intrusion Detection processes within a constrained resource. Besides,
Bala et al. [28] demonstrated the significance of using Bloom Filter to efficiently handle
the massive amount of spam observed in SMTP sessions. This work used an Intrusion
Detection system to detect spamming bots of SMTP sessions related to the social net-
work users of a university campus.

The Intrusion Detection systems of IoT and other complex Big Data applications
use Bloom Filter for its suitable approach of representing sets and supporting efficient
searching execution. Zinkus et al. [29] designed an Intrusion Detection system that
employs Bloom Filter to efficiently handle fuzzy anomaly detection in IoT. The evalua-
tion result of the system shows that the detection of simulated attacks is well enhanced.
Hence, developing an enhanced Bloom Filter that supports an Intrusion Detection sys-
tem of IoT is necessary. Lucchesi et al. [30] employed Bloom Filter to design an opti-
mized IP lookup algorithm. Because of Bloom Filter, the proposed algorithm highly
optimizes the throughputs of the IP lookup. The above studies justify that Bloom Fil-
ter is an important data structure to handle Big Data and efficiently support the Intru-
sion Detection of networks. However, the proposed schemes implemented the Standard
Bloom Filter, which requires further enhancements.

Standard Bloom Filter is helpful in approximation representation. However, similar
to other probabilistic data structures, it faces false positive issues. Thus, several studies
proposed improved schemes to:

Page 9 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

1	 Reduce the memory space required to represent relatively huge data economically.
2	 Increase the performance of search processing by implementing high-speed algo-

rithms.
3	 Lessen the false positive rate to an insignificant degree or near zero.

Counting Bloom Filter [31] is a Bloom Filter variant that implements a counter bit in
addition to the representation bit. Unlike the standard Bloom Filter, counting Bloom
Filter allows deletion operation. Every corresponding counter increments or decre-
ments when an element is inserted into or deleted from the filter. Harwayne-Gidan-
sky et al. [25] presented an Intrusion Detection system based on a Counting Bloom
Filter (FPGA SoC) to achieve a scalable and high degree of throughput. Despite its
advantage of including deletion operation for some applications that require removal
of elements, counting Bloom Filter introduces memory overhead and consumes more
processing time [12, 22]. In addition, the Counting Bloom Filter shows a high degree
of FPP that degrades the system’s accuracy.

CountBF [12] enhances the time and memory efficiency of standard Bloom Filter
and counting Bloom Filter, holding a low FPP. A r-multidimensional Bloom Filter
(rDBF) [13] is proposed, which has a significantly fast filtering algorithm with lower
memory space and fewer false positives. This scheme introduced a new view of hash-
ing that requires the X and Y coordinates to minimize the trade-off between memory
space and FPP. Unlike the Standard Bloom Filter, this multidimensional variant avoids
the dependency on the number of hash functions. The decrease in the number of hash
functions without degrading the accuracy quality boosts the processing speed.

The introduction of Cuckoo Filter [15] targeted to replace the use of the Standard
Bloom Filter. Cuckoo Filter highly enhanced the capacity of the traditional Bloom
Filter. Accordingly, Mosharraf et al. [9] used Cuckoo Filter to enhance the searching
performance of distributed Big Data Applications. The proposed scheme doubled the
performance of the search in the targeted Big Data clusters. Cuckoo Filter has time
and memory efficiency advantages over the Standard Bloom Filter [8]. However, ele-
ments can get rid of the insertion queue and be placed in an alternative bucket as a
result that increases insertion time. The rapid growth in size and complexity of Big
Data Applications requires a continuous engagement in performance improvising
methods.

robustBF [14] is the 2-dimensional feature of rDBF [13]. robustBF implements the
modified murmur hash function to enhance processing speed, ensure high accuracy,
and diminish the FPP near zero. The scheme consumes lower memory space than the
Standard Bloom Filter and Counting Bloom Filter. Nevertheless, memory consump-
tion needs more enhancement for better efficiency. Besides, the insertion and search
speed requires improvement to cope with the rapid growth of the IoT Domain. The
Intrusion Detection systems used in the IoT also require an enhanced Bloom Filter
that can accelerate the threat determination to serve the fast-growing number of
devices.

To finalize, the exponential growth of data size and complexity of IoT and similar
Big Data Applications demand continuous enhancement of supporting algorithms.
Hence, this article demonstrates an enhanced Bloom Filter that integrates extremely

Page 10 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

efficient programming techniques that significantly reduce the memory space used
by the state-of-the-art. Besides, this new variant introduces an efficient way of imple-
menting algorithms to minimize processing time and maintain the lowest FPP with-
out staining performance.

Proposed system
We propose a novel intrusion detection technique for IoT devices, called eBF, which
implements a Bloom Filter. eBF is based on a two-dimensional Bloom Filter that fil-
ters many malicious activities without sacrificing memory footprint. It uses a tiny
memory footprint making it suitable to integrate into IoT devices. Furthermore, it
requires fewer computing resources for its operations.

Figure 3 depicts our proposed architecture. eBF uses two Bloom Filters, namely, iBF
and bBF. The iBF stores the information of intrusion data packets, and bBF stores
benign data packet information. The key embodiment of our proposed work is both
iBF and bBF cannot contain the same data packet. If both Bloom Filters contain the
same data packet then it guarantees that it is a case of false positive. Therefore, we
query the incoming data packet in iBF and bBF for false positive cases. We have
four scenarios: (a) maybe benign: iBF return false and bBF returns true, (b) maybe

Fig. 3  Flow-chart of our proposed system for IDS

Page 11 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

intrusion: iBF return true and bBF returns false, (c) new data packet: iBF return false
and bBF returns false, and (d) false positive: iBF return true and bBF returns true.
For (c) and (d) scenarios, the data packet requires the intervention of a deep learning
model.

An incoming data packet is queried for membership in iBF. If iBF returns false for a
data packet, then it queries to bBF. If bBF returns true for the same data packet, then it is
a benign data packet. The system can proceed with the data packet for further process-
ing. If the data packet is a member of iBF but not a member of bBF then it is an intru-
sion. Therefore, the data packet is blocked from further processing. If a data packet is
not a member of both the Bloom Filters, i.e., iBF and bBF, then it is a new data packet.
Therefore, the data packet is forwarded to the deep learning model for classification.
Based on the classification of the deep learning model, the data packet is inserted into
either iBF or bBF. If the deep learning model classifies the new data packet as intrusion
then it is inserted into iBF for future references and also, is blocked from further pro-
cessing. Otherwise, the new data packet is inserted into bBF and allowed for further pro-
cessing. Since the Bloom Filter can have a false positive; therefore, both iBF and bBF can
return true for the same data packet. Hence, the data packet is forwarded to the deep
learning model for correct classification.

The key focus of this work is to design an efficient Bloom Filter that provides a faster
query response time using a small memory footprint without sacrificing its perfor-
mance in eBF. The Bloom Filter is an exceedingly memory-efficient two-dimensional
Bloom Filter compared with the state-of-the-art Bloom Filter. It is an enhanced version
of robustBF [14]. Figure 4 illustrates the architecture of the two-dimensional Bloom Fil-
ter. robustBF allocates 64-bit per cell of the two-dimensional integer array whereas its
enhanced version employs 32-bit per cell. Hence, the total number of cells increases in
our proposed Bloom Filter even if the memory size is reduced. The memory size is eight
times smaller than robustBF. Therefore, our proposed Bloom Filter performs better than
robustBF in reduced memory footprint. Moreover, our proposed Bloom Filter is rela-
tively faster and at least equally accurate as robustBF. Similar to the robustBF, we use the
dimensions of the filter to speed up the insertion and query process without degrading
its performance.

Fig. 4  Two-dimensional memory architecture of eBF. The dimensions are X and Y where each cell of the
two-dimensional array is 32-bit

Page 12 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

Our proposed Bloom Filter uses three hash functions for its operations. In the case
of a query, the number of hashing depends on the response of the Bloom Filter. For
instance, if the first-bit position is set to zero, then it does not check the next-bit position
and it concludes that the key is not a member of the Bloom Filter. Otherwise, it checks
the rest bit positions. Therefore, the number of the hash function can vary from one to
three in a query operation.

Operations

Algorithm 1 initializes all parameters of the Bloom Filter (BF). This algorithm accepts
the expected number of keys (N) to insert with the required FPP. Then it determines the
size of memory space (M) by calculating the maximum (X) and (Y) dimensions of the
two-dimensional memory structure.

Algorithm 2 demonstrates the insertion operation. Let, BFi,j be the particu-
lar cell in the Bloom Filter which is a 32-bit integer value initialized with zero.
Let k be the input key to insert into the Bloom Filter. We calculate i = Murmur2
k , length(k), seed mod X and j = Murmur2k , length(k), seed mod Y which gives us
the precise location of the cell. Again, the bit position in the cell BFi,j is calculated as
d = Murmur2k , length(k), seed mod 31 . The dth position of BFi,j is set to one. Then
repeats the same procedure for the next two bit positions by changing the seed value.

Algorithm 3 checks the representation of the key in all three corresponding memory
units using three Test(). The algorithm requires key k. It uses murmur2 hash functions
to generate cell locations similar to the insertion operation. The Test() returns true if
the bit location calculated by the hash function is 1; otherwise false. In this algorithm, if
the first Test() returns false, then Lookup() returns false and does not execute the other
two Test(). The second Test() is executed if the first Test() returns true. Similarly, if the
second Test() returns false Lookup() returns false; otherwise, execute the third Test().
Hence, each Lookup function has a varying number of hash functions which reduces the

Page 13 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

query time. Moreover, the Lookup function is more efficient in the case of an absent key
rather than a present key.

Experimental result
This section demonstrates the performance of eBF in comparison with other state-of-the-
art Bloom Filter variants. The efficiency and accuracy of eBF are compared to Standard
Bloom Filter, Cuckoo Filter, and robustBF. The system used to test eBF consists of a proces-
sor with the specification of Intel®CoreTM i5-8250U CPU @ 1.60GHz × 8, a memory of size
8GB, and a 1TB hard disk. The operating system is a 64-bit Ubuntu 22.04 LTS.

Dataset description

The experiments are conducted using both real data saved in CSV file format and synthetic
data to evaluate the accurate rate of false positive occurrence across the different filtering
systems. Though we have considered the FPP tested in the uncontrolled real dataset for
selecting the number of hash functions, the accuracy assessment is accurate using the syn-
thetic data. The reason to use a synthetic dataset for accuracy assessment is that the data is
known to conclude on the similarity or unlikeness.

Synthetic datasets

The synthetic datasets that we use in the evaluation are collections of integers generated in
a way that they can use for the accurate evaluation of the system performance. The experi-
ment uses three types of datasets to test the accuracy and efficiency of the proposed filter.
An original dataset, i.e., oriSet, for instance, O={o1, o2, o3, ..., on } is input to the Bloom Filter.
Then, keys of other datasets, i.e., simSet, mixSet, and disSet is queried to eBF to verify their
existence.

Page 14 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

The first testing dataset is a set of keys similar to those represented in eBF. So, it is
known as simSet, for example, S={o1, o2, o3, ..., on }. The second testing dataset is known
as mixSet, for example, M={o1, o2, o3...d1, d2, ..., dn }. Its half content is intentionally
changed to differ from the original dataset inserted in the Bloom Filter. The disSet is the
third dataset which consists of completely different keys from the original set (oriSet),
for example, D={d1, d2, d3, ..., dn}.

Real datasets

The real datasets used to assess the performance of the proposed scheme are available
in a public repository. These real datasets are related to IoT-detected intrusions from
different systems at different times. An experiment that uses real datasets increases the
feasibility of the proposed system on the IoT and similar Big Data Applications. Table 1
shows a brief description of the real datasets used in this experiment.

The datasets DSet1 (Downloaded from [32]) and DSet2 (Downloaded from [33]) con-
tain network traffic sniffed from nine IoT devices using Wireshark in a local network
using a central switch. It includes two Botnet attacks: Mirai and Gafgyt. The datasets
contain 23 statistically engineered features extracted from the.pcap files. Seven statistical
measures (variance, mean, magnitude, count, covariance, radius, and correlation coeffi-
cient) are considered in the experiments. The dataset DSet3 (Downloaded from [34])
contains data generated from more than ten types of IoT devices, i.e., ultrasonic sensors,

Table 1  Details of real datasets

Dataset Dataset description and download link Size Number of records

DSet1 Refined IoT dataset for Intrusion Detection systems
Without duplication. [32]

143 MB 907996

DSet2 A selected dataset for evaluating deep learning-based
Intrusion Detection systems. [33]

1.13 GB 2219202

DSet3 IoT dataset for Intrusion Detection systems. [34] 1.56 GB 7062607

Page 15 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

low-cost digital sensors for sensing temperature and humidity, water level detection sen-
sors, etc. The data is related to attacks of connectivity protocol and categorized into five
threats: injection attacks, DoS/DDoS attacks, man-in-the-middle attacks, information
gathering, and malware attacks [33].

The experiment uses a single and more relevant column of every dataset as a key of
representation. Hence, the keys of the datasets are represented by the unique key col-
umns, i.e., “ID” of DSet1, “Triggering time” of DSet2, and “variance” from DSet3.

Hash function selection

The number and type of hash function significantly affect a Bloom Filter’s efficiency.
Several hash functions are available, but murmur hash [35] is an efficient and effective
non-cryptographic hash function [10, 14]. So, eBF employs the murmur hash function
to achieve the goals of ensuring remarkably high time and space efficiency as well as
optimal accuracy. An increase in the number of hash functions improves the accuracy by
minimizing false positives; however, it reduces the insertion and lookup efficiency. On
the other hand, speed increases by reducing the number of hash functions but increases
the FPP. So, the determination of the number of hash functions demands appropriate
evaluation. Accordingly, an experiment was conducted on the proposed system with
a fixed memory space but various values of K using the synthetic dataset, the result is
showcased in Table 2.

A single hash function, i.e., K = 1 has the fastest speed for inserting keys. However,
K = 1 generates some false positives. Implementing two hash functions K = 2 scores
the second fastest time but records zero false positives. Thus, implementing K = 2 pro-
vides optimal accuracy with acceptable time efficiency using a synthetic dataset. Never-
theless, synthetic data alone cannot lead to a conclusion.

The efficiency and accuracy evaluation of a different number of hash functions on
the real dataset is important in deciding the number of hash functions. So, using
K = 2 on real data has FPP = 0.002 . But using K = 3 has better results which exhibits
FPP = 0.0006 . Therefore, we decided to implement K = 3 to achieve the best perfor-
mance with at most FPP = 0.001.

Table 2  Comparison of insertion speed (seconds) and false positive probability (FPP) based on the
number of hash functions in eBF using synthetic dataset.

10, 50, and 100 Million is the number of elements inserted into eBF

Number of K 10 Million 50 Million 100 Million

Speed FPP Speed FPP Speed FPP

1 1 0 5.7 0.00016 10.5 0.0001

2 1.35 0 6.27 0 13.5 0

3 1.7 0 8.65 0 17.35 0

4 2.15 0 11 0 22 0

5 2.37 0 12 0 23 0

6 2.48 0 13 0 25.8 0

7 2.8 0 14.6 0 29.3 0

8 3.1 0 16.3 0 32.9 0

9 3.5 0 18 0 36.6 0

10 3.9 0 19.9 0 40.7 0

Page 16 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

Experiments using synthetic datasets

This section demonstrates the experiments conducted on eBF to compare with Stand-
ard Bloom Filter, Cuckoo Filter, and robustBF using synthetic datasets. These controlled
datasets effectively evaluate the accuracy of the Bloom Filter variant. This is because the
similarity or disparity of two or more datasets can be adequately identified only when
the dataset elements are known. Therefore, the synthetic datasets that we use to test
the membership filters contain 10 Million (10 M), 50 Million (50 M), and 100 Million
(100 M) keys. Evaluating the performance of insertion and lookup operation on mil-
lions of keys makes shows our proposed approach is efficient and fast to handle Big Data
processing.

Memory space

The low memory footprint is one of the basic factors that make the Bloom Filter prefer-
able to apply in Big Data Applications. However, it is important to enhance the capac-
ity of the Bloom Filter to diminish the memory space required to represent huge data.
Figure 5 highlights the comparison of eBF, Standard Bloom Filter, Cuckoo Filter, and
robustBF based on memory footprint. The eBF consumes 15.6X, 13X, and 8X less mem-
ory compared with the Standard Bloom Filter, Cuckoo Filter, and robustBF, respectively.
Figure 5 depicts the advantage of using eBF over the state-of-art to improve the memory
space efficiency of Intrusion Detection systems in IoT and query processing in Big Data
Applications.

Insertion time

Fig. 6 depicts the comparison among eBF, Standard Bloom Filter, Cuckoo Filter, and
robustBF based on insertion time. In all datasets, Standard Bloom Filter took the high-
est insertion time whereas eBF took the least time. The eBF took 5 × , 1.25× , and 1.28×
less compared to the insertion time of the Standard Bloom Filter, Cuckoo Filter, and
robustBF for 100 million keys. Similarly, eBF takes an average of 1.28 times less time
compared to the insertion time of robustBF.

Fig. 5  Memory space comparison among the state-of-the-art membership filters using a synthetic dataset
of 10 million, 50 million, and 100 million records. The lowest memory size consumption is the best

Page 17 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

Lookup time

Lookup speed is the most critical time factor because it is repetitively performed to
check the existence of keys in the filter. For instance, if an event invokes access in the IoT,
it must be crosschecked against the predefined threats. So, for every event generated
from all devices of the IoT system, there are millions of searches to identify its reliability.
These generated synthetic datasets are relevant to accurately distinguish the speed dif-
ference in lookup and precisely show the FPP in every scheme under the comparison
process. Figure 7 displays the result of the speed comparison of the lookup of simSet in
the Bloom Filter. The lookup time of eBF is 3.45× , 1.03× × , and 1.03× less compared to
Standard Bloom Filter, Cuckoo Filter, and robustBF for 100 million keys.

The query speed for datasets that are different from the original dataset is faster than
the lookup of simSet. This difference comes from an algorithm we designed to ignore
the process of the succeeding hash functions when the preceding hash function returns
false. The negative return from one hash function assures the absence of the element. As
a result, the eBF avoids unwanted searching. For instance, taking the dataset with 100 M
and the second fastest system robustBF as comparing parameters, eBF uses 1.03X less
than the time used by robustBF while lookup simSet. However, eBF only requires 1.11X

Fig. 6  Insertion time comparison among the-state of-the-art membership filters synthetic dataset of 10
Million, 50 Million, and 100 Million records. The lowest is the best

Fig. 7  Lookup speed comparison for simSet among Standard Boom Filter, Cuckoo Filter, robustBF, and eBF.
Lower is better

Page 18 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

and 1.31X less than the time used by robustBF for lookup mixSet and disSet, respec-
tively. Accordingly, Fig. 8 displays the graphical illustration of lookup speed comparison
using mixSet.

Besides, Fig. 9 also shows how the speed of disjoint dataset (disSet) lookup in eBF is
the fastest of all queries of the same dataset in Standard Bloom Filter, Cuckoo Filter, and
robustBF. Hence, eBF is not only extremely memory efficient but also more time-effi-
cient when compared with the state-of-art membership filters.

Accuracy assessment

Accuracy assessment evaluates the correctness of the system to deliver a valid answer
to users when lookup for the existence of an element in the system. Though the Bloom
Filter is an efficient data structure for membership lookup, it faces the challenge of pro-
viding false positives. Accordingly, measuring the rate of false positives is the main aim
of this experiment.

Fig. 8  A search speed comparison among filters on a dataset that proportionally consists of both similar and
different elements compared with the elements of the original dataset represented in the Bloom Filter. Lower
is better

Fig. 9  Lookup time comparison among the filters using the disjoint dataset (disSet). Lower is better

Page 19 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

Based on the result of the experiment, the proposed system is highly accurate. Our
experiment shows that both eBF and robustBF record zero false positives. So it is pos-
sible to conclude that the result approves the 100% accuracy of both eBF and robustBF
under synthetic datasets. However, Standard Bloom Filter and Cuckoo Filter show small
false positives. The accuracy is calculated in terms of the ratio of the sum of True Posi-
tive (TP) and True Negative (TN) to the expected true result and the sum of false posi-
tive occurrence FP and False Negative FN from the result of the system’s output [36]. All
the systems tested in this paper record zero FN. According to eq. 4, Fig. 10 witnesses the
result of accuracy assessment based on the test of the three different synthetic datasets.

Hence, it is possible to conclude that eBF is an approvingly efficient and accurate Bloom
Filter to handle Big Data membership queries.

Experimentation using real dataset

In addition to the synthetic datasets, this experiment uses real datasets accessed from
an open repository. As described in Table 1, these datasets contain Intrusion Detection
results of IoT systems. So, this performance test is appropriate to decide the significance
of our proposed variant to defend IoT systems from attacks.

Memory space comparison

Space efficiency is one of the significant features that make Bloom Filter among the
essential performance enhancement tools of Big Data Applications. However, this new
proposed Bloom Filter variant eminently diminishes the memory size required to store
the representation of tens and hundreds of millions of elements. Figure 11 depicts that
eBF consumes the smallest memory space when compared with evaluated schemes.
Thus, eBF is an appropriate solution for enhancing the efficiency of Big Data processing
for membership identification. Membership classification is also the main task of Intru-
sion Detection in IoT. Hence, eBF is appropriate to ensure security in IoT.

(4)Accuracy =
TP + TN

(TP + TN + FP + FN)

Fig. 10  Accuracy comparison between eBF and the state-of-the-art filters. Higher is better

Page 20 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

Speed comparison

The proposed variant is more time efficient than Standard Bloom Filter, Cuckoo filter,
and robustBF. Figure 12 shows how the proposed system is faster than the other systems.
The efficiency advantage increases when the number of elements represented in the fil-
ter increases. This quality makes eBF an appropriate tool for colossal data processing.

Figure 13 demonstrates the performance of query operations of the different mem-
bership filters for the real datasets. Though fast lookup is the distinguishing nature of a
Standard Bloom Filter, Fig. 13 shows that lookup in eBF is more efficient than the state-
of-the-art membership filter. Accordingly, eBF has become an efficient solution to opti-
mize the performance of Big Data Applications.

Accuracy assessment

As shown in Table 1 the real datasets used for time and space assessment are accessed
from different environments. However, they can contain similar elements. So, assessing

Fig. 11  Memory consumption comparison between eBF and the state-of-the-art membership filters. Real
datasets are used in this comparison evaluation. Lower is better

Fig. 12  Real data insertion speed comparison of eBF against Standard Bloom Filter, Cuckoo Filter, and
robustBF. Lower is better

Page 21 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

false positives is not as accurate as using synthetic datasets. It is possible to test the false
negative status by querying the same dataset over the Bloom Filter that represents it.
Accordingly, the experiment result reveals that Standard Bloom Filter, Cuckoo Filter,
robustBF, and eBF recorded zero false negatives.

Comparison summary

The time and space comparison summary between the latest membership filters and
our proposed variant - eBF is shown in Table 3. The table depicts that eBF outperforms
all other membership filters in every aspect. For example, eBF uses 8× smaller than the
memory used by the latest variant robustBF. The speed enhancement also shows that
implementing eBF is better than the three evaluated methods. So, our proposed Bloom
Filter variant is more efficient than the state-of-the-art membership filters to work with
identifying huge data elements collected at every edge of the IoT system. This ability of
eBF allows others to develop various powerful Intrusion Detection systems for IoT.

Discussion
IoT and various Big Data Applications handle an immense interaction among billions
of users simultaneously. The Intrusion Detection Systems in IoT monitor malicious
events based on a predefined set of threats to prevent billions of devices from being
attacked. This complex interaction demands advanced technologies that enhance

Fig. 13  Real data lookup speed comparison among eBF, Standard Bloom Filter, Cuckoo Filter, and robustBF.
Lower is better

Table 3  Improvement of eBF over Standard Bloom Filter, Cuckoo Filter, and robustBF for 100 M
dataset

Comparison with eBF memory and time efficiency advantage

Memory
efficiency

Insertion speed Similar searching Mixed searching Disjoint
searching

StandardBF 15.6× 5× 3.45× 3.33× 3.45×

CuckooFilter 13× 1.25× 1.03× 1.25× 1.69×

robustBF 8× 1.28× 1.03× 1.11× 1.31×

Page 22 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

computational performance [9]. Accordingly, eBF is the right solution to support
the robust computation of IoT Intrusion Detection. Moreover, it can enhance the
performance of complex networks of social media such as Facebook, YouTube, and
WhatsApp and cloud vendors such as Microsoft, Amazon, and Google that han-
dle the processing of Big Data. eBF surprisingly uses a tiny memory footprint and
it is 15.6× , 13× , and 8× lower than the Standard Bloom Filter, Cuckoo Filter, and
robustBF, respectively. Key insertion to and search processing on traditional Bloom
Filter requires enhancement to cope with the rapid growth of applications. eBF is
faster than the Standard Bloom Filter, Cuckoo Filter, and robustBF. eBF is a better
solution to support the performance enhancement of Big Data Applications based on
the insertion and search speed. Moreover, eBF shows better accuracy than all the sys-
tems tested on the same data and environment. Thus, this new system significantly
addresses the efficiency and accuracy issues of Intrusion Detection in IoT.

Conclusion
In this article, we present a novel method to detect Intrusion Detection Systems for
IoT, called eBF. Our proposed model relies on a deep learning model which is consid-
ered a black box. The key embodiment of our proposed scheme is to reduce the load
of the trained deep learning model using a Bloom Filter because IoT devices cannot
tolerate resource hunger computation.

We have carried out an extensive experiment to validate the performance of our
proposed work with state-of-the-art filters. This significantly notable result was tested
by using big datasets that amount to 100 million records. The datasets include actual
data packets filtered from various IoT Intrusion Detection Systems. Besides, system-
generated synthetic datasets with a set of integers were evaluated in a controlled way
to expose the strength/weaknesses of the membership filters. The result shows that
eBF is incredibly memory efficient using 15.6×,13× , and 8× less memory than the
Standard Bloom Filter, Cuckoo Filter, and robustBF, respectively. eBF is also faster in
inserting and searching operations than other membership filters. The experimental
result exhibits that eBF is on average 5×,1.25× , and 1.28× faster than Standard Bloom
Filter, Cuckoo Filter, and robustBF, respectively during insertion. The speed advan-
tage of this new system increases more when there is searching for disjoint datasets.
Accordingly, eBF is 3.45× , 1.69× , and 1.31× faster than Standard Bloom Filter, Cuckoo
Filter, and robustBF, respectively. Hence, frequently requested unwanted searches can
be avoided easily without affecting the system’s performance. It also records zero false
positives. This result shows that eBF is almost 100% accurate Bloom Filter. This pro-
posed Bloom Filter variant has successfully achieved all the objectives of this article
by delivering an enhanced Bloom Filter with notably exceptional performance and
reliability for Intrusion Detection systems of IoT.

Author contributions
All authors equally contributed.

Funding
There is no funding information to disclose.

Page 23 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102 	

Availibility of data materials
The datasets used to test the performance of this system are available at 1 https://www.kaggle.com/azalhowaide/iot-
dataset-for-intrusion-detection-systems-ids?select=BoTNeTIoT-L01-v2.csv. 2 https://www.kaggle.com/azalhowaide/iot-
dataset-for-intrusion-detection-systems-ids?select=BotNeTIoT-L01_label_NoDuplicates.csv. 3 https://www.kaggle.com/
datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot

Declarations

Ethics approval and consent to participate
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 30 August 2022 Accepted: 28 May 2023

References
	1.	 Tewari A, Gupta BB. Security, privacy and trust of different layers in internet-of-things (iots) framework. Futur Gener

Computer Syst. 2020;108:909–20. https://​doi.​org/​10.​1016/j.​future.​2018.​04.​027.
	2.	 Yadav K, Gupta BB, Hsu CH, Chui KT. Unsupervised federated learning based ioT intrusion detection. In: 2021 IEEE

10th Global Conference on consumer electronics (GCCE). 2021;298–301 . 10.1109/GCCE53005.2021.9621784
	3.	 Adel A. Utilizing technologies of fog computing in educational ioT systems: privacy, security, and agility perspective.

J Big Data. 2020;7(1):1–29. https://​doi.​org/​10.​1186/​s40537-​020-​00372-z.
	4.	 Vailshery LS. Number of iot connected devices worldwide 2019-2030. Accessed Jul 2022.
	5.	 Zuech R, Khoshgoftaar TM, Wald R. Intrusion detection and big heterogeneous data: a survey. J Big Data.

2015;2(1):1–41. https://​doi.​org/​10.​1186/​s40537-​015-​0013-4.
	6.	 Honar Pajooh H, Rashid MA, Alam F, Demidenko S. IoT big data provenance scheme using blockchain on hadoop

ecosystem. J Big Data. 2021;8(1):1–26. https://​doi.​org/​10.​1186/​s40537-​021-​00505-y.
	7.	 Putra GD, Dedeoglu V, Kanhere SS, Jurdak R. Poster abstract: towards scalable and trustworthy decentralized col-

laborative intrusion detection system for ioT. In: 2020 IEEE/ACM Fifth International Conference on Internet-of-Things
Design and Implementation (IoTDI). 2020;256–257 . 10.1109/IoTDI49375.2020.00035

	8.	 Bloom BH. Space/time trade-offs in hash coding with allowable errors. Commun ACM. 1970;13(7):422–6. https://​doi.​
org/​10.​1145/​362686.​362692.

	9.	 Mosharraf SIM, Adnan MA. Improving lookup and query execution performance in distributed big data systems
using cuckoo filter. J Big Data. 2022;9(1):1–30. https://​doi.​org/​10.​1186/​s40537-​022-​00563-w.

	10.	 Patgiri R, Nayak S, Muppalaneni NB. Is bloom filter a bad choice for security and privacy? In. Int Conf Inform Network
(ICOIN). 2021;2021:648–53. https://​doi.​org/​10.​1109/​ICOIN​50884.​2021.​93339​50.

	11.	 Patgiri R, Nayak S, Borgohain SK. Role of bloom filter in big data research: a survey. arXiv Preprint. 2019. https://​doi.​
org/​10.​14569/​IJACSA.​2018.​091193.

	12.	 Nayak S, Patgiri R. Countbf: a general-purpose high accuracy and space efficient counting bloom filter. In:
2021 17th International Conference on Network and Service Management (CNSM). 2021;355–359 . 10.23919/
CNSM52442.2021.9615556

	13.	 Patgiri R, Nayak S, Borgohain SK. rdbf: A r-dimensional bloom filter for massive scale membership query. J Network
Computer Appl. 2019;136:100–13.

	14.	 Nayak S, Patgiri R. Robustbf: a high accuracy and memory efficient 2d bloom filter. arXiv Preprint. 2021. https://​doi.​
org/​10.​48550/​arXiv.​2106.​04365.

	15.	 Fan B, Andersen DG, Kaminsky M, Mitzenmacher MD. Cuckoo filter: practically better than bloom. In: Poceedings
of the 10th ACM international on conference on emerging networking experiments and technologies. CoNEXT
Ã¢â‚¬â„¢14, pp. 75Ã¢â‚¬â€œ88. Association for Computing Machinery: New York, NY, USA (2014). Doi:https://​doi.​
org/​10.​1145/​26740​05.​26749​94

	16.	 Guo D, Liu Y, Li X, Yang P. False negative problem of counting bloom filter. IEEE Trans Knowledge Data Eng.
2010;22(5):651–64. https://​doi.​org/​10.​1109/​TKDE.​2009.​209.

	17.	 Patgiri R. Hfil: a high accuracy bloom filter. In: 2019 IEEE 21st International Conference on High Performance Com-
puting and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), pp. 2169–2174 (2019). https://​doi.​org/​10.​1109/​HPCC/​Smart​
City/​DSS.​2019.​00300. IEEE

	18.	 Kiss SZ, Hosszu E, Tapolcai J, Ronyai L, Rottenstreich O. Bloom filter with a false positive free zone. IEEE Trans Network
Serv Manag. 2021;18(2):2334–49. https://​doi.​org/​10.​1109/​TNSM.​2021.​30590​75.

	19.	 Gerbet T, Kumar A, Lauradoux C. The power of evil choices in bloom filters. In: 2015 45th Annual IEEE/IFIP Interna-
tional Conference on dependable systems and networks. 2015;101–112. 10.1109/DSN.2015.21.

	20.	 Patgiri R, Nayak S, Muppalaneni NB. Is bloom filter a bad choice for security and privacy? In: 2021 International
Conference on Information Networking (ICOIN). 2021;648–653. 10.1109/ICOIN50884.2021.9333950.

	21.	 Todorov Marinov M. A bloom filter application for processing big datasets through mapreduce framework. Int
Confer Inform Technol (InfoTech). 2021. https://​doi.​org/​10.​1109/​InfoT​ech52​438.​2021.​95486​38.

	22.	 Singh A, Garg S, Kaur R, Batra S, Kumar N, Zomaya AY. Probabilistic data structures for big data analytics: a compre-
hensive review. Knowl Based Syst. 2020;188: 104987. https://​doi.​org/​10.​1016/j.​knosys.​2019.​104987.

https://doi.org/10.1016/j.future.2018.04.027
https://doi.org/10.1186/s40537-020-00372-z
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-021-00505-y
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1186/s40537-022-00563-w
https://doi.org/10.1109/ICOIN50884.2021.9333950
https://doi.org/10.14569/IJACSA.2018.091193
https://doi.org/10.14569/IJACSA.2018.091193
https://doi.org/10.48550/arXiv.2106.04365
https://doi.org/10.48550/arXiv.2106.04365
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1109/TKDE.2009.209
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00300
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00300
https://doi.org/10.1109/TNSM.2021.3059075
https://doi.org/10.1109/InfoTech52438.2021.9548638
https://doi.org/10.1016/j.knosys.2019.104987

Page 24 of 24Gebretsadik et al. Journal of Big Data (2023) 10:102

	23.	 Kiss SZ, Hosszu E, Tapolcai J, Ronyai L, Rottenstreich O. Bloom filter with a false positive free zone. IEEE Trans Network
Serv Manag. 2021;18(2):2334–49.

	24.	 Harshan J, Vithalkar A, Jhunjhunwala N, Kabra M, Manav P, Hu Y-C. Bloom filter based low-latency provenance
embedding schemes in wireless networks. IEEE Wireless Commun Networking Confer (WCNC). 2020. https://​doi.​
org/​10.​1109/​WCNC4​5663.​2020.​91206​40.

	25.	 Harwayne-Gidansky J, Stefan D, Dalal I. Fpga-based soc for real-time network intrusion detection using counting
bloom filters. IEEE Southeastcon. 2009;2009:452–8. https://​doi.​org/​10.​1109/​SECON.​2009.​51740​96.

	26.	 Groza B, Murvay P-S. Efficient intrusion detection with bloom filtering in controller area networks. IEEE Trans Inform
Foren Secur. 2019;14(4):1037–51. https://​doi.​org/​10.​1109/​TIFS.​2018.​28693​51.

	27.	 Artan NS, Sinkar K, Patel J, Chao HJ. Aggregated bloom filters for intrusion detection and prevention hard-
ware. In: IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference. 2007;349–354 (2007). 10.1109/
GLOCOM.2007.72.

	28.	 Bala PM, Usharani S, Aswin M. Ids based fake content detection on social network using bloom filtering. In:
2020 International Conference on System, Computation, Automation and Networking (ICSCAN). 2020. 10.1109/
ICSCAN49426.2020.9262360

	29.	 Zinkus M, Khosmood F, DeBruhl B. Pidiot: probabilistic intrusion detection for the internet-of-things. IEEE Global
Commun Confer (GLOBECOM). 2019. https://​doi.​org/​10.​1109/​GLOBE​COM38​437.​2019.​90132​64.

	30.	 Lucchesi A, Drummond AC, Teodoro G. High-performance ip lookup using intel xeon phi: a bloom filters based
approach. J Internet Serv Appl. 2018;9(1):1–18.

	31.	 Fan L, Cao P, Almeida J, Broder AZ. Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM
Transactions on Networking. 2000;8(3):281–93. https://​doi.​org/​10.​1109/​90.​851975.

	32.	 Kaggle’s Non Duplicated IoT Dataset for Intrusion Detection Systems (IDS). https://​www.​kaggle.​com/​azalh​owaide/​
iot-​datas​et-​for-​intru​sion-​detec​tion-​syste​ms-​ids?​select=​BotNe​TIoT-​L01_​label_​NoDup​licat​es.​csv

	33.	 Edge-IIoTset Cyber Security Dataset. https://​www.​kaggle.​com/​datas​ets/​moham​edami​nefer​rag/​edgei​iotset-​cyber-​
secur​ity-​datas​et-​of-​iot-​iiot

	34.	 Kaggle’s IoT Dataset for Intrusion Detection Systems (IDS) With Duplication. https://​www.​kaggle.​com/​azalh​owaide/​
iot-​datas​et-​for-​intru​sion-​detec​tion-​syste​ms-​ids?​select=​BoTNe​TIoT-​L01-​v2.​csv

	35.	 Austin A. Murmurhash. Accessed Jun 2022.
	36.	 Tharwat A. Classification assessment methods. Appl Comput Inform. 2020. https://​doi.​org/​10.​1016/j.​aci.​2018.​08.​003.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/WCNC45663.2020.9120640
https://doi.org/10.1109/WCNC45663.2020.9120640
https://doi.org/10.1109/SECON.2009.5174096
https://doi.org/10.1109/TIFS.2018.2869351
https://doi.org/10.1109/GLOBECOM38437.2019.9013264
https://doi.org/10.1109/90.851975
https://www.kaggle.com/azalhowaide/iot-dataset-for-intrusion-detection-systems-ids?select=BotNeTIoT-L01_label_NoDuplicates.csv
https://www.kaggle.com/azalhowaide/iot-dataset-for-intrusion-detection-systems-ids?select=BotNeTIoT-L01_label_NoDuplicates.csv
https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://www.kaggle.com/azalhowaide/iot-dataset-for-intrusion-detection-systems-ids?select=BoTNeTIoT-L01-v2.csv
https://www.kaggle.com/azalhowaide/iot-dataset-for-intrusion-detection-systems-ids?select=BoTNeTIoT-L01-v2.csv
https://doi.org/10.1016/j.aci.2018.08.003

	eBF: an enhanced Bloom Filter for intrusion detection in IoT
	Abstract
	Introduction
	Contribution
	Organisation

	Bloom filter
	Parameters of bloom filter definition
	Bloom filter operations
	Correct results of membership filter
	Probabilistic data structure
	False positive
	Hash function
	Performance and accuracy trade-off

	Related works
	Proposed system
	Operations

	Experimental result
	Dataset description
	Synthetic datasets
	Real datasets

	Hash function selection
	Experiments using synthetic datasets
	Memory space
	Insertion time
	Lookup time
	Accuracy assessment

	Experimentation using real dataset
	Memory space comparison
	Speed comparison
	Accuracy assessment

	Comparison summary

	Discussion
	Conclusion
	References

