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Abstract 

Intrusion Detection is essential to identify malicious incidents and continuously alert 
many users of the Internet of Things (IoT). The constant monitoring of events gener-
ated from many devices connected to the IoT and the extensive analysis of every 
event based on predefined security policies consumes enormous resources. Accord-
ingly, performance enhancement is a crucial concern of Intrusion Detection in IoT 
and other massive Big Data Applications to ensure a secure environment. Like many 
Big Data Applications, the Intrusion Detection system of the IoT needs to employ the 
fast membership filter, Bloom Filter, to quickly identify possible attacks. Bloom Filter 
is an admiringly fast and space-efficient data structure that quickly handles elements 
of extensive datasets in small memory space. However, the trade-off between the 
query performance, the number of hash functions, memory space, and false positive 
probability remains an issue of Bloom Filter. Thus, this article presents an enhanced 
Bloom Filter (eBF) that remarkably improves memory efficiency and introduces new 
techniques to accelerate the filtering of malicious URLs. We experimentally show the 
efficacy of eBF using a real Intrusion Detection dataset. The experimental result shows 
that the proposed filter is remarkably memory efficient, faster, and more accurate than 
the state-of-the-art filters. eBF requires 15.6x, 13x, and 8x less memory compared with 
Standard Bloom Filter, Cuckoo filter, and robustBF, respectively. Therefore, this new sys-
tem significantly enhances the performance of Intrusion Detection of IoT that concur-
rently monitors several billion events crosschecking with the defined security policies.
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Introduction
The Internet of Things (IoT) refers to the massive network of integrated “Things” on 
the Internet. The “Things” refers to the physical objects that vary from simple house-
hold objects to sophisticated industrial tools embedded with mechanical and digital 
machines, computing devices, sensors, and people or animals provided with biochip [1, 
2]. IoT is a combination of many synchronized technologies that efficiently support the 
day-to-day activities of human beings [3].

IoT interlinked 11.3 billion devices by 2021 and forecasts the number will increase 
to 29 billion by 2030 [4]. This massive interaction handles Big Data and supports 
every human activity. The rapid growth of IoT connectivity and ubiquitous technology 
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integration creates a conducive ecosystem for the applications of smart cities, logis-
tics, transportation, health care, and home appliances. However, as the network inter-
links heterogeneous sources with correlating events, the risk of exposure to intruders 
becomes high [5]. So, ensuring the security of IoT networks from attackers is a signifi-
cant concern for IoT development [1, 2, 6].

Several Intrusion Detection systems (IDSs) have already been proposed to protect the 
IoT from attackers [7]. Figure 1 depicts the conventional model of IDS. The IDS moni-
tors every event in the network and analyzes it as per the predefined possible indications 
of security policy threats or violations. Intrusion is prevented by determining the sign 
and stopping the detected incident. IDS plans to notify network users about incoming 
attacks by continuously monitoring the network traffic. Nevertheless, the vast amount of 
data accessed and analyzed according to defined signs needs advanced techniques that 
enhance processing efficiency. The fast and compact membership data structure- Bloom 
Filter [8]—supports an efficient Intrusion Detection process providing a true or false 
match based on hashed bits. Bloom Filter is well known for supporting several Big Data 
processing systems [9].

Bloom Filter is a space-efficient data structure implemented to boost the perfor-
mance of searching an element in an extensive dataset using small memory space with 
high speed. Bloom Filter applies bit-wise data representation, consuming low memory 
space to handle a large number of queries of Big Data applications. Besides, Bloom Filter 
implements hash functions to generate a separate digest for every element representa-
tion efficiently and uniquely. So, data entry to and data extraction from the filter based 
on the hashing requires linear complexity of time O(1) [10].

Standard Bloom Filter supports insertion and lookup operations. The introduction 
of variants changes the classical features to allow deletion operation and speed up the 
processing capacity. Moreover, this progress reduces the memory space requirement 
to a relatively better size. Nevertheless, using small memory space for a Big Data key 
representation creates a false positive error. Because Bloom Filter is a probabilistic 
data structure, it can return a true or false result with a certain probability. The prob-
ability of returning a true result for a key not existing in the data set is known as 
the false positive probability (FPP). Thus, the advantage of using low memory repre-
sentation in a bit representation causes a problem of determining a non-existent ele-
ment as a member of the set. Besides, the trade-off between time and space requires 

Fig. 1  Conventional intrusion detection system as a component of network security
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careful remedy. Accordingly, several studies [10–14] proposed variants of Bloom Fil-
ter. Cuckoo filter [15] was introduced to replace the standard Bloom Filter by avoid-
ing the efficiency and accuracy limitations. robustBF [14] is a space and time-efficient 
multidimensional Bloom Filter variant compared to the Standard Bloom Filter, 
Counting Bloom Filter, and cuckoo filter. robustBF is also more accurate than these 
filtering variants. So, the introduction of powerful variants makes Bloom Filter an 
essential performance optimization data structure for Big Data processing.

Contribution

The main goal of our proposed system is to enhance the current bloom filter variants 
to efficiently and effectively support Intrusion Detection in IoT. Our key objectives 
are as follows-

•	 To significantly reduce memory space consumption of the Intrusion Detection 
system.

•	 To enhance insertion and lookup speed by implementing efficient algorithms.
•	 To preserve the lowest rate of false positive occurrences without sacrificing the 

memory footprint and performance of the filter.

The Intrusion Detection system is a central traffic filtering system. However, the con-
nected device also requires an Intrusion Detection system at their end, for instance, 
smartphones. Bloom Filter can fulfill such demands. Therefore, we propose a Bloom 
Filter-based model for an Intrusion Detection system that fits with IoT devices. This 
article presents eBF, an Intrusion Detection system that implements a new highly effi-
cient Bloom Filter variant with a deep learning model. Training a deep learning model 
requires enormous computation resources such as GPU; however, testing is faster and 
does not require many computational resources as compared to the training process. 
A trained deep learning model can be deployed in IoT devices for Intrusion Detec-
tion. However, the deep learning models are heavyweight and it demands a reduction 
of the load on the deep learning model. Therefore, it requires additional data struc-
tures to reduce memory consumption and faster lookup performance. Consequently, 
we use a Bloom Filter with a deep learning model that can be deployed in IoT devices. 
The Bloom Filter can respond to the queries already learned and reduces the unneces-
sary loads on the deep learning model. Notably, we use the deep learning model as a 
black box and focus more on Bloom Filter for enhancement of the Intrusion Detec-
tion System. This new system introduces a new method to significantly improve the 
efficiency of previous Bloom Filter variants. In addition to controlled synthetic data-
sets, eBF uses real Intrusion Detection datasets from IoT to test its applicability in 
Intrusion Detection for IoT and other major Big Data applications.

We summarized the contribution of our proposed work by comparing it with the 
Standard Bloom Filter [8], Cuckoo Filter [15], and robustBF [14] as follows-
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•	 eBF is a memory-efficient variant that uses only 15.6x, 13x, and 8x less memory 
space compared to Standard Bloom Filter, Cuckoo Filter, and robustBF, respec-
tively.

•	 The insertion speed of eBF is the fastest of all the tested state-of-the-art membership 
filters. It reveals that eBF demands 5x, 1.25x, and 1.28X less time than the time used 
by the Standard Bloom Filter, Cuckoo Filter, and robustBF, respectively.

•	 eBF exhibits its sole advantage in avoiding unwanted searches by minimizing the 
searching time of disjoint data sets to 3.45X less than the Standard Bloom Filter time, 
1.69X less than the Cuckoo Filter searching time, and1.31X less than the robustBF 
searching time.

•	 eBF speed advantage increases with the increase in the dataset sze. This confirms 
that eBF is relevant to Big Data processing.

•	 eBF yields almost zero False Positive Probability

Organisation

This article consists of corresponding sections that illustrate the importance and sig-
nificance of the proposed system. Section  2 precisely demonstrates the fundamental 
features and basic operations of a Standard Bloom Filter. Section 3 discusses related pre-
vious studies and explains the relevance of the new system. Section 4 also demonstrates 
the model of the proposed method by presenting the algorithms. Besides, section  5 
depicts the experimental outcome by presenting comparison graphs. Section 6 precisely 
discusses the distinctive features of the proposed Bloom Filter variant. Finally, section 7 
winds up the presentation of this article with conclusive messages.

Bloom filter
Bloom Filter is a probabilistic data structure for efficient membership testing of an ele-
ment from an extensive dataset. Bloom Filter implements bit-wise data representation 
to avoid fetching the big dataset from permanent storage to memory. So it uses mini-
mal memory space to run millions of search operations on an extensive dataset. Besides, 
Bloom Filter applies fast and robust hash functions to generate representation hashes 
with the lowest collision probability.

Parameters of bloom filter definition

The main parameters on which Bloom Filter’s definition and performance depend are 
memory size (M), number of hash functions (K), and the probability of false positive 
occurrences (FPP). The maximum limit of FPP can be predefined based on the system’s 
behavior. The increase in the number of elements (N) that the Bloom Filter represents 
directly affects the memory size and the number of hash functions. Equations 1 and 2 
deliver the optimal memory space and the number of hash functions required to develop 
a powerful Bloom Filter [14].

(1)M = −
N lnFPP

(ln2)2
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The increase in K diminishes the time efficiency of the Bloom Filter. The decrease in K 
also has the probability of increasing FPP. So the optimal number of hash functions is 
computed as:

If the system developer does not predefine the FPP, equation 3 computes the maximum 
false positive errors compromised to ensure the optimal time and memory efficiency of 
the Bloom Filter.

Bloom filter operations

Standard Bloom Filter allows insertion and searching operations. Figure  2 visualizes 
the architectural model of a Standard Bloom Filter. The insertion function adds a rep-
resentation of an element to the allocated memory space of the Bloom Filter, and the 
search function checks the existence of an element representation in the Bloom Filter. 

(2)K =
M

N
ln2

(3)FPP =

(

1−

(

1−
1

M

)KN
)K

Fig. 2  Architecture and operations of Standard Bloom Filter
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Introducing several variants of the Bloom Filter with the intention of efficiency and 
accuracy enhancement adds various features to the standard Bloom Filter. However, the 
basic features and operations remain core factors in the enhanced Bloom Filter variants 
to implement an appropriate computational optimization algorithm for several Big Data 
Applications.

Next to memory space allocation for the Bloom Filter, every memory unit is initialized 
to zero. To insert new elements, Bloom Filter uses one or more hash functions. Based on 
the hash functions’ result, the 0 value of the corresponding cells of the filter is changed 
to 1. Figure 2 shows that three hash functions ( h1 , h2 , and h3 ) are used to insert A, B and 
C into the Bloom Filter. Similarly, searching employs these three functions to check the 
existence of A, R, and S. So, both insertion and searching operations of a standard Bloom 
Filter use the same hash functions. In the case of searching the Bloom Filter, the element 
is hashed by the hash functions. The corresponding cells of the filter are checked. If all 
cell values are 1, then the element exits.

Correct results of membership filter

Big Data System employs Bloom Filter to check the existence of an element in the stor-
age. So, the expected output of the Bloom Filter algorithm is either True (confirming 
the existence of the requested element) or False (denying the existence of the element). 
Accordingly, from Fig.  2 we can observe that search(A) returns true because A was 
inserted by insert(A). Moreover, the figure depicts that search(S) returns false denying 
the membership of S. This result is a true answer because the cells expected to be hashed 
by h1 (S) and h2(S) both hold 0 s, showing that S is not a member of the dataset inserted 
in the Bloom Filter.

Probabilistic data structure

Probabilistic data structures compromise uncertain answers to lessen the trade-offs 
between space and time. Probabilistic behavior is relevant for developing customized 
algorithms per the system’s need. Some access control systems may allow visible false 
positives for account creation to avoid similarities of accounts. Unlikely, customer ser-
vice that can serve hundreds of millions of clients may strictly diminish false positives 
near zero to prevent intruders and discard unwanted processes. As a result, using proba-
bilistic data structure has a vital role in enhancing computational efficiency.

Bloom Filter applies probabilistic components to efficiently process the data it holds 
but cannot provide a definite answer (exactly true/false). Though it is possible to reduce 
the degree of uncertainty to near insignificant impact, the “true” result may not always 
mean the element is a member of the specified set. Standard Bloom Filter does not have 
an issue with false negatives. Nevertheless, Unlike the standard Bloom Filter, some vari-
ants, such as the Counting Bloom Filter, face a probability of denying the availability of 
an existing element giving out a false negative [16]. Hence, several research works deliver 
plenty of solution schemes to enhance the accuracy of the algorithms.

False positive

The main challenge of a Bloom Filter on which many researchers have been working 
is false positive [17, 18]. When the number of elements N stored in the bit array with 
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a fixed size M increases, the probability of representing two or more elements using a 
single bit increases due to hashing collision. Consequently, membership of all the ele-
ments hashed to the same location Mi will always reply true for the existence of the not 
inserted element. That is why the name of this problem is known as false positive. In 
Fig. 2, search(R) returns true confirming the presence of R. However, the result is incor-
rect because all 1’s hashed in the cells corresponding to the hash functions of element R 
( h1(R), h2(R), and h2(R)) map representation of elements from A, B and C not representa-
tion of element R.

Consequently, in addition to enhancing time and memory efficiency, minimizing FPP 
is the main issue of studies related to Bloom Filters. The formula to find optimal FPP 
based on N number of elements inserted to an M size array of Bloom Filter based on K 
different hash functions is eq. 3.

Hash function

Hash function digests a data input to its compressed size to significantly enhance the 
processing performance. Cryptographic techniques implement hashing algorithms 
to secure data. However, non-cryptographic hash functions, including JenkinsHash 
and MurmurHash, are more time-efficient than cryptographic hash functions [10, 19]. 
Accordingly, Bloom Filter algorithms prefer implementing non-cryptographic hash 
functions because cryptographic hash functions reduce the processing speed and do not 
reduce the false positives [20]. For instance, the Bloom Filter in Fig. 2 uses three hash 
functions ( h1 , h2 , and h3 ) to insert and to lookup an element to and from the Bloom Fil-
ter respectively. Hashing helps the Bloom Filter to handle Big Data of complex systems 
concisely.

Performance and accuracy trade‑off

Bloom Filter must always deal with how to overcome the competitive challenge between 
efficiency and accuracy. The accuracy of a Bloom Filter degrades when FPP increases. 
Increasing the number of hash functions to insert an element is a remedy for reducing 
FPP. However, increasing the number of hash functions increases computational over-
load and consumes more memory space, negatively affecting the critical advantage of 
using a Bloom Filter in small memory space. Hence, a better system that can balance this 
trade-off without significant negligence on performance and accuracy is the dominant 
research topic on Bloom Filter. Hence, this article introduces an extraordinarily efficient 
and accurate Bloom Filter that can enhance the processing performance of Intrusion 
Detection in IoT and other Big Data Applications.

Related works
Intrusion Detection is a highly active research area with several implications. Studies 
show that Intrusion Detection has a significant economic impact on the computerized 
industries [5]. The employment of the classical data structures is not sufficient to effi-
ciently and effectively handle the extremely increasing size of data in cyberspace [21]. 
Consequently, various advanced techniques and algorithms have evolved for decades. 
Probabilistic data structures are among the advanced data structures that highly sup-
port the applications that manage Big Data processing [22]. Probabilistic data structures 
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are essential approaches to resolving the delay that occurs due to the extremely large 
size of data processing in systems like cloud computing, financial systems, and social 
media that simultaneously engage billions of users’ interactions. Probabilistic data struc-
tures use non-encryption hash functions, including murmur hash, to facilitate the access 
of elements in a lower memory space [10]. So the advantage of using probabilistic data 
structures to handle the searching process is more critical in terms of time and space 
efficiency when compared with traditional data structures. However, the issue of deliv-
ering inaccurate results remains a trade-off with the time and space advantages. So, the 
probability of error occurrences needs minimization to an insignificant level. Big Data 
applications widely employ Bloom Filter and its variants as basic time and space efficient 
probabilistic data structure techniques [23, 24].

A Bloom Filter in Intrusion Detection uses to determine if a given event’s data (e.g., 
network packet) is a member of the predefined set of threats stored in the database. A 
standard Bloom Filter uses bit arrays to store the representations of the set of threats. 
The hash result of the predefined threat is used as an index of the bit array to set the 
value of the memory unit to 1. As a result, Intrusion Detection systems implement the 
Bloom Filter to efficiently and effectively identify possible security attacks. Hence, using 
an enhanced Bloom Filter is very important to protect the billions of devices linked to 
the IoT from malicious attacks [25, 26].

Artan et al. [27] proposed a variant of Bloom Filter known as Aggregate Bloom Filter 
to support network Intrusion Detection systems efficiently. 

Groza and Murvay [26] implemented Bloom Filer on an Intrusion Detection system 
to identify potential attacks in the controller area network that monitors and reports a 
large number of traffic attacks. The result shows that Bloom Filter is a vital tool for effec-
tively handling Intrusion Detection processes within a constrained resource. Besides, 
Bala et al. [28] demonstrated the significance of using Bloom Filter to efficiently handle 
the massive amount of spam observed in SMTP sessions. This work used an Intrusion 
Detection system to detect spamming bots of SMTP sessions related to the social net-
work users of a university campus.

The Intrusion Detection systems of IoT and other complex Big Data applications 
use Bloom Filter for its suitable approach of representing sets and supporting efficient 
searching execution. Zinkus et  al. [29] designed an Intrusion Detection system that 
employs Bloom Filter to efficiently handle fuzzy anomaly detection in IoT. The evalua-
tion result of the system shows that the detection of simulated attacks is well enhanced. 
Hence, developing an enhanced Bloom Filter that supports an Intrusion Detection sys-
tem of IoT is necessary. Lucchesi et  al. [30] employed Bloom Filter to design an opti-
mized IP lookup algorithm. Because of Bloom Filter, the proposed algorithm highly 
optimizes the throughputs of the IP lookup. The above studies justify that Bloom Fil-
ter is an important data structure to handle Big Data and efficiently support the Intru-
sion Detection of networks. However, the proposed schemes implemented the Standard 
Bloom Filter, which requires further enhancements.

Standard Bloom Filter is helpful in approximation representation. However, similar 
to other probabilistic data structures, it faces false positive issues. Thus, several studies 
proposed improved schemes to: 
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1	 Reduce the memory space required to represent relatively huge data economically.
2	 Increase the performance of search processing by implementing high-speed algo-

rithms.
3	 Lessen the false positive rate to an insignificant degree or near zero.

Counting Bloom Filter [31] is a Bloom Filter variant that implements a counter bit in 
addition to the representation bit. Unlike the standard Bloom Filter, counting Bloom 
Filter allows deletion operation. Every corresponding counter increments or decre-
ments when an element is inserted into or deleted from the filter. Harwayne-Gidan-
sky et al. [25] presented an Intrusion Detection system based on a Counting Bloom 
Filter (FPGA SoC) to achieve a scalable and high degree of throughput. Despite its 
advantage of including deletion operation for some applications that require removal 
of elements, counting Bloom Filter introduces memory overhead and consumes more 
processing time [12, 22]. In addition, the Counting Bloom Filter shows a high degree 
of FPP that degrades the system’s accuracy.

CountBF [12] enhances the time and memory efficiency of standard Bloom Filter 
and counting Bloom Filter, holding a low FPP. A r-multidimensional Bloom Filter 
(rDBF) [13] is proposed, which has a significantly fast filtering algorithm with lower 
memory space and fewer false positives. This scheme introduced a new view of hash-
ing that requires the X and Y coordinates to minimize the trade-off between memory 
space and FPP. Unlike the Standard Bloom Filter, this multidimensional variant avoids 
the dependency on the number of hash functions. The decrease in the number of hash 
functions without degrading the accuracy quality boosts the processing speed.

The introduction of Cuckoo Filter [15] targeted to replace the use of the Standard 
Bloom Filter. Cuckoo Filter highly enhanced the capacity of the traditional Bloom 
Filter. Accordingly, Mosharraf et al. [9] used Cuckoo Filter to enhance the searching 
performance of distributed Big Data Applications. The proposed scheme doubled the 
performance of the search in the targeted Big Data clusters. Cuckoo Filter has time 
and memory efficiency advantages over the Standard Bloom Filter [8]. However, ele-
ments can get rid of the insertion queue and be placed in an alternative bucket as a 
result that increases insertion time. The rapid growth in size and complexity of Big 
Data Applications requires a continuous engagement in performance improvising 
methods.

robustBF [14] is the 2-dimensional feature of rDBF [13]. robustBF implements the 
modified murmur hash function to enhance processing speed, ensure high accuracy, 
and diminish the FPP near zero. The scheme consumes lower memory space than the 
Standard Bloom Filter and Counting Bloom Filter. Nevertheless, memory consump-
tion needs more enhancement for better efficiency. Besides, the insertion and search 
speed requires improvement to cope with the rapid growth of the IoT Domain. The 
Intrusion Detection systems used in the IoT also require an enhanced Bloom Filter 
that can accelerate the threat determination to serve the fast-growing number of 
devices.

To finalize, the exponential growth of data size and complexity of IoT and similar 
Big Data Applications demand continuous enhancement of supporting algorithms. 
Hence, this article demonstrates an enhanced Bloom Filter that integrates extremely 
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efficient programming techniques that significantly reduce the memory space used 
by the state-of-the-art. Besides, this new variant introduces an efficient way of imple-
menting algorithms to minimize processing time and maintain the lowest FPP with-
out staining performance.

Proposed system
We propose a novel intrusion detection technique for IoT devices, called eBF, which 
implements a Bloom Filter. eBF is based on a two-dimensional Bloom Filter that fil-
ters many malicious activities without sacrificing memory footprint. It uses a tiny 
memory footprint making it suitable to integrate into IoT devices. Furthermore, it 
requires fewer computing resources for its operations.

Figure 3 depicts our proposed architecture. eBF uses two Bloom Filters, namely, iBF 
and bBF. The iBF stores the information of intrusion data packets, and bBF stores 
benign data packet information. The key embodiment of our proposed work is both 
iBF and bBF cannot contain the same data packet. If both Bloom Filters contain the 
same data packet then it guarantees that it is a case of false positive. Therefore, we 
query the incoming data packet in iBF and bBF for false positive cases. We have 
four scenarios: (a) maybe benign: iBF return false and bBF returns true, (b) maybe 

Fig. 3  Flow-chart of our proposed system for IDS
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intrusion: iBF return true and bBF returns false, (c) new data packet: iBF return false 
and bBF returns false, and (d) false positive: iBF return true and bBF returns true. 
For (c) and (d) scenarios, the data packet requires the intervention of a deep learning 
model.

An incoming data packet is queried for membership in iBF. If iBF returns false for a 
data packet, then it queries to bBF. If bBF returns true for the same data packet, then it is 
a benign data packet. The system can proceed with the data packet for further process-
ing. If the data packet is a member of iBF but not a member of bBF then it is an intru-
sion. Therefore, the data packet is blocked from further processing. If a data packet is 
not a member of both the Bloom Filters, i.e., iBF and bBF, then it is a new data packet. 
Therefore, the data packet is forwarded to the deep learning model for classification. 
Based on the classification of the deep learning model, the data packet is inserted into 
either iBF or bBF. If the deep learning model classifies the new data packet as intrusion 
then it is inserted into iBF for future references and also, is blocked from further pro-
cessing. Otherwise, the new data packet is inserted into bBF and allowed for further pro-
cessing. Since the Bloom Filter can have a false positive; therefore, both iBF and bBF can 
return true for the same data packet. Hence, the data packet is forwarded to the deep 
learning model for correct classification.

The key focus of this work is to design an efficient Bloom Filter that provides a faster 
query response time using a small memory footprint without sacrificing its perfor-
mance in eBF. The Bloom Filter is an exceedingly memory-efficient two-dimensional 
Bloom Filter compared with the state-of-the-art Bloom Filter. It is an enhanced version 
of robustBF [14]. Figure 4 illustrates the architecture of the two-dimensional Bloom Fil-
ter. robustBF allocates 64-bit per cell of the two-dimensional integer array whereas its 
enhanced version employs 32-bit per cell. Hence, the total number of cells increases in 
our proposed Bloom Filter even if the memory size is reduced. The memory size is eight 
times smaller than robustBF. Therefore, our proposed Bloom Filter performs better than 
robustBF in reduced memory footprint. Moreover, our proposed Bloom Filter is rela-
tively faster and at least equally accurate as robustBF. Similar to the robustBF, we use the 
dimensions of the filter to speed up the insertion and query process without degrading 
its performance.

Fig. 4  Two-dimensional memory architecture of eBF. The dimensions are X and Y where each cell of the 
two-dimensional array is 32-bit
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Our proposed Bloom Filter uses three hash functions for its operations. In the case 
of a query, the number of hashing depends on the response of the Bloom Filter. For 
instance, if the first-bit position is set to zero, then it does not check the next-bit position 
and it concludes that the key is not a member of the Bloom Filter. Otherwise, it checks 
the rest bit positions. Therefore, the number of the hash function can vary from one to 
three in a query operation.

Operations

Algorithm 1 initializes all parameters of the Bloom Filter (BF). This algorithm accepts 
the expected number of keys (N) to insert with the required FPP. Then it determines the 
size of memory space (M) by calculating the maximum (X) and (Y) dimensions of the 
two-dimensional memory structure.

Algorithm  2 demonstrates the insertion operation. Let, BFi,j be the particu-
lar cell in the Bloom Filter which is a 32-bit integer value initialized with zero. 
Let k be the input key to insert into the Bloom Filter. We calculate i = Murmur2 
k , length(k), seed mod X and j = Murmur2k , length(k), seed mod Y  which gives us 
the precise location of the cell. Again, the bit position in the cell BFi,j is calculated as 
d = Murmur2k , length(k), seed mod 31 . The dth position of BFi,j is set to one. Then 
repeats the same procedure for the next two bit positions by changing the seed value.

Algorithm 3 checks the representation of the key in all three corresponding memory 
units using three Test(). The algorithm requires key k. It uses murmur2 hash functions 
to generate cell locations similar to the insertion operation. The Test() returns true if 
the bit location calculated by the hash function is 1; otherwise false. In this algorithm, if 
the first Test() returns false, then Lookup() returns false and does not execute the other 
two Test(). The second Test() is executed if the first Test() returns true. Similarly, if the 
second Test() returns false Lookup() returns false; otherwise, execute the third Test(). 
Hence, each Lookup function has a varying number of hash functions which reduces the 
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query time. Moreover, the Lookup function is more efficient in the case of an absent key 
rather than a present key.

Experimental result
This section demonstrates the performance of eBF in comparison with other state-of-the-
art Bloom Filter variants. The efficiency and accuracy of eBF are compared to Standard 
Bloom Filter, Cuckoo Filter, and robustBF. The system used to test eBF consists of a proces-
sor with the specification of Intel®CoreTM i5-8250U CPU @ 1.60GHz × 8, a memory of size 
8GB, and a 1TB hard disk. The operating system is a 64-bit Ubuntu 22.04 LTS.

Dataset description

The experiments are conducted using both real data saved in CSV file format and synthetic 
data to evaluate the accurate rate of false positive occurrence across the different filtering 
systems. Though we have considered the FPP tested in the uncontrolled real dataset for 
selecting the number of hash functions, the accuracy assessment is accurate using the syn-
thetic data. The reason to use a synthetic dataset for accuracy assessment is that the data is 
known to conclude on the similarity or unlikeness.

Synthetic datasets

The synthetic datasets that we use in the evaluation are collections of integers generated in 
a way that they can use for the accurate evaluation of the system performance. The experi-
ment uses three types of datasets to test the accuracy and efficiency of the proposed filter. 
An original dataset, i.e., oriSet, for instance, O={o1, o2, o3, ..., on } is input to the Bloom Filter. 
Then, keys of other datasets, i.e., simSet, mixSet, and disSet is queried to eBF to verify their 
existence.
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The first testing dataset is a set of keys similar to those represented in eBF. So, it is 
known as simSet, for example, S={o1, o2, o3, ..., on }. The second testing dataset is known 
as mixSet, for example, M={o1, o2, o3...d1, d2, ..., dn }. Its half content is intentionally 
changed to differ from the original dataset inserted in the Bloom Filter. The disSet is the 
third dataset which consists of completely different keys from the original set (oriSet), 
for example, D={d1, d2, d3, ..., dn}.

Real datasets

The real datasets used to assess the performance of the proposed scheme are available 
in a public repository. These real datasets are related to IoT-detected intrusions from 
different systems at different times. An experiment that uses real datasets increases the 
feasibility of the proposed system on the IoT and similar Big Data Applications. Table 1 
shows a brief description of the real datasets used in this experiment.

The datasets DSet1 (Downloaded from [32]) and DSet2 (Downloaded from [33]) con-
tain network traffic sniffed from nine IoT devices using Wireshark in a local network 
using a central switch. It includes two Botnet attacks: Mirai and Gafgyt. The datasets 
contain 23 statistically engineered features extracted from the.pcap files. Seven statistical 
measures (variance, mean, magnitude, count, covariance, radius, and correlation coeffi-
cient) are considered in the experiments. The dataset DSet3 (Downloaded from [34]) 
contains data generated from more than ten types of IoT devices, i.e., ultrasonic sensors, 

Table 1  Details of real datasets

Dataset Dataset description and download link Size Number of records

DSet1 Refined IoT dataset for Intrusion Detection systems 
Without duplication. [32]

143 MB 907996

DSet2 A selected dataset for evaluating deep learning-based 
Intrusion Detection systems. [33]

1.13 GB 2219202

DSet3 IoT dataset for Intrusion Detection systems. [34] 1.56 GB 7062607
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low-cost digital sensors for sensing temperature and humidity, water level detection sen-
sors, etc. The data is related to attacks of connectivity protocol and categorized into five 
threats: injection attacks, DoS/DDoS attacks, man-in-the-middle attacks, information 
gathering, and malware attacks [33].

The experiment uses a single and more relevant column of every dataset as a key of 
representation. Hence, the keys of the datasets are represented by the unique key col-
umns, i.e., “ID” of DSet1, “Triggering time” of DSet2, and “variance” from DSet3.

Hash function selection

The number and type of hash function significantly affect a Bloom Filter’s efficiency. 
Several hash functions are available, but murmur hash [35] is an efficient and effective 
non-cryptographic hash function [10, 14]. So, eBF employs the murmur hash function 
to achieve the goals of ensuring remarkably high time and space efficiency as well as 
optimal accuracy. An increase in the number of hash functions improves the accuracy by 
minimizing false positives; however, it reduces the insertion and lookup efficiency. On 
the other hand, speed increases by reducing the number of hash functions but increases 
the FPP. So, the determination of the number of hash functions demands appropriate 
evaluation. Accordingly, an experiment was conducted on the proposed system with 
a fixed memory space but various values of K using the synthetic dataset, the result is 
showcased in Table 2.

A single hash function, i.e., K = 1 has the fastest speed for inserting keys. However, 
K = 1 generates some false positives. Implementing two hash functions K = 2 scores 
the second fastest time but records zero false positives. Thus, implementing K = 2 pro-
vides optimal accuracy with acceptable time efficiency using a synthetic dataset. Never-
theless, synthetic data alone cannot lead to a conclusion.

The efficiency and accuracy evaluation of a different number of hash functions on 
the real dataset is important in deciding the number of hash functions. So, using 
K = 2 on real data has FPP = 0.002 . But using K = 3 has better results which exhibits 
FPP = 0.0006 . Therefore, we decided to implement K = 3 to achieve the best perfor-
mance with at most FPP = 0.001.

Table 2  Comparison of insertion speed (seconds) and false positive probability (FPP) based on the 
number of hash functions in eBF using synthetic dataset.

10, 50, and 100 Million is the number of elements inserted into eBF

Number of K 10 Million 50 Million 100 Million

Speed FPP Speed FPP Speed FPP

1 1 0 5.7 0.00016 10.5 0.0001

2 1.35 0 6.27 0 13.5 0

3 1.7 0 8.65 0 17.35 0

4 2.15 0 11 0 22 0

5 2.37 0 12 0 23 0

6 2.48 0 13 0 25.8 0

7 2.8 0 14.6 0 29.3 0

8 3.1 0 16.3 0 32.9 0

9 3.5 0 18 0 36.6 0

10 3.9 0 19.9 0 40.7 0
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Experiments using synthetic datasets

This section demonstrates the experiments conducted on eBF to compare with Stand-
ard Bloom Filter, Cuckoo Filter, and robustBF using synthetic datasets. These controlled 
datasets effectively evaluate the accuracy of the Bloom Filter variant. This is because the 
similarity or disparity of two or more datasets can be adequately identified only when 
the dataset elements are known. Therefore, the synthetic datasets that we use to test 
the membership filters contain 10 Million (10 M), 50 Million (50 M), and 100 Million 
(100  M) keys. Evaluating the performance of insertion and lookup operation on mil-
lions of keys makes shows our proposed approach is efficient and fast to handle Big Data 
processing.

Memory space

The low memory footprint is one of the basic factors that make the Bloom Filter prefer-
able to apply in Big Data Applications. However, it is important to enhance the capac-
ity of the Bloom Filter to diminish the memory space required to represent huge data. 
Figure  5 highlights the comparison of eBF, Standard Bloom Filter, Cuckoo Filter, and 
robustBF based on memory footprint. The eBF consumes 15.6X, 13X, and 8X less mem-
ory compared with the Standard Bloom Filter, Cuckoo Filter, and robustBF, respectively. 
Figure 5 depicts the advantage of using eBF over the state-of-art to improve the memory 
space efficiency of Intrusion Detection systems in IoT and query processing in Big Data 
Applications.

Insertion time

Fig.  6 depicts the comparison among eBF, Standard Bloom Filter, Cuckoo Filter, and 
robustBF based on insertion time. In all datasets, Standard Bloom Filter took the high-
est insertion time whereas eBF took the least time. The eBF took 5 × , 1.25× , and 1.28× 
less compared to the insertion time of the Standard Bloom Filter, Cuckoo Filter, and 
robustBF for 100 million keys. Similarly, eBF takes an average of 1.28 times less time 
compared to the insertion time of robustBF.

Fig. 5  Memory space comparison among the state-of-the-art membership filters using a synthetic dataset 
of 10 million, 50 million, and 100 million records. The lowest memory size consumption is the best
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Lookup time

Lookup speed is the most critical time factor because it is repetitively performed to 
check the existence of keys in the filter. For instance, if an event invokes access in the IoT, 
it must be crosschecked against the predefined threats. So, for every event generated 
from all devices of the IoT system, there are millions of searches to identify its reliability. 
These generated synthetic datasets are relevant to accurately distinguish the speed dif-
ference in lookup and precisely show the FPP in every scheme under the comparison 
process. Figure 7 displays the result of the speed comparison of the lookup of simSet in 
the Bloom Filter. The lookup time of eBF is 3.45× , 1.03× × , and 1.03× less compared to 
Standard Bloom Filter, Cuckoo Filter, and robustBF for 100 million keys.

The query speed for datasets that are different from the original dataset is faster than 
the lookup of simSet. This difference comes from an algorithm we designed to ignore 
the process of the succeeding hash functions when the preceding hash function returns 
false. The negative return from one hash function assures the absence of the element. As 
a result, the eBF avoids unwanted searching. For instance, taking the dataset with 100 M 
and the second fastest system robustBF as comparing parameters, eBF uses 1.03X less 
than the time used by robustBF while lookup simSet. However, eBF only requires 1.11X 

Fig. 6  Insertion time comparison among the-state of-the-art membership filters synthetic dataset of 10 
Million, 50 Million, and 100 Million records. The lowest is the best

Fig. 7  Lookup speed comparison for simSet among Standard Boom Filter, Cuckoo Filter, robustBF, and eBF. 
Lower is better
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and 1.31X less than the time used by robustBF for lookup mixSet and disSet, respec-
tively. Accordingly, Fig. 8 displays the graphical illustration of lookup speed comparison 
using mixSet.

Besides, Fig. 9 also shows how the speed of disjoint dataset (disSet) lookup in eBF is 
the fastest of all queries of the same dataset in Standard Bloom Filter, Cuckoo Filter, and 
robustBF. Hence, eBF is not only extremely memory efficient but also more time-effi-
cient when compared with the state-of-art membership filters.

Accuracy assessment

Accuracy assessment evaluates the correctness of the system to deliver a valid answer 
to users when lookup for the existence of an element in the system. Though the Bloom 
Filter is an efficient data structure for membership lookup, it faces the challenge of pro-
viding false positives. Accordingly, measuring the rate of false positives is the main aim 
of this experiment.

Fig. 8  A search speed comparison among filters on a dataset that proportionally consists of both similar and 
different elements compared with the elements of the original dataset represented in the Bloom Filter. Lower 
is better

Fig. 9  Lookup time comparison among the filters using the disjoint dataset (disSet). Lower is better
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Based on the result of the experiment, the proposed system is highly accurate. Our 
experiment shows that both eBF and robustBF record zero false positives. So it is pos-
sible to conclude that the result approves the 100% accuracy of both eBF and robustBF 
under synthetic datasets. However, Standard Bloom Filter and Cuckoo Filter show small 
false positives. The accuracy is calculated in terms of the ratio of the sum of True Posi-
tive (TP) and True Negative (TN) to the expected true result and the sum of false posi-
tive occurrence FP and False Negative FN from the result of the system’s output [36]. All 
the systems tested in this paper record zero FN. According to eq. 4, Fig. 10 witnesses the 
result of accuracy assessment based on the test of the three different synthetic datasets.

Hence, it is possible to conclude that eBF is an approvingly efficient and accurate Bloom 
Filter to handle Big Data membership queries.

Experimentation using real dataset

In addition to the synthetic datasets, this experiment uses real datasets accessed from 
an open repository. As described in Table 1, these datasets contain Intrusion Detection 
results of IoT systems. So, this performance test is appropriate to decide the significance 
of our proposed variant to defend IoT systems from attacks.

Memory space comparison

Space efficiency is one of the significant features that make Bloom Filter among the 
essential performance enhancement tools of Big Data Applications. However, this new 
proposed Bloom Filter variant eminently diminishes the memory size required to store 
the representation of tens and hundreds of millions of elements. Figure 11 depicts that 
eBF consumes the smallest memory space when compared with evaluated schemes. 
Thus, eBF is an appropriate solution for enhancing the efficiency of Big Data processing 
for membership identification. Membership classification is also the main task of Intru-
sion Detection in IoT. Hence, eBF is appropriate to ensure security in IoT.

(4)Accuracy =
TP + TN

(TP + TN + FP + FN )

Fig. 10  Accuracy comparison between eBF and the state-of-the-art filters. Higher is better
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Speed comparison

The proposed variant is more time efficient than Standard Bloom Filter, Cuckoo filter, 
and robustBF. Figure 12 shows how the proposed system is faster than the other systems. 
The efficiency advantage increases when the number of elements represented in the fil-
ter increases. This quality makes eBF an appropriate tool for colossal data processing.

Figure  13 demonstrates the performance of query operations of the different mem-
bership filters for the real datasets. Though fast lookup is the distinguishing nature of a 
Standard Bloom Filter, Fig. 13 shows that lookup in eBF is more efficient than the state-
of-the-art membership filter. Accordingly, eBF has become an efficient solution to opti-
mize the performance of Big Data Applications.

Accuracy assessment

As shown in Table 1 the real datasets used for time and space assessment are accessed 
from different environments. However, they can contain similar elements. So, assessing 

Fig. 11  Memory consumption comparison between eBF and the state-of-the-art membership filters. Real 
datasets are used in this comparison evaluation. Lower is better

Fig. 12  Real data insertion speed comparison of eBF against Standard Bloom Filter, Cuckoo Filter, and 
robustBF. Lower is better
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false positives is not as accurate as using synthetic datasets. It is possible to test the false 
negative status by querying the same dataset over the Bloom Filter that represents it. 
Accordingly, the experiment result reveals that Standard Bloom Filter, Cuckoo Filter, 
robustBF, and eBF recorded zero false negatives.

Comparison summary

The time and space comparison summary between the latest membership filters and 
our proposed variant - eBF is shown in Table 3. The table depicts that eBF outperforms 
all other membership filters in every aspect. For example, eBF uses 8× smaller than the 
memory used by the latest variant robustBF. The speed enhancement also shows that 
implementing eBF is better than the three evaluated methods. So, our proposed Bloom 
Filter variant is more efficient than the state-of-the-art membership filters to work with 
identifying huge data elements collected at every edge of the IoT system. This ability of 
eBF allows others to develop various powerful Intrusion Detection systems for IoT.

Discussion 
IoT and various Big Data Applications handle an immense interaction among billions 
of users simultaneously. The Intrusion Detection Systems in IoT monitor malicious 
events based on a predefined set of threats to prevent billions of devices from being 
attacked. This complex interaction demands advanced technologies that enhance 

Fig. 13  Real data lookup speed comparison among eBF, Standard Bloom Filter, Cuckoo Filter, and robustBF. 
Lower is better

Table 3  Improvement of eBF over Standard Bloom Filter, Cuckoo Filter, and robustBF for 100  M 
dataset

Comparison with eBF memory and time efficiency advantage

Memory 
efficiency

Insertion speed Similar searching Mixed searching Disjoint 
searching

StandardBF 15.6× 5× 3.45× 3.33× 3.45×

CuckooFilter 13× 1.25× 1.03× 1.25× 1.69×

robustBF 8× 1.28× 1.03× 1.11× 1.31×
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computational performance [9]. Accordingly, eBF is the right solution to support 
the robust computation of IoT Intrusion Detection. Moreover, it can enhance the 
performance of complex networks of social media such as Facebook, YouTube, and 
WhatsApp and cloud vendors such as Microsoft, Amazon, and Google that han-
dle the processing of Big Data. eBF surprisingly uses a tiny memory footprint and 
it is 15.6× , 13× , and 8× lower than the Standard Bloom Filter, Cuckoo Filter, and 
robustBF, respectively. Key insertion to and search processing on traditional Bloom 
Filter requires enhancement to cope with the rapid growth of applications. eBF is 
faster than the Standard Bloom Filter, Cuckoo Filter, and robustBF. eBF is a better 
solution to support the performance enhancement of Big Data Applications based on 
the insertion and search speed. Moreover, eBF shows better accuracy than all the sys-
tems tested on the same data and environment. Thus, this new system significantly 
addresses the efficiency and accuracy issues of Intrusion Detection in IoT.

Conclusion
In this article, we present a novel method to detect Intrusion Detection Systems for 
IoT, called eBF. Our proposed model relies on a deep learning model which is consid-
ered a black box. The key embodiment of our proposed scheme is to reduce the load 
of the trained deep learning model using a Bloom Filter because IoT devices cannot 
tolerate resource hunger computation.

We have carried out an extensive experiment to validate the performance of our 
proposed work with state-of-the-art filters. This significantly notable result was tested 
by using big datasets that amount to 100 million records. The datasets include actual 
data packets filtered from various IoT Intrusion Detection Systems. Besides, system-
generated synthetic datasets with a set of integers were evaluated in a controlled way 
to expose the strength/weaknesses of the membership filters. The result shows that 
eBF is incredibly memory efficient using 15.6×,13× , and 8× less memory than the 
Standard Bloom Filter, Cuckoo Filter, and robustBF, respectively. eBF is also faster in 
inserting and searching operations than other membership filters. The experimental 
result exhibits that eBF is on average 5×,1.25× , and 1.28× faster than Standard Bloom 
Filter, Cuckoo Filter, and robustBF, respectively during insertion. The speed advan-
tage of this new system increases more when there is searching for disjoint datasets. 
Accordingly, eBF is 3.45× , 1.69× , and 1.31× faster than Standard Bloom Filter, Cuckoo 
Filter, and robustBF, respectively. Hence, frequently requested unwanted searches can 
be avoided easily without affecting the system’s performance. It also records zero false 
positives. This result shows that eBF is almost 100% accurate Bloom Filter. This pro-
posed Bloom Filter variant has successfully achieved all the objectives of this article 
by delivering an enhanced Bloom Filter with notably exceptional performance and 
reliability for Intrusion Detection systems of IoT.
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