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Abstract 

In the most popular distributed stream processing frameworks (DSPFs), programs 
are modeled as a directed acyclic graph. Using this model, a DSPF can benefit from 
the parallelism capabilities of distributed clusters. Choosing a reasonable number of 
vertices for each operator and mapping the vertices to the appropriate processing 
resources significantly affect the overall system performance. Due to the simplicity of 
the current DSPF schedulers, these frameworks perform poorly on large-scale clusters. 
In this paper, we present a heterogeneity-aware scheduling algorithm that finds the 
proper number of the vertices of an application graph and maps them to the most 
suitable cluster node. We begin with a pre-processing step which allocates the vertices 
to the given cluster nodes using profiling data. Then, we gradually increase the topol-
ogy input rate in order to scale up the application graph. Finally, using a CPU utiliza-
tion model which predicts the CPU workload based on the input rate to vertices and 
the processing node’s CPU characteristics, we identify the bottlenecked vertices and 
allocate new instances derived from them to the least utilized processing resource. Our 
experimental results on Storm Micro-Benchmark show that (1) the prediction model 
estimate CPU utilization with 92% accuracy. (2) Compared to the default scheduler of 
Storm, our scheduler provides 7 to 44% throughput enhancement. (3) The proposed 
method can find the solution within 4% (worst case) of the optimal scheduler, which 
obtains the best scheduling scenario using an exhaustive search over problem design 
space.

Keywords: Stream processing, Scheduling, Heterogeneous, Throughput, Parallelism

Introduction
In the stream processing applications such as network monitoring, online machine 
learning, fraud detection, signal processing, and sensor-based monitoring, the infinite 
data sequence must be processed uninterruptedly. Apache Storm [1] is among the most 
popular distributed stream processing frameworks for such applications. This frame-
work models applications as a directed acyclic graph (DAG), called topology. A topol-
ogy in Storm can be executed after determining the structure of the execution topology 
graph and the number of instances (tasks) used for each application component. After-
ward, the Storm scheduler maps all topology tasks to processing elements (PEs). By 
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default, Storm assigns tasks according to the Round-Robin algorithm regardless of the 
processing power of each PE [2].

Based on the computation requirements and the input rate of an application in stream 
processing, sufficient processing resources must be taken to prevent CPU overloading. 
The required processing power remains steady in applications with constant input rates, 
like surveillance applications, weather analysis, and predictive maintenance. So there 
would be an excellent opportunity to optimize the mapping of the processing resources 
to these applications to gain the highest possible throughput, especially when the pro-
cessing resources are heterogeneous.

In heterogeneous clusters, an optimal selection of the number of instances for each 
component and their assignment to PEs play a significant role in achieving high through-
put and efficient utilization of resources. While application-to-architecture mapping is 
an old classic design automation problem, the features below make Storm optimization 
distinctive: 

1 The user determines the number of instances of each component, and can be set 
based on the executing cluster.

2 The computation load of each instance is not steady and can be changed by tuning 
the input tuple rate.

3 The input rate of each instance determines the workload of its downstream 
instance(s).

Several scheduling methods [3–6], are proposed to improve the naive Storm scheduler, 
but most focus on resource management in homogeneous clusters. However, none of 
these works consider the heterogeneity of cluster nodes. So they perform poorly on 
heterogeneous clusters, the most prevalent of which are in real-world data centers. The 
authors of [7–10] also present methods to dynamically scale Storm clusters in response 
to processing demand or input data rate. For both scheduling and scaling solutions, a 
primary user graph is submitted to Storm for execution, and the user determines the 
number of instances for each component.

In this paper, we propose a novel scheduling algorithm, which (1) calculates the near-
optimal number of instances for each component to create a fitting topology for a par-
ticular heterogeneous cluster; and (2) decides which machine is most suitable for each 
task based on its processing characteristics. The proposed algorithm tries to fully utilize 
the processing resources for a given heterogeneous cluster while preventing over-utili-
zation. In order to prevent overutilization, a heterogeneity-aware model is proposed to 
predict the CPU utilization of each task running on a specific machine. Figure 1 shows 
the architecture overview of Apache Storm with the proposed heterogeneous scheduler 
on a cluster consisting of n worker nodes. The scheduler uses the user topology graph 
and profiling data as inputs to create a graph of execution topology. Then it maps the 
output graph to the worker nodes regarding their capability.

Different types of topologies from Micro-Benchmark [6] and Storm-Benchmark 
[15] are executed on a heterogeneous cluster to evaluate the efficiency of the pro-
posed algorithm. To the best of our knowledge, no similar scheduling algorithm pro-
duces the execution graph to maximize the throughput of an application running over a 
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heterogeneous cluster, So we compare our work with the optimum scheduler. The opti-
mum scheduler obtains the best execution graph using an exhaustive search over the 
problem design space. The experimental results show that our algorithm provides 7 to 
44% throughput enhancement in comparison with the default scheduler of Storm. More-
over, real occupied CPU utilizations show that the proposed method utilizes all process-
ing resources efficiently. Comparing them with the predicted values demonstrates that 
our prediction model can estimate CPU utilization with over 92% accuracy.

We make the following major contributions to this paper: 

1 First, we present a prediction model to anticipate the CPU utilization considering the 
CPU’s characteristics and input rate

2 Then, using the above model, we provide a novel heterogeneity-aware scheduling 
algorithm for Apache Storm to fit a topology graph to a specific heterogeneous clus-
ter to maximize the general-purpose stream processing applications throughput

3 Finally, we implement the proposed algorithm in Apache Storm and evaluate it using 
topologies from Micro-Benchmark [6] and Storm-Benchmark [15] for both through-
put and resource usage efficiency.

The remainder of this paper is organized as follows. First, preliminary information about 
stream processing and the Apache Storm architecture is provided. Then, the motiva-
tion for considering resource heterogeneity, the problem definition, and the details of 
the proposed algorithm are presented in sections "Motivation", "Problem definition", and 
"Proposed Algorithm", respectively, followed by the evaluation of the proposed predic-
tion model and scheduling algorithm in section 6.

Background and related works
Stream processing

Big data processing can be divided into two main categories: Batch processing and 
Stream processing. In Batch or off-line processing, data is prepared before processing. 
In stream or online processing, a possibly infinite sequence of data items is generated 
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continuously in time and must be processed in real-time. Apache Hadoop is one of the 
most popular frameworks for batch processing, which uses MapReduce programming 
model. There are several large-scale computing architectures customized for batch 
processing of big data applications [11]; however, they are not suitable for stream data 
processing because, in the MapReduce paradigm, all input data needs to be stored on a 
distributed file system like HDFS, before starting to process. Many distributed frame-
works have emerged to address large-scale stream processing problems; however, 
Apache Storm is one of the best-known stream processing framework for low latency 
and high throughput applications, among them all [13, 29].

Apache storm programming model

Apache Storm is an open-source, real-time, distributed processing platform that pro-
cesses the unbounded data stream. In Storm, each program is modeled as a directed 
acyclic graph (DAG) called topology. A topology consists of two types of components. 
The component responsible for input stream production is spout and the component in 
charge of data processing is bolt. This primary topology is known as the user topology 
graph (UTG ) [12]. Figure 2 depicts a user graph with one spout and four bolts.

Each component of the user topology graph may have several instances (tasks) that 
determine its parallelism degree. All component instances execute the same operation 
on different parts of the upstream data. A topology with distinct parallelism degrees, 
forms the execution topology graph (ETG) [12]. Figure  3 illustrates an example exe-
cution graph corresponding to the user graph in Fig.  2. In this figure, the parallelism 
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degrees of Bolt1, Bolt2, Bolt3, and Bolt4 are 4, 2, 3, and 1, respectively. We assumed 
each bolt of the topology has a variable size because each bolt occupies different CPU 
utilization, depending on its input rate and computation requirements. The structure of 
the execution topology graph dramatically affects overall throughput and average tuple 
processing time, two major stream processing considerations.

Once a topology is assigned to processing elements (Fig. 4 shows a sample assignment 
of execution topology graph Fig. 3), the spout(s) brings data into the system and sends 
them to the bolt(s). As processing progresses, one or more bolts may write data out to 
a database or file system, send a message to another bolt (s), or make the computation 
results available to the user [12].

Apache storm execution architecture

A Storm cluster consists of two kind of nodes: master node and worker nodes. The 
master node runs a daemon called Nimbus, which is the central component of Apache 
Storm. The main responsibility of the nimbus is distributing tasks on the worker nodes. 
Worker nodes do the actual execution of the topology. Each worker node (machine) runs 
a daemon called Supervisor, which executes a portion of the topology. The configuration 
of worker node determines how many worker processes (correspond to slots) it provides 
for the cluster. Each worker process runs a Java Virtual Machine (JVM), in which several 
threads (known as executor) are running.

A scheduling solution specifies how to assign tasks to worker nodes. Apache Storm’s 
default scheduler uses a simple Round-Robin method to map executors to worker pro-
cesses. Then, it evenly distributes worker processes to available slots on worker nodes. 
Figure 4 shows how Storm default scheduler distributes all tasks of the execution topol-
ogy graph of Fig. 3 among four machines of a heterogeneous cluster.
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Fig. 4 Task assignment of Storm’s default scheduler for execution graph Fig. 3
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Literature review

Many scheduling algorithms are proposed to optimize throughput or resource utiliza-
tion in Apache Storm [17–21]. One of the primary considerations in task assignment is 
communication cost; Aniello et al. proposed two schedulers for Storm [3]. Both schedul-
ers find hot edges of topology and put related tasks alongside each other, but the differ-
ence is in how they determine hot edges. In R-Storm [6], B. Peng et al.. have presented 
a more intelligent scheduling algorithm. This algorithm is resource-aware and classifies 
resource constraints into soft and hard. R-Storm considers the CPU usage of homog-
enous machines and cannot be applied in heterogeneous environments because it uses 
the same unit for CPU utilization of different machines. Rychl et al. [10] presented a het-
erogeneity-aware scheduler for the stream processing frameworks. However, the main 
idea of this scheduler is based on design-time knowledge as well as benchmarking tech-
niques. As a drawback, this scheduler makes the scheduling decision by trial and error 
and gives no information about the optimum number of instances.

Other papers deal with dynamic elasticity; chiefly [7, 9, 22, 23] change the scalabil-
ity by tyning the parallelism degree of graph nodes. They monitor the data transfer 
rate of graph edges to determine their required parallelism. In these papers, the total 
number of available machines is unlimited. B. Lohrmann et  al. [8] focused on latency 
constraints and presented an elastic runtime strategy that monitors and measures nec-
essary metrics to make proper scale-up or scale-down operations. V. D. Veen et al. [24] 
design and implement elasticity at the virtual machine level. They monitor several met-
rics such as processor load, the size of an input queue, and the number of tuples emit-
ted and acknowledge to decide whether to increase the number of virtual machines or 
decrease it. Stela [9] presents an on-demand mechanism for scale-out or scale-in opera-
tion, depending on user request. However, in the Stela, parallelism can be changed 
dynamically, but the user defines the total number of tasks. D-Storm [25] models the 
scheduling problem as a bin-packing problem and proposes a First Fit Decreasing (FFD) 
heuristic algorithm to solve it. As a goal, they try to minimize inter-node communica-
tion; by dynamic rescheduling and do not consider the overhead of reassignment of the 
tasks. I-Scheduler [26] is another scheduling algorithm that tries to overcome the com-
plexity of the task-assignment problem by reducing the total number of tasks. It finds 
highly communicating tasks by exploiting graph partitioning techniques and takes only 
one instance for each of them. In this way, it reduces the total number of tasks and over-
all communication cost.

In both scheduling and scaling solutions, a primary execution graph is submitted to 
Storm to run; the user determines the number of instances for each component of this 
graph. In the case of Storm, the number of instances is defined before running the topol-
ogy, and we have to restart the entire system to change that. Some algorithms like Stela 
[9], take a specific number as the maximum number of instances and change the number 
of instances running on one executer to scale up or down at run-time. In comparison, 
our algorithm offers a fitting execution graph for a cluster of heterogeneous machines. 
In the case of changing the number of machines, it can be re-executed to create a new 
execution graph.
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Motivation
In the last decade, CPUs have become faster and more powerful, mainly by increas-
ing the frequency of their clocks or by developing new architectures. As a data center 
grows over time, it would have several generations of processors, making it a hetero-
geneous processing environment. Most big data applications today are processed on 
large-scale computer systems, such as data centers. In practice, we have heterogene-
ous clusters as the infrastructure for big data processing [30, 33].

However, Apache Storm does not consider resource heterogeneity in its scheduling 
framework, despite the prevalence of heterogeneous clusters in existing data centers. 
Due to this, its schedulers perform the same task assignments in homogeneous and 
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heterogeneous systems. To demonstrate the inefficiency of Storm’s default scheduler 
in heterogeneous environments, we ran three basic topologies from the Storm Micro-
Benchmark [6] on a cluster of three different machines (the experimental setup is 
described in "Evaluation" Section). Figures 5, 6 and 7 represent the total throughput 
of running intended typologies when their tasks are assigned to the cluster nodes by 
the Storm default and optimal scheduler.

The optimal scheduler is a brute-force algorithm that performs an exhaustive search 
on the task-assignment design space to find the best placement for all topology tasks on 
the target cluster’s machines. Using this algorithm, the overall topology throughput is 
calculated for all possible placements, and the placement that results in the maximum 
overall topology throughput is selected. According to Figs. 5, 6 and 7, the scheduling sce-
nario significantly impacts the overall throughput, and there is a significant gap between 
the current and the maximum achievable throughput. Consequently, at first glance, we 
may prefer the optimal scheduler over the default Storm scheduler to obtain higher 
throughput and efficiency. However, the optimal scheduler has a much longer execution 
time.

To determine the time complexity of the optimal scheduling algorithm, we have to 
limit the total number of topology tasks. Assuming each machine can execute at most 
kj tasks simultaneously, the total number of tasks is limited to the processing power of 
machines. Hence, all possible non-negative integer solutions for task assignment can be 
obtained using the following equation:

In this equation, m is the number of candidate machines for task placement, kj is the 
maximum number of tasks that can be executed on jth machine simultaneously, n 

(1)
x1 + x2 + x3 + ...+ xn ≤

m
∑

j=1

kj

s.t. ∀i = 1...n xi ≥ 1
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Fig. 7 Throughput comparison of default and optimal schedulers for Star topology
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is the total number of components, and xi is the total number of tasks for ith compo-
nent. By solving this equation, the time complexity of optimal scheduling algorithm is 
obtained O(c(

∑m
j=1 kj , n)) . For example, running the optimal scheduler for mapping a 

topology with four bolts (n = 4) on three machines (m = 3) with same processing power 
(∀j = 1, 2, 3 kj = 10) checks 27,405 possibilities and lasts about 18 hours, by a server 
with four Xeon 5560 processors and 8 GB of memory. When we have a heterogeneous 
cluster in which the machines have different processing powers, this time is increased 
exponentially.

The problem of scheduling in heterogeneous systems must therefore be addressed by a 
new scheduler that assigns tasks faster than the optimal scheduler and results in higher 
throughput than the default scheduler. The following section describes the problem defi-
nition, followed by a description of our scheduling method in depth in "Proposed algo-
rithm" section.

Problem definition
We are trying to find an appropriate number of tasks and then assign them to the most 
appropriate machines to maximize the overall throughput. Every component has a dis-
tinct processing requirement, which determines the number of instances to be taken 
from it. Furthermore, in a heterogeneous cluster, the number of instances for each 
component is strongly influenced by the type of machine to which they are assigned. 
Based on these processing requirements and the processing power of machines, how 
can we create enough tasks and schedule them so that the cluster is utilized fully and 
overall throughput is maximized, but no machine is exceeding its processing capabili-
ties? We will try to answer this question. Table 1 summarizes the parameters used in our 
approach.

Table 1 Terms and definitions of the approach.

Symbols Descriptions

NTi Number of available machines with type Ti
NCi Total number of instances of component i

m Total number of worker nodes (machines)

n Number of topology’s components

PTiw Processing throughput of task i running on machine w

MACw Available CPU capacity of machine w

TCUij Occupied CPU utilization by ith task on machine j

eij Average tuple execution time of task i on machine j

METij Miscellaneous execution time of Storm for task i run-
ning on machine j

R0 Topology initial input rate

αi Tuple division ratio of ith component

IRi Input rate of ith task

PRi Processing rate of ith task

ORi Output rate of ith task
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Problem statement

In the context of our system, each machine (worker node) has one worker process, 
which has a particular processor architecture and a specific processing budget. It is 
assumed that each task in the execution topology graph is assigned one executor, so the 
total number of tasks equals the total number of executors.

Let TC = (T1,T2,T3, ...) be the set of all types of machines in the target cluster, and 
NTi shows the number of available machines with type Ti , on that cluster. For a hetero-
geneous cluster with T types of machines, the summation of NTi s (i = 1...T ) shows the 
total number of machines (m). Also let UTG = (c1, c2, c3, ...) be the set of all components 
within a user topology graph, and similarly, NCi says how many instances each compo-
nent has. Here the summation of NCi s shows the total number of tasks (n).

Problem formulation

Our aim is to maximize throughput by finding the near-optimal number of instances 
for each component and arranging them appropriately on a cluster of heterogeneous 
machines while avoiding scheduling that would overutilize the CPUs of those machines. 
In Storm, a topology’s overall throughput is calculated as the sum of all tasks’ process-
ing throughputs [6]. Since each component may have several instances, for each compo-
nent, we sum the processing throughput of its instances (PTiw s) and then these values 
are added together to obtain the overall throughput of a topology. To ensure that no 
machine is over-utilized, we put a constraint on Machine Available CPU capacity 
(MACw) . For each machine, this constraint checks that the summation of CPU utiliza-
tion of its tasks (TCUs) does not exceed its CPU’s total utilization limit. In the beginning, 
the value of (MAC)s is assumed to be 100. Additionally, all components must have at 
least one instance to create the minimal execution topology graph. Hence, the objective 
of our problem is as follows:

where

For each task i, we run it on machine w ( w = 1...m ) and use equation (3) to make unique 
indexes. By doing so, we can access the processing throughput for each task within the 
implemented Storm system 1.

(2)

maximize

n
∑

j=1

NCj
∑

k=1

m
∑

w=1

PTiw

subject to ∀w = 1...m MACw ≥ 0

∀j = 1...n NCj ≥ 1

(3)i =





j
�
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NCl



+ k

(4)PTiw =







PRi If task i is running on machine w,

0 Otherwise
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If tasks are assigned incorrectly, or numbers of instances are taken inappropriately for 
components, the CPUs on physical machines may be overused or underused. However, 
adjusting these two options to obtain a maximum throughput without machine over-
loading results in more state space and computation complexity. Considering each task 
as an item that has specific profit (PTiw) and weight (TCUiw) and each machine as a 
knapsack with a specific capacity (MACw) , our problem can be mapped to the multiple 
Knapsack optimization problems [28]. Due to the NP-hardness of the classic Knapsack 
problem, finding an optimal solution to this problem is computationally impractical.

Several meta-heuristic algorithms exist to obtain the near-optimal answer to the mul-
tiple Knapsacks problem, but most require considerable computation time. Therefore, 
fast scheduling is essential in the stream data processing. The tuple overloading state is, 
for example, caused by a slow scheduler in the event of a machine failure. Furthermore, 
any reconfiguration in the cluster requires a new task assignment, so a lazy scheduler is 
unacceptable. In order to solve the problem mentioned above, we propose a new heuris-
tic algorithm characterized by both a short execution time and high throughput.

Proposed algorithm
Algorithm overview

Considering UTG = (c1, c2, c3, ...) as a user topology graph, we gradually scale it up over 
a given cluster by increasing the topology input rate and taking more instances from the 
compute-intensive components. This process continues until all cluster nodes have been 
utilized. As Fig. 8 represents, our scheduling algorithm has two phases: initialization and 
iteration (separated by dotted lines). In the initial phase, we take a user topology graph 
and a set of eij s (profiling data), then take one instance from each component; finally, 
we map this primary execution graph to the cluster using FirstAssignment procedure. 
In the iteration phase, we employ two options, including increasing topology input rate 
and taking new instances. By iteratively using these options, the algorithm progressively 
increases throughput and fully utilizes all available machines.

At each iteration, MaximizeThroughput procedure updates the MAC values for all 
machines and check if any machine is over-utilized. When there are no over-utilized 
machines, the topology input rate is increased until at least one machine is over-utilized. 
In this situation, the algorithm takes a new instance from the component, which one 
of its instances is the bottleneck. The algorithm then attempts to assign the instance 
to the most appropriate machine. If there is enough capacity to map the new instance, 
it is added to the execution topology graph (ETG). The input rate increment must be 
reduced if no candidate machine can be identified. The process repeats until the input 
rate increment reaches its threshold; therefore, there is no more capacity left on the clus-
ter. Lastly, the iterations are complete, and the execution topology graph and mapping 
are obtained.

As part of our algorithm, we need to know the amount of CPU usage on all possible 
types of machines before mapping an instance to the correct machine. For better estima-
tion of these values, we propose new metrics and present a formula that uses profiling 
data to predict the TCU  of the intended instance on each machine. We describe this 
formula in detail in the following section.
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CPU usage prediction

There have been many studies that have attempted to classify and predict CPU utilization 
patterns of devices and servers in data centers, as well as traffic patterns on networks, to 
predict resource exhaustion [34–38]. The goal of these studies is to develop predictive 
models that can identify when a device or server is likely to run out of resources, such as 
CPU, memory, or disk space, or when a network link is likely to become congested. As 
we focus on the CPU intensive streaming applications, we do not consider the network 
and memory behaviors and it make the CPU usage prediction problem to a simpler one 
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and hence it can be used in our algorithm with low time complexity while according our 
experiments it has enough accuracy in for our problem.

According to our experiments, for each task, the value of TCU  depends on its input 
rate, computation complexity, and the type of machine used to perform the task. Based 
on our observations, we assume a task’s CPU usage linearly increases in terms of input 
rate increment. So we use (5) to estimate the TCU  of ith task on jth machine as follow:

In this formula:

• eij : Is the average execution time of the ith task on the jth machine to process a 
single tuple of data. In other words, it is the time taken by a single task to process 
a single unit of input data.

• IRi : Is the tuple input rate of the ith task that determines its workload.
• METij : Is the miscellaneous execution time of Apache Storm for the ith task on 

the jth machine. It represents the fixed overhead time taken by Storm for a given 
task on a particular machine, irrespective of the input rate. This overhead time 
includes the time taken by Storm to set up and tear down the task, perform net-
work communication, and perform other miscellaneous operations required to 
execute the task. As we mentioned, this value is considered a constant for a given 
task and machine combination.

According to our experiments, we observed that for each task i running on machine j, 
the values of eij and METij are independent of the input rate IRi . This means that these 
two variables can be treated as constants for a given task and machine combination. 
Based on this observation, we can use these constants to estimate the CPU usage of 
the task i on machine j for a given input rate IRi.

By using this formula, we can estimate the execution time of the task i on machine j 
for different input rates IRi . However, this formula assumes that eij and METij remain 
constant for a given task and machine combination, which may not be true in all cases.

Our algorithm is designed based on grasping the execution characteristics of dif-
ferent tasks. We use pre-process profiling to know the performance characteristics of 
the individual types of nodes employed in the cluster for different tasks [27]. In profil-
ing, each task is run on all types of machines, and each time we increase its input rate 
while it reaches the maximum value of its CPU usage. At this point, we measure the 
CPU usage, its corresponding input rate, and the value of eij which can be measured 
using get_execute_ms_avg() Java function or Storm’s UI. Knowing TCU , IR and eij , the 
value of METij is calculated using (5). The reasoning behind choosing the maximum 
point is that the variation in measured CPU utilization is very low when the process-
ing load is either relatively low or relatively high [14]. As the number of arrival tuples 
increases, the portion of the miscellaneous overhead of Storm and CPU idle time are 
decreased; thus, the prediction of CPU usage at the maximum point is quite accurate. 
After profiling, we have a constant eij and METij for all possible assignments of topol-
ogy’s components to cluster’s nodes. Thus, we can predict its TCU  for each arbitrary 
value of IR.

(5)TCUij = (eij × IRi)+METij
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As topology input rate has a domino effect on all tasks, we define a new metric (called 
α ) to estimate the output rate of each task. For task i, αi is a given parameter (extracted 
from profiling data) that shows the average ratio of its output tuples count to its input 
tuples count. Now we can calculate the input rate of each downstream bolt using equa-
tion 6 and then obtain its corresponding CPU usage by formula 5.

where

In this equation, x is the number of downstream tasks which are fed by ith task, and y 
is the number of tasks that are feeding the intended downstream task (next stage task). 
Here, ORi is output rate of ith task, and IRi is its input rate.

First assignment

To meet the first constraint of our problem, we use the FirstAssignment procedure to 
take one instance from each component of the given topology. This procedure takes a 
user topology graph UTG  and a set of eij s and METij (profiling data) as input, according 
to Algorithm 1. For a given topology with an initial input rate R0 , it estimates the input 
rate of each component, using α values and equation  6. Then, for each component, it 
predicts the TCU  on different machines using profiling data and formula 5 and assigns 
the component to the machine, which results in the least TCU . In the case of a suc-
cessful assignment, one instance of the component is added to the temporary execution 
topology (Current_ETG). After mapping all the components, a primary execution topol-
ogy with a specified task assignment is given to the MaximizeThroughput procedure.

Algorithm 1: First Assignment
Input : User graph U , Profiling information P
Output: Assigned user graph Current ETG to the target cluster

1 Current IR = R0
2 Current ETG = Null
3 foreach component i in U do
4 Using P map i on the machine which results the least TCU
5 Add i to Current ETG
6 end

Maximize throughput

In the second phase, we use a progressive algorithm to efficiently use all processing 
power of the cluster nodes and maximize the overall throughput. To do that, another 
procedure called MaximizeThroughput takes profiling data and a primary execution 
topology graph from the FirstAssignment procedure as inputs. After a limited number 
of iterations, this procedure results in a final execution topology graph (Final_ETG) 
in which it determines how many instances each component has, where each instance 
must be placed on the target cluster, and the maximum value of topology input rate 
which cluster can tolerate.

(6)IRnext_stage_task =

y
∑

i=1

(

ORi

x

)

ORi = IRi × αi
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Algorithm  2 represents pseudo-code of MaximizeThroughput procedure. Here, vari-
able Scale is defined to control the amount of input rate increment, which its value is ini-
tialized to be 1. At the beginning of the algorithm, we assume Current_ETG is mapped 
to the cluster, and its input rate starts from R0 . In the next step, the algorithm increases 
the input rate progressively, and at each iteration, it updates the value of MAC for all 
machines using formula  5. After that, it checks if any machine is over-utilized. Now 
there are two possibilities:

1- No machine is over-utilized; in this situation current execution topology graph 
(Current_ETG) and its corresponding input rate are retained in Final_ETG as the lat-
est stable state; and then topology input rate is increased by a factor proportional to 
Currect_IR/Scale. By incrementing the topology input rate, all tasks’ processing load 
will be increased. Thus their utilization on the corresponding machine needs to be 
updated, so we return to line 1 to evaluate new conditions. 2- At least one machine 
is over-utilized; in this situation, we take a new instance from the component cor-
responding to the task with the highest CPU usage (hottest task) in the first over-uti-
lized machine. This new instance should be assigned to one of the available machines, 
so we look for the most suitable machine to map this instance on. When there is at 
least one machine with enough capacity to serve this new instance, it is added to the 
Current_ETG alongside its assignment information; then, we go to line 1 to update 
the MACs. However, if no candidate machine is found to serve that, the termination 
condition is checked. By taking a new instance from the ith component, this instance 
will process a portion of the upstream data ( IRi ). Hence, the input rate of other 
instances, including the hottest task, is decreased, so over-utilization is solved.

While current input rate (Current_IR) is greater than value of Scale: I) The amount 
of input rate increment will be decreased by a factor proportional to 12 , in other words 
the variable Scale is duplicated. II) The latest stable state of scheduling is recovered 
by copying the Final_ETG to the Current_ETG, because the current rate exceeds the 
cluster processing capacity. III) Return to line 1 to update the value of MACs.

Algorithm 2: Maximize Throughput
Input : User graph Current ETG, Profiling information P
Output: Final ET with its mapping information on target cluster

1 Update MACs using CPU prediction formula and P if no CPU over-utilization then
2 Final ETG = Current ETG
3 Current IR + = Current IR/Scale
4 go to line 1
5 else
6 Take new instance h from hottest task
7 if enough capacity exists on cluster then
8 Add h to Current ETG
9 go to line 1

10 else
11 if Current IR > Scale then
12 Scale = 2 ∗ Scale
13 Current ETG = Final ETG
14 go to line 1
15 else
16 return Final ETG
17 end
18 end
19 end
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In this procedure, we regulate the incrementation of input rate in lines 3 and 12; 
and use take new instance option in lines 6–8. This process is repeated until the ter-
mination condition (Current_IR ≤ Scale) is satisfied; it means the input rate cannot 
be increased anymore, and no capacity is left in the cluster to place any new instance. 
Now all machines are almost fully utilized, and the final execution graph and its cor-
responding assignment are created, so the algorithm ends. The computational com-
plexity of this algorithm depends on the total capacity of the cluster and the TCU 
s, so the worst-case computation complexity of this algorithm can be calculated as 
log(TACm/

∑

i∈T min(TCUiw),∀w∈m) where the TACm stands for the total capacity of 
the all machines in the cluster and TCUiw is the occupied CPU utilization of the task i 
on machine w.

Evaluation
Experimental setup

To evaluate the proposed scheduler, we have implemented it in Storm as a new sched-
uler [31]. Using this scheduler, we run benchmark topologies on a cluster of four het-
erogeneous machines. Table 2 shows the specifications of cluster nodes. In our cluster, 

Table 2 System characteristics.

Cluster Node Memory Processor Network adapter Operating system

Machine 1 2GB Pentium Dual-Core 2.6 GHz 1 Gb/s Ubuntu 16.04

Machine 2 4 GB Intel Core i3 2.9 GHz 1 Gb/s Ubuntu 16.04

Machine 3 6 GB Intel Core i5 2.5 GHz 1 Gb/s Ubuntu 16.04

Machine 4 4 GB Intel Core i3 2.9 GHz 1 Gb/s Ubuntu 16.04

Table 3 Profiling of topologies’ tasks on cluster’s machines.

Task Type Machine 1 Machine 2 Machine 3

lowCompute 0.0581 (s) 0.107 (s) 0.0916 (s)

midCompute 0.103 (s) 0.1844 (s) 0.168 (s)

highCompute 0.1915 (s) 0.3449 (s) 0.3207 (s)

Low Mid Higha) Linear

Mid

High Low

Low

Lowb) Diamond

High
Low

Low

Mid

Mid
c) Star

Fig. 9 Layout of Micro-benchmark [6] topologies
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all machines are connected through a switch with 1 Gb/s network adapters. One of the 
Core i3 machines is used as a master node, which runs Zookeeper and Nimbus dae-
mons, and other machines are configured as worker nodes. All experiments are obtained 
with Apache Storm 0.9.5 installed on top of Ubuntu 16.04.

However, Storm topologies can be an arbitrary DAG; most topologies are a mixture 
of three basic topologies: Linear, Diamond, and Star (Fig.  9). Linear topology has one 
source, a sequence of intermediate components, and a sink. When there are several par-
allel components between the source and sink, it is known as Diamond topology, and a 
Star topology has multiple sources connected to a single component. This intermediate 
component is the parent of multiple sinks. There are some production applications from 
industry like PageLoad topology, Processing topology, and Network Monitoring topology 
[7], which has been used in [6, 7, 9] to evaluate their works. All these topologies are a 
combination of Linear, Diamond, and Star topologies and are good choices where the 
processing power, network capacity, and topology connectivity must be considered. In 
this work, we only focus on the required processing power by each component and have 
no network consideration; therefore, we used three basic topologies from Micro-Bench-
mark [6] to evaluate the effectiveness of our scheduling algorithm. All topologies in this 
benchmark are made from three types of CPU intensive components called lowCom-
pute, midCompute, and highCompute. Table 3 shows the profiling data eij of each com-
ponent, on all types of machines which mentioned in Table 2.

To maximize the system’s throughput, the algorithm tries to make a fitting execution 
topology graph for a specific heterogeneous cluster. Since finding the optimum number 
of instances for each component has a huge design space, we used two simple topologies 
from Storm-Benchmark [15]. They both contain two components and make it possible 
to verify how well the algorithm calculates the number of instances for each component. 
As there is no similar scheduling algorithm to produce the execution graph according 
to the computing power of heterogeneous machines, we compared its results with the 
optimal execution graph.

Experimental evaluation

In this section, we evaluate our proposed method in four directions. At first, we evalu-
ate our proposed CPU usage predictor module. After that, we evaluate the efficiency 
of our proposed method in the execution graph creation. And finally, since our goal is 
to maximize the total throughput of the cluster, we consider the total throughput and 
the utilization of the machines as our next evaluation metrics. We have two baselines to 
compare the results with. The first baseline is Apache Storm’s default scheduler. As we 
mentioned before, it maps executors to worker processes using a Round-Robin method 
and then, the worker processes are evenly distributed to slots on worker nodes. In order 
to find the best possible solution, an exhaustive search over problem design space is used 
as the second baseline.

Evaluation of CPU usage formula: The first part of our proposed algorithm, which 
needs to be verified, is the CPU usage prediction formula. An interesting outcome of the 
empirical case studies is that the difference between measured TCU  and its calculated 
value is very low whenever the input rate is either relatively low or relatively high. Thus, 
the prediction of CPU usage is quite accurate when the CPU is either lightly or heavily 
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loaded. Our experiments show that when the CPU usage is moderate, the measured 
TCU  has more variation than its calculated value and thus is less predictable. However, 
even the largest difference between measured and predicted TCU  always was less than 
8%.

Our experiments in this part cover different conditions for a unique bolt, including 
all possible combinations of three types of processors and three different structures of 
topologies. For each experiment, the highCompute bolt (gray bolt in Fig. 9) is placed on 
a single machine, and its upstream bolts are placed on the powerful enough machines 
such that they can utilize it fully. For example, in the first experiment highCompute bolt 
of Linear topology is assigned to the machine with a Pentium processor, and its actual 
CPU usage is measured when the input rate of topology is eight tuples per second. Then 
the input rate is increased by a factor of a random number between 20 and 80, and new 

Fig. 10 Predicted and measured CPU utilization comparison for highCompute bolt on different machines in 
Linear topology

Fig. 11 Predicted and measured CPU utilization comparison for highCompute bolt on different machines in 
Diamond topology
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CPU usage is measured again. This process is continued while the processor becomes 
over-utilized, so the input rate cannot be increased anymore.

Figures 10, 11 and 12 represent the measured and predicted TCU  of highCompute bolt 
for different values of input rate on three different types of CPUs for Linear, Diamond, 
and Star topologies, respectively. Here the unfilled dotted lines show the predicted value 
of TCU  obtained by formula 5 and the filled dotted lines show real TCU , measured by 
the collector tool [16].

Evaluation of execution graph: One outcome of our scheduling algorithm is obtain-
ing the near-optimal number of instances for each component. Figure 13 depicts overall 
throughput by different number of instances for both RollingCount and UniqueVisitor 
topologies from Storm-Benchmark [15]. The <x,y> pairs on the horizontal axis shows the 
number of instances for bolt1 and bolt2, respectively, in both topologies. To observe the 
effect of the structure of the execution graph on overall throughput, different execution 
graphs are scheduled using the default scheduler of Storm. Then our algorithm is per-
formed to determine how well it calculates the number of instances for each topology. 
Our algorithm obtained pair <5,4> for RollingCount topology, which exactly is the opti-
mal number of instances. It also obtained pair <4,5> for UniqueVisitor topology, which 
has the closest number of instances to the optimal pair <5,5>, and it eventuates only 2% 
throughput decrement than optimal throughput. The obtained pairs by our algorithm 
for both topologies are shown by the arrow in Fig. 13.

Fig. 12 Predicted and measured CPU utilization comparison for highCompute bolt on different machines in 
Star topology

Obtained # of instances by
Our algorithm

Fig. 13 Maximum achievable overall throughput in terms of number of instances
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Throughput Comparison: We evaluate the performance of the proposed algorithm in 
term of throughput. Here the efficiency of its task assignment is compared with Storm’s 
default and optimal scheduler. Figures 14, 15 and  16 depict the experimental results of 
our scheduler in comparison with other schedulers. According to this figure, our sched-
uling method provides 7% to 44% throughput enhancement compared with Storm’s 
default scheduler, while it can find the solution within 4% of the throughput of the opti-
mal scheduler in the worst case (Fig. 15).

8163

14832
15134

44%

12%
Simulated

2%

Fig. 14 Experimental throughput comparison of default, proposed and optimal schedulers for Linear 
topology

16558

20345
21193

4%

19%13%
Simulated

Fig. 15 Experimental throughput comparison of default, proposed and optimal schedulers for Diamond 
topology
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As we can see, for Linear topology, our scheduler results in 44% higher through-
put than the default scheduler, while it is 2% less than optimal throughput, but for 
other topologies, it provides less gain. This is due to the different characteristics of 
the target topologies. In some topologies such as Linear, the main challenge is the 
processing power, so the proposed scheduler would result in almost the best achieva-
ble throughput, but when other resources such as network or memory get bottleneck, 
we need to consider several factors to obtain a better result.

Utilization Comparison: Normally better resource utilization results in higher 
throughput, but to make sure that our scheduler has efficient CPU usage, we need to 
compare CPU utilization of all schedulers. In Fig. 17 we can see the CPU utilization 
of cluster nodes for Linear, Diamond, and Star topologies under different scheduling 
methods. In all cases, the optimal scheduler uses the CPUs efficiently, so it has the 
highest summation of CPU utilization percentages.

When Diamond and Linear topologies run on the cluster, our scheduler has more 
CPU usage and, therefore, higher throughput than the default scheduler. However, 
in the case of Star topology, its total CPU usage is less than the default scheduler, 

7%
15596

16811
17331

3%

Simulated
6%

Fig. 16 Experimental throughput comparison of default, proposed and optimal schedulers for Star topology

0

50

100

150

200

250

300

Optimal Our Method Default Optimal Our Method Default Optimal Our Method Default

Linear Diamond Star

To
ta

l C
PU

 U
til

iza
tio

n 
(%

) Pentium Core i3 Core i5

Fig. 17 Obtained CPU utilizations of worker nodes by different scheduler for Micro-benchmark topologies
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although it still has higher throughput. Our scheduler uses the most powerful proces-
sor (Core i5) better than the default scheduler. Therefore, it always uses the process-
ing resources more efficiently than the default scheduler.

Large‑scale clusters evaluation

System Simulation: Due to resource limitation and real requirements of big data 
applications we need to use a modeling scenario. Generally, simulation makes it pos-
sible to model bigger distributed stream processing systems. To simulate the real use 
case scenario in which Apache Storm is being used, we needed to simulate real heter-
ogeneous environments. Our simulation scenario takes the processing characteristics 
of both cluster nodes and topology components for each specific scheduling policy. 
Then it reports the overall throughput of existing machines’ topology and CPU utili-
zation [32].

To ensure that our simulator has enough accuracy, we performed it in the same 
conditions as our real experiments. As shown in Figs. 14, 15 and  16 the difference 
between implementation and simulation results is less than 13% in the worst case, 
which means the simulator has acceptable accuracy, so we can use this simulator to 
evaluate our scheduler in the case of large-scale clusters.

Simulation Results: For each topology (Linear, Diamond, and Star), we need to find an 
appropriate execution graph according to the specification of cluster nodes. Therefore, we 
first run our algorithm to determine the number of instances for each component for the 
intended cluster. Now we can fairly compare only the effectiveness of scheduling policies 
(proposed and default schedulers) in terms of overall throughput and resource utilization. 
These simulations are executed for three different clusters, with the combinations of het-
erogeneous machines, shown in Table 4.

Our obtained simulation results report both throughput and utilization per node of the 
intended cluster. We calculate the overall throughput of topology by adding together these 
throughput values. For utilization, we calculate a weighted average of reported utilization, 
with weights determined by Eq. 7. Because of cluster heterogeneity, it is vital to give more 
value to machines with more processing capacity. Therefore, first, we determine the weight 
of each machine using profiling data according to Eq. 8, then calculate overall utilization 
using Eq. 7.

Table 4 Number of machines and component’s instances of considered scenarios.

Scenario Cluster type # of M1 # of M2 # of M3 Tasks

Linear Diamond Star

L M H L M H L M H

1 Small 2 2 2 3 3 7 12 5 7 9 10 5

2 Medium 10 10 10 41 42 35 67 15 46 45 34 25

3 Large 20 70 90 201 156 341 397 208 91 327 156 206
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In this equation, U is the overall utilization of topology on the target cluster with T types 
of machines. Here ūi is the average CPU utilization of all machines of type i and xi is cal-
culated as follow:

(7)U =

T
∑

i=1

xiūi

diff_thpt

di
ff_

ut
il

48%

Fig. 18 Simulation results comparison of default and proposed schedulers for different topologies in 
Scenario 1 (small cluster)

48%

Fig. 19 Simulation results comparison of default and proposed schedulers for different topologies in 
Scenario 2 (medium cluster)
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where

We use Eq. 8 for each type of machine to determine its weight. Variable C shows how 
many types of components the topology has; it is different from n, which shows the total 
number of topology components, because a topology may have several components with 
the same type ( C ≤ n).

Figures 18, 19 and 20 show both throughput and utilization comparison of the pro-
posed and default scheduler for three different topologies. According to these simulat-
ing results, for the small cluster (scenario 1), our scheduler has 26% to 49% throughput 
gain compared to the default scheduler while it better utilizes the processing resources 

(8)xi =

C
∑

j=1

xij

xij =

1
eij

∑T
k=1

(

1
eik

)

31%

Fig. 20 Simulation results comparison of default and proposed schedulers for different topologies in 
Scenario 3 (large cluster)

Table 5 Ratio of differences of throughputs to utilizations between our scheduler and default 
scheduler.

Scenario Linear Diamond Star

1 1.41 2.67 1.15

2 1.15 1.03 1.17

3 2.68 1.95 1.52
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10% to 35%. In the medium cluster (scenario 2), the proposed scheduler eventuates 36% 
to 48% improvement for overall throughput and 31 to 47% more resource efficiency. 
Finally, for the large cluster (scenario 3), the proposed scheduler, in comparison with the 
default scheduler, provides 27% to 31% and 10% to 21% gain for throughput and utiliza-
tion, respectively.

Note that higher CPU utilization is not an advantage for our scheduler. However, 
when the ratio of differences of throughputs to utilizations between our scheduler and 
default scheduler is greater than 1, it can be considered an advantage. It shows how effi-
ciently our proposed scheduler uses the processing resources. According to the men-
tioned above results, these ratios are calculated and listed in Table 5. For example in case 
of Scenario 1, for Linear topology this ratio is calculated by dividing the diff_thpt by the 
diff_util (shown in Fig. 18).

Conclusions and future directions
In the age of heterogeneous computing, it is essential to consider the different comput-
ing power of processors in a distributed environment. Apache Storm has a default sched-
uler that assigns tasks to processing elements regardless of their capabilities. Therefore it 
results in the under-utilization of processing resources in heterogeneous clusters.

To overcome this deficiency, we proposed a scheduling algorithm that considers the 
different computing power of heterogeneous machines. Our heterogeneity-aware algo-
rithm tries to maximize overall throughput by generating a fitting execution topology 
graph for a given cluster. It also guarantees that no machine will be over-utilized when 
running the topology. During any change in the cluster state, this algorithm can be used 
to recalculate the new number of instances and their suitable assignment. Nevertheless, 
some Storm limitations prevent achieving the best throughput or appropriate resource 
utilization in heterogeneous systems. As our experiments show, one of the most signifi-
cant obstacles to gaining maximum CPU utilization is the simple grouping strategies of 
Storm. Beside of that, our model also relies heavily on profiling data. This data can be 
captured by running the task on each machine or by estimation based on previous runs 
on the cluster. More accurate profiling data, provides better prediction and hence more 
accurate scheduling decisions.

Our future work mainly aims at possible improvements of the scheduler efficiency, 
addressing the obtaining profiling data problem, and addressing the issues related to the 
load balancing. To handle the load balancing problem, we are implementing an intel-
ligent grouping method that determines adequate rates for each task, depending on the 
computation power of the machine on which the task is running.
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