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Abstract 

Human Skin cancer is commonly detected visually through clinical screening followed 
by a dermoscopic examination. However, automated skin lesion classification remains 
challenging due to the visual similarities between benign and melanoma lesions. In 
this work, the authors proposed a new Artificial Intelligence-Based method to classify 
skin lesions. In this method, we used Residual Deep Convolution Neural Network. We 
implemented several convolution filters for multi-layer feature extraction and cross-
channel correlation by sliding dot product filters instead of sliding filters along the 
horizontal axis. The proposed method overcomes the imbalanced dataset problem 
by converting the dataset from image and label to vector of image and weight. The 
proposed method is tested and evaluated using the challenging datasets ISIC-2019 & 
ISIC-2020. It outperformed the existing deep convolutional networks in the multiclass 
classification of skin lesions.
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Introduction
Artificial intelligence and the Internet of Things (IoT) in health care have become an 
urgent necessity in recent years due to the smart cities and the COVID-19 pandemic, 
as discussed in [1, 2]. The word “cancer” is a term that refers to a group of disorders 
caused by abnormal cell proliferation. Cancer invades or spreads to other body parts 
due to abnormal cell proliferation [3]. In general, Cancer-related deaths have risen 
dramatically. Recently, Skin cancer has been a leading cause of mortality, especially in 
regions with high solar activity [4].

Detecting melanoma among benign skin lesions is still a big issue. There are differ-
ent kinds of skin lesions, such as benign (nevus), cancerous (melanoma), basal cell 
carcinoma (BCC), pigmented benign keratosis (BKL), and squamous cell carcinoma 
(SCC) [5]. A visual inspection is required because diverse skin lesions are similar [6]. 
The naked eye is challenging and requires an expert dermatologist with high skill. 
Instead of visual examination by the naked eyes directly of the human skin, Dermos-
copy, a noninvasive imaging technology, enhances melanoma diagnosis. But in typical 
clinical circumstances, the dermatologist’s ability to identify melanoma using dermo-
scopic images only reached less than 80% accuracy [7]. As a result, researchers have 
concentrated on recognizing melanoma to assist clinicians in distinguishing between 
melanoma and benign tumors early to preserve the patient’s life [8].

For image classification, there are two main approaches. The first approach is based 
on extracting handcrafted features from images. In the second approach, Deep Con-
volutional Neural Networks (DCNN) can learn from features hierarchically. In [9], 
Ravi and his colleagues summarize the advantages of DCNN over the first approach in 
medical image classification. There are two main challenges to developing computer-
aided diagnosis systems. These challenges are the lack of data and the algorithms used 
for image processing [10–12].

For any early skin cancer diagnosis and therapy, efficient diagnosis is essential. Since 
Convolutional Neural Networks (CNNs)-based approaches significantly increase pre-
diction accuracy, several researchers have been concentrating on them recently [13]. 
Due to its autonomous feature design and self-learning capabilities, Deep Learning 
(DL) based algorithms are being heavily studied for different tasks such as diagnosing 
cardiovascular events [14] and skin cancer. With deep neural networks, high perfor-
mance can be attained at the expense of widening, deepening, and increasing the res-
olution of the CNN, which forces the design to include extra parameters and requires 
high processing resources for training and testing.

Skin cancer classification is generally difficult because of artifacts, disparities in 
image resolution, and weaker discriminating features across different forms of can-
cer. Patients find clinical procedures for skin lesions [15, 16] complicated and uncom-
fortable, and they are ineffective in distinguishing between different lesion types. 
Machine Learning and Computer Vision methods are promising tools to overcome 
the different challenges of skin lesion classification. The initial stage in CAD systems 
is to produce features for classifying normal and pathological lesions. The CAD sys-
tems are helpful in the early diagnosis of skin cancer and, consequently, reduce the 
mortality rate.
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Due to the artifacts, the difference in image resolution, and the high similarity between 
different lesions, skin cancer classification is still challenging. All these issues moti-
vated the authors to design a new RDCNN called Skin-Net. We used this architecture 
to develop a reliable diagnostic technique with a high classification rate for detecting 
melanoma on the skin in its early stages. Thus, the proposed method is an excellent tool 
for finding and screening lesions for faster treatment and a better chance of survival. The 
following are the primary contributions and benefits of this work:

1. A new end-to-end trained residual deep neural network is proposed.
2. We designed full and robust automated skin lesions classified using a classification 

system. with high classification rates.
3. Multiple convolution filters are applied to the same input in the proposed architec-

ture.
4. Multilevel feature extraction using a 3 × 3 and 1 × 1 local concatenated filter.
5. Several features from multiple filters are used to increase the effectiveness of skin 

lesion categorization.
6. We performed a cross-channel correlation instead of convolution on both a spatial 

and a channel-wise domain. We ignored the spatial dimensions using a 1 × 1 convo-
lution through the residual block.

7. Unlike shallow networks, the proposed Skin-Net does not produce high training 
errors.

8. A new algorithm to serve the class imbalance.
9. Challenging datasets were utilized to evaluate the proposed method.

This paper is structured as follows: “Literature review”, an overview of the state-of-the-
art. “Proposed method” describes the proposed method. The performed experiments, 
the obtained results, and a comparison with the existing models are presented in “Exper-
imental results and discussion”. Finally, the conclusion is presented in “Conclusion”.

Literature review
Several efforts have been carried out in recent decades to assist physicians in identifying 
skin lesions appropriately. An emerging field of study is computer-aided systems for skin 
lesion diagnostics. As discussed earlier, there are two approaches to image classification: 
traditional machine learning and deep learning.

Traditional machine learning

The remarkable papers [18, 19] review the accuracy of various CAD systems. The ABCD 
and 7-point checklist rules are widely used in classifying skin images based on asymme-
try, border, color, and differential structures (shapes). But these methods are inaccurate 
with low-performance measures [17].

A probabilistic neural network (PNN) is used in a CAD system to classify skin lesions, 
as has been suggested by Kostopoulos et al. [20]. This method achieved 76.2% as a classi-
fication rate. Ozkan and Koklu [21] classified normal and pathological skin lesions using 
four machine-learning algorithms. This method was able to obtain a 92.50% accuracy 
rate. Gradients and LBP were combined by Pereira et al. [22] for the lesion segmentation 
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borderline characteristics. SVM–SMO (Sequential Minimal Optimization), SVM–ISDA 
(Iterative Single Data Algorithm), and FNN (Feedforward Neural Network) were the 
three classifiers that were used. In addition, they used two other datasets called Dermofit 
and MED-NODE. The MED-NODE performance metrics were 88%, 79%, and 65% for 
specificity, accuracy, and sensitivity.

Furthermore, Singh et  al. [23] introduced a meta-learning approach to formulating 
low-data classification of medical images. This model was tested on several different 
medical datasets. They evaluated the proposed model using two benchmark datasets, 
"ISIC-2017 and PH 2". This model achieved an accuracy rate of 84.25% using ISIC-
2018. Hasan et al. [24] presented an automatic skin lesion semantic segmentation. They 
reduced the network parameters using a depth-wise separable convolution. Astorino 
et al. [25] used a MIL algorithm to distinguish between melanomas and common nevi in 
some clinical data of dermoscopic color images. A computer-aided design for accurately 
diagnosing melanoma from dermoscopy images was described by Fu et al. [26]. They uti-
lized the Kernel Fuzzy C-means method to select ROI. For the diagnosis of the images, 
an optimized classification algorithm based on a multi-layer perceptron was applied. 
They used Red Fox Optimization for feature selection. They achieved an accuracy rate of 
90.5% on the ISIC-2020 dataset.

Deep learning

Esteva et al. [27] is the first research in which the Convolution Neural Network (CNN) 
was used in classifying skin lesions with a 72.1% classification rate. Pham et al. [28] pro-
posed a system to identify and classify skin lesions using inception DL architecture with 
data augmentation. The classification rate for this model was 89%. Yu et al. [29] used a 
fully convolutional residual network (FCRN) to classify skin lesions with 85.5% accu-
racy. Wang et al. [30] recommended a bidirectional that modeled the complicated link 
between the relevant context information of the skin lesions and using a dermoscopic 
feature learning approach. A three-step method for detecting skin lesions that involve 
shrinking the image size has been reported by Amin et  al. [31]. The feature selection 
based on the DNN model and iteration-controlled Newton–Raphson (IcNR)  is com-
bined to localize the skin lesion and recognition system. Then, the Otsu technique with 
the biorthogonal 2D wavelet transform was used to segment the lesions. Finally, features 
were extracted using a pre-trained deep model. Khan et al. [32] segmented skin images 
using Ant Bee Colony and used several DL models. They achieved a 93.4% accuracy rate 
with only two classes of ISIC 2017.

Several studies to classify skin lesions have been developed using various datasets. 
ResNet18 with different optimizers was used by Mahbod et  al. [33]. Moreover, they 
extracted features of skin images from ISIC2017, and Various SVMs were used to clas-
sify these features with an 87.3% accuracy rate. Soudani and Barhoumi [34] used crowd-
sourcing for lesion segmentation in an autonomous skin lesion classification system to 
extract features. They applied transfer learning to ResNet50 and VGG16. They tested the 
proposed method using ISIC2017, where ResNet50 achieved 93.7%, 98.3%, and 83.3% 
for accuracy, specificity, and sensitivity, respectively. This research combined pre-trained 
deep networks such as “ResNet, AlexNet, GoogleNet, and VGG “ and transfer learning 
[35–39].
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Yu et al. [40] proposed a system to recognize and classify dermoscopy images based on 
DCNN and the Fisher vector. This method was evaluated using ISIC2016 and achieved 
an 86.81% classification rate. Furthermore, based on the CNN and the ABCD rule, 
Almaraz-Damian et  al. [41] extracted and fused features of skin lesions. Finally, Rel-
evance Vector Machine (RVM), linear regression (LR), and SVM are used to classify 
these characteristics. The classification rate for this method is 89.71%. Majtner et al. [42] 
improved a melanoma detection and classification technique that combines DCNN fea-
ture extraction with linear discriminant analysis (LDA). They achieved an 86% classifica-
tion rate. Albert [43] proposed a melanoma classification system in which lesions were 
segmented using Convergence of Intermediate Decaying OmniGradients (SCIDOG) 
and Synthesis. The ROI was classified Using the Predict-Evaluate-Correct K-fold (PECK) 
method, which combines DCNN, random forest (RF), and SVM. This approach provides 
a 91% categorization rate.

In addition, Al-Masni et  al. [44] segmented the skin lesions and used several CNN 
architectures for classification. The classification rates for this method were 81.79%, 
81.57%, and 89.28%, respectively, using ISIC2016, ISIC2017, and ISIC2018. Harangi et al. 
[45] recommended seven skin lesion classification systems using ISIC2018 and DCNN. 
This method can accurately classify 67.7% of the total lesion. Xie et al. [46] used mutual 
bootstrapping DCNN to segment and classify melanoma. They used the PH2 and 
ISIC2017 datasets to test their model, with 94% and 90.4% classification rates, respec-
tively. Benyahia et al. [47] used 17 and 24 pre-trained DL to extract features and use ML 
to classify skin lesions. They evaluated their system using the ISIC2019 dataset, where 
they obtained a classification rate of 91.71% and 92.34% using cubic SVM and fine KNN, 
respectively.

Furthermore, Sarker et  al. [48] introduced a lightweight GAN-based for skin lesion 
segmentation. They validated and tested their proposed model using ISIC-2017 and 
ISIC-2018, achieving an accuracy rate of 97.61%. Dai et  al. [49] derived a multi-scale 
encoding and residual decoding network to segment skin lesion images. They evaluated 
their model using various datasets, ISIC 2016, ISIC 2017, ISIC 2018, and PH 2. Wibowo 
et al. [50] developed a lightweight encoder-decoder model using MobileNetV3-UNet for 
skin lesion segmentation, where this model was evaluated on ISIC-2017. Guo et al. [51] 
proposed a deep encoder and decoder network for medical image segmentation, where 
this model achieved an accuracy rate of 94.3% on ISIC-2017. Several studies have been 
performed in recent years for skin lesion segmentation and classification [51–54]. Hasan 
et al. [55] proposed a trained end-to-end CNN to recognize skin lesions. The two encod-
ers extract features, and then these features are fused. The ISIC 2016 and ISIC 2017 are 
used in evaluating this model, where the achieved accuracy is 85.0% and 80.0%, respec-
tively. Kassem et al. [56] removed the last three layers from GoogleNet to classify ISIC 
2019, with an accuracy is 92.99%.

Cassidy et  al. [57] introduced a strategy for duplicate removal. They applied the 
duplicated removal strategy with several DL architectures such as "DenseNet(121; 
169; 201), EfficientNetB(0–4), InceptionResNetV2, InceptionV3, ResNet(152; 101; 50), 
ResNet(152; 101;50)V2, VGG (16; 19), and Xception". They evaluated the proposed 
model on ISIC-2020 and achieved 98.37% in classifying lesions as benign and malignant. 
The higher classification rate was 80.67% using VGG19. Sayed et al. [58] introduced a 
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skin lesion classification system using the ISIC-2020 dataset. They used transfer learn-
ing to pre-trained learning, such as SqueezeNet. Also, they optimized the pre-trained 
model using bald eagle search optimization. Finally, a random over-sampling method 
and data augmentation were used to severe class imbalance. Using DL methods, Khatib 
et al. [59] produced a system that could identify skin lesions. They presented a decision-
making system that uses various classifiers, including neural networks and feature-based 
methods.

Proposed method
The above approaches showed that localization information would get more discrimina-
tive features inside lesion areas. The discriminative features can be used to improve clas-
sification performance. The above classification methods used CNNs have a significant 
locating capacity with the class activation map. The class activation map was used to 
discriminate the discriminative ROI. Instead of part lesion localization using the pre-
trained models, Skin-Net’s proposed method can better localize the ROI using different 
filter sizes and a cross-channel correlation that ignores the spatial dimensions using a 
1 × 1 convolution through the residual block.

The Skin-Net annotates classification level expressly to focus on intraclass distance 
minimization based on global characteristics in the same class. As shown in Fig.  1, 
images contain many artifacts such as air bubbles, hair, ruler, and high similarity between 
different lesions. All these challenges are addressed in the proposed model.

Skin‑net architecture

If too few features are used, the classification will be inaccurate. So, the discriminative 
features are primarily for a successful classification process. To provide an accurate 
method for a challenging dataset of skin lesion images, we proposed a deep learning 
method using different criteria such as residual learning, cross-channel correlation, 
and imbalanced dataset serving, making the false-negative rate value less than state-of-
the-art. A novel DL architecture called Skin-Net, including 54 layers, is suggested. The 
input, convolutional, pooling, batch normalization, dropout, fully connected, SoftMax, 
and activation rectified linear unit (ReLU) layers are some used to build the proposed 
residual learning method. The first layer’s (i.e., "input layer") primary goal is to specify 
the dimensions of the input image, which correspond to the Height(H), Width(W), and 
the number of channels (D). In addition, there are three channels for RGB color images. 

Fig. 1 Different lesion shapes and types
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Limited values for W and H, in contrast to the state-of-the-art DL models such as Res-
net, Alex-net, Google-net, and VGG, “227 × 227” or “224 × 224” are used. In the pro-
posed model, “W × H × D,” all images were resized to 300 × 300 × 3.

The “convolution layer” is the second layer, which takes its input from the previ-
ous layer, the input layer. This layer’s neurons link image subregions or even the layer 
output. Low-level features are used to learn convolution layers first, then additional 
features like objects, forms, and colors are extracted from going depth in layers. The 
features are localized after scanning the image by the regions learned from the con-
volutional layer. So, a downsampling approach is used to handle this issue. The down-
sampling approach must follow the convolutional layers, reducing the input image’s 
features map by extracting the most relevant and crucial aspects. Because of this, we 
introduce a max-pooling layer. This layer generates a new group of features with the 
same features as the pooled features map.

During the training process, the layer parameters are changed, changing the input 
dimension of each layer. As a result, training the DCNN is difficult. Every iteration 
necessitates a slower learning rate and careful parameter initialization, which delays 
the training process. We used batch normalization layers to solve these problems, 
accelerate the training process, and reduce sensitivity. The batch normalization layer 
stabilizes learning by normalizing the input distributions’ mean and variance, elim-
inating the harmful consequences of the internal shift covariance. A normalization 
layer exists before the ReLU modifies the DCNN [60]. As a result, the difficulty of 
coordinating updates between layers is alleviated.

Using global information is impractical while using the SGD method. Stochastic 
gradient descent (SGD) is computed in the condition of a small or random group of 
images. The SGD optimizer performs well using a low learning rate [61]. SGD main-
tains a single learning rate (alpha), which does not change during training. Instead 
of SGD during the training process, the ADAM (Adaptive Moment Estimation) opti-
mizer was utilized to update network weights [62]. Each network weight (parameter) 
has its learning rate and is adjusted as learning progresses. The network parameters 
were randomly initialized and changed during the training process. The image fea-
tures map was trained with ADAM using the Eqs. (2, 3):

where w refers to weights, t is time, δL is the derivated loss function, δωt  refers to the 
derived weight at a specific time t, vt is the summation of the past gradients, and finally 
mt aggregates gradients at current time t.

To normalize the activation, subtract the mini-batch and divide by the standard 
deviation. This method speeds up learning and optimizes training. Let G denote the 
size N of the training mini-batch. The following equation is how the normalization of 
the input training vector x = (x1, . . . ., xn) computed:

(1)mt = β1mt−1 + (1− β1)

[

δL

δωt

]

(2)vt = β2vt−1 + (1− β2)

[

δL

δωt

]2
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where m ∈ [1,Dimensional of the input] , i ∈ [1, n] , where the pre-dimension of mean 
and variance µ(n)

G  , and σ (n)2

G  respectively. The symbol ε is a minor constant utilized to 
ensure numerical stability. The mean and variance may become 0 Without ε.

Raising and deepening layers is difficult and fraught with difficulties. The gradient 
disappearing problem can occur in deeper networks even with careful initialization. 
Experiments have shown that degradation is unavoidable and that increasing depth 
does not affect accuracy [63]. As a result, as network thickness increases, efficiency 
does not improve significantly and may be affected by the degradation problem. 
Training deeper systems requires more images, as these networks have many parame-
ters to be called to generalize. Deep neural network layers are organized sequentially, 
and the output from one layer is fed into the next. So, going deeper is not a solution, 
as there are few images in the available datasets in medical imaging, especially in skin 
lesions. The proposed model uses a residual learning technique to overcome image 
shortages and degradation [64]. Residual learning addresses degradation by improv-
ing the flow of information and reformulating layers by skipping layer input connec-
tions. The proposed deep residual network is created by combining different residual 
blocks. The overall architecture of the proposed method is shown in Fig.  2. At the 
same time, the description for all convolutional layers is visualized in Fig. 3.

As illustrated in Fig. 2, we create two types of residual blocks. The first skip con-
nection is without any additional layer, such as the first, second, fourth, and sixth 
skip connections in Fig.  2. In contrast, the second skip connection consists of con-
volutional and batch normalization layers, such as the third and fifth layers. For each 
residual block, "x" is used to denote the input vector, the output vector is "y," and T(x) 
denotes the mapping of the stacked layers. Using the equation below, the residual 
function of these layers is now determined: 

In Eq.  (4), residual learning is employed to improve the layers learning rate, even 
with a limited dataset, instead of resembling the stacked layers Ti(x) . As shown below, 
Eq. (5) solves the degradation problem by establishing a shortcut link from the input 
to the stacked layers.

The stacked-layer output vector may have different dimensions than the short-
cut connection vector “x.” So, the fusion of these two vectors is impossible (i.e., the 
dimensions must be the same for  

 and x).
A linear projection. ” Ws ” is used in this case to the vector "x" through the shortcut 

link. Finally, the output will be 

(3)norx
(m)
i =

x
(m)
i − µ

(m)
G

√

σ
(m)2

G +ε

(4)

(5)

(6)



Page 9 of 23Alsahafi et al. Journal of Big Data          (2023) 10:105  

The nonlinear activation function of the ReLU layer is used 65]. The ReLU function 
is a thresholding operation to convert elements less than 0 to zero. According to gra-
dient vanishing, sparse representation and computational simplicity are utilized after 
the convolutional and batch normalization layers. We used a fully connected layer to 
transform the input volume into an N-dimensional output vector.

Fig. 2 The proposed deep residual network
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where RM denotes the volume of the input, and RN refers to the number of classes.
The suggested model has been modified to operate with multiclass classification; 

instead of the sigmoid, the fully connected layer is employed after a SoftMax layer. 
The SoftMax output is converted to the target class name in the last layer, the "out-
put layer," which employs the entropy function. In the sigmoid, the probabilities must 
be 1, while in SoftMax, it may be one where the target class has a higher probability 
value than other class values in SoftMax. The only disadvantage of SoftMax is that If 
the number of "lesion" classes grows, it becomes computationally expensive.

The proposed model can extract multilevel features. The proposed model used dif-
ferent filters with different sizes, such as 3 × 3 and 1 × 1, which extracted skin lesion 
characteristics on different levels. Using different filter sizes prevents the proposed 
model from overfitting. It improves the performance of lesion classification, in con-
trast with pre-trained models that perform convolution on the spatial and channel-
wise domain. The proposed model performs a cross-channel correlation and ignores 
the spatial dimension [66, 67]. A sliding dot product is another name for cross-cor-
relation. Cross-correlation measures the similarity between portions of one image. 
Moving a filter mask  over the image and computing the sum of products at each 

(7)fully connected layer : RM
yields
→ RN

Fig. 3 Convolutional layer details
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position is the process of cross-correlation. Cross-correlation is a result of the filter’s 
displacement [68]. Because the change may not affect all component peaks, the cross-
channel correlation is less sensitive to background oscillations and will be reduced 
accordingly. The correlation scales noise proportionately to information, maintaining 
a consistent ideal signal-to-noise ratio across the entire frequency range. When each 
channel of an input feature map has to be handled separately, and the output feature 
maps need to be combined later, cross-correlation is utilized, as shown in Fig. 4.

The main challenge of the medical dataset is class imbalance. Any method trained 
and tested using an imbalanced dataset results in a biased decision. According to the 
state-of-the-art, oversampling, downsampling, etc., were used to overcome this chal-
lenge. Overfitting can occur when oversampling repeats examples from the minority 
class in the training dataset. In contrast, undersampling removes samples from the 
majority class, which can result in the loss of information vital to a model.

Alternatively, the proposed method performs a solution to serve the class imbalance. 
We developed a bootstrap for the dataset to balance out the classes. It operates by reg-
ularly sampling with replacement and weighting the samples based on the number of 
images in each class. First, we sort the dataset images alphabetically according to the 
name of the classes. The total number of images and the number in each class is com-
puted. We divided the count of each class image by the total number of images in the 
dataset, which will be the images’ weight.

Moreover, images in the same class have the same weight. The summation of all labels’ 
weight equals 1. Instead of using images labeled alphabetically, the dataset is converted 
to a vector, and the label of the images will be a numeric weight. So, the weight of the 
class containing the maximum number of images is the smallest, while the class con-
taining fewer images is the maximum weight. After the training, the weight of the clas-
sification layer of the SKIN-net is multiplied by the image weight in the image vector, 
as shown in algorithm 1. This method overcomes the problem of overfitting and under-
fitting without duplicating the samples in small classes or losing samples from large 
classes, in addition to giving a valuable meaning to the image by assigning images to 

Fig. 4 The proposed cross-channel correlation
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weight instead of Image to label. But any change in the dataset images will lead to weight 
changes that may lead to reproducing the weights again.

Experimental results and discussion

This section describes the proposed method’s performance evaluation and the dataset used 
for training and testing.

Datasets

To evaluate the proposed method, we used a challenge from the ISIC archive “ISIC-2019” 
[69–71] and “2020 SIIM-ISIC Melanoma Classification challenge” [72]. ISIC-2019 is a well-
known dataset that contains 25,331 images. ISIC-2019 consists of ISIC-2018 “HAM10000” 
and the BCN_20000. HAM10000 contains images of size 600 × 450, while BCN_20000 
contains images of 1024 × 1024. Melanoma (MEL), Melanocytic Nevus (NV), Basal Cell 
Carcinoma (BCC), Actinic Keratosis (AK), Benign Keratosis (BKL), Dermatofibroma (DF), 
Vascular Lesion (VASC), and Squamous Cell Carcinoma (SCC) are the eight classifications 
in the ISIC 2019. The distribution of lesion types is as follows: MEL is 4,522; NV is 12,875; 
BCC is 3,323; AK is 867; BKL is 2,624; DF is 239; VASC is 253; and SCC is 628. Table 1 sum-
marizes the distribution of lesion types for ISIC-2019.

“2020 SIIM-ISIC Melanoma Classification Challenge” was hosted on Kaggle in the Sum-
mer of 2020 [72]. This dataset was created by the International Skin Imaging Collaboration 
(ISIC). A total of 33,126 dermoscopic training images of distinct benign and malignant skin 
lesions from over 2000 patients are included in the dataset. Each image is assigned to peo-
ple with a unique patient ID. Histopathology was used to confirm all malignant diagnoses, 
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whereas expert agreement, longitudinal follow-up, and histopathology were used to con-
firm benign diagnoses. The Hospital Clínic de Barcelona, the Medical University of Vienna, 
the Memorial Sloan Kettering Cancer Center, the Melanoma Institute Australia, and the 
University of Queensland University of Athens Medical School provided the images. This 
dataset includes 7 classes. These classes are named “lentigo NOS,” “lichenoid keratosis,” 
“melanoma,” “Nevus,” “seborrheic keratosis,” “solar lentigo,” and “unknown,” and the distri-
bution of lesion types was 44, 37, 584, 5193, 135, 7, and 27126 respectively. Table 2 summa-
rizes the distribution of lesion types for ISIC-2020.

Training options and measures

On an IBM PC equipped with a processor Core i7, a DDRAM 16  GB, in addition to 
a GPU card NVIDIA MX150.MATLAB 2018b 64-bit was used to code the proposed 
model. SGD maintains a single learning rate (alpha), which does not change during 
training. Instead of SGD during the training process, the ADAM optimizer was utilized 
to update network weights. Each network weight (parameter) has its learning rate and 
is adjusted as learning progresses. The network parameters were randomly initialized 
and changed during the training process. All trials have the same weight decay, batch 
size, momentum, and maximum epochs; their values are reported in Table 3. To accel-
erate the computation, we proposed to drop the learning rate if the learning loss is not 
enhanced after ten epochs.

The proposed method’s performance was assessed using quantitative and qualitative 
metrics. Five quantitative measures include accuracy, sensitivity, specificity, precision, 

Table 1 Distribution of lesion types of ISIC-2019

Lesion type MEL NV BCC AK BKL DF VASC SCC

No. of images 4522 12875 3323 867 2624 239 253 628

Total no. of images 25,331

Table 2 Distribution of lesion types of ISIC-2020

Lesion type Lentigo NOS Lichenoid 
keratosis

Melanoma Nevus Seborrheic 
keratosis

Solar 
lentigo

Unknown

No. of images 44 37 584 5193 135 7 27126

Total No. of images 33,126

Table 3 training options values

Name Value

Gradient decay factor 0.9

Initial learning rate 0.0003

Batch size 10

Max epochs 40

Shuffle Every epoch



Page 14 of 23Alsahafi et al. Journal of Big Data          (2023) 10:105 

and F-score. If accuracy is used only to measure a model’s goodness, a model that clas-
sifies all testing samples into a class containing the largest number of images will have 
excellent accuracy. Still, this model won’t provide any valuable information for us. So, we 
used other performance measures. The true positive rate is called sensitivity, quantifying 
how effectively the positive class was anticipated. Specificity, complementing sensitivity, 
or the true negative rate quantifies how effectively the negative class was anticipated. 
The percentage of examples allocated to the positive class that belongs to the positive 
class is summarized by precision. The F-score, also known as the F-measure, is a single 
score that combines precision and sensitivity to balance both objectives.

As a qualitative metric, the confusion matrix and the receiver operating characteristic 
(ROC) are used to visualize and assess the dependability of the proposed method. The 
following equation is used to calculate these measurements [73]:

where tp , and tn  refer to true positive and true negative, while fp , fn is false-positive and 
false-negative. A true positive means  an accurate event value prediction, while a false 
positive means an inaccurate prediction. A true negative denotes an accurate no-event 
value prediction, whereas a false negative denotes an inaccurate prediction.

Experiments and discussion
The proposed method was evaluated on the “ISIC-2019” and “2020 SIIM-ISIC Mela-
noma Classification Challenge”. We divided the datasets into 70%, 15%, and 15% for 
training, validation, and testing. The dataset images were resized to 300 × 300 pixels to 
match the input layer size; in addition, no pre-processing step has been carried out on 
the images, such as hair removal, enhancement, or segmentation.

The main challenge in the ISIC-2019 dataset is that the test set includes an addi-
tional class named unknown, which wasn’t presented in the training dataset. The main 
challenge of the “2020 SIIM-ISIC Melanoma Classification Challenge” is class imbal-
ance. If the proposed method is trained and tested using the dataset images, the pro-
posed method will be biased to the class containing more images. We use the proposed 
solution to serve these two challenges classifying outliers images and class imbalance. 

(8)Accuracy =
tp + tn

tp + fp + fn + tn

(9)Sensitivity =
tp

tp + fn

(10)Specificity =
tn

fp + tn

(11)Precision =
tp

tp + fp

(12)F− score =
tp

tp +
1
2 (f p + fn)
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We used external images to add distinct outlier images (unknown), and some healthy 
skin photos from [74] were used to create the outlier images. For class imbalance, we 
replaced the label of images with the weight of the image label. Finally, the proposed 
method multiplies the weight of the network with the weight of the image label. The 
proposed method is not biased to the class containing the maximum number of images.

We apply different augmentation methods such as random rotation angel from 0: 
360, random vertical and horizontal flips, and random vertical and horizontal shifts. 
For ISIC-2019, We proposed augmenting only the classes containing several images 
less than 1000, such as AK, DF, SCC, unknown, and VASC. Each class has been 

Table 4 Distribution of lesion types of ISIC-2019 before and after Augmentation

Lesion Type No. of original images (Before 
Augmentation)

Augmentation No. of augmented 
images (after 
Augmentation)

MEL 4522 No 4522

NV 12875 No 12875

BCC 3323 No 3323

AK 867 Yes 3476

BKL 2624 No 2624

DF 239 Yes 3549

VASC 253 Yes 4281

SCC 628 Yes 3423

Total No. of images 25331 Total No. of images 38073

Table 5 Distribution of lesion types of ISIC-2020 before and after Augmentation

Lesion Type No. of original images (Before 
Augmentation)

Augmentation No. of augmented 
images (after 
Augmentation)

Lentigo NOS 44 No 44

Lichenoid keratosis 37 No 37

Melanoma 584 No 584

Nevus 5193 No 5193

Seborrheic keratosis 135 No 135

Solar lentigo 7 No 7

Unknown 27126 No 27126

Total No. of images 33126 Total No. of images 33126

Table 6 Obtained measures of the proposed model

Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F‑Score (%)

ISIC-2019 94.65 96.78% 70.78 72.56 71.33%

ISIC-2020 99.05% 99.42% 96.57% 96.57% 96.57%
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augmented separately. The number of images in augmented classes is summarized in 
Tables 4 and 5.

Finally, the average performance measures of the proposed method during the 
testing process using ISIC-2019 were 94.65%, 96.78%%, 70.78%, 72.56%, and 71.33% 
for accuracy, specificity, sensitivity, precision, and F-Score, respectively. While the 
average of the same measures were 99.05%, 99.42%, 96.57%, 96.57%, and 96.57%, 
respectively, using ISIC-2020. The obtained results are summarized in Table  6. The 
confusion matrix obtained from the proposed method during testing is shown in 
Figs. 5 and  6. From specificity, sensitivity, precision, and f-score, we can observe that 
the proposed method works well with the imbalanced dataset.

Discussion
From the previous result, the proposed model achieved the best measures using ISIC-
2020. The performance of the proposed model with the ISIC-2020 is better than the per-
formance using ISIC-2019 for several reasons. First, ISIC-2020 contains more images 
than ISIC-2019. ISIC-2020 contains about 10 thousand more images than ISIC-2019. 
Second, ISIC-2020 contains a smaller number of classes. ISIC-2020 contains only seven 

Fig. 5 ISIC-2019 Confusion matrix

Fig. 6 ISIC-2020 Confusion matrix
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classes, while ISIC-2019 contains nine classes. Finally, the unknown class images in ISIC-
2019 were collected from different resources, as previously mentioned. In ISIC-2020, 
unknown class images are found in the official dataset. All of these reasons made the per-
formance of the proposed model better using ISIC-2020 than ISIC-2019 for training and 
testing. The proposed method is compared with [56, 59] using the same dataset, ISIC-
2019. Table 7 summarizes the obtained results, while the roc curve is shown in Fig. 7.

Table 7 shows that the proposed method’s accuracy outperformed the state-of-the-art 
accuracy. The proposed model achieves a higher performance measure than the method 
[56, 59]. These methods augment all nine classes, but the proposed method augments 
only the classes containing less than 10000 images; as discussed, these classes are AK, 
DF, SCC, unknown, and VASC. In addition, the proposed work in [59] merged all classes 
into two classes: malignant and benign. They also don’t tackle the outlier images. From 
the ROC and Measures comparison, the proposed method proves its reliability.

Various approaches and tools were used to classify ISIC-2020 skin lesions. These 
approaches only classify lesions into two classes, “benign and melanoma,” instead of the 
total number of classes, “7”. These methods also start with a pre-processing step. Still, 
our proposed method doesn’t make any pre-processing step in images. The findings of 
these approaches and the suggested method are summarized in Table  8, and the roc 
curve is depicted in Fig. 8.

Table 7 Comparison of performance measures using ISIC-2019 with state-of-the-art

The proposed method for ISIC 2019 obtained the highest values for all measures of accuracy, specificity, sensitivity, 
precision, and F-Score compared with methods [56, 59]

Method Augmentation Classification Pre‑processing 
(enhancement 
and 
segmentation)

Performance measures

Accuracy 
(%)

Specificity 
(%)

Sensitivity 
(%)

Precision 
(%)

F‑Score 
(%)

[59] Transfer 
learning 
GoogleNet, 
ResNet-101, 
and NasNet-
Larg

All classes Binary No 88.33 88.24 88.46 – –

[56] Transfer 
learning & 
GoogleNet

All classes Multiclass (8) Yes 92.99 96 70.44 62.78 66.39

Proposed 
methods

RDNN Classes < 1000 
image

Multiclass (9) No 94.65 96.78 70.78 72.56 71.33

Fig. 7 ROC curves for ISIC-2019
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From Table 8, all methods use only binary classification without using it to clas-
sify all seven classes, in addition to extensive pre-processing techniques for image 
enhancement, segmentation, and Augmentation. The results of the RDCNN-based 
method beat the current methods, as shown in Table  8. Finally, the proposed 
method outperforms previous methods of skin cancer classification. In addition, the 
proposed method didn’t bias to a specific class containing many images. Finally, the 
proposed method classifies multitype of skin lesions instead of binary classification. 
The proposed method didn’t bias the majority class because of using an imbalanced 

Table 8 Comparison of performance measures using ISIC-2020 with state-of-the-art

The proposed method for ISIC 2020 obtained the highest values for accuracy, specificity, and precision only compared with 
methods  [26, 57, 58].

Method Classification Pre‑processing 
(enhancement 
and/or 
segmentation 
and/or 
Augmentation)

Performance measures

Accuracy 
(%)

Specificity 
(%)

Sensitivity 
(%)

Precision 
(%)

F‑Score (%)

[57] Transfer 
learning to 
VGG19

Binary yes 80.67 – – – –

[26] Fuzzy 
C-means 
and Red Fox 
Optimiza-
tion

Binary yes 90.5 92.1 89.5 – –

[58] SqueezeNet 
optimized 
by bald 
eagle search

Binary yes 98.37 96.74 100 – 98.39

Proposed 
methods

RDNN Multiclass (7) No 98.69 99.28 95.43 95.43 93.79

Fig. 8 ROC curves for ISIC-2020
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dataset during training and testing. In contrast, The proposed method couldn’t 
operate with devices with limited memory and microdevices. The proposed method 
tested only for a skin lesion.

Conclusion
Challenges of Skin lesions classification motivate the author to propose a novel deep 
neural architecture with 54 layers based on residual learning. The proposed model 
can accurately extract relevant information even with datasets including a few images. 
The proposed method can extract multilevel features by different filter sizes, such as 
3 × 3 and 1 × 1. These filters lead to extracting skin lesion characteristics on differ-
ent levels. Using different filter sizes prevents the proposed model from overfitting. 
It improves the performance of lesions. In addition, the proposed model performed 
a cross-channel correlation and ignored the spatial dimensions. Cross-correlation 
is utilized when each channel of an input feature map has to be handled separately. 
The cross-channel correlation is less sensitive to background oscillations and will be 
reduced accordingly. The imbalanced dataset has been tackled by converting the data-
set to a vector of images and weights instead of images and labels. But any change 
in the dataset images will lead to weight changes that may lead to reproducing the 
weights again. The proposed model is tested and evaluated on challenging datasets 
ISIC-2019 and ISIC-2020. The proposed method obtained 94.65%, 96.78%, 70.78%, 
72.56%, and 71.33% for accuracy, specificity, sensitivity, precision, and F-Score, 
respectively, using ISIC-2019. While the average of the same measures were 99.05%, 
99.42%, 96.57%, 96.57%, and 96.57%, respectively, using ISIC-2020. The suggested 
RDCNN classification model beat previous approaches. There are some limitations, 
such as running time, and the proposed method isn’t lightweight. So, the proposed 
method cannot run on microdevices. The new RDCNN might solve various classifica-
tion issues and identify various malignancies. Further, the proposed method needs to 
be generalized for different classification tasks.
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