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Abstract 

Recently, assistive explanations for difficulties in the health check area have been made 
viable thanks in considerable portion to technologies like deep learning and machine 
learning. Using auditory analysis and medical imaging, they also increase the predictive 
accuracy for prompt and early disease detection. Medical professionals are thankful for 
such technological support since it helps them manage further patients because of 
the shortage of skilled human resources. In addition to serious illnesses like lung cancer 
and respiratory diseases, the plurality of breathing difficulties is gradually rising and 
endangering society. Because early prediction and immediate treatment are crucial for 
respiratory disorders, chest X-rays and respiratory sound audio are proving to be quite 
helpful together. Compared to related review studies on lung disease classification/
detection using deep learning algorithms, only two review studies based on signal 
analysis for lung disease diagnosis have been conducted in 2011 and 2018. This work 
provides a review of lung disease recognition with acoustic signal analysis with deep 
learning networks. We anticipate that physicians and researchers working with sound-
signal-based machine learning will find this material beneficial.

Keywords: Deep learning, Audio-based diagnosis, Lung sound, Respiratory system, 
Signal analysis, CNN

Introduction
Diagnostics in contemporary medicine are more frequently based on visual or auditory 
data. Medical knowledge can be obtained in a variety of ways, but to a specialist, it is 
typically presented as visuals or sounds. It takes time and skill to properly detect health 
issues based on this information, yet 45% of member states of the World Health Organ-
ization (WHO) report having less than 1 doctor per 1000 people, which is the WHO 
ratio recommendation, according to WHO figures [44]. Given these dismal numbers, 
the fact that diagnosing entails studying each patient individually over a non-compressi-
ble period, and the fact that medical professionals are already overworked, their working 
conditions are not ideal, and mistakes can be made. The majority of frequent adventi-
tious lung noises heard above the usual signals are crackles, wheezes, and squawks, and 
their presence typically suggests a pulmonary condition [23, 133, 142]. The traditional 
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techniques of lung illness diagnosis were detected using an Artificial Intelligent (AI-
based) method [27] or a Spirometry examination [75], both of which required photos as 
input to identify the disorders. Going to a hospital to get first analysis by x-ray or chest 
scan in the event of some Lung suffering condition, such as an asthma attack or heart 
attack, is time-consuming, expensive, and sometimes life-threatening. Furthermore, the 
model training over a large number of x-ray images with high-quality HD is required for 
autonomous an AI-based system of image-based recognition, which is challenging to get 
each time. A less and simpler resource-intensive system that is able to aid checkup prac-
titioners in making an initial diagnosis is required instead.

This is why it’s important to find new shortcuts for doctors. Automatic and trustwor-
thy tools can assist in diagnosing more patients or they can assist professionals in mak-
ing fewer errors as a result of work overload. These new tools could come from computer 
science. For many years, advances in computer science have been steadily enhancing the 
capacity to autonomously analyze media data in real timing. Diagnosis service tech-
niques should contain the ability to diagnose acoustic or/and visible data. By suggesting 
quicker and more precise techniques for diagnosis, computer technologies could help 
nursing personnel or medical experts [28]. The patient could receive adaptable instru-
ments for medical monitoring from it.

Every respiratory examination includes audio auscultation, during which a medical 
professional uses a variety of instruments (including a sonogram and a stethoscope) to 
listen to noises coming from the patient’s body. This demonstrates how crucial sound 
analysis is for identifying lung diseases. Deep learning and machine learning are two 
new types of techniques that significantly advance the field of audio-based diagnosis 
[156]. Although less researched, several works analyze respiratory noises [181]. A 2011 
review [62] emphasizes that previous studies can identify signs like wheezes or crack-
les. As earlier declared, the performance of classification and sound detection has sig-
nificantly increased with the advent of deep and machine learning [42, 43], and research 
about lung sound analysis has benefited from this development [65, 110, 150]. Lung 
sound analysis may be converted into a classification problem [29] with the help of iden-
tified markers, which is a problem class that machine learning excels at resolving. This 
seems like a reasonable strategy, although this kind of analysis tends to concentrate more 
on the characteristics of the sound recording than on the patient level.

The rapid advancement of technology has resulted in a large rise in the volume of 
measured data, which often renders conventional analysis impractical due to the time 
required and the high level of medical competence required. Many researchers have 
offered different AI strategies to automate the categorization of respiratory sound signals 
to solve this issue. Incorporating machine learning (ML) techniques like Hidden Markov 
Models (HMM) and Support Vector Machine (SVM) [142], Long Short-Term Memory 
(LSTM), Residual Networks (ResNet), and Convolutional Neural Networks (CNNs), 
networks, and Recursive Neural Networks (RNN) are examples of Deep Learning (DL) 
networks [75]. Deep learning networks are commonly applied as LSTM, Restricted 
Boltzmann Machines (RBMs), CNN, and Sparse Auto-encoders [152]. In order to 
extract the relevant features, CNN employs numerous layers of element collections to 
interrelate the inputs. CNN is used in image recognition, NLP, and recommender sys-
tems. Probability distribution within the data collection is learned using RBM. All of 
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these networks train via back-propagation. Gradient descent is used in back-propagation 
to reduce errors by changing the weights according to the partial error derivative relat-
ing to every weight.

The rest of this work is organized as follows: the next subsections provide an over-
view of breathing sound signals and a list of contributions of this work. “Motivations and 
problem definition” Section presents a definition of existing problems in the field of lung 
sound categorization. “Existing Solutions” Section discusses the existing solutions, while 
“Elaboration Studies” Section discusses the proposed solutions. “Conclusions” Section 
is represented by the elaboration, which demonstrates algorithms, methods, system 
components, datasets, and hybrid analysis. Finally, in Sect. 6, the study’s conclusions are 
presented.

An overview of breathing sound

Human’s breathing cycle has two distinct phases: inspiration and expiration. Air must 
be inhaled into the lungs in order to be inspired. The diaphragm drops and its muscles 
contract during inspiration. As a result, the chest hollow’s volume increases. The hollow 
in the chest loses air pressure. Outside the body, oxygenated air at high pressure enters 
the lungs swiftly. The oxygenated air in the lungs travels to the alveoli. The blood ves-
sel network surrounds the slender alveoli walls, which are themselves. Expiration is the 
process of releasing air from the lungs. The diaphragm rises during expiration as a result 
of the diaphragm muscles relaxing. As a result, the chest hollow’s capacity declines. As 
a result, carbon dioxide is expelled from the body. Figure 1 provides a demonstration of 
this procedure.

An example of an experimental setup to acquire respiratory audio waveforms is illus-
trated in Fig. 2, where an individual 4-channel audio sensor from four distinct places on 
the posterior chest of normal and 65 asthmatic individuals was used [72]. The pulmonol-
ogist recommended locations that give 66 fewer interfering with heart sounds through-
out the lung sound recording procedure.

Many studies have been conducted feature extraction and selection approaches for 
computerized lung sound examination and categorization. While conducting fea-
ture extraction from a lung sound, entropy-based features, chroma features, wavelet 

Fig. 1 Diaphragm muscles during inhalation and exhalation
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coefficients, Cepstral Coefficients (MFCC), Mel-Frequency and spectrograms are some 
of the most typically picked features. The deep learning framework employed by the 
majority of existing work can be generally divided into three stages. The first is respira-
tory sound preprocessing using audio filtering and noise-lessening methods. The second 
phase is feature extraction, which is accomplished by the use of signal processing meth-
ods such as spectrum analysis [41, 56, 69, 104], Cepstrum analysis [6, 19, 148], wavelet 
transformations [114, 137, 155], and statistics [113]. The third stage is classification, and 
the most often used classifiers have been K-nearest Neighbors [34, 63, 116, 127, 158], 
Support Vector Machines [20, 42, 43, 49, 131, 138], Gaussian Mixture models [105, 107], 
and ANN [35, 42, 43]. The workflow representation from preprocessing to classification 
can be shown in Fig. 3.

Contributions

This review will investigate the algorithms, advances, and diseases applications of sound-
based diagnostic techniques of the lung and respiratory systems. Therefore, the charac-
teristics and contributions of this work are as follows:

1. This investigation can help researchers interested in sound-based disease analysis 
to realize the development trends and characteristics of using such prediction tech-
niques and make sure that they will consciously choose the most suitable algorithms 
in their research process.

2. The primary trends in prospective medical diagnosis and trends of integrating digi-
tal processing are analyzed, revealing that audio-based disease algorithms with deep 
learning have a shining future.

3. The review searches for the existing problems of lung disease diagnosis with deep 
learning, such as few samples in the used dataset, poor quality of data, unbalanced 
data, and poor interpretability, to offer the available appropriate solutions.

Fig. 2 An experimental setup for collecting lung sounds from the back of the chest
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4. It presents different forms of comparison tables summarizing recent audio-based 
deep-learning algorithms in disease classification.

5. Only two review studies based on signal analysis for lung disease diagnosis have been 
conducted in 2011 and 2018. Therefore, readers will comprehend the methods selec-
tion criteria of lung sound handling with large datasets via this paper.

Motivations and problem definition
Deep learning might be the most significant development in computer science in recent 
years. Almost all scientific disciplines have been impacted. The world’s leading IT 
companies and economies are striving to advance deep learning. In a number of sec-
tors, deep learning has already surpassed human performance. This includes diagnosis 
of obstructive lung disease pattern recognition [38], signal classifiers for cough sound 
analysis [83], image processing for breast cancer [8], etc. Yann LeCun, Geoffrey Hinton, 
and Yoshua Bengio, three pioneers of DL, obtained the Award Turing, commonly rec-
ognized as the “Nobel Prize” of computers, on 27 of March 2019 [163]. Even if substan-
tial advancements have been made, deep learning still has room for growth. With an 
additional accurate identification of situations like cancers [15], and the detection of a 
new medication [11], DL architectures have the prospective to boost human lives. For 
instance, the authors of the study [9] claimed that DL architectures were able to iden-
tify at a similar rank as 21 board-certified dermatologists once learning 2032 illnesses 

Fig. 3 Workflow from preprocessing to classification
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from 129,450 photos. In grading prostate cancer, Google AI could outperform the typi-
cal accuracy of USA general pathologists board-certified by 70% to 61% [71].

Only two review studies based on signal analysis for lung disease diagnosis have been 
conducted on 2011 and 2018. The various deep learning network architectural types, 
deep learning algorithms for sound-based lung disease diagnosis, their drawbacks, 
optimization techniques, and the most recent applications and implementations are all 
included in this review. This review’s objective is to offer a comprehensive overview of 
scattered knowledge in a single article while covering the large field of deep learning. By 
assembling the writings of eminent authors from the depth and breadth of deep learn-
ing, it delivers innovative work. Other related review publications (see Table  1) con-
centrate on particular implementations and topics without covering the entirety of the 
sound/audio-based lung diagnosis.

Existing solutions
The two main approaches used to diagnose the respiratory system are computer-based 
procedures and clinical methods. Three types of clinical assessment techniques exist 
classic general examination techniques, history-based techniques, and histopatho-
logical image-based techniques. In contrast, there are four main categories into which 
computer-based diagnosis techniques can be divided: wavelet, image analysis, image 
processing, and CNN research. Since this technology automatically identifies crucial 
components without the need for human intervention, we highlight CNN-based audio 
processing as an exciting area. In this work, we discuss the existing studies in terms of 
the following problems:

1. Dataset Selection: It is essential to obtain and maintain a noise-free database 
because the entire model is based on it. Preprocessing of the training data must be 
done correctly.
2. Deep learning algorithms choice: Understanding the purpose of the study is 
important. The best algorithms can be tested to see which ones deliver outcomes 
that are most similar to the desired outcome.
3. Feature extraction strategies: It is a crucial task in the creation of effective models. 
When high model accuracy is necessary, as well as optimal feature selection, which 
helps create redundant data during each cycle of data analysis, it is successful.

Table 1 Summary of review articles in Lung diagnosis with deep learning networks

References Publication date Lung diseases Types of datasets

[2, 5, 7, 10, 17, 50, 57, 64, 67, 78, 79, 
82, 92, 103, 106, 108, 115, 132, 151, 
153, 154, 164, 168, 176]

March 2020–December 2022 COVID-19 Images

[58, 145, 160] 2022 COVID-19 Images, Video, audio

[36, 52, 89, 90, 98–100, 126, 136, 
162, 166]

January 2019–June 2022 Lung Cancer Images

[33] 2022 Respiratory health care Images

[38] 2018 Lung disease Audio

[62] 2011

Presented review 2023 Lung disease Audio
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Dataset selection

The quality, confidence, and other features of the dataset are essential to measuring the 
accuracy of training and evaluation of models and architectures that perform on the 
classification of lung sounds. Several common respiratory/lung sound datasets are listed 
in Table 2.

Deep learning algorithms for lung sound

Deep Learning CNN (DLCNN) is being used to diagnose obstructive lung illnesses, 
which is a fascinating development. DLCNN algorithms function by identifying pat-
terns in diagnostic test data that are possible utilization to forecast clinical outcomes or 
identify obstructive phenotypes. The objective of this work is to present the most recent 
developments and to speculate on DLCNN’s future potential in the diagnosis of obstruc-
tive lung disorders. DLCNN has been effectively employed in automated pulmonary 
function test interpretation for obstructive lung disease differential diagnosis [53, 54], 
where all sound data were examined to meet segmented into 5 s segments and 4 kHz 
sampling frequency. The architecture of the deep learning network contains two steps; 
bidirectional LSTM units and CNNs. Then, a number of processing steps were imple-
mented to assure less noisy and smoother signals. This includes z-score normalization, 
displacement artifact removal, and wavelet smoothing. The proposed algorithm classi-
fied patients according to the different categories of lung diseases with the greatest pre-
cision of 98.85% and average accuracy of 99.62%. For obstructive pattern detection in 
computed tomography and associated acoustic data, deep learning algorithms such as 
neural networks using convolutions are state-of-the-art [39]. DLCNN has been applied 
in small-scale research to improve diagnostic procedures such as telemedicine, lung 
sound analysis, breath analysis, and, forced oscillation tests with promising results.

Deposits in the respiratory system limit airways and induce blood oxygen deficit, 
resulting in erratic breathing noises. Obtaining these respiratory sounds from test sub-
jects, extracting audio features, and categorizing them will aid in the detection of spu-
tum or other infections. These sickness stages can be accurately classified using deep 
learning convolution neural network methods. Several studies reviewed DLCNN such as 
[51], where its goal was to find the best CNN architecture for classifying lung carcinoma 
based on accuracy and training time calculations. Backpropagation is the best feed-
forward neural network (FFNN) method, with an accuracy of 97.5 percent and training 
time of 12 s, and kernel extreme learning machine (KELM) is the best feedback neural 
network (FBNN) method, with an accuracy of 97.5 percent and an 18 min 04 s training 
time.

The majority of studies in the literature used numerous classifiers to see which one 
produced the greatest accuracy results that are regarded as a main performance met-
ric of study. DLCNN methods such as VGG (VGG-B3, VGG-B1, VGG-V2, VGG-V1, 
and VGG-D1), Res-Net, LeNet, Inception-Net, and AlexNet, were applied to spectrum 
data for categorization functions, and the results were analyzed and compared with one 
another to improve categorization of aberrant respiratory sounds.

The distribution of publications by classification and feature extraction techniques is 
shown graphically in Fig. 4, where the majority of studies used CNNs for classification 
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Table 2 Common respiratory/lung sound datasets in the literature

Dataset name Description Used by Source

Respiratory Sounds Dataset (RSD) [68] Regular sound signals in addition to three kinds of 
adventitious respiratory sound signals: wheezes, crack-
les, and a combination between wheezes and crackles

[16, 53, 54, 59, 
114, 117, 129, 
139, 171]

[68]

HF_Lung_V1 Comprises 9765 lung sound audio files (each lasting 
15 s), 18,349 exhalation labels, 34,095 inhalation labels, 
15,600 irregular adventitious sounds’ classes, and 13,883 
regular adventitious sound classes (including, 4740 
rhonchus classes, 8458 wheeze classes, and 686 stridor 
classes)

[66] [66]

Respiratory-database@TR Each patient has 12-channel lung sounds. Short-term 
recordings, multi-channel analysis, 5 COPD (chronic 
obstructive lung disease) severity levels (COPD4, COPD3, 
COPD2, COPD1, COPD0) (At least 17 s). This dataset was 
considered by

[13] [12]

Own generated database The lung sounds were captured using an e-stethoscope 
and an amplifier linked to a laptop. An e-stethoscope 
with a chest piece that is touched by the patient and 
a microphone-based recording sound signals with a 
44,100 Hz sampling rate that is attached to signal ampli-
fiers are used in this setup. The amplifier kits extend 
the signal range to about (70–2000 Hz) with respiratory 
sounds (with frequency controller and control amplifier) 
when associated with an earphone (to listen to live 
records) and a PC

[21] [21]

Own generated database Data is separated into two types: Sub-interval set, 
which includes complete patient set, which comprises 
all patients’ measures and is classed as Abnormal or 
Normal, counting all patients’ sub-interval measure-
ments of any duration. It has around 255 h of measured 
lung sound signals

[46] [46]

Own generated database RSs non-stationary data collection with 28 separate 
patient records. For training and testing, two distinct 
sets of signals were employed. Except for crackles and 
wheezes, which were data from six patients each, each 
class in the training and test sets comprised two record-
ings from distinct patients. The sampling frequency of 
the recorded data was 44.1 kHz

[122] [122]

R.A.L.E. repository It is a collection of digital recordings of respiratory 
sounds in health and sickness. These are the breath 
sounds that physicians, nurses, respiratory therapists, 
and physical therapists hear using a stethoscope when 
they auscultate a patient’s chest. Try-R.A.L.E. Lung 
Sounds, which provides a vast collection of sound 
recordings and case presentations, as well as a quiz for 
self-assessment

[22] [159]

R.A.L.E. lung sounds 3.0 It includes five regular breathing recordings, four 
crackling recordings, and four wheeze recordings. To 
eliminate DC components, a first-order Butterworth 
high-pass filter with a cut-off frequency of 7.5 Hz was 
employed, followed by an eighth-order Butterworth 
low-pass filter with a cut-off frequency of 2.5 kHz to 
band restrict the signal

[4] [123]

Respiratory sound database It developed by two Portuguese and Greek research 
teams. It has 920 recordings. The duration of each 
recording varies. 126 patients were recorded, and each 
tape is documented. Annotations include the start and 
finish timings of each respiratory cycle, as well as if the 
cycle comprises wheeze and/or crackle. Wheezes and 
crackles are known as adventitious noises, and their 
presence is utilized by doctors to diagnose respiratory 
disorders

[21, 84, 114, 
127, 129, 135]

[134]

R.A.L.E. refers to (Respiratory Acoustics Laboratory Environment)
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and MFCC for feature extraction. Along with other feature-based techniques that have 
been sparingly employed with machine learning and ensemble techniques, MFCC was 
routinely utilized with RNNs, ensemble learning, and machine learning. The main deep 
learning algorithms for sound-based classification employed in this study are mentioned 
in Table 3.

Feature extraction strategies

Data preprocessing begins with importing the re-sampling, cropping them, and sound 
files. Because recordings are made by different research teams using different recording 
equipment, sampling rates vary (4000 Hz, 44100 Hz, and 10000 Hz). All recordings may 
be re-sampled to a single sampling rate, such as 44100 Hz, and every sound is typically 
3–10 s extended by zero-padding shorter segments and cropping larger ones. The respir-
atory sound data are divided into distinct breaths during preprocessing by detecting the 
lack of sound between breaths. Lung sounds captured from different participants will 
have varying loudness levels. As a result, before processing, the signals were adjusted 
such that they were roughly the same loudness regardless of the subject. Most of the 
methods from literature normalize a signal before being divided into frequency sub-
bands using the discrete wavelet transform (DWT). To depict the allocation of wave-
let coefficients, a set of numerical characteristics was collected from the sub-bands. A 
CNN-based scheme was implemented to classify the lung sound signal into one cate-
gory: squawk, crackle, wheeze, normal, rhonchus, or stridor. The schematic block dia-
gram of the signal preprocessing stage is described in Fig. 5.

A method for extracting and detecting characters based on lung sounds was described 
in the paper [149]. The wavelet de-noised approach removes noise from the collected 
lung sounds before employing wavelet decomposition to recover the wavelet features 
parameters of the denoised lung sound signals. Because the characteristic vectors of 

Fig. 4  Graphical representation for the number of publications of crossing feature extraction methods with 
the categorisation in terms of circles of varying diameters
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lung sounds have multi-dimensional following wavelet reconstruction and decomposi-
tion, a novel technique for converting them into reconstructed signal energy was devel-
oped. They also used linear discriminate analysis (LDA) to decrease the length of feature 
vectors for assessment in order to create a more efficient recognition technique. Finally, 
they employed a BP neural network to differentiate lung sounds, with 82.5 percent and 
92.5 percent recognition accuracy, respectively, using relatively high-dimensional char-
acteristic vectors as input and low-dimensional vectors as output. The study evaluated 
lung sound data using the Wavelet Packet Transform (WPT) and classification with 
an artificial neural network [93, 94]. Lung sound waves were separated into statistical 

Table 3  Audio-based categorization using deep learning methods

Application Classification method References

Environmental sound classification 
and acoustic scene classification

ResNet [45, 70, 97, 112]

Autoencoder DNN [98–100, 120]

Snore sound classification, speech 
emotion recognition, and respira-
tory sound classification

Gated Recurrent Unit (GRU) [24, 128, 175]

Various applications Deep neural network (DNN) [77, 121, 125, 128, 146]

CNN [32, 40, 76, 81, 86, 88, 96, 128, 140, 
157, 161, 165, 167, 173, 174, 177, 178, 
180]

Deep CNN (DCNN) [102, 111, 179]

Sound event detection, speaker 
detection

Bidirectional gated [177, 178, 180]

Recurrent neural

Networks (BiGRU)

Environmental audio classifications (BEIT) Bidirectional encoder Wyatt et al. [170]

Illustration from

Transformers

Sound event recognition Audio event recognition network 
(AReN)

Greco et al. [60]

Environmental sound and acoustic 
scene classification

Sound/event credit network [45, 47, 112]

Sound event detection Adaboost Ykhlef et al. [174]

Sound classification Using the restricted boltzmann 
machine, DNN was trained

Ozer et al. [124]

Fig. 5 Block diagram of the signal preprocessing stage [119, 147]
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parameters and frequency sub-bands using the WPT were derived from the sub-bands 
to describe the distribution of wavelet coefficients. The classification of lung sounds as 
normal, wheezing, or crackling is done using an ANN. This classifier was programmed 
by a microcontroller to construct a portable and automated device for studying and diag-
nosing respiratory function. In the study [93, 94], a method for distinguishing between 
two types of lung sounds was provided. The proposed technique was founded on an 
examination of wavelet packet decomposition (WPD). Data on normal abnormal and 
normal lung sounds were collected from a variety of patients. Each signal was split into 
two sections: expiration and inspiration. They used their multi-dimension WPD factors 
to create compressed and significant energy characteristic vectors, which they then fed 
into a CNN to recognize lung sound features. Widespread investigational results dem-
onstrate that this characteristic extraction approach has high identification efficiency; 
nonetheless, it is not yet ready for clinical use. A common procedure to processing the 
lung sound can be listed as follows:

 1. As input, a Lung sound recording folder is used. Lung sounds are a combination of 
lung sounds and noise (signal interference).

 2. As a signal, sounds are able to be played and written.
 3. The Lung sounds are then examined by the scheme, saved in the data, and divided 

into an array of type bytes.
 4. The data array is transformed into a double-sized array.
 5. Repeatedly decomposing array data according to the chosen degree of disintegra-

tion creates two ranges, every half the duration of the data range. The initial array is 
known as a low-pass filter, while the second span is known as a high-pass filter.

 6. Apply the wavelet transform to the coefficients in each array.
 7. In the data array, both arrays are reconstructed, with a low-pass filter at the begin-

ning and a high-pass filter at the ending time.
 8. The data array is processed via a threshold, creating respiratory sound signal noise 

and two arrays.
 9. Repeat restoration as many times as the stage of restoration set to each array.
 10. In the data array, reverse the order of the preceding half high pass filter and half low 

pass filter, discontinuous high pass filter low pass filter for every array.
 11. Re-perform each array’s wavelet transform parameters.
 12. Data Array is then transformed from a double-sized array to a byte-sized array. The 

acoustic format and folder names that have been specified are functional to the 
information.

 13. A signal [data] of a breathing sound set is restructured to a breathing sound folder, 
and a data noise array is restructured to a noise beam.

Wavelet is relation of functions ϕa,bt resulting from a foundation wavelet ϕ(t) , called 
the “mother wavelet”, by translation and dilation [117] as described in Eq. (1):

(1)ϕa,nt =
1
√
a
ϕ

(

t − n

a

)

, a > 0, n ∈ ℜ
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Wavelet examination is essentially scaling and shifting a restricted shape of energy 
called the “mother wavelet” ϕ(t) of the preferred indication. So, the disconnected wave-
let change is able written as follows:

The signal-to-noise ratio ( SNR ) is a dimensionless relation of the power of a signal to 
the associated power noise during recording, this can be expressed by [16]:

where Anoise denotes root mean square (RMS) of noise amplitude, Asignal represents the 
root mean square (RMS) of signal amplitude, Pnoise denotes the mean of noise power, 
and the Psignal denotes the mean of signal power.

The studies [93, 147] decomposition after evaluating the distribution characteristics 
of time–frequency respiratory sounds. The optimum wavelet packet foundation for 
feature extraction was chosen after the space partitioning of wavelet packets. They can 
perform quick random multi-scale WPT and get every high-dimension wavelet param-
eters matrix based on the best basis. The time-domain equal-value relationship between 
coefficients wavelet and signal energy was then established. The energy was used as an 
eigenvalue, and vectors of characteristics from a classification artificial neural network 
(ANN) were used as forms. This drastically reduces the number of ANN input vectors. 
Extensive experimental results reveal that the proposed feature extraction approach 
outperforms other approaches in terms of recognition performance. The time-domain 
equal-value relationship between wavelet coefficients and signal energy was then estab-
lished. The energy was used as an eigenvalue, and feature vectors from a classification 
artificial neural network (ANN) were used as forms. The number of ANN input vectors 
is considerably reduced as a result. Extensive experimental findings show that in terms 
of recognition performance, the suggested feature extraction technique surpasses alter-
native approaches.

To provide a clear insight on features extractions of lung sound, we downloaded free 
samples of lung sounds from the [68] database [68] Challenge | ICBHI Challenge, n.d.) 
and performed both wavelet analysis and short-time Fourier transform (STFT) as a 
two different algorithms. The original waveforms are shown in Fig.  6a for Wheeze, 
Crackle, Wheeze + Crackle, and normal sound. For Wheeze signals, the prevalence 
of the spectrum power falls within the (100–1000) Hz frequency range, with a par-
ticular transient of shorter than 100 ms. Crackle signals have an oscillatory signature 
with (350–650) Hz frequency range and it lasts more than 20 ms. Figure 6b shows the 
STFT spectrogram for every respiratory segment. The wheeze and crackle signals are 
likewise supplied in the same records of the [68] database. Since the combined signals 
are frequently asymmetric and erratic, it can be challenging to isolate and identify the 
essential component from the STFT spectrums. In order to increase the accuracy of 
deep learning model, the study [101] additionally used the wavelet packet analysis. 
The wavelet generated spectrogram is shown Fig. 6c.
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Mel Frequency Cepstral Coefficient (MFCC) was employed as sound clip charac-
teristics. Speech recognition systems frequently employ MFCCs. They have also been 
extensively employed in prior employment on the recognition of unexpected respir-
atory sound signals because they give an indication of the time domain short-term 
power spectrum of the sounds. Because multiple adventitious sounds might appear 
in the same tape at different periods and have varied durations, both frequency and 
time content are significant in distinguishing between them. As a result, MFCC is 
useful for recording a signal’s transform in frequency components during the time. 
Frequencies are allocated to the MEL scale that are nonlinear frequencies with equal 
distance in the human auditory system. Before further processing, MFCC generates a 
two-dimensional vector feature (frequency and time) that is compressed into an array 
of one-dimensional scale. The MFCC computation technique is depicted in Fig. 7.

Fig. 6 (a) Original sound signal. (b) STFT spectrogram (c) wavelet generated spectrogram of lung sounds. 
From respiratory sound database [68] Challenge | ICBHI Challenge, n.d.)
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Elaboration studies
The studies [37, 38, 61] provided a survey of cutting-edge deep-learning-based respira-
tory nodule analysis and screening algorithms, with an emphasis on their presentation 
and medical applications. The study [61] compared the network performance, limita-
tions, and potential trends of lung nodule investigation. The review [37] evaluated why 
molecular and cellular processes are of relevance. DLCNN has been used in different 
diagnostic procedures such as lung sound analysis, forced oscillation test, telemedicine, 
and breath analysis, with encouraging outcomes in small-scale investigations, according 
to [38].

In the same context, the papers [26, 48, 85, 91, 95, 136, 163] reviewed cancer diag-
nosis of the lung using medical picture analysis. Lung cancer is the foremost source 
of mortality globally, with “1.76  million related deaths recorded in 2018,” according 
to [26]. In addition, “Lung highest incidence rate of cancer death in both men and 
women, accounting for over a quarter of all cancer fatalities globally.” [48].

Fig. 7 MFCC computation technique
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There are many published journal papers that review and proposed original meth-
ods to assess lung disease using deep learning CNN as an artificial intelligence tech-
nique. For highlighting the importance of these publications, this review briefly 
provides a table that lists the analyzed sample, the CNN algorithm type, tested data 
(sound or image samples), and their significant findings as seen in Table 4.

The table shows a classification of some published articles and their achievements. 
The studies [1, 25, 74, 87] created a problem-based architecture that saves image 
data for identifying integration in a Chest Pediatric X-ray database. They designed 
a three-step pre-processing strategy to improve model generalization. An occlusion 
test is used to display model outputs and identify the observed relevant area in order 
to check the reliability of numerical findings. To test the universality of the proposed 
model, a different dataset is employed as additional validation. In real-world practice, 
the provided models can be used as computer-aided diagnosis tools. They thoroughly 
analyzed the datasets and prior studies based on them, concluding that the results 
could be misleading if certain precautions are not followed.

Conclusions
This work provided a review of lung disease recognition with acoustic signal analy-
sis with deep learning networks. Compared to related review studies on lung disease 
classification/detection using deep learning algorithms, only two review studies based 
on signal analysis for lung disease diagnosis have been conducted in 2011 and 2018. 
Deep Learning Convolutional Neural Networks (DLCNN) are being used to diagnose 
obstructive lung illnesses, which is a fascinating development. DLCNN algorithms 
function by identifying patterns in diagnostic test data that can be applied to fore-
cast and identify obstructive phenotypes or clinical outcomes. DLCNN will require 
consensus examination, data analysis, and interpretation techniques as it matures as 
medical technology. To enable big clinical trials and, ultimately, minimize ordinary 
clinical use, such tools are required to compare, understand, and reproduce study 
findings from and among diverse research organizations. It is necessary to make rec-
ommendations on how DLCNN data might be used to generate diagnoses and influ-
ence clinical decision-making and therapeutic planning. This review looks at how 
deep learning can be used in medical diagnosis. A thorough assessment of several sci-
entific publications in the field of deep neural network applications in medicine was 
conducted. More than 200 research publications were discovered, with 77 of them 
being presented in greater detail as a result of various selection techniques. Overall, 
the use of a DLCNN in the detection of obstructive lung disorders has yielded prom-
ising results. Large-scale investigations, on the other hand, are still needed to validate 
present findings and increase their acceptance by the medical community. We antici-
pate that physicians and researchers working with DLCNN, as well as industrial pro-
ducers of this technology, will find this material beneficial.
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Table 4 List of the analyzed sample, the CNN algorithm type, tested data (sound or image samples), 
and their significant findings for the publications that have been surveyed

Study Method Splitting 
strategy

Performance

Specificity Sensitivity Accuracy Score

Demir et al. 
[42, 43]

VGG16 Tenfold CV – – 63.09% –

Serbes et al. 
[144]

SVM Official 60/40 – - 49.86% –

Sen I, et al. 
[143]

GMM Classifier – 90% 90% 85.00% –

Saraiva et al. 
[141]

CNN Random 
70/30

– – 74.3% –

Yang et al. 
[172]

ResNet + SE + SA Official 60/40 81.25% 17.84% – 49.55%

Ma et al. [101] bi-ResNet Official 60/40
Random 
tenfold CV

69.20%
80.06%

31.12%
58.54%

52.79%
67.44%

50.16%
69.30%

Pham et al. 
[130]

CNN-MoE Official 60/40
Random
fivefold CV

68%
90%

26%
68%

– 47%
97%

Gairola et al. 
[55] official 
60/40

CNN Official 60/40
Interpatient 
80/20

72.3%
83.3%

40.1%
53.7%

– 56.2% 68.5%

Liu et al. [91, 
95]

CNN Random 
75/25

– – 81.62% –

Acharya and 
Basu [3]

CNN-RNN interpatient 
80/20

84.14% 48.63% – 66.38%

Allahwardi 
& Altan et al. 
[14]

Deep Belief Net-
works (DBN)

– 93.65%
73.33%

93.34%
67.22%

95.84%
70.28%

Kochetov 
et al. [80]

RNN Interpatient
fivefold CV

73% 58.4% – 65.7%

Minami et al. 
[109]

CNN Official 60/40 81% 28% – 54%

Georgios 
Petmezas 
et al. [129]

CNN-LSTM with 
FL

Interpatient 
tenfold CV
LOOCV

84.26%
–

52.78%
60.29%

76.39%
74.57%

68.52%
–

Chambres 
et al. [31]

HMM
SVM

Official 60/40 56.69%
77.80%

42.32%
48.90%

49.50%
49.98%

39.37%
49.86%

Oweis et al. 
[122]

ANN – 100% 97.8% 98.3% –

Jakovljevi´c 
and Lonˇcar-
Turukalo [73]

HMM Official 60/40 – – - 39.56%

Bahoura [22] GMM – 92.8% 43.7% 80.00% –

Emmanoui-
lidou D et al. 
[46]

RBF SVM
Classifier

– 86.55 (± 0.36) 86.82 (± 0.42) 86.70% –

Ma et al. 
[98–100]

ResNet + NL Official 60/40
Interpatient 
fivefold CV

63.20%
64.73%

41.32%
63.69%

– 64.21%
52.26%

Nangia et al. 
[21]

CNN – – – 94.24% 93.6%

Pramono RX 
et al. [4]

SVM – 83.86% 82.06% 87.18% 82.67%

Nguyen and 
Pernkopf 
[118]

ResNet Official 60/40
Official 60/40

79.34%
82.46%

47.37%
37.24%

–
73.69%

58.29% 64.92%
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