
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Avargues et al. Journal of Big Data (2023) 10:75
https://doi.org/10.1186/s40537-023-00761-0

Journal of Big Data

Main memory controller with multiple
media technologies for big data workloads
Miguel A. Avargues1*, Manel Lurbe1, Salvador Petit1, Maria E. Gomez1, Rui Yang2, Xiaoping Zhu2,
Guanhao Wang2 and Julio Sahuquillo1

Abstract

SRAM and DRAM memory technologies have been dominant in the implementa-
tions of memory subsystems. In recent years, and mainly driven by the huge memory
demands of big data applications, NVRAM technology has emerged as a denser
memory technology, enabling the design of new hybrid DRAM/NVRAM memory
hierarchies that combine multiple memory media technologies to balance memory
capacity, latency, cost, and endurance. Two main approaches are being applied to the
design of hybrid memory hierarchies: the hybrid address space approach, which relies
on the programmer or the operating system to choose the memory technology where
each memory page should be stored; and the (only) NVM address space approach,
where a faster technology (e.g. commodity DRAM) is needed to acts as a cache of
NVRAM to boost the performance. This approach presents architectural challenges
such the organization of metadata (e.g. cache tags) and the selection of the proper
technology for each memory component. In contrast to existing approaches, this work
proposes a memory controller that leverages novel memory technologies such as
eDRAM and MRAM to mitigate NVRAM bus contention and improve the performance
of the NVM address space. The devised solution proposes a two-level cache hierarchy
in the memory controller: a SRAM sector cache and a (x)RAM cache. The (x)RAM cache,
much denser, helps significantly reduce the number of accesses to NVRAM. Experimen-
tal results show that implementing the (x)RAM cache with eDRAM or MRAM is the best
performing approach. Moreover, the eRAM is able to improve the SRAM cache miss
penalty by up to 50% and 80%, and overall system performance by 15% and 23%.

Keywords: gem5 simulator, NVMain simulator, Main memory, NVRAM media

Introduction
Memory hierarchy [4] has played a key role in the system performance since earliest
processors. The first microprocessors only implemented the RAM main memory level,
and secondary memory like tapes and disks. At the end of the 70’s, cache memories
[34] were introduced to reduce the average main memory access time. Cache memories
reduce this time thanks to exploiting localities, spatial and temporal, that data exhibit [2,
32]. Temporal locality refers to the same data being accessed again soon along the execu-
tion time, and spatial locality refers to data located in neighboring memory addresses are
likely to be accessed soon. As the gap between the processor speed and main memory

*Correspondence:
miavgu@inf.upv.es

1 Dep. de Informática de
Sistemas y Computadores,
Universitat Politècnica de
València, València, Spain
2 Huawei Technologies Co. Ltd.,
Shenzhen, People’s Republic
of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00761-0&domain=pdf

Page 2 of 19Avargues et al. Journal of Big Data (2023) 10:75

has grown, multiple levels of cache memories have been introduced, known as cache
hierarchy. Current processors usually implement three on-chip cache levels.

SRAM and DRAM technologies have been used in the past as the dominant memory
technologies. SRAM is faster and has been commonly used in the upper levels of the
hierarchy to implement on-chip caches. In contrast, the much denser but slower DRAM
technology has been used for main memory where more capacity is required as this
technology presents reduced cost per GB compared to SRAM. Main memory perfor-
mance has a big impact on the processor performance as a key role of this memory is to
hold most of the data -working set- being used by the running applications. On a (page)
miss in the main memory, an access to the secondary storage, several order of magnitude
slower, is needed to bring the missing page, which will translate into important penalties
in the overall system performance.

Much work has been published in the past to address the well-known memory wall
[35, 39]. However, over the last decade two main trends have appeared that have called
for revisiting the main memory design. On the one hand, the fact of the increasing core
count in multicore processors implies more memory accesses compete for main mem-
ory access; therefore, there is a need of increasing both capacity and bandwidth to allow
increasing memory level parallelism (MLP) and serving more requests in parallel. In
other words, the memory wall continues to grow, especially in huge memory demands
big data workloads whose needs already overpass multiple TB in current applications
[25], which exceeds the memory memory capacity of existing commodity processors.

To deal with these trends the DRAM memory subsystem has significantly improved in
terms of storage capacity and memory bandwidth with each new generation. DRAM has
scaled (in Mbits/chip) in a 2× factor every 1.5 years from 1985. However, this trend has
slowed down since the beginning of this century and becomes challenging below 10nm
technology node since the implementation becomes unreliable [23, 27]. In addition, cur-
rent server processors use to implement several multi-channel memory controllers to
allow supporting higher MLP.

Consequently, conditions have changed as new memory technologies like NVRAM
(Non-Volatile RAM) [7] have emerged in the last years, both denser and more energy-
efficient than DRAM. The main goal is to used them to implement much bigger main
memories [12]. Nevertheless, they present a major downside as they are slower and
present finite write endurance [14, 20, 29, 44]. Because each technology presents its
advantages and downsides, computer architects can focus on the design of new off-
chip memory hierarchies by using multiple technologies, what is known as hybrid main
memories. The design pursues to take the best of each world; for instance, using DRAM
for speed and NVRAM for higher storage capacity. There is an open design space where
computer architects play a key role mingling distinct memory technologies to balance:
capacity, latency, cost and endurance.

In summary, the huge demands of main memory space, some exceeding 1TB, open an
era for computer architects to reach key memory goals, that is, scalability, endurance,
and energy consumption. To this end, the paper focuses on a novel main memory design
that combines multiple technologies.

Unlike existing approaches, the proposed solution consists on implementing a two-
level cache hierarchy combining distinct technologies in the memory controller. This

Page 3 of 19Avargues et al. Journal of Big Data (2023) 10:75

way attacks the performance bottleneck of the slow accesses to the NVRAM, mitigating
NVRAM bus congestion and improving performance.

Problem definition
Performance of emerging applications, such as those of the big data area, can severely
suffer when the physical main memory space is not able to accommodate their working
set, and consequently, the several order of magnitude slower secondary memory (e.g.
solid state drive or hard disk drive) needs to be accessed.

The previous rationale means it is important to face the problem of providing enough
memory capacity in order to sustain the performance of these applications. Moreover, as
memory demands of big data applications continue to grow exponentially, the memory
wall problem is expected to aggravate in the near future as much larger main memories
will be needed that cannot be met with existing memory hierarchies. This increasing
memory demands was foreseen so that it motivated significant technology advances for
the last decade in the development of alternative technologies to DRAM like non-vol-
atile memories, as well as their recent introduction in the processor market [1, 13, 41].

Nowadays, we have entered in an era where multiple technologies have already
emerged, each one presenting its advantages and shortcomings. It is a job of the com-
puter architects to design new memory controllers able to mingle multiple technolo-
gies to address performance and technological issues like endurance, fault tolerance and
energy. The memory controller cannot be already seen as a device that controls a single
memory media (e.g. DRAM). Instead, multiple types of media will need to be taken into
account to face the mentioned technological and performance issues.

A plausible approach to illustrate the problem is using only a small subset of tech-
nologies, e.g. DRAM and NVRAM [28]. The former faster but less denser than the latter.
The problem can be addressed following two main approaches: (i) NVRAM only address
space, and (ii) Hybrid –DRAM plus NVRAM– address space,

In the NVRAM only approach, as NVRAM presents larger storage capacity, DIMMs
in this technology (i.e. NVDIMMs) could be only used to built the main memory; thus,
completely replacing current commodity DRAM DIMMs as the main memory device
[15–17]. In this way the processor address space would be delimited by the storage
capacity of the NVDIMMs. However, important technological challenges appear due to
the high write access latency and limited endurance of NVRAM as well as performance
issues.

In contrast, in the Hybrid approach, the NVRAM could be placed into the memory
hierarchy alongside DRAM to augment its address space [9, 19, 22, 37, 38, 40, 42]. In this
approach, the processor address space consists of the sum of the storage capacity of both
memory media. The main downside of this approach is how the target location (DRAM
or NVRAM) of memory pages is selected at execution time. More precisely, as DRAM
is faster than NVRAM, the execution time of a program can be accelerated by placing
the most accessed pages in this memory media. However it is not done automatically
but this approach relies on the programmer or the operating system to choose the main
memory media where each memory page should be stored. More precisely, a major
drawback of this type of implementation is the complexity it imposes on the application
programmer, the operating system, or the corresponding system libraries. Furthermore,

Page 4 of 19Avargues et al. Journal of Big Data (2023) 10:75

the differences between NVRAM and DRAM memory capacities, which vary by two or
three orders of magnitude, make it difficult to design a fast and efficient hybrid memory
subsystem. In addition, this approach brings little performance gains when the address-
able space of the NVRAM is much bigger than that of the DRAM, which is expected to
be the future trend as DRAM scalability imposes many technological challenges [33].

Finally, the design imposes many challenges from an architectural point of view like
(i) as tags require a large storage capacity in case of a commodity DRAM is used as a
cache, how tags are implemented? (ii) which technologies should be used, where and
why? (iii) is there a need of implementing a big cache in the memory controller to allo-
cate data from the different media? In such a case, a sector cache would help to boost
performance? (iv) as DRAM read is destructive, how this fact will affect the definition
and the memory operation?

Existing solutions
Existing solutions rely on hybrid memory systems built with DRAM and NVM tech-
nologies, and can be grouped according to the way the main memory address space is
organized: hybrid address space or NVM address space.

Hybrid address space: in these solutions, the NVMRAM and the DRAM share the
same address space, that is, each of them stores a different subset of the physical mem-
ory pages. This approach is followed in some body of works [5, 6, 9, 11, 24, 30, 31, 38,
43], however, requires modifications both in the memory controller and in the operat-
ing system. Management policies in this hybrid memory subsystem can significantly
affect the system performance. Therefore, significant effort is required to carefully opti-
mize such policies. The work in [9] proposes to combine PRAM (phase change random
access memory) and a low overhead hybrid hardware-software solution for managing
the hybrid memory performing the page swapping/migration. Panthera [38] proposes
combining NVRAM and DRAM in the context of big-data processing and a memory
management technique for efficient data placement and migration. The authors in [31]
propose an analytical Markov-based model to estimate the performance and lifetime of
DRAM-NVM hybrid memories on various workloads. The proposed model estimates
the hit ratios and lifetime for various configurations of DRAM-NVM hybrid main mem-
ory. Such an analytical model can aid designers to tune hybrid memory configurations
to improve performance and/or lifetime. The work in [19] proposes utility-based hybrid
memory management (UH-MEM), a new page management mechanism for various
hybrid memories, that systematically estimates the utility (i.e., the system performance
benefit) of migrating a page between different memory types, and uses this information
to guide data placement. The authors of [30] propose a hybrid memory design jointly
with a hardware-driven page placement policy. The policy relies on the memory con-
troller (MC) to monitor access patterns, migrate pages between DRAM and PCM, and
translate the memory addresses coming from the cores. Periodically, the operating sys-
tem updates its page mappings based on the translation information used by the MC.

NVM address space: solutions in this approach organize the hybrid main memory in a
hierarchical way, where the NVM occupies the lower level, thus the NVM has the entire
main memory address space and the DRAM acts a cache of the NVM [22, 42]. The work
in [42] proposes a new caching policy that improves hybrid memory performance and

Page 5 of 19Avargues et al. Journal of Big Data (2023) 10:75

energy efficiency. The policy tracks the row buffer miss counts of recently used rows in
PCM, and caches in DRAM the rows that are predicted to incur frequent row buffer
misses. This work uses commodity DRAM and caches entire rows of NVRAM memory
banks in DRAM. The proposal in [22] introduces efficiently managing the metadata (e.g.,
tags) for data cached in DRAM at a fine granularity. This paper uses a small buffer to
just cache on-chip the metadata for recently accessed rows. The proposal also adapts
dynamically to choose the best data granularity.

NVM address space: approaches are more practical than Hybrid address space as
they require no software changes, and are closer to our work; therefore, our compari-
son only focuses on NVM address space approaches. The described approaches pre-
sent important constraints that are being overpassed by our approach. In this regard,
our proposal implements a much smaller cache than the proposed in [42] that can be
integrated within the same processor package or even on the same die, assuming the
selected cache technology is CMOS-compatible. In addition, the cache requirements in
our proposal are relatively much lower than those of [22], which eliminates the need for
special handling of metadata and allows us to implement a smaller cache with alternative
technologies.

Proposed solution
This section presents the proposed solution to address the huge memory requirements
of big data applications and to face the major challenges discussed that a multiple media
memory controller imposes.

The major memory components of the memory controller board are the media con-
trollers, the NVRAM, the DRAM and an on-board cache. The NVRAM [12, 18] is
denser and slower than the DRAM, and it will be used as the main memory address
space. The on-chip cache hierarchy is expanded off-chip through the memory controller
board. This small board contains the multiple controllers for each media, e.g. for DRAM
and NVRAM. We keep the DRAM or commodity DRAM but it will be used as a (sec-
ond level on-board) cache of the NVRAM. In addition, a smaller but faster sector cache
built with SRAM technology is introduced between the on-chip caches and the memory
media, to aid in reducing the slowdown. The cache is implemented as a sector cache to
serve as a prefetcher when accessing the slower memory media. In this way the long
latencies of the slower memory media are amortized as a sector consists of multiple (4 in
our design) typical 64B cache blocks.

The design proposed in this paper is based on two important observations that we
found during the design process: i) the DRAM cache is often accessed, and ii) a relatively
small size (compared to normal sizes of commodity DRAM) seems to be adequate to
catch an important fraction of the NVRAM accesses. These results motivate us to focus
the research on the usage of alternative memory technologies such as Magnetic Ran-
dom Access Memory (MRAM) [3, 8] or embedded DRAM (eDRAM) [10, 21], which are
faster and consume less energy than commodity DRAM.

The devised approach implements four major components: the HMC Sector Cache
or simply Sector Cache, the DRAM/eDRAM/MRAM media, the TAG Cache, and the
NVRAM media to achieve the mentioned goals. Next we elaborate the design of these
components.

Page 6 of 19Avargues et al. Journal of Big Data (2023) 10:75

Elaboration
Challenges and major design issues

A major challenge when using commodity DRAM as a cache is where the tag array is
placed. If it is placed on the same DRAM DIMM, an access needs to be done to look up
whether the target block is in the cache. As DRAM is destructive and relatively slow, this
means that a precious time can be lost regardless of whether the target sector is or is not
in the DRAM DIMM. To avoid this shortcoming, an alternative approach could be to
implement it in an on-board cache (i.e. placed in the memory controller board). How-
ever, this design is challenging mainly due to the high capacity (tens of GB) of recent
DRAM DIMMs.

To address the mentioned challenges, we explored smaller in-house DRAM designs.
The key idea was to reduce the tag array in order to implement it in an SRAM cache.
We found that there is no need to use big commodity DRAM DIMMs, but smaller in-
house DRAM memories can be built and, therefore, their tag array can by implemented
in a much faster SRAM cache. We refer to as data cache and tag cache, to the caches
keeping the data array and tag array respectively. Moreover, under these assumptions,
a direct-mapped cache is able to achieve good performance because of conflict-misses
rarely appear with a relatively large DRAM cache.1

The question that arises is how large should be the data cache. In principle, the cache
should be built with a technology dense enough to store a large amount of data. In this
paper, we first explored commodity DRAM (DRAM Cache). However, as our experi-
mental results will show, this DRAM cache is frequently accessed and a relatively small
size is sufficient to capture a significant portion of NVRAM accesses.

We improve the performance of the memory controller with two main design options
over existing solutions. On the one hand, the fact that the DRAM cache is often accessed
means that the main performance gains will come from speeding up this cache. On
the other hand, as a relatively small cache is needed, other technologies either CMOS
compatible (e.g. eDRAM) or denser (e.g. MRAM), can be used to be integrated in the
memory controller board. In this way, important hardware like the memory channel
and DIMM’s socket can be saved as well as energy consumption over using commod-
ity DRAM DIMMs. Therefore, in this work we consider MRAM, eDRAM, and in-house
DRAM memory tailored for the needs of the proposed controller.

The design of the basic memory controller consists of two main steps: i) to define the
individual components that will compose the memory controller, and ii) to specify the
functionality of each component as well as how they interact with each other. After that,
iterative refinements need to be done for performance enhancements.

• HMC Sector Cache or simply Sector Cache: implemented in the HMC chip, it allows
storage of multiple data blocks (known as sectors) in a single cache line. It is mod-
eled as a sector cache to help reduce NVRAM latency as one, whole line sector-sized
access is issued instead of several smaller, block-sized accesses. In other words, it acts
as a sequential prefetcher by design what helps hide the slow NVRAM media. As
a conventional sector cache, each line contains metadata for each individual block

1 This claim was checked with the experimental framework and workloads studied in this paper.

Page 7 of 19Avargues et al. Journal of Big Data (2023) 10:75

(dirty and valid) and for the whole line (present and dirty). This cache is the first
structure that is checked when a LLC requests reaches the HMC. Therefore, it is
expected to bring important performance benefits.

• DRAM/eDRAM/MRAM media: in the initial controller design, typical DRAM media
is used to provide a second storage cache level in order to reduce average latency of
accessing the NVRAM media. In other words, with the DRAM cache, the faster (but
smaller) DRAM media is accessed instead of the NVRAM. This not only has latency
benefits, but may help with NVRAM wear as well. In addition, we also explore
MRAM, eDRAM media and in-house DRAM. Table 1 compares the considered
technologies based on their speed, energy consumption, and durability. Each of these
features is classified into four different levels. In terms of speed, MRAM, eDRAM,
and in-house DRAM surpass traditional DRAM as they can be integrated within the
same package as the processor. Among these technologies, eDRAM is the fastest due
to its CMOS compatibility, allowing it to be implemented on the same die as the con-
troller, followed by in-house DRAM and finally MRAM, with a slower write speed.
MRAM also has the lowest energy consumption as it does not require refresh. In
this regard, the eDRAM technology presents the lowest energy consumption among
the DRAM technologies, followed by in-house DRAM and then commodity DRAM,
whose energy consumption is negatively impacted due to its off-chip implementa-
tion. Lastly, with respect to durability, MRAM presents the weakest performance
because of its limited write cycles. For dynamic memory technologies, their durabil-
ity is primarily determined by the capacitors’ size, putting eDRAM below DRAM.

• TAG Cache: together with the DRAM/eDRAM/MRAM media - which stores the
data blocks - an (x)RAM Cache is formed. Accessing directly to this cache upon
every sector cache miss would result in significant refreshing overhead (for dynamic
memory media) and a high number of unfruitful accesses (i.e. the data block/sector
is not in the x-RAM cache but in the NVRAM media). To deal with these shortcom-
ings, we use SRAM technology to provide fast access time to the tags. That is, both
structures are accessed sequentially, so that in case of a tag miss (meaning that the
block is stored in NVRAM media) the DRAM is not accessed (so avoiding unfruitful
accesses to the slow DRAM media). This design choice provides fast access to the tag
array in case the data access is slow and has been already used in the past in mod-
ern processors. For instance, the IBM POWER4 [36] deploys the L3 data array in an
individual chip different from the processor chip. To avoid unnecessary accesses and
provide fast access to the tag array in order to discern whether the L3 or the main
memory should be accesses, the tag array is implemented in the processor chip. Usu-

Table 1 Comparison of the considered memory technologies

For each feature, four levels are defined: “ ++ ”, “ + ”, “−”, and “− −”

In-house Commodity
MRAM eDRAM DRAM DRAM

Speed − ++ + − −
Energy consumption − − − + ++

Durability − − − + ++

Page 8 of 19Avargues et al. Journal of Big Data (2023) 10:75

ally, designing tags for a commodity DRAM cache is challenging mainly due to the
high capacity (tens of GB) of recent DRAM DIMMs. The problem, however, is much
more affordable or it is not an issue at all for smaller cache sizes. As we found that
there is no need to use so a huge cache, but a much smaller is enough, the challenge
becomes much more affordable. Indeed, under these assumptions, a direct-mapped
cache already achieves good performance because of the cache size conflict-misses
rarely appear. This is because the huge size differences between the cache and the
main memory, which makes very unlikely that two different sectors are mapped to
the same cache line. This claim was checked with the experimental framework and
workloads studied in this paper.

• NVRAM media: contains the DIMMs with NVRAM technology.

Figure 1 depicts the devised components and the up-down data flow. We would like
to emphasize that this figure shows only the major components for the devised base-
line HMC approach. The auxiliary components (such as stream buffers required for the
prefetching technique currently being worked on) will be added as the project advances
during the development of the HMC Component.

Simulation framework

We are now going to introduce the simulator framework used to carry out all the test
executions. This environment is built around two main simulators, gem5 and NVMain.
The former has been used to model the processor side of the system, the latter to model
the main memory subsystem. NVMain can be made to compile as a gem5 extra, which
means that in only one binary we can use both gem5 21.0.1.0 and NVMain. Next, we
summarize the main features of each one.

The gem5 simulator is an event-driven modular simulator. This simulator offers great
flexibility in the system configuration, thanks to the use of Python scripts that initialize
the system components and act as the source of system configuration. This allows for
complex processor and cache hierarchy configurations. It also has two distinct working
modes, full system simulation (FS) and system-call emulation (SE). In FS mode, gem5

Fig. 1 HMC Controller components diagram

Page 9 of 19Avargues et al. Journal of Big Data (2023) 10:75

simulates a whole physical system from boot, similarly as a real machine. On the other
hand, SE mode offers a fast way to simulate a binary under a different system configura-
tion of the real machine that is running the simulation.

NVMain is a cycle accurate main memory simulator that models both non-volatile and
DRAM memories. In addition to being used as an extra for gem5, NVMain can be com-
piled standalone, which allows to simulate the memory subsystem using traces. NVMain
allows for the implementation of components of the main memory system, through the
extension of base classes defined in C++. It also offers support for hybrid memory sys-
tems, which is a key feature in this project. Also, the memory model can be modified via
the use of configuration files, such as timing parameters, memory geometry or memory
controller.

Modeled components and simulation tools

To evaluate our approach we built the whole system, ranging from the processor core
to the lower levels of the memory hierarchy, and passing through the cache hierarchy
levels.

The gem5 simulator was used to model the processor side including the processor
core, L1 and L2 caches, and the HMC sector cache. No L3 cache was modeled since our
main focus is on the main memory subsystem and not on the processor package. Due to
this reason, we keep the L2 cache large enough to catch most of the memory accesses as
in real processors that include an L3 cache. The HMC (sector) cache was also modeled
in gem5. As NVMain is a specific memory simulator it was used to implement the main
memory controller that drives the distinct memory media (e.g. DRAM or NVRAM).
Figure 2 presents the major components of the system in a hierarchical way.

The memory controller keeps the media controllers of the attached memory devices,
as well as the tag array of the commodity DRAM media that was modeled as imple-
mented in SRAM for performance. As mentioned above, alternative media like eDRAM
or MRAM have been modeled.

System parameters

To assess our approach, the system configuration parameters shown in Table 2 were
used. Access times (latency) were obtained with CACTI [26] in ns for a 22 nm technol-
ogy node and translated to processor cycles for a 2GHz processor frequency. The size of
the HMC cache and the DRAM cache have been scaled down to the problem size of the
workloads to obtain representative values. Using this tool, we were able to model the dif-
ferent memory access time using as a base memory a 4GB 2933-DDR4 DIMM, which is
the memory we refer to as “commodity DRAM”. As for the in-house DRAM, we scaled
down the commodity DRAM from 4GB down to 64MB. The eDRAM technology was
modeled as a “cache” memory type, instead of “main memory” in the CACTI configura-
tion. Finally, MRAM access values were modeled according to HUAWEI Technologies
(personal communication).

For evaluation purposes, memory timing parameters should be representative pre-
senting those hardware level details with significant impact on performance. For
instance, when the required data is located in an open memory page (i.e., row buffer
hit), the access time is about three times smaller as if the target data is not (i.e., row

Page 10 of 19Avargues et al. Journal of Big Data (2023) 10:75

buffer miss), and thus, the precharge and active commands needs to be send by the
memory controller. Table 3 summarizes the main features of the studied technolo-
gies to assess our approach in memory bus cycles. Access times in case of both row
buffer miss (RB miss) and row buffer hit (RB hit) are shown. The table also specifies
the values for the row precharge delay (tRP), row to column delay (tRCD) and column

Fig. 2 Simulation tools used and system components we modeled in each of them. The gem5 simulator in
the upper side and NVMain in the lower side of the figure. In case of commodity DRAM the X-RAM Data is
outside the HMC controller bound

Table 2 gem5 system configuration parameters for a 22 nm technology node

Cycles have been calculated for a 2 GHz frequency

Component Parameter Value

CPU Type TimingSimpleCPU

Frequency 2.0 GHz

L1 Data cache Size, block size, associativity 32 KB, 64 B, 8-way

Tag/Data latency 3/3 cycles

L1 Inst. cache Size, block size, associativity 32 KB, 64 B, 8-way

Tag/Data latency 3/3 cycles

L2 Cache Size, block size, associativity 2 MB, 64 B, 16-way

Tag/Data latency 11/11 cycles

Write policy Write-back

HMC Sector cache Size, block size, associativity 8 MB, 256 B, 16-way

Tag/Data latency 17/17 cycles

Write policy Write-back

x-RAM cache Memory channels 2

Total space storage 64MB

Page 11 of 19Avargues et al. Journal of Big Data (2023) 10:75

latency (CL). The bottom row quantifies both RB miss and RB hit in core cycles (cc)
for a 2GHz core. It is important to note that these access times are a worst case (RB
miss) and a best case (RB hit) scenario, as the average access time will depend on
the row buffer hit ratio. On the one hand, for applications with high spatial locality
the RB hit ratio will be high, thus lowering the access time towards the RB hit access
time. On the other hand, for applications with low spatial locality, the RB hit ratio
would be rather poor, thus increasing the access time to that of the RB miss latency.

Studied workloads

Three main workloads have been used to evaluate the proposal; below we summa-
rize the main characteristics of each of them.

Redis: this workload is an in-memory storage structure which can be used as a
database, cache or message broker. Redis offers different kinds of data structures
such as hashes, lists, sets, ordered sets, etc. This workload natively supports data
replication, the LRU replacement policy, and multiple on disk persistence levels.
Redis is composed of two main benchmarks: “redis-benchmark” and “memtier_
benchmark” discussed below. The former is an utility program included in the Redis
installation offers a way to simulate commands as if they were done by N clients at
the same time for a total of M requests.

Memtier: despite using the Redis server, memtier is a benchmarking tool to test
both Memcached and Redis instances. Some of its features are configurable Read/
Write ratio and the ability to choose the data access pattern.

MySQL: currently, MySQL is one of the most known database management sys-
tems (DBMS). Its code is open source and provides a great variety of key features
such as rollback and fault recovery. It is used by giant tech companies such as
Google, Facebook or Twitter. We used the “sysbench” benchmarking tool to perform
the experiments with the MySQL server.

Table 4 presents the values of the main parameters used in to obtain the experi-
mental results in the studied workloads.

Table 3 Memory media specifications

CC refers to core cyles

Comm. DRAM In-house DRAM eDRAM MRAM NVRAM

Tag lookup (ns/cc) 4/8 0

Read access time (ns)

 RB miss (ns) 43 16.5 10 10 176.2

 RB hit (ns) 14 5.5 3 3 43

Write access time (ns)

 RB miss (ns) 43 16.5 10 50 176.2

 RB hit (ns) 14 5.5 3 16 43

Memory frequency 3800 MHz 488

Processor frequency 2000 MHz

cc (RBmiss/RBhit) 86/28 33/11 20/6 20/6R 353/86

100/32W

Page 12 of 19Avargues et al. Journal of Big Data (2023) 10:75

Experimental results

This section presents and analyzes the experimental results obtained with the system
parameters (processor and memory media) and workloads discussed above. Results
compare and analyze performance differences among the four memory media used as (x)
RAM’s data cache, that is, commodity DRAM, in-house DRAM, eDRAM, and MRAM.

Memory latency analysis at the HMC

The main goal of our approach is to reduce the HMC miss penalty. Two main HMC
latencies (or miss penalties) are distinguishable depending on whether the missing sec-
tor hits or misses in the tag cache. In the former case the sector will be served by the (x)
RAM cache, and in the latter by the NVRAM DIMM. Therefore, the average latency will
depend on the tag cache hit ratio. That is, the higher the hit ratio the more requests will
be served by the (x)RAM cache (where x refers to specific technology of the data cache)
and thus the average latency will be smaller.

Table 5 presents the latency results for Redis, MySQL, and Memtier in processor
cycles. Latencies are broken down depending if there is a hit in the tag cache ((x)RAM
cache) latency or a miss (NVRAM latency). Average latencies are presented in both
cases. Remember that in case of row buffer hit the latency is smaller than in case of row
buffer miss. Comparing the average latency (AVG latency) of these three applications,
it can be observed that MySQL is the one presenting the highest value (by 21% and 12%
greater than Redis and Memtier, respectively). This is because of this value is strongly
related to the (x)RAM hit-ratio, as the bigger the hit-ratio the smaller the latency.

Table 4 Parameter values used in the studied workloads

Redis Memtier MySQL

Parameter Value Parameter Value Parameter Value

Clients 200 Threads 4 Entries 100000

Req/test 45000 Clients 15 Threads 8

Req. Size 2000 B Data size 1024 Instances 3

Instances 2

Table 5 HMC miss latency of the studied benchmarks

These values include tag lookup (8 cc), access time, and contention

Benchmark Memory Data cache technology

Commodity
DRAM

In-house
DRAM

eDRAM MRAM

Redis (x)RAM cache (cc) 70 49 41 42

NVRAM (cc) 256 242 242 242

AVG latency (cc) 101 76 67 67

MySQL (x)RAM cache (cc) 89 51 43 44

NVRAM (cc) 254 242 242 246

AVG latency (cc) 122 78 69 69

Memtier (x)RAM cache (cc) 81 53 45 46

NVRAM (cc) 258 252 255 255

AVG latency (cc) 109 80 71 72

Page 13 of 19Avargues et al. Journal of Big Data (2023) 10:75

Holistic evaluation

This section analyzes the performance just before and just after the sector cache. To
this end we show the L2 (the LLC in our processor) miss latency and the HMC miss
latency. Two main goals are pursued: i) to check how effective the sector cache is and
each individual component of the HMC, and ii) to check to which extend the (x)RAM
and NVRAM contribute to the final system performance. For the sake of completeness,
and to ease the analysis, we show additional metrics like the HMC hit ratio and the Tag
Cache hit ratio (i.e. the hit ratio of the (x)RAM cache), as well as the HMC MPKI (misses
per kilo-instructions).

Tables 6, 7, and 8 present the results. It can be appreciated that the performance of the
memory controller, quantified in terms of HMC miss latency, significantly varies among
applications. This latency is over 100 cc for all the studied applications in the commodity
DRAM cache which is the worst performing (x)RAM cache, and between 67 and 80 cc
in the remaining (x)RAM technologies. These results show that significant performance
gains can be achieved with alternative memory media with respect to using commodity
DRAM. For instance, it can be observed that the MRAM media improves the perfor-
mance of the commodity DRAM by 51% (101/67), 77% (122/69), and 52% (108/71) in
Redis, MySQL, and Memtier, respectively.

To assess our approach we will use as baseline a system without the (x)RAM cache as
baseline. We will refer to the baseline as NV-S model and to our approach as NV-S-D.

Figure 3 shows the latency improvements in both the L2 (LLC) miss penalty and
HMC cache miss penalty. Results are shown for each alternative memory media and

Table 6 Redis benchmark statistics for each technology

All latency metrics are in core cycles (cc)

Memory structure REDIS/NV-S-D commDRAM DRAM eDRAM MRAM

L2 (LLC) cache L2 Miss latency 51 45 43 43

Sector cache HMC Hit-Ratio 75.93 75.52 75.32 75.41

HMC MPKI 1.81 1.83 1.85 1.84

HMC Miss Latency 101 76 67 67

(x)RAM cache TAG Hit-Ratio (%) 94.87 94.99 95.00 95.02

(x)RAM Latency 70 49 41 42

NVRAM DIMM Read / Write (%) 49.82/50.18 49.85/50.15 49.84/50.16 49.83/50.17

NVRAM Latency 256 242 242 242

Table 7 MySQL benchmark statistics for each technology

Memory Structure MySQL/NV-S-D commDRAM DRAM eDRAM MRAM

L2 (LLC) cache L2 Miss latency 76 57 53 54

Sector cache HMC Hit-Ratio 57.19 57.48 57.56 56.62

HMC MPKI 1.95 1.95 1.93 1.97

HMC Miss latency 122 78 69 69

(x)RAM cache TAG Hit-Ratio (%) 96.54 96.26 96.46 96.18

(x)RAM latency 89 51 43 44

NVRAM DIMM Read/Write (%) 49.90/50.10 49.93/50.07 49.91/50.09 49.93/50.07

NVRAM Latency 254 242 242 246

Page 14 of 19Avargues et al. Journal of Big Data (2023) 10:75

compared over the commodity DRAM that is used as baseline. It can be observed that
both eDRAM and MRAM present similar values. Performance gains can be as much as
around 77% in the HMC miss penalty but the L2 miss penalty is much lower due to effi-
ciency of the HMC cache.

It is worth noting that the value of the L2 miss latency is not too high as it is always
below 85 cycles (see the values in the previous tables). The reason is twofold. On the
one hand, the HMC presents a high hit ratio, especially in Redis and MySQL where it
is always above 75% and 55%, respectively. On the other hand, the NVRAM is scarcely
accessed as the Tag cache of the (x)RAM presents an excellent hit ratio over 82% across
all the applications. Moreover, in Redis and MySQL this value is over 94%. This means
that despite improving the performance of the memory subsystem, the efficiency of
these components makes that little performance gains will be observed in the studied
memory models in terms of overall system performance as discussed below.

Analyzing memory latency per component

To analyze to which extend the different components of the memory subsystem con-
tribute to the system performance, we have analyzed their contribution to the AMAT
(i.e. average memory access time). To this end, the latencies of each component of the

Table 8 Memtier benchmark statistics for each technology

Memory Structure Memtier/NV-S-D commDRAM DRAM eDRAM MRAM

L2 (LLC) cache L2 Miss latency 85 68 63 63

Sector cache HMC Hit-Ratio 40.74 41.24 41.01 40.98

HMC MPKI 3.39 3.40 3.45 3.40

HMC Miss latency 108 80 71 71

(x)RAM Cache TAG Hit-Ratio (%) 82.77 82.90 83.27 82.91

(x)RAM latency 81 53 45 46

NVRAM DIMM Read/Write (%) 49.63/50.37 49.55/50.45 49.64/50.36 49.61/50.39

NVRAM Latency 258 252 255 255

Fig. 3 Latency improvements seen from the processor side (blue) and from the memory controller point of
view (orange) over the commodity DRAM memory model

Page 15 of 19Avargues et al. Journal of Big Data (2023) 10:75

memory hierarchy: L1, L2, HMC, (x)RAM cache and NVRAM are accumulated for all
the memory accesses, and then, divided by the total number of memory instructions
issued by the processor (i.e. not only those accessing to the HMC). After that, a bar is
plotted for the studied systems. Figure 4 presents the results. Two bars are plotted for
each benchmark, one for the NV-S-D system and another for the NV-S for comparison
purposes.

As expected, the L1 cache (blue slice) presents roughly the same contribution across
all the applications, and the L2 cache (red slice) and HMC cache (yellow slice) present
the same contribution for the same application regardless of the memory model. It can
be observed that the contribution of the HMC is rather low, which means that it is not
frequently accessed on average per issued memory instruction. A larger length of the
yellow bar means that that application has had a noticeable number of accesses to the
HMC and has experienced a high of HMC hit ratio. In the results of the tables presented
above, notice that Redis is the application with highest HMC hit ratio (above 75%).

Therefore, to find out the performance differences between the NV-S-D memory
model and the NV-S memory model, the comparison relies on comparing the orange bar
of the NV-S memory model against the orange plus the green bars of the NV-S-D system
since the other bars remain common for a given application. The major performance
gains can be appreciated in Memtier as the NVRAM component (orange bar) is almost
3 × larger than in the other applications. The results show that the proposal is effectively
working across all the applications, as the orange bar is significantly reduced.

The results presented in upper side (orange and green bars) of this plot corroborates
the latency improvement results presented in Fig. 3. However, the overall performance
depend on how the total bar length is reduced (in %). This means that the mechanisms
applied to the HMC to reduce the latency will strongly depend on the common compo-
nents of the bar. In other words, the reduction of the total bar length is limited by the
length of the bars ranging from the yellow to the blue one, both included.

To take away:

The overall performance benefits will be limited by the reduction (in %) of the total
AMAT bar length. From an analytical point of view the question is: how could

A
M

A
T

(c
c)

0.00

0.50

1.00

1.50

2.00

NV-S
-D

-m
em

tie
r

NV-S
-m

em
tie

r

NV-S
-D

-m
ys

ql

NV-S
-m

ys
ql

NV-S
-D

-re
dis

NV-S
-re

dis

NVRAM x-RAM HMC L2 L1

Fig. 4 Per component contribution to the average memory access time (AMAT) in the NV-S and NV-S-D
system with AMSD4 for the in-house (x)RAM cache

Page 16 of 19Avargues et al. Journal of Big Data (2023) 10:75

we improve the AMAT? More precisely, how could we reduce the difference (in %)
between both bars? There are two main options: i) reducing the length of the bars
below the yellow one or ii) enlarging the length of the bars above the yellow one. The
former can be achieved by acting on the processor side, the latter on the HMC side
as discussed througout this paper.

Improvements on the system performance

Once we have analyzed the main components and their contribution to the AMAT, we
study to which extend latency improvements along the cache and memory hierarchy
translates into final system performance improvements. In other words, we analyze the
speedup the devised HMC controller introduces.

Figure 5 presents the results for each technology over the NV-S memory model. Sys-
tem performance gains range from around 12% to around 24%. Commodity DRAM
offers much poorer performance than the other technologies with the only exception of
Redis where similar performance (1% difference) as in-house DRAM can be observed.
As expected from the previous studies, eDRAM and MRAM are the best performing
ones and achieve similar performance, as much as 15% in MySQL and 24% in MRAM.
Remember that these performance gains are achieved by adding the (x)RAM technol-
ogy, that is, the second level cache, as the NV-S system already includes the HMC cache.
Therefore, we can conclude that significant performance gains can be achieved with the
eDRAM and MRAM technologies.

Conclusions
This paper has focused on improving the performance of memory systems for big data
applications focusing on the memory controller and alternative memory media. Unlike
existing approaches, the devised solution proposes a two-level cache hierarchy combin-
ing distinct technologies in the memory controller. The key idea is to attack the per-
formance bottleneck that introduces the slow NVRAM, mitigating bus congestion and
improving performance.

Fig. 5 Speedup in terms of IPC (or execution time) of using alternative memory media over the NV-S system

Page 17 of 19Avargues et al. Journal of Big Data (2023) 10:75

In-house DRAM, eDRAM and MRAM memory technologies have been analyzed act-
ing as x-RAM cache. Results show that eDRAM and MRAM are the best performing
technologies. Compared to the NV-S system, eDRAM and MRAM are able to improve
the HMC miss penalty by almost 78% in MySQL and above 50% in the rest of applica-
tions. These improvements reduce to around 40%, 33% and 28% when improving the
L2 cache miss latency in MySQL, Memtier, and Redis. Overall system performance
improves by 15% and 23% depending on the studied workload over using commodity
DRAM.

This new design can bring important performance gains in future server processors
and cloud systems running big data applications and other applications requiring huge
amounts of data.

As any starting design, it needs to be evolved to further improve the overall system
performance. In this regard, new research would help such us mechanisms aimed at hid-
ing the large NVRAM latencies or more aggressive processors supporting higher mem-
ory level parallelism.
Acknowledgements
The authors would like to express their gratitude to both Huawei Technologies and Spanish Ministerio de Ciencia e
Innovación.

Author contributions
MAA: experiments, gathering results and writing. ML: experiments and presenting results. SVP: simulation framework and
libraries. MEG: results analysis. RY: new Technologies and results discussion. XZ: new Technologies and results discussion.
GW: Huawei project manager and results discussion. JS: main coordinator, writing and result analysis. All authors read
and approved the final manuscript.

Funding
This work has been partially supported by Huawei under Agreement No: TC20210705020, by the Spanish Ministerio de
Ciencia e Innovación and European ERDF under grants PID2021-123627OB-C51 and TED2021-130233B-C32.

Availability of data and materials
The materials used during development of this paper are available in the https:// github. com/ miavgu/ JBD23_ Multi ple_
Media_ Techn ologi es/ repository.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Both parts of the project, Huawei

Competing interests
The authors declare that they have no competing interests.

Received: 30 January 2023 Accepted: 8 May 2023

References
 1. Altman A, Arafa M, Balasubramanian K, Cheng K, Damle P, Datta S, Douglas C, Gibson K, Graniello B, Grooms J,

et al. Intel optane data center persistent memory. In: IEEE Hot Chips 31 Symposium (HCS). 2019; p. i–xxv.
 2. Anghel A, Dittmann G, Jongerius R, Luijten R. Spatio-temporal locality characterization. 1st Workshop on Near-

Data Processing (WoNDP). 2013; p. 1–5.
 3. Apalkov D, Dieny B, Slaughter JM. Magnetoresistive random access memory. Proceed IEEE.

2016;104(10):1796–830.
 4. Balasubramonian R, Jouppi NP. Multi-core cache hierarchies. Berlin: Springer; 2022.
 5. Bock S, Childers BR, Melhem RG, Mossé D. Concurrent page migration for mobile systems with os-managed

hybrid memory. Computing Frontiers Conference, CF’14, Cagliari, Italy, 2014; p. 31:1–31:10.
 6. Bock S, Childers BR, Melhem RG, Mossé D. Concurrent migration of multiple page in software-managed hybrid

main memory. In: 34th IEEE International Conference on Computer Design, ICCD, Scottsdale, AZ, USA, 2016;p.
420–3.

https://github.com/miavgu/JBD23_Multiple_Media_Technologies/
https://github.com/miavgu/JBD23_Multiple_Media_Technologies/

Page 18 of 19Avargues et al. Journal of Big Data (2023) 10:75

 7. Burr GW, Kurdi BN, Scott JC, Lam CH, Gopalakrishnan K, Shenoy RS. Overview of candidate device technologies
for storage-class memory. IBM Journal of Research and Development, 2008;pp. 449–64.

 8. Chen E, Apalkov D, Diao Z, Driskill-Smith A, Druist D, Lottis D, Nikitin V, Tang X, Watts S, Wang S, Wolf SA, Ghosh
AW, Lu JW, Poon SJ, Stan M, Butler WH, Gupta S, Mewes CKA, Mewes T, Visscher PB. Advances and future pros-
pects of spin-transfer torque random access memory. IEEE Trans Magnet. 2010;46:1873–8.

 9. Dhiman G, Ayoub R, Rosing T. Pdram: A hybrid pram and dram main memory system. In: 46th ACM/IEEE Design
Automation Conference, 2009;p. 664–9.

 10. Diodato P. Embedded dram: more than just a memory. IEEE Commun Mag. 2000;38(7):118–26.
 11. Hassan A, Vandierendonck H, Nikolopoulos DS. Energy-efficient hybrid dram/nvm main memory. In: Interna-

tional Conference on Parallel Architecture and Compilation (PACT), 2015;p. 492–3.
 12. Hoya K, Hatsuda K, Tsuchida K, Watanabe Y, Shirota Y, Kanai T. A perspective on nvram technology for future

computing system. In: Automation and Test (VLSI-DAT): International Symposium on VLSI Design; 2019. p. 1–2.
 13. Intel. 3d xpointTM: a breakthrough in non-volatile memory technology. Intel. 2015. https:// www. intel. com/

conte nt/ www/ us/ en/ archi tectu re- and- techn ology/ intel- micron- 3d- xpoint- webca st. html? wapkw= 3d+ xpoint
 14. Kargar S, Nawab F. Challenges and future directions for energy, latency, and lifetime improvements in NVMs.

Distrib Parallel Databases. 2022. https:// doi. org/ 10. 1007/ s10619- 022- 07421-x.
 15. Kültürsay E, Kandemir M, Sivasubramaniam A, Mutlu O. Evaluating stt-ram as an energy-efficient main memory

alternative. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2013;p.
256–67.

 16. Lee BC, Ipek E, Mutlu O, Burger D. Architecting phase change memory as a scalable dram alternative. In: 36th
International Symposium on Computer Architecture (ISCA), Austin, TX, USA, 2009;p. 2–13.

 17. Lee BC, Zhou P, Yang J, Zhang Y, Zhao B, Ipek E, Mutlu O, Burger D. Phase-change technology and the future of
main memory. IEEE Micro. 2010;30:143–143.

 18. Li D, Vetter JS, Marin G, McCurdy C, Cira C, Liu Z, Yu W. Identifying opportunities for byte-addressable non-
volatile memory in extreme-scale scientific applications. In: 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, 2012;p. 945–56.

 19. Li Y, Ghose S, Choi J, Sun J, Wang H, Mutlu O. Utility-based hybrid memory management. In: IEEE International
Conference on Cluster Computing (CLUSTER), 2017;p. 152–65.

 20. Luo Y, Ghose S, Cai Y, Haratsch EF, Mutlu O. Improving 3d NAND flash memory lifetime by tolerating early
retention loss and process variation. In: Abstracts of the ACM International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS, Irvine, CA, USA, 2018;p. 106.

 21. Matick RE, Schuster SE. Logic-based eDRAM: origins and rationale for use. IBM J Res Dev. 2005;49:145–65.
 22. Meza J, Chang J, Yoon H, Mutlu O, Ranganathan P. Enabling efficient and scalable hybrid memories using fine-

granularity dram cache management. IEEE Comput Archit Lett. 2012;11:61–4.
 23. Meza J, Wu Q, Kumar S, Mutlu O. Revisiting memory errors in large-scale production data centers: Analysis and

modeling of new trends from the field. In: 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN, Rio de Janeiro, Brazil, 2015;p. 415–26.

 24. Mogul JC, Argollo E, Shah MA, Faraboschi P. Operating system support for NVM+DRAM hybrid main memory. In:
Proceedings of HotOS: 12th Workshop on Hot Topics in Operating Systems, Monte Verità, Switzerland. 2009.

 25. Mohammadi Makrani H, Rafatirad S, Houmansadr A, Homayoun H. Main-memory requirements of big data
applications on commodity server platform. In: 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), 2018;pp. 653–60.

 26. Muralimanohar N, Balasubramonian R, Jouppi NP. Cacti 6.0: a tool to model large caches. HP laboratories, 2009;p.
28.

 27. Mutlu O. Rethinking memory system design. In: Mobile System Technologies Workshop (MST), 2016;p. 1–3.
 28. Nuns T, Duzellier S, Bertrand J, Hubert G, Pouget V, Darracq F, David JP, Soonckindt S. Evaluation of recent tech-

nologies of non-volatile ram. In: 2007 9th European Conference on Radiation and Its Effects on Components
and Systems, 2007;p. 1–8.

 29. Pelley S, Chen PM, Wenisch TF. Memory persistency. In: 2014 ACM/IEEE 41st International Symposium on Com-
puter Architecture (ISCA), 2014;pp. 265–76.

 30. Ramos LE, Gorbatov E, Bianchini R. Page placement in hybrid memory systems. In: Proceedings of the 25th Inter-
national Conference on Supercomputing, Tucson, AZ, USA, 2011;p. 85–95.

 31. Salkhordeh R, Mutlu O, Asadi H. An analytical model for performance and lifetime estimation of hybrid DRAM-
NVM main memories. IEEE Trans Comput. 2019;68:1114–30.

 32. Samdani Q, Thornton M. Cache resident data locality analysis. In: Proceedings 8th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems (Cat. No.PR00728), 2000;p.
539–46.

 33. Shiratake S. Scaling and performance challenges of future dram. In: IEEE International Memory Workshop (IMW),
2020;p. 1–3.

 34. Smith AJ. Cache memories. ACM Comput Surv. 1982;14:473–530.
 35. Sun X-H. Remove the memory wall: from performance modeling to architecture optimization. In: Proceedings

20th IEEE International Parallel & Distributed Processing Symposium, 2006;p. 2.
 36. Tendler JM, Dodson JS, Fields JS, Le H, Sinharoy B. Power4 system microarchitecture. IBM J Res Dev.

2002;46:5–25.
 37. Van Essen B, Pearce R, Ames S, Gokhale M. On the role of nvram in data-intensive architectures: An evaluation. In

2012 IEEE 26th International Parallel and Distributed Processing Symposium, 2012;p. 703–14.
 38. Wang C, Cui H, Cao T, Zigman J, Volos H, Mutlu O, Lv F, Feng X, Xu GH. Panthera: Holistic memory management

for big data processing over hybrid memories. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2019;p. 347–62.

 39. Wulf WA, McKee SA. Hitting the memory wall: implications of the obvious. SIGARCH Comput Archit News.
1995;23:20–4.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html?wapkw=3d+xpoint
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html?wapkw=3d+xpoint
https://doi.org/10.1007/s10619-022-07421-x

Page 19 of 19Avargues et al. Journal of Big Data (2023) 10:75

 40. Xiong A, Bai W, Long L, Jiang Y. Non-volatile memory page allocation mechanism. In: 6th International Confer-
ence on Control, Automation and Robotics (ICCAR), 2020;p. 21–6.

 41. Yang Y, Cao Q, Wang S. A comprehensive empirical study of file systems on optane persistent memory. In: IEEE
International Conference on Networking, Architecture and Storage (NAS), 2021;p. 1–8.

 42. Yoon H, Meza J, Ausavarungnirun R, Harding RA, Mutlu O. Row buffer locality aware caching policies for hybrid
memories. In: IEEE 30th International Conference on Computer Design (ICCD), 2012;p. 337–44.

 43. Zhou P, Zhao B, Yang J, Zhang Y. A durable and energy efficient main memory using phase change memory
technology. In: Proceedings - International Symposium on Computer Architecture. 2009;p. 14–23.

 44. Zuo P, Hua Y, Zhao M, Zhou W, Guo Y. Improving the performance and endurance of encrypted non-volatile main
memory through deduplicating writes. In: 2018 51st Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2018;p. 442–54. IEEE.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Main memory controller with multiple media technologies for big data workloads
	Abstract
	Introduction
	Problem definition
	Existing solutions
	Proposed solution
	Elaboration
	Challenges and major design issues
	Simulation framework
	Modeled components and simulation tools
	System parameters
	Studied workloads
	Experimental results
	Memory latency analysis at the HMC
	Holistic evaluation
	Analyzing memory latency per component
	Improvements on the system performance

	Conclusions
	Acknowledgements
	References

