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Abstract 

Optical coherence tomography angiography (OCTA) has been a frequently used diag-
nostic method in neovascular age-related macular degeneration (nAMD) because it is 
non-invasive and provides a comprehensive view of the characteristic lesion, choroidal 
neovascularization (CNV). In order to study its characteristics, an automated method is 
needed to identify and quantify CNV. Here, we have developed a deep learning model 
that can automatically segment CNV regions from OCTA images. Specifically, we use 
the ResNeSt block as our basic backbone, which learns better feature representations 
through group convolution and split-attention mechanisms. In addition, considering 
the varying sizes of CNVs, we developed a spatial pyramid pooling module, which 
uses different receptive fields to enable the model to extract contextual information 
at different scales to better segment CNVs of different sizes, thus further improving 
the segmentation performance of the model. Experimental results on a clinical OCTA 
dataset containing 116 OCTA images show that the CNV segmentation model has an 
AUC of 0.9476 (95% CI 0.9473–0.9479), with specificity and sensitivity of 0.9950 (95% CI 
0.9945–0.9955) and 0.7271 (95% CI 0.7265–0.7277), respectively. In summary, the model 
has satisfactory performance in extracting CNV regions from the background of OCTA 
images of nAMD patients.
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Introduction
Age-related macular degeneration (AMD) is a common degenerative eye disease in 
the elderly population and a leading cause of blindness worldwide. A meta-analysis 
showed that the prevalence of AMD in people aged 45–85 years was 8.69% in 2013, 
and the total number of patients was expected to reach 288 million by 2040 [1]. AMD 
particularly affects the macular region, leading to the progressive loss of central vision 
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or even irreversible blindness, placing a tremendous burden on patients’ daily life as 
well as healthcare resources. Thus, early detection and timely treatment are necessary. 
The advanced stage AMD is classified into wet (also known as exudative or neovascu-
lar) and dry (also known as non- exudative or atrophic), characterized by the presence 
of choroidal neovascularization (CNV) and geographic atrophy (GA), respectively [2]. 
In neovascular AMD (nAMD), the hypoxia resulting from decreased oxygen diffus-
ing from the choroid to the outer retina induces vascular endothelial growth factor 
(VEGF) production, leading to the formation of CNV [3, 4]. According to the histo-
logical patterns, CNV can be divided into 3 types [5]. Both Type 1 and Type 2 CNV 
originate from the choriocapillaris but grow at different depths. Type 1 CNV pene-
trates the Bruch’s membrane and stays beneath the retinal pigment epithelium (RPE), 
while Type 2 CNV traverses RPE and reaches the sub-retinal area. Unlike the other 
two types, Type 3 CNV arises from the retinal vessels, growing from the inner retina 
to the outer part. The abnormal permeability or rupture of CNV causes retinal fluid, 
hemorrhage, retinal pigment epithelial detachment, or fibrous scar, which impairs 
vision to varying degrees [6].

To identify CNV accurately before substantial vision deterioration, a series of methods 
have been used in patients suspected of neovascular AMD (nAMD). Fluorescein angiog-
raphy (FA), as the gold standard for diagnosing CNV, indicates the location and activity 
of CNV by abnormal fluorescein penetration [7]. Another frequently-used method indo-
cyanine green angiography (ICGA) has an advantage in detecting occult CNV, especially 
those covered by macular hemorrhage [8]. However, with the advent of optical coher-
ence tomography (OCT) and OCT angiography (OCTA), their non-invasiveness and 
high efficiency enable them to gradually replace the conventional invasive examinations 
including FA and ICGA to be the most common means in AMD diagnosis [9]. OCTA, 
in particular, provides us quick and easy access to high-resolution and en face images of 
both normal vessels and neovascularization [10]. By setting different scanning depths, 
it is able to show the blood flow on the typical layers of the retina. Therefore, how to 
automatically identify CNV features from OCTA images is crucial for the subsequent 
quantification of CNV and the analysis of the AMD situation.

Existing solution
In order to quantitatively characterize the CNVs in OCTA images, researchers 
have tried to use some machine learning methods to automatically segment CNVs 
from OCTA images. For example, one previous attempt was to detect the presence 
of CNVs based on saliency maps [11]. They use intensity, orientation, and location-
based denoising and saliency detection models to overcome problems such as pro-
jection artifacts and CNV heterogeneity. However, this method relies heavily on the 
quality of the image. When the CNV flow signal is higher than the background noise 
and motion artifacts, this method performs well, while when the CNV flow is similar 
to the background noise, this saliency-based method usually judges those background 
noises and artifacts as CNV as well. The defect results in a large number of false posi-
tives. In addition, this method tends to miss those CNV vessels with thin vessels, as 
their flow signals are not significant compared to those with thicker vessels.
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Proposed solution
To address the issue, we proposed a deep learning-based algorithm which auto- mati-
cally segmented CNV from en face OCTA images of neovascular AMD patients. Our 
model is based on the traditional U-net model [12]. Specifically, we first replace the 
encoder and decoder units in the traditional U-net with a segmentation module based 
on the ResNeSt block [13], which learns superior feature representations through group 
convolution and split attention mechanisms. In addition, the spatial relationships and 
contextual information between different anatomical parts in OCTA images may be 
overlooked by the limited receptive fields of traditional deep learning models such as 
the U-net [14]. One solution is to increase the receptive field of the model. For exam-
ple, the Pyramid Scene Parsing Network (PSPNet) [14] addresses this problem with a 
pyramid pooling module. Here, we take this a step further by adding an adapted spatial 
pyramid pooling module after each encoder to integrate contextual information at dif-
ferent scales, thus further improving the segmentation performance of the model. We 
conducted extensive experiments on an OCTA dataset collected from a clinical setting. 
The experimental results show that our approach is significantly better than both tradi-
tional segmentation methods and the state-of-the-art deep learning method U-net.

Methodology elaboration
Our model is a modified U-net model [12] with two key changes to the U-net: ResNeSt 
blocks and the spatial pyramidal pooling. The overall structure of our model is shown 
in Fig. 1, which consists of an encoder part on the left and a decoder part on the right, 
with a total of four encoders and four symmetric decoders. A spatial pyramid pooling 
module is attached to each encoder to capture contextual information at different scales. 
In addition, each encoder and decoder use the ResNeSt block as the basic backbone. The 
input sizes of the 1st–5th encoders are 64 × 152× 152 , 256× 76× 76 , 512× 38× 38 , 
1024 × 20× 20 , 2048× 10× 10 . Each decoder performs an upsampling operation with 
sequentially increasing resolution. In addition, we introduce skip connections, where 

Fig. 1 The overall structure of our model
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feature maps with the same resolution of the encoder and decoder are concatenated as 
the input to the next decoder.

ResNeSt block

ResNeSt [13] is a resnet-style network structure incorporating a split-attention mecha-
nism, which focuses on learning better feature representations through group convolu-
tion and attention mechanisms. Its overall structure is shown in Fig. 2. Specifically, for 
an input feature map, it is first split equally into two feature maps and then fed into two 
cardinality groups. In each cardinality group, the feature map is further split into two 
feature maps, which are then fed into two parallel convolution groups, each containing 
one 1× 1 and one 3× 3 convolution layer. These two split features are then fed into the 
split attention module to integrate the features.

The structure of the split attention module is shown in Fig. 2. Specifically, we first ele-
ment-wise sum the features from the two branches. A global pooling module is then 
applied to get the statistics of the feature channels, and then two 1× 1 convolution lay-
ers and a softmax layer are followed to get the attention coefficients. We then re-weight 
each branch feature and cascade it along the channel dimension to obtain the output 
features.

After obtaining the features of the two cardinal groups separately, we cascade them 
and follow them with a 1× 1 convolution layer. In addition, we also introduce a shortcut 
connection to obtain the final output features of the ResNeSt block.

Spatial pyramid pooling

In OCTA images, CNVs may have different shapes and sizes, and traditional deep learn-
ing models such as U-net cannot take into account the different sizes of CNVs due to 
its limited receptive field, and may miss some small CNV regions. In addition, spatial 

Fig. 2 The structure of ResNeSt and split attention module
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relationships and contextual information between different parts of the OCTA image 
may be missed by the limited receptive field of the U-net. For this reason, we introduce 
a spatial pyramid pooling module to learn contextual information at different scales to 
further improve the segmentation performance of the model.

The structure of the spatial pyramid pooling is shown in Fig.  3. Specifically, for an 
input feature map, we apply four different sizes of pooling kernels, their dimensions are 
( 2× 2 ), ( 3× 3 ), ( 6× 6 ) and ( 9× 9 ). Then we can obtain four pooled feature maps. We 
then upsample each of the four feature maps to a reference dimension, where the refer-
ence dimension is the input dimension of the next layer of encoders, so that the four 
feature maps can be concatenated by channel dimension. We then cascade the down-
sampled original feature maps with these four feature maps and follow with a 1× 1 con-
volution layer to obtain the input features for the final spatial pyramid pooling module.

Experiments and results
To validate the segmentation performance of the proposed deep learning algorithm, we 
conduct experiments on a clinical medical dataset.

Dataset

The demographic information was shown in Table 1. Of the 69 patients, 29 were female 
and 40 were male. The average age was 71.3 with a standard deviation of 8.8. Among 
the affected eyes, 39 were OS and 30 were OD. Each OCTA scanning consisted of 4 lay-
ers including Superficial, Deep, Outer Retina and Choriocapillaris (Fig. 4). The recon-
struction of en face OCTA images was based on automatic slab segmentation. Generally, 
CNV appears on the latter two layers. Therefore, 54 Choriocapillaris images and 62 
Outer Retina ones were included in total. All OCTA images were 6 × 6 mm with the 
fovea as the center and had 304 × 304 pixels. The study was approved by the Medical 
Sciences Ethics Committee of Beijing Tsinghua Changung Hospital and is adherent to 
the tenets of the declaration of Helsinki.

The CNV annotated by a skillful grader was considered the ground truth (Fig. 5). Of 
the 69 patients, 47 patients had OCTA images of both layers and 22 patients contained 
OCTA images of only one layer, as there was no clear CNV in the other layer. We ran-
domly selected 25 patients with OCTA images containing both layers as the test set and 

Fig. 3 The structure of spatial pyramid pooling module
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used all the remaining OCTA images to train the segmentation model. Note that the 
OCTA images in the training and test sets are from different patients. We performed 10 
runs using different random seeds and reported the average segmentation performance 
and 95% confidence interval.

Experimental setup and implementation details

We ran all experiments using the Pytorch deep learning framework. The model was 
trained for a total of 200 epochs, and the Adam optimizer was used to optimize the 
model parameters, with the initial learning rate set to 5e-4, the batch size set to 4, and 
the weight decay set to 1e-4. We used binary cross-entropy loss to train the model. 

Fig. 4 An example of OCTA images from a neovascular AMD patient. Superficial ranges from the internal 
limiting membrane (ILM) to the inner plexiform layer (IPL). Deep ranges from IPL to the outer plexiform layer 
(OPL). Outer retina is defined from OPL to Bruch’s membrane (BRM) while Choriocapillaris is from BRM to 
BRM+30nm. The CNV is indicated by a red arrow on Choriocapillaris

Table 1 Demographic information of recruited patients

Gender Female (29) Male (40)

Age (mean ± standard deviation) 71.3 ± 8.8

Affected eye OD (30) OS (39)

Fig. 5 The manual depiction of CNV as the groundtruth
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During training, we applied data augmentation techniques such as random rotation and 
random horizontal/vertical flipping to improve the generalization performance of the 
model. The following metrics were used in the assessment of the model: Area Under 
the ROC Curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), intersection 
over union(IOU), and Dice coefficient (DICE).

Comparison with the state‑of‑the‑art methods

We compare our model with the traditional saliency-based segmentation model [11] and 
the deep model U-net [12]. Table 2 shows the segmentation performance of the differ-
ent algorithms. It can be seen that the traditional saliency-based segmentation model 
achieves the worst segmentation performance, which is mainly due to the limited fea-
ture extraction capability of the traditional approach without being able to generalize 
well on the test set. In addition, our deep learning model outperforms both the tradi-
tional saliency-based segmentation model and the deep learning model U-net by a sig-
nificant margin. Compared to U-net, we achieve a 2.17% improvement in AUC, 0.96% 
improvement in ACC, 4.11% improvement in SEN, 2.66% improvement in IOU, and 
1.55% improvement in DICE. To compare the performance differences between the dif-
ferent algorithms, we performed the two-sample t-test [15] and report the p-values. The 
statistical significance level was set to 5% therefore, the performance difference was con-
sidered statistically significant if p < 0.05 . As shown in Table 3, it can be observed that 
in most cases, our method performs significantly better than the other compared algo-
rithms ( p < 0.05).

We also show the segmentation results of different algorithms. As shown in Fig. 6, the 
traditional saliency-based segmentation model tends to classify some background noise 
and artifacts into CNVs, and therefore has some false positives. In addition, for some 
small CNVs and CNVs with low contrast and blur, the traditional method also causes 
missed detection. In contrast, our model can accurately identify CNVs of different sizes 
and at different contrasts, which proves that the spatial pyramid pooling module and the 

Table 2 Segmentation performance of different algorithms on the test set

Method Saliency‑based method U‑net Ours

AUC 0.9188(0.9185–0.9191) 0.9259(0.9257–0.9261) 0.9476(0.9473–0.9479)

ACC 0.9794(0.9792–0.9796) 0.9795(0.9792–0.9798) 0.9891(0.9889–0.9893)

SPE 0.9845(0.9840–0.9850) 0.9949(0.9943–0.9955) 0.9950(0.9945–0.9955)

SEN 0.7180(0.7175–0.7185) 0.6860(0.6854–0.6866) 0.7271(0.7265–0.7277)

IOU 0.4692(0.4690–0.4694) 0.5601(0.5598–0.5604) 0.5867(0.5864–0.5870)

DICE 0.6293(0.6290–0.6296) 0.7144(0.7140–0.7148) 0.7299(0.7295–0.7303)

Table 3 The p-value of the two-sample t-test between our method and other comparative 
methods

Method AUC ACC SPE SEN IOU DICE

Ours & Saliency-based 
method

0.0327 0.0298 0.0364 0.0372 0.0284 0.0203

Ours & U-net 0.0402 0.0301 0.0382 0.0318 0.0377 0.0394
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ResNeSt block give our model more powerful feature extraction capabilities, thus greatly 
improving the segmentation results. In conclusion, our deep learning model shows satis-
factory performance in automatically segmenting the CNV of OCTA images.

Discussion
Over the past decade, artificial intelligence, especially deep learning has achieved great 
progress in medical research. Thanks to its robust capacity in image analysis, including 
image classification, recognition, segmentation, etc, the DL-based algorithms perform 
particularly well in image-centered specialties, such as radiology, pathology, and oph-
thalmology [16]. The availability of Big Data (eg. high-resolution images and combina-
tional examination methods), as well as the powerful computing capabilities, enables DL 
to obtain comparable performances to human physicians in the diagnosis, grading, and 
prognoses of several common eye diseases, such as diabetic retinopathy [17, 18], glau-
coma [19, 20], and AMD [21]. Several real-world studies have demonstrated that the DL 
algorithms have great potential to assist ophthalmologists in routine tasks, and they also 
allow for large-scale screening at extremely low cost, which would greatly contribute to 
the diagnosis rate of eye diseases, especially in low-income areas [22, 23]. In conclusion, 
DL has a very promising future in ophthalmology. Its clinical application will greatly 
improve the diagnosis and treatment of eye diseases and hopefully, be a revolutionary 
opportunity to reduce the prevalence of blindness and the ensuing social burden.

For AMD, many DL algorithms have been developed to help ophthalmologists with 
empirical work. It has been proved by a multi-center study with a dataset of 35948 AMD 
images that the DL system is very reliable in identifying several retinal diseases includ-
ing AMD [18]. Besides, many groups have sought to automate the severity scale of AMD 
by DL [24, 25], offering an alternative tool for referral decisions and routine monitoring. 
Based on this, researchers also developed algorithms predicting the progressing risk of 

Fig. 6 Visualization of segmentation results for different methods
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AMD [26–28]. Despite the high accuracy in test datasets, the predicting performance 
has not been proved by any prospective study [16]. Therefore, some researchers attempt 
to obtain more abundant information about the particular lesions by DL methods. DL 
algorithms were developed to automatically identify and quantify the features including 
macular fluid and hyperreflective foci in OCT images [29, 30]. Schmidt et al. applied the 
quantitative results of macular fluid to direct the precise anti-VEGF treatment [31].

The majority of DL systems described above are based on color fundus photographs or 
OCT images. The advent of OCTA brings us a brand new appearance of retina structure 
and lesions, as well as a series of new features, thus is expected to provide more informa-
tion about the diseases than the conventional examinations. Researchers have utilized 
DL methods based on OCTA images to remove artifacts [32], investigate the non-per-
fusion area [33] and extract the characteristics of normal vessels [34]. However, the pre-
cise segmentation of CNV is challenging. The accuracy of saliency-based methods is not 
satisfying because of complicated factors such as artifacts and signal attenuation [11, 
35]. Also, some segmenting approaches require optimal settings to get the best segment 
performance, which can be variable among images and is not favorable for comparison 
[36, 37]. This limits their applications in clinical research. DL network trained by raw 
OCTA images including the complicated texture is advantageous in this issue. Wang 
et al. developed an automated CNV segmentation model based on CNN, and showed 
much better results than the saliency-based methods, demonstrating the potential of DL 
in segmentation tasks [38].

Here, we presented a modified U-net model appended with ResNeSt blocks and the 
spatial pyramidal pooling. It enables fully automated CNV segmentation and shows 
superior accuracy and DICE index compared to the conventional methods. Without 
adjusting parameters or manual correction, the trained model is very easy to start with. 
In addition, It ensures maximum comparability between images and high reproduc-
ibility. Our model still has some limitations. First, its sensitivity is relatively low. Due 
to complicated reasons, the border between CNV and normal vessels sometimes can 
be blurry. The lack of absolute criteria to judge CNV on a certain pixel and the ground 
truth annotated by human ophthalmologists may result in the problem. Besides, com-
plete exposure of CNV on OCTA images is necessary for accurate segmentation. The 
intra-retinal or sub-retinal fluid often obscures neovascularization, resulting in a black 
hole on the en face OCTA image. In this case, our model may not reach the expected 
performance. In future research, we expect to automatically measure a group of parame-
ters, both conventional and novel ones, based on the extracted CNV, and try to establish 
the association between en face CNV characteristics and unsolved clinical problems of 
AMD such as the prediction of treatment response. The fast and automated quantifica-
tion allows us to retrospectively measure more complex parameters which could reflect 
the nature of CNV well and truly, and helps researchers to seek out the most crucial 
ones which predict clinical outcomes best.

Conclusion
In this paper, we propose a new deep learning model for segmenting neovascularization 
from OCTA images. Our model is based on the U-net segmentation model and contains 
two key improvements, the ResNeSt block and the spatial pyramid pooling module. the 
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ResNeSt block learns better feature representations through group convolution and split 
attention mechanisms. The spatial pyramid pooling module uses multiple pooling ker-
nels to capture contextual information at different scales. Extensive experiments on a 
clinical OCTA dataset validate the effectiveness of the proposed model. Future work will 
be to apply the model to larger medical image datasets.
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