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Abstract 

Hepatocellular carcinoma (HCC) has a desmoplastic and hypoxic tumor microenviron-
ment (TME), resulting in poor prognosis and treatment resistance. This study aimed 
to construct a novel prognostic classifier to investigate the degree of hypoxia and 
immune profiles in HCC. Patients with HCC from public databases were classified into 
three HIF-1α clusters according to 16 reported HIF-1α-related genes. Then, an HIF-1α 
score system was constructed based on nine overlapping differentially expressed 
genes (ODEGs) among various HIF-1α clusters. Then, an HIF-1α score system was 
constructed based on nine overlapping differentially expressed genes (ODEGs) among 
various HIF-1α cluster. Besides, oncologic pathways and immune infiltration profiles 
were also investigated among HCCs with different HIF-1α scores. The reliable predictive 
abilities of the HIF-1α score system for patients’ survival were impressively suggested by 
the significant C-indexes and ROC analysis. All enrolled tumors were divided into high-, 
medium-, and low-HIF-1α score groups. Compared with the other two groups, the high 
HIF-1α score group exhibited highest enrichment of multiple oncogenic pathways, 
such as TNF-α signaling via NF-кB, IL6-JAK-STAT3 signaling, mTORC1 signaling, MYC 
signaling, Hedgehog signaling. Notably, higher HIF-1α scores correlated with advanced 
immunosuppressive TME. Besides, tumors with high HIF-1α scores represented high 
non-response rate to transcatheter arterial chemoembolization (TACE) and immune 
checkpoint blockade (ICB). In conclusion, we developed a novel HIF-1α score system to 
distinguish HCC with different degree of hypoxia and immune infiltration profiles.
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Introduction
Hepatocellular carcinoma (HCC), as one of the most common and lethal tumors, ranks 
the third leading cause of cancer-related death around the world, with an overall 5-year 
survival rate less than 20% [1, 2]. Presently, the major treatments for HCC include sur-
gical resection, microwave ablation, transcatheter arterial chemoembolization (TACE), 
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targeted therapy with sorafenib or lenvatinib, immune checkpoint blockade (ICB), and 
liver transplantation [3, 4]. Despite the increasing improvements in early diagnosis and 
treatment in HCC, the survival of patients with HCC remains disappointed, due to 
the tumor heterogeneity ad specific tumor microenvironment (TME) [5–8]. Besides, 
the conventional clinicopathological parameters, such as histologic grade, TNM stage 
and vascular invasion, have limited predictive power for the clinical outcome of HCC 
patients, due to the complex molecular mechanisms of tumor regulation [9, 10]. Thus, 
it is necessary to explore the potential mechanisms underlying tumor development and 
progression for designing more individualized treatment options for HCC.

Hypoxia and desmoplasia are the key characteristic features of HCC, in which tumor 
desmoplasia accelerates hypoxia, and aggravated hypoxia activates stromal cells, such 
as cancer stem cells and hepatic stellate cells, resulting in severe desmoplasia [11–15]. 
Hypoxia-inducible factor-1α (HIF-1α), as a chief hypoxic regulator, plays an important 
role for the malignant phenotypes of HCC [16–20]. For instance, HIF-1α was found to 
promote the tumor progression, epithelial-mesenchymal transition, and vasculogenic 
mimicry formation by upregulate the expression of LOXL2 in HCC [19]. Besides, the 
hypoxic TME of HCC enhances the expression and function of HIF-1α targets (e.g. 
MDR1, GLUT-1 and VEGF) through stabilizing HIF-1α protein, thereby conferring 
sorafenib resistance in HCC [20]. Importantly, HIF-1α impairs anti-tumor immunity by 
increasing CD47 or PD-L1 expression, therefor leading to an immunosuppressive TME 
[21–24]. Consequently, HIF-1α may influence various cancer cell behaviors by regulator 
different genes expression. And several hypoxia-derived signatures have been reported 
to predict survival and therapeutic response of malignancy patients [25, 26], but it still 
remains further exploration whether hypoxia-induced HIF-1α-related genes could be 
an ensemble to divide HCC patients into different clusters with various clinical out-
comes, genomic alteration, oncogenic pathway and therapeutic responses. Therefore, it 
is of great significance to construct a HIF-1α-specific prognostic model for assessing the 
molecular features of HCC with various hypoxia status.

In this study, using a series of bioinformatics and machine learning methods, HCC 
patients were classified into three subgroups according to HIF-1α related genes. And an 
HIF-1α score system based on the HIF-1α cluster was established for prognostic strati-
fication in HCC. Then, the predictive powers of our model were respectively assessed 
through the C-indexes and ROC analysis. Furthermore, we also systematically investi-
gated the oncogenic pathways, immune infiltration profile, and therapeutic response to 
TACE and ICB for HCC in different HIF-1α score groups.

Methods
Data processing

The mRNA expression profiles and corresponding clinical information of HCC patients 
were extracted from the Cancer Genome Atlas (TCGA, https:// cance rgeno me. nih. gov/), 
the Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/), and Interna-
tional Cancer Genome Consortium (ICGC, https:// icgc. org/) databases. The raw counts 
of RNA-seq data from TCGA and ICGC HCC cohorts were normalized and log2 (x + 1) 
transformed. The dataset GSE14520 involves two independent microarray datasets (e.g. 
GSE14520–GPL571 and GSE14520–GPL3931), which were subsequently integrated 

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://icgc.org/


Page 3 of 18Zhuang et al. Journal of Big Data           (2023) 10:70  

into one cohort and proceeded for batch normalization using R packages “sav” and 
“limma”. Of the 371 HCC cases in the TCGA cohort, 343 were cases with overall sur-
vival (OS) longer than one month, and were enrolled in the subsequent survival analy-
ses. And genes with zero expression levels in  > 50% of the tumor samples or genes with 
average expression  < 5 were excluded. The TCGA HCC cohort was used as the training 
set because it is an independent RNA-seq dataset with an appropriate sample size. And 
the RNA-seq data from GSE14520 cohort (validation cohort 1; N = 242) and the ICGC 
cohort (validation cohort 2; N = 229) were extracted for prognostic stratification valida-
tion. In addition, GSE104580 cohort (response: N = 81; non-response: N = 66) was used 
for the evaluation of therapeutic response to TACE. All datasets are freely available as 
public resources. Therefore, local ethics approval was not required.

Consensus clustering analysis based on HIF‑1α related genes in HCC

A total of 16 HIF-1α related genes were selected based on previous studies [27]. The 
prognostic values of these HIF-α related genes were investigated in the TCGA cohort, 
using Kaplan–Meier (KM) survival analysis. Subsequently, using R package ‘Consen-
susClusterPlus’, Partitioning Around Medoids (PAM) algorithm was performed on the 
selected HIF-1α related genes to identify robust clusters of HCC, and the detail set-
tings for clustering were shown as followed: the PAM clustering with up to 9 clusters; 
number of repetitions = 1000 bootstraps; pFeature = 1 (resampling 100% of any genes); 
pItem = 0.8 (resampling 80% of any tumor sample) and distance = euclidean. Then, the 
numbers of clustering was determined by three factors, including the consensus matri-
ces, a consensus cumulative distribution function (CDF) curve and Calinski-Harabasz 
Index. Besides, the different clusters were also visualized in 3-demension by principal 
component analysis (PCA). Then, the OS differences among different HIF-1α clusters 
were assessed by KM survival curves, and log-rank test p value were calculated. The R 
package ‘pheatmap’ was used to visualize HIF-1α related genes expressions among dif-
ferent HIF-1α clusters. The association between HIF-1α clusters and clinicopathologi-
cal characteristics (e.g. histologic grade, TNM stage, and vascular invasion) was assessed 
using the Fisher’s exact test or chi-square test. Under the threshold of |log2 fold change 
(FC)|> 1 and P < 0.05, differentially expressed genes between different HIF-1α clusters 
were determined with the help of the R package ‘limma’. Then, the overlapping differen-
tially expressed genes (ODEGs) were extracted for further analysis.

Establishment and validation of the HIF‑1α score system

Univariate Cox regression analysis was employed to assess the prognostic values of 
the ODEGs in the TCGA cohort. Then, LASSO regression analysis was conducted to 
determine the robust prognostic ODEGs, based on which an HIF-1α score system was 
subsequently constructed. The HIF-1α score = ∑the robust prognostic ODEGs expres-
sions × the corresponding coefficients of multivariable Cox regression analysis. For 
external validation, the HIF-1α scores were also calculated for GSE14520 cohort and the 
ICGC cohort.

KM survival curve for the HIF-1α score system was also generated based on the opti-
mal cutoff points from the X-tile (3.6.1) [28]. The predictive capabilities of the HIF-1α 
score system were assessed by ROC analysis and C-index. Besides, PCA was also 
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conducted to assess the prognostic stratification ability. The correlations between the 
HIF-1α score system and clinicopathological parameters (e.g. TNM stage, vascular inva-
sion, and histologic grade) were investigated using the chi-square test. Kruskal–wallis 
test or Wilcoxon test was utilized to assess the differences of HIF-1α score among dif-
ferent groups of these clinicopathological characteristics. In addition, with the help of 
R package “Survival ROC”, the ROC curves were generated for the HIF-1α score system 
and clinicopathological characteristics to compare their predictive discrimination for 1-, 
3-, and 4-year OS.

Gene set variation analysis (GSVA)

The R package ‘gsva’ was applied to conduct GSVA to estimate the enrichment levels of 
50 hallmark gene sets extracted from the Molecular Signature Database (https:// www. 
gsea- msigdb. org/ gsea/ msigdb/ colle ctions. jsp# C5) in the TCGA cohort [29]. In addition, 
GSVA was also conducted to estimate the enrichment levels of 18 immunologic signa-
tures obtained from previous studies [30, 31].

Association between the HIF‑1α score and previously reported hypoxia scores

A total of three previously reported hypoxia scores based on the TCGA cohort were 
downloaded from the cBioportal database (http:// www. cbiop ortal. org/), including Buffa, 
Winter, and Ragnum hypoxia scores [32–34]. The differences in these three hypoxia 
scores among these three HIF-1α score groups were then investigated. Pearson correla-
tion analysis was used to evaluate the association between the HIF-1α score and these 
three hypoxia scores. KM survival analyses were conducted for these three hypoxia 
scores in the TCGA cohort. In addition, ROC analyses were conducted to compare their 
predictive discrimination for 1-, 3-, and 4-year OS.

Statistical analysis

The SPSS 25.0 software (SPSS Inc., Chicago, IL), R software version 4.0.5 and Graph-
Pad Prism 8.0 software (GraphPad Software, Inc.) were used for all statistical analyses. 
The Kaplan–Meier method with log-rank test was performed to describe patients’ sur-
vival. Variables associated with survival were determined by univariate Cox regression 
analysis. Significant variables in univariate Cox regression analysis were further involved 
in LASSO regression analysis and multivariable Cox regression analysis. Kruskal–wal-
lis or Wilcoxon tests was used to evaluated group differences, which were expressed as 
means ± standard deviation (SD). And correlation analyses were conducted using Pear-
son correlation coefficient. All statistical test were two-sided, and p value less than 0.05 
was regarded as statistically significant.

Results
Three HIF‑1α clusters of HCC based on consensus clustering analysis

Of 16 known HIF-1α related genes, 15 were notably correlated with worse OS of 
HCC patients in the TCGA cohort, including HIF1A, ALDOA, ENO1, ALDOC, 
PKM, HK1, GAPDH, PFKFB3, HK2, PDK1, SLC2A1, LDHA, PGK1, BNIP3, and 
SLC2A3 (Fig.  1A). Then PAM clustering were employed based on these 16 HIF-1α 
related genes to divide HCC samples into subgroups. A 3-cluster was selected as an 
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appropriate solution for the consensus matrix with k = 3 or k = 4 deemed to be a 
cleanest separation among clusters, but the CDF curve and delta plot showed limited 
increase in area for k = 3 compared to k = 4. In addition, the Calinski-Harabasz Index 
for k = 3 was larger than k = 4 (Fig. 1B). According to the evidence above, the TCGA 
HCC samples were clustered into three groups by the selected HIF-1-related genes. 
3D PCA further exhibited a significant spatial separation of tumor samples, which 
actually to some extend suggest that the selected HIF-1-related genes worked well in 
tumor sample clustering (Fig. 1C). The KM survival analysis showed significant dif-
ferences in OS among these three clusters, in which HIF-1α cluster C exhibited the 
best survival and HIF-1α cluster B the worst (Fig. 1D). And a heatmap was performed 
to visualize the distribution of TNM stage, histologic grade, vascular invasion and 
the expression of these HIF-1α-related genes in different HIF-1α clusters (Fig.  1E). 

Fig. 1 Consensus clustering based on HIF-1α related genes divided HCC samples into three clusters. A 
KM survival analyses for the selected HIF-1α-related genes were exhibited in forest plot. B Subgroups are 
identified based on the selected HIF-1α-related genes in TCGA HCC cohort by PAM consensus clustering 
upon their expression levels. Consensus clustering was based on 1000 resampled datasets and k was 
tested from 2 to 9. Consensus matrices, as well as the consensus cumulative distribution function (CDF) 
curve, delta area (change in CDF area) plot and Calinski-Harabasz Indexes are shown. C 3D PCA based on 
HIF-1α cluster exhibited a significant spatial separation of tumor samples. D The KM survival curve for OS 
showed a significant difference among these three HIF-1α clusters. E Heatmap for the 16 HIF-1α related 
genes expression and clinicopathological characteristics in different HIF-1α clusters. F–H HIF-1α cluster was 
significantly associated with TNM stage (F) and histologic grade (G), but not vascular invasion (H)
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In addition the HIF-1α cluster was notably correlated with TNM stage and histologic 
grade, though not significantly associated with vascular invasion (Fig. 1F–H).

Establishment and validation of the HIF‑1α score system

The DEGs between various HIF-1α clusters were shown by volcano plots (Additional 
file 1: Fig. S1A–C; Additional file 2: Table S1). And 597 ODEGs were identified among 
these three HIF-1α clusters (Additional file  1: Fig. S1D). And 317 ODEGs were nota-
bly correlated with HCC patients survival (P < 0.05) (Additional file  3: Table  S2). Fur-
thermore, nine robust prognostic ODEGs were identified by LASSO regression analysis 
(Fig.  2A, B), the KM survival analyses of which were shown in Fig. 2C. tenfold cross-
validation was used to overcome over-fitting effect, and an optimal λ value of 0.059 was 
selected. Then, using multivariable Cox regression analysis, we established an HIF-1α 
score system based on these nine robust prognostic ODEGs in the TCGA cohort (train-
ing cohort), which was calculated as followed: HIF-1α score = (0.181207 × ADAMTS5 
expression) + (0.004134 × EGLN3 expression) + (0.074128 × HOMER1 
expression) + (0.087261 × LPCAT1 expression) + (0.143817 × NEIL3 
expression) + (0.012743 × PFN2 expression) + (0.107185 × S100A9 expres-
sion) + (0.028619 × SLC1A5 expression) + (0.014439 × SPP1 expression). Then, patients 
were classified into low-, medium-, and high-HIF-1α score groups according to the most 
appropriate cutoff points [28]. The low-HIF-1α score group exhibited the best OS, and 
the high-HIF-1α score group the worst (Fig. 3A). Then, for external validation, we fur-
ther calculated the HIF-1α scores respectively for the GSE14520 and ICGC cohorts. Of 
note, the results of KM survival analyses in the validation cohorts were consistent with 
that in the training cohort (Fig. 3B, C).

The HIF-1α score system showed a reliable accuracy of survival prediction, 
with a C-index of 0.736 (95%CI 0.691–0.781) in the TCGA cohort, 0.614 (95%CI 
0.559–0.669) in the GSE14520 cohort and 0.668 (95%CI 0.582–0.754) in the ICGC 

Fig. 2 Identification of nine robust prognostic ODEGs for HCC. A, B LASSO regression analysis identified nine 
robust prognostic ODEGs for HCC. C KM survival analysis of the nine robust prognostic ODEGs
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cohort. Notably, the AUC values of the HIF-1α score for 1-, 3-, and 4-year OS pre-
diction were 0.806, 0.741, and 0.739 in the TCGA cohort, 0.623, 0.639, and 0.638 
in the GSE14520 cohort, and 0.741, 0.677, and 0.736 in the ICGC cohort, respec-
tively (Fig. 3D–F). Besides, 3D PCA based on the HIF-1α score system further exhib-
ited a significant spatial separation of tumor samples (Fig.  3G–I). These findings 
determined a significant predictive capability of the HIF-1α score system for HCC 
patients’ survival.

Association between HIF‑1α score and clinicopathological features in HCC

The HIF-1α score system notably associated with advanced TNM stage, histologic 
grade and vascular invasion in HCC (Fig. 4A–C). Significant differences of HIF-1α 
scores were found among different groups of clinicopathological characteristics 
in HCC (Fig.  4D–F). Moreover, the HIF-1α score system was also idenfitied as an 
independent prognostic factor in HCC (Fig. 4G, H). Of note, the AUC values of the 
HIF-1α score system for 1-, 3-, and 4-year OS were higher than TNM stage, histo-
logic grade, and vascular invasion (Fig. 4I–K).

Fig. 3 Establishment and validation of an HIF-1α score system based on the HIF-1α cluster. A–C KM survival 
curves for the OS of HCC patients in different HIF-1α score groups in the TCGA (A), GSE14520 (B), and ICGC (C) 
cohorts. D–F ROC curve analysis of the HIF-1α score system for 1-, 3-, and 4-year OS prediction in the TCGA 
(D), GSE14520 cohort (E), and ICGC (F) cohorts. G–I PCA to confirm the cluster efficacy of the HIF-1α score 
system in the TCGA (G), GSE14520 (H), and ICGC (I) cohorts
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Association between the HIF‑1α score system and genomic mutation

Consistent with published studies, we also found that mutations in TP53, TTN, 
CTNNB1, MUC4, MUC16, ALB, APOB, RYR2, PCLO, and ABCA13 are the top 10 
genetic alterations in HCC (Fig. 5A) [35]. Missense mutation was the most common 
type of genetic alteration (Fig.  5A). And the C > T transversion was the most com-
mon nucleotide change (Fig. 5A). In addition, TP53 and CTNNB1 alterations notably 
associated with the HIF-1α score system (Fig. 5A). TP53 alteration was significantly 

Fig. 4 The HIF-1α score system significantly associated with clinicopathological characteristics in HCC. A–C 
The HIF-1α score system significantly correlated with advanced TNM stage (A), histologic grade (B) and 
vascular invasion (C) in HCC. D–F Significant differences of HIF-1α score were found among HCC patients 
with different TNM stage (D), histologic grade (E), and vascular invasion (F). G Univariate Cox regression 
analysis showed that the HIF-1α score system, TNM stage, and vascular invasion were prognostic factors for 
HCC patients’ survival. H Multivariate Cox regression analysis showed that the HIF-1α score system and TNM 
stage were independent unfavorable prognostic factors for HCC patients’ survival. (I-K) ROC curves analysis for 
1-, 3-, and 4-year OS prediction based on the HIF-1α score system, TNM stage, histologic grade, and vascular 
invasion

Fig. 5 Association between HIF-1α score system and somatic mutation in HCC. A The top 10 most 
commonly mutated genes in HCC patients. B The HIF-1α score system significantly correlated with TP53 
mutation. C TP53 altered HCC exhibited Higher HIF-1α score. D HIF-1α score system significantly correlated 
with CTNNB1 mutation. E CTNNB1 altered HCC exhibited Lower HIF-1α score
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correlated with higher HIF-1α score, while CTNNB1 alteration lower HIF-1α score 
(Fig. 5B–E).

Analysis of functional annotations among different HIF‑1α score groups

The differentially enriched oncologic pathways among different HIF-1α score groups 
were shown in Additional file 4: Table S3. And 27 differential oncologic pathways were 
found overlapped among these three HIF-1α score groups (Fig. 6A). Of note, the high 
HIF-1α score group exhibited the highest enrichment levels for hypoxia-related terms 
(e.g. hypoxia and glycolysis), immune-related processes (e.g. inflammatory response, 
IL2-STAT5 signaling, TNF-α signaling via NF-кB, IL6-JAK-STAT3 signaling, allograft 
rejection, and complement), crucial oncogenic pathways (e.g. mTORC1, MYC, PI3K-
AKT-mTOR, and Hedgehog signalings), and proliferation processes (e.g. G2M check-
point, E2F targets, mitotic spindle), while the low HIF-1α score group the lowest. 
However, metabolic processes (e.g. oxidative phospholation, xenobiotic metabolism, 
bile acid metabolism, and peroxisome), on the contrary, were notably suppressed in 
tumors with HIF-1α scores, but markedly enriched in tumors with low HIF-1α scores 
(Fig. 6A).

Fig. 6 Association between HIF-1α score and oncologic biological processes and hypoxia status in HCC. A 
Heatmap to exhibit 27 differential crucial oncologic biological pathways overlapped among the three HIF-1α 
score groups. B–D Stepwise increasing Buffa (B), Ragnum (C), and Winter (D) hypoxia scores were found from 
low to high HIF-1α score group. (E–G) HIF-1α score significantly associated with Buffa (E), Ragnum (F), and 
Winter (G) hypoxia score systems. H–K KM survival 6curves for OS of HCC patients according to the HIF-1α 
(H), Buffa (I), Ragnum (J), and Winter (K) score systems in the TCGA cohort. L–N ROC curves for 1- (L), 3- (M), 
and 4- (N) year OS prediction based on the HIF-1α, Buffa, Ragnum, and Winter score systems in the TCGA 
cohort
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Comparison of our HIF‑1α score system with other previously reported hypoxia score 

systems

Of note, stepwise increasing Buffa, Winter and Ragnum hypoxia scores were observed 
from low to high HIF-1α score groups (Fig. 6B–D). These findings verified our HIF-1α 
score system a reflection of the hypoxia status in HCC. Besides, the HIF-1α score sys-
tem notably associated with these previous reported hypoxia score systems (Buffa: 
Cor = 0.55, P < 0.0001; Ragnum: Cor = 0.61, P < 0.0001; Winter: Cor = 0.59, P < 0.0001) 
(Fig. 6E–G). Compared with these previously reported hypoxia score system, KM sur-
vival analyses indicated that our HIF-1α score system exhibited the best stratification 
ability of prognosis (Fig. 6H–K). In addition, the ROC analyses also suggested that the 
HIF-1α score system possessed the optimal predictive capability for 1-, 3-, and 4-year 
survival in HCC (Fig. 6L–N). Taken together, these findings suggested the superior pre-
dictive value of the HIF-1α score system for patient prognoses.

Tumors with high HIF‑1α scores were associated with high non‑response rate to TACE

GSE104580 cohort was utilized to investigate the predictive capability of the HIF-1α 
score system for therapeutic response to TACE. Then, stepwise increasing portions of 
TACE-non-response HCC patients were found from low to high HIF-1α score groups 
(Fig.  7A). Higher HIF-1α scores were found in TACE-non-responsive tumors when 
compared with TACE-responsive tumors (Fig. 7B). Besides, we evaluated the predictive 
capability of the HIF-1α score system for therapeutic response to TACE, the AUC of 
which was 0.793 (95%CI 0.719–0.868) (P < 0.0001) (Fig.  7C). These findings suggested 
that the HIF-1α score system performed well in the prediction of therapeutic response 
to TACE.

Tumors with high HIF‑1α scores correlated with immunosuppressive phenotype and high 

non‑response rate to immune checkpoint blockade

The 18 immune-related signatures were shown in Fig.  8A, including macrophages, 
neutrophils, myeloid-derived suppressor cells (MDSC), gamma delta T cells, regula-
tory T cells (Tregs), T follicular helper cells, plasmacytoid dendritic cells, activated 
dendritic cells, immature dendritic cells, immature B cell, activated B cell, natural 

Fig. 7 Tumors with high HIF-1α score exhibited high non-response rate to TACE. A Stepwise increasing 
portions of TACE-non-response HCC patients were found from low to high HIF-1α score groups. B Higher 
HIF-1α scores were found in TACE-non-responsive tumors when compared with TACE-responsive tumors. 
C ROC curve analysis to assess the diagnostic capability of the HIF-1α score system for the prediction of 
therapeutic response to TACE
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killer cells, cytolytic activity, activated  CD8+ T cells, type 17  T-helper cells (Th17 
cells), type 1 T-helper cells (Th1 cells), type 2 T-helper cells (Th2 cells), and Th2/Th1. 
Stepwise increasing infiltrations of pro-tumor immune cells were observed from low 
to high HIF-1α score groups, including MDSC, Tregs, Th2 cells, T follicular helper 
cells, and dendritic cells (Plasmacytoid, activated and immature) (Fig.  8B). In addi-
tion, tumors with high HIF-1α score possessed increased enrichment level of Th2/
Th1 (Fig. 8B).

Then, ImmuneCellAI (http:// bioin fo. life. hust. edu. cn/ ImmuC ellAI/# !/) was utilized 
for the prediction of therapeutic response to immune checkpoint blockade (ICB) 
[36]. Stepwise increasing portions of ICB-non-response HCC patients were found 
from low to high HIF-1α score groups (Fig. 8C). Higher HIF-1α scores were found in 
ICB-non-responsive tumors when compared with ICB-responsive tumors (Fig.  8D). 
To further verify the predictive ability of HIF-1α score system in patients’ response 
to ICB, we investigated the differences in immunophenoscore (IPS) among various 
HIF-1α score groups, which was obtained from the Cancer Immunome Atlas (https:// 
tcia. at/) and used to predict the efficacy of ICB [37]. Two subtypes of IPS, including 
IPS-CTLA-4 and IPS-PD-1/PD-L1/PD-L2, were selected for further analysis as the 
surrogates of HCC patients’ response to anti-CTLA-4 and anti-PD-1/PD-L1/PD-L2 

Fig. 8 Tumors with high HIF-1α score notably associated with immunosuppressive phenotype and high 
non-response rate to immune checkpoint blockade. A Heatmap to exhibit the 18 immune-related terms 
in the three HIF-1α score groups. B Enrichment levels of MDSC, Tregs, Th2 cells, T follicular helper cells, and 
dendritic cells (Plasmacytoid, immature, and activated) in the three HIF-1 score groups. C Stepwise increasing 
portions of ICB-non-response HCC patients were found from low to high HIF-1α score groups. D Higher 
HIF-1α scores were found in ICB-non-responsive tumors when compared with ICB-responsive tumor. E The 
IPS-CTLA-4 and IPS-PD-1/PD-L1/PD-L2 were significantly lowest in patients in the high HIF-1α score group. 
F–K Higher HIF-1α scores significantly associated with higher PD-1 (F), PD-L1 (G), CTLA-4 (H), B7-H3 (I), CD47 
(J), and CD80 (K) expressions in HCC. L–Q Tumors in high HIF-1α score group exhibited highest expressions of 
PD-1 (L), PD-L1 (M), CTLA-4 (N), B7-H3 (O), CD47 (P), and CD80 (Q), while those in the low-HIF-1α score group 
exhibited the lowest

http://bioinfo.life.hust.edu.cn/ImmuCellAI/#!/
https://tcia.at/
https://tcia.at/


Page 12 of 18Zhuang et al. Journal of Big Data           (2023) 10:70 

treatment. The IPS-CTLA-4 and IPS-PD-1/PD-L1/PD-L2 were significantly lowest in 
patients in the high HIF-1α score group (Fig.  8E). Besides, HIF-1α scores positively 
correlated with PD-1, PD-L1, CTLA-4, B7-H3, CD47, and CD80 expressions, which 
are crucial for the immunosuppressive phenotype (Fig. 8F–K) [38–43]. And tumors 
with high HIF-1α score possessed increased expressions of PD-1, PD-L1, CTLA-4, 
B7-H3, CD47, and CD80 (Fig. 8L–Q). Taken together, our findings suggest an immu-
nosuppressive status and high non-response rate to ICB in tumors with high HIF-1α 
score, identifying the HIF-1α score system as a potential indicator of the immuno-
genic profiles in HCC.

Discussion
The current study classified HCC patients in the TCGA cohort into three HIF-1α clus-
ters based on the 16 reported HIF-1α related genes. Then, we also established an HIF-1α 
score system based on nine prognostic ODEGs among various HIF-1α clusters, which 
exhibited satisfactory predictive capability for survival. Furthermore, compared with 
other previous hypoxia score systems, our model possessed the optimal predictive effi-
cacy for OS in HCC. Putting these together, we constructed a novel HIF-1α score system 
for HCC, which works well in prognostic prediction and hypoxic status evaluation of 
HCC patients.

Some of the nine genes involved in the HIF-1α score system have been reported to 
play crucial roles in liver carcinogenesis. Previous study by Zhu et al. demonstrated that 
ADAMTS5 is an unfavorable prognostic biomarker with a potential role in extracellular 
matrix remodeling and metabolic regulation in HCC, and could be a promising ther-
apeutic target for patients with HCC [44]. HOMER1 was identified as an unfavorable 
prognostic biomarker associated with glycolysis in HCC, but its potential oncologic role 
in HCC still remains further works [45]. LPCAT1 overexpression promotes the malig-
nant phenotypes of HCC through directly inhibiting STAT1 [46]. NEIL3 overexpression 
enables the repair of oxidative DNA damage at telomeres in mitosis, which is critical to 
prevent senescence of HCC cells [47]. The oncologic role of PFN2 has been reported 
in various malignances, but little is known in HCC, and for the first time, we identi-
fied PFN2 as a novel unfavorable prognostic biomarker in HCC [48–51]. Upregulation of 
S100A9 by HBx-mediated NF-κB activation promotes tumor progression in HCC [52]. 
Notably, it has been reported that the EGLN3 is recruited by HIFAL to crosstalk with 
PKM2, thereby enhancing HIF-1α transactivation [53]. SPP1 overexpression promotes 
HCC progression and metastasis by activating CCR1 expression via the PI3K-AKT-
HIF-1α signaling pathway [54]. SLC1A5 is a critical glutamine transporter in malignan-
cies, and activation of which captures huge amounts of glutamine [55, 56]. It should be 
noted, based on data mining, that all the nine genes utilized in this model should be 
HIF-1α related genes, though most of which have not been found to be modulated by 
HIF-1α. Therefore, further works should be conducted to explore how HIF-1α modu-
lates or interacts with these genes.

In this study, HCC with high HIF-1α scores are considered much more aggressive, 
due to the notable associations with shorter OS, more advanced TNM stage, histologic 
grade and vascular invasion. By investigating the functional annotations among HIF-1α 
high, medium, and low score tumors, MYC signaling, mTORC1 pathway, and Hedgehog 



Page 13 of 18Zhuang et al. Journal of Big Data           (2023) 10:70  

signaling were found significantly enriched in tumor with high HIF-1α score. MYC has 
been reported to be one of the major drivers of HCC initiation and progression [57, 58]. 
MYC-upregulated tumor cells were found to have enhanced glucose and glutamine uti-
lization and overexpression of critical glycolytic and glutaminolytic enzymes [59–61]. 
And mTORC1 pathway has also been identified as a critical oncogenic signaling path-
way for tumor cell growth, survival, and metabolism [62–64]. Notably, mTORC1 path-
way has been found to enhance the transcription and translation of HIF-1α, and could 
serves as a central activator of the hypoxia response (e.g. Warburg effect) by inducing 
multiple signaling pathways [65–67]. Sun et al. also demonstrated that dual inhibition 
of both mTOR and glycolysis synergistically impairs the proliferation and tumorigen-
esis of mTOR hyperactive cells [68]. Hedgehog signaling facilitates the metastasis and 
drug resistance of HCC in combination with other oncogenic pathways, such as MYC 
pathway and TGF-β signaling [69–71]. Taken together, these findings demonstrate that 
MYC, mTORC1 pathways, and Hedgehog signaling are crucial oncogenic drivers in high 
HIF-1α score tumors, which might provide a preliminary theoretical basis for combi-
nation treatment using MYC inhibitor and HIF-1α inhibitor, or using mTORC1 inhibi-
tor and HIF-1α inhibitor, or using Hedgehog signaling inhibitor and HIF-1α inhibitor in 
these highly aggressive and hypoxic HCCs.

The current study indicated that the HIF-1α score system performed well in the pre-
diction of therapeutic response to TACE, in which tumors with high HIF-1α score repre-
sented high non-response rate to TACE. Consistently, Wei et al. revealed that activation 
of HIF-1α/pAKT loop leads to HCC non-response to TACE [72]. Moreover, previous 
study by Martin et al. also showed that hypoxia signaling and glycolysis-related pathways 
are upregulated in HCCs insensitive to TACE, and targeting PKM2, an HIF-1α-related 
gene, could improve the response rate to TACE [73]. Thus, for tumors with high HIF-1α, 
strategies to inhibit HIF-1α signaling or glycolysis-related pathway may be helpful for 
recovering or improving the efficacy of TACE.

In addition to activation of multiple critical oncogenic pathways, we revealed that 
HCCs with high HIF-1α scores were more immunosuppressive and higher non-response 
rate to ICB (e.g. PD-1/PD-L1 and CTLA-4 inhibition). In particular, tumors with high 
HIF-1α scores possessed high pro-tumor immune cells infiltrations, especially for 
MDSC and Tregs. These tumors had high expression of important immune checkpoint 
proteins, including PD-1, PD-L1, CTLA-4, B7-H3, CD47, and CD80. Previous studies 
revealed that MDSCs exhibit immunosuppressive activities in TME, facilitating immune 
escape and non-response to ICB of tumor cells [74–77]. MDSCs were also able to facili-
tate the pro-tumor activities of Treg cells, thereby dampening anti-tumor immunity of 
effective T cells in HCC [78, 79]. Chiu et  al. demonstrated that HIF-1α increases the 
transcription of CCL26 in tumor cells to recruit MDSCs to the hypoxic regions of tumor 
[80]. Notably, tumors with high HIF-1α scores also showed significantly upregulations 
of TNF-α signaling via NF-кB and IL6-JAK-STAT3 signaling, which were critical for the 
accumulation and immunosuppressive capacity of MDSCs [81–87]. Targeting MDSC 
trafficking has been reported to enhance anti-PD-1 efficacy, representing a promising 
therapeutic strategy against HCCs [74, 80, 82]. It is also reported that hypoxia-induced 
HIF-1α upregulates PD-L1 expression in several solid tumors, which was consistent with 
our findings that tumors with higher HIF-1α score exhibited higher expression PD-L1 



Page 14 of 18Zhuang et al. Journal of Big Data           (2023) 10:70 

[88]. Taken together, HCCs with high HIF-1α scores exhibited a highly immunosup-
pressive TME. And low/medium HIF-1α score tumors seem to be more suitable for 
immunotherapy. For highly immunosuppressive tumors, treatment strategies to restrain 
pro-tumor immunity by targeting HIF-1α or suppressing desmoplasia or hypoxia may be 
promising for enhancing the effect of immunotherapy.

Conclusions
In conclusion, our study developed a novel HIF-1α score system to discriminate HCC 
with different hypoxia status and immunogenic cold TMEs, which exhibited reliable pre-
dictive efficacy for patient prognoses, TACE therapeutic response, and immunotherapy 
response. Besides, our study present the distinctive functional and immunogenic profiles 
for tumors with high HIF-1α scores and low/medium HIF-1α scores, which might pro-
vide preliminary rationales for individual treatment options of these HCC patients.
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