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Abstract 

Neurological diseases are on the rise worldwide, leading to increased healthcare 
costs and diminished quality of life in patients. In recent years, Big Data has started 
to transform the fields of Neuroscience and Neurology. Scientists and clinicians are 
collaborating in global alliances, combining diverse datasets on a massive scale, and 
solving complex computational problems that demand the utilization of increasingly 
powerful computational resources. This Big Data revolution is opening new avenues 
for developing innovative treatments for neurological diseases. Our paper surveys Big 
Data’s impact on neurological patient care, as exemplified through work done in a 
comprehensive selection of areas, including Connectomics, Alzheimer’s Disease, Stroke, 
Depression, Parkinson’s Disease, Pain, and Addiction (e.g., Opioid Use Disorder). We 
present an overview of research and the methodologies utilizing Big Data in each area, 
as well as their current limitations and technical challenges. Despite the potential ben‑
efits, the full potential of Big Data in these fields currently remains unrealized. We close 
with recommendations for future research aimed at optimizing the use of Big Data in 
Neuroscience and Neurology for improved patient outcomes.

Keywords: Big data, Neuroscience, Neurology, Brain Stimulation, Artificial Intelligence, 
Pain, Depression, Addiction, Stroke, Alzheimer’s

Introduction
The field of Neuroscience was formalized in 1965 when the “Neuroscience Research 
Program” was established at the Massachusetts Institute of Technology with the objec-
tive of bringing together several varied disciplines including molecular biology, bio-
physics, and psychology to study the complexity of brain and behavior [1]. The methods 
employed by the group were largely data driven, with a foundation based on the inte-
gration of multiple unique data sets across numerous disciplines. As Neuroscience has 
advanced as a field, appreciation of the nervous system’s complexity has grown with the 
acquisition and analysis of larger and more complex datasets. Today, many Neurosci-
ence subfields are implementing Big Data approaches, such as Computational Neurosci-
ence [2], Neuroelectrophysiology [3–6], and Connectomics [7] to elucidate the structure 
and function of the brain. Modern Neuroscience technology allows for the acquisition 
of massive, heterogeneous data sets whose analysis requires a new set of computational 
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tools and resources for managing computationally intensive problems [7–9]. Studies 
have advanced from small labs using a single outcome measure to large teams using 
multifaceted data (e.g., combined imaging, behavioral, and genetics data) collected 
across multiple international sites via numerous technologies and analyzed with high-
performance computational methods and Artificial Intelligence (AI) algorithms. These 
Big Data approaches are being used to characterize the intricate structural and func-
tional morphology of healthy nervous systems, and to describe and treat neurological 
disorders.

Jean-Martin Charcot (1825–1893), considered the father of Neurology, was a pio-
neering figure in utilizing a scientific, data-driven approach to innovate neurological 
treatments [10]. For example, in the study of multiple sclerosis (MS), once considered 
a general "nervous disorder" [10], Charcot’s approach integrated multiple facets of ana-
tomical and clinical data to delineate MS as a distinct disease. By connecting pathoana-
tomical data with behavioral and functional data, Charcot’s work ultimately transformed 
our understanding and treatment of MS. Furthermore, Charcot’s use of medical photo-
graphs in his practice was an early instance of incorporating ‘imaging’ data in Neurology 
and Psychiatry [11]. Today, Neuroimaging, spurred on by new technologies, computa-
tional methods, and data types, is at the forefront of Big Data in Neurology [9, 12]—see 
Fig.  1. Current neurology initiatives commonly use large, highly heterogeneous data-
sets (e.g., neuroimaging, genetic testing, or clinical assessments from 1000s to 100,000s 
patients [13–18]) and acquire data with increasing velocity (e.g., using wearable sensors 
[6]) and technologies adapted from other Big Data fields (e.g., automatized clinical note 
assessment [19], social media-based infoveillance applications [16, 20]). Similar to how 
Big Data has spurred on Neuroscience, the exponentially growing size, variety, and col-
lection speed of datasets combined with the need to investigate their correlations is rev-
olutionizing Neurology and patient care (see Fig. 1).

This paper examines the evolving impact of Big Data in Neuroscience and Neurology, 
with a focus on treating neurological disorders. We critically evaluate available solutions 
and limitations, propose methods to overcome these limitations, and highlight potential 
innovations that will shape the fields’ future.

Problem definition
According to the United States (US) National Institutes of Health (NIH), neurological 
disorders affect ~ 50 M/yr. people in the US, with a total annual cost of hundreds of bil-
lions of dollars [38]. Globally, neurological disorders are responsible for the highest inci-
dence of disability and rank as the second leading cause of death [39]. These numbers are 
expected to grow over time as the global population ages. The need for new and innova-
tive treatments is of critical and growing importance given the tremendous personal and 
societal impact of diseases of the nervous system and brain.

Big Data holds great potential for advancing the understanding of neurological dis-
eases and the development of new treatments. To comprehend how such advance-
ments can occur and have been occurring, it is important to appreciate how this type 
of research is enabled, not only through methods classically used in clinical research in 
Neurology such as clinical trials but also via advancing Neuroscience research.
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This paper aims to review how Big Data is currently used and transforming the fields 
of Neuroscience and Neurology to advance the treatment of neurological disorders. Our 
intent is not merely to survey the most prominent research in each area, but to give the 
reader a historical perspective on how key areas moved from an earlier Small Data phase 
to the current Big Data phase. For applications in Neurology, while numerous clinical 
areas are evolving with Big Data and exemplified herein (e.g., Depression, Stroke, Alz-
heimer’s Disease (AD)), we highlight its impact on Parkinson’s Disease (PD), Substance 
Use Disorders (SUD), and Pain to provide a varied, yet manageable, review of the impact 

Fig. 1 Evolution of data types [21]. The evolution of Data types in the development of Computational 
Neuroscience can be traced from Golgi and Ramón y Cajal’s structural data descriptions of the neuron 
in the nineteenth century [22]; to Hodgkin, Huxley, and Ecceles’s biophysical data characterization of 
the “all‑or‑none” action potential during the early to mid‑twentieth century [23]; to McCulloch and Pitts’ 
work on the use of ‘the "all‑or‑none" character of nervous activity’ to model neural networks descriptive 
of fundamentals of nervous system [24]. Similarly, Connectomics’ Data evolution [25] can be traced from 
Galen’s early dissection studies [26], to Wernicke’s and Broca’s postulations on structure and function [27], to 
imaging of the nervous system [28, 29], and brain atlases (e.g., Brodmann, Talairach) and databases [30, 31] 
into the Big Data field that is today as characterized by the Human Connectome Project [32] and massive 
whole brain connectome models [7, 33]. Behavioral Neuroscience and Neurology can be tracked from early 
brain injury studies [34] to stimulation and surgical studies [35, 36], to Big Data assessments in cognition and 
behavior [37]. All these fields are prime examples of the transformative impact of the Big Data revolution on 
Neuroscience and Neurology sub‑fields
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of Big Data on patient care. To balance brevity and completeness, we summarize a fair 
amount of general information in tabular form and limit our narrative to exemplify the 
Big Data trajectories of Neurology and Neuroscience. Additionally, in surveying this 
literature, we have identified a common limitation; specifically, the conventional appli-
cation of Big Data, as characterized by the 5 V’s (see Fig. 2), is often unevenly or insuf-
ficiently applied in Neurology and Neuroscience. The lack of standardization for the Big 
Data in studies across Neurology and Neuroscience as well as field-specific and study-
specific differences in application limit the reach of Big Data for improving patient treat-
ments. We will examine the reasons that contribute to any mismatch and areas where 
past studies have not reached their potential. Finally, we identify the limitations of cur-
rent Big Data approaches and discuss possible solutions and opportunities for future 
research.

Our paper differs from other Big Data review papers in Neuroscience and/or Neurol-
ogy (e.g., [12], [40–43]) as it specifically examines the crucial role of Big Data in trans-
forming the clinical treatment of neurological disorders. We go beyond previous papers 
that have focused on specific subfields (such as network data (e.g., [44]), neuroimaging 
(e.g., [12]), stroke (e.g., [45]), or technical methodologies related to data processing (e.g., 
[46, 47]) and/or sharing (e.g., [48, 49]). Furthermore, our review spans a broad range 
of treatments, from traditional pharmacotherapy to neuromodulation and personal-
ized therapy guided by Big Data methods. This approach allows for a comparison of 
the evolving impact of Big Data across Neurology sub-specialties, such as Pain versus 
PD. Additionally, we take a cross-disciplinary approach to analyze applications in both 
Neuroscience and Neurology, synthesizing and categorizing available resources to facili-
tate insights between neuroscientists and neurologists. Finally, our study appraises the 
present implementation of the Big Data definition within the fields of Neuroscience and 
Neurology. Overall, we differentiate ourselves in terms of scope, breadth, and interdisci-
plinary analysis.

Existing solutions
Big Data use in Neuroscience and Neurology has matured as a result of national and 
multi-national projects [40–43]. In the early to mid-2000’s, several governments started 
national initiatives aimed at understanding brain function, such as the NIH Brain Ini-
tiative in the US [50], the Brain Project in Europe [51, 52], and the Brain Mapping by 
Integrated Neurotechnologies for Disease Studies (Brain/MINDS) project in Japan [53]. 
Although not always without controversy [40, 51, 52], many initiatives soon became 
global and involved increasingly larger groups of scientists and institutions focused on 
collecting and analyzing voluminous data including neuroimaging, genetic, biospeci-
men, and/or clinical assessments to unlock the secrets of the nervous system (the reader 
is referred to Table 1 and Additional file 1: Table S1 for exemplary projects or reviews 
[40–43]). These projects spurred the creation of open-access databases and resource 
depositories (the reader is referred to Table 2 and Additional file 1: Table S2 for exem-
plary databases or reviews [41, 42]). The specific features of the collected data sets, such 
as large volume, high heterogeneity/variety, and inconsistencies across sites/missing 
data, necessitated the development of ad-hoc resources, procedures, and standards for 
data collection and processing. Moreover, these datasets created the need for hardware 
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Fig. 2 The 5 V’s. While the 5 V’s of Big Data (“Volume, Variety, Velocity, Veracity, and Value”) are clearly found 
in certain fields (e.g., social media) there are many "Big Data" Neuroscience and Neurology projects where 
categories are not explored or are underexplored. Many self‑described “Big Data” studies are limited to 
Volume and/or Variety. Furthermore, most “Big Data” clinical trial speeds move at the variable pace of patient 
recruitment which can pale in comparison to the speeds of Big Data Velocity in the finance and social media 
spaces. “Big Data” acquisition and processing times are also sporadically detailed in the fields. Finally, there 
is not an accepted definition of data Veracity as it pertains to healthcare (e.g., error, bias, incompleteness, 
inconsistency) and Veracity can be assessed on multiple levels (e.g., from data harmonization techniques to 
limitations in experimental methods used in studies)
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Table 1 Sample of National Projects that Spurred on the Big Data Revolution (see additional 
information in Additional file 1: Table S1)

Name of 
project

Where Year Population Data type Link Sample 
References

ADNI US 2004 Human Neuroimaging, 
genetic, clinical, 
and biospeci‑
men data

https:// adni. 
loni. usc. edu

[228]

EPFL Blue Brain 
Project

CH 2005 Animal (mouse) Models, tools, 
algorithms, 
brain cell atlas

https:// www. 
epfl. ch/ resea 
rch/ domai ns/ 
blueb rain/

[229]

Human Brain 
Connectome 
Project

US 2009 Human Neuroimaging, 
phenomic, and 
genomic data

https:// www. 
human conne 
ctome. org 
http:// www. 
human conne 
ctome proje 
ct. org

[230, 231, 232]

ENIGMA US 2009 Human Neuroimaging, 
genetic, and 
clinical

https:// enigma. 
ini. usc. edu

[37]

Brain Canada 
Foundation

CA 2011 Human Neuroimaging 
and disease 
models

https:// brain 
canada. ca

[233]

The BRAIN 
Initiative

US 2013 Human, animal Neuroimaging, 
genetic, clinical, 
neurophysi‑
ological, simula‑
tions

https:// brain initi 
ative. nih. gov/

[234]

Human Brain 
Project

EU, IL, NO, UK, 
CH

2013 Human Neuroimaging, 
genetic, clinical, 
neurophysi‑
ological, simula‑
tions

https:// www. 
human brain 
proje ct. eu/ en/

[51, 52]

Japan Brain/
MINDS

JP 2014 Human, animal 
(marmoset)

Neuroimaging, 
neurophysio‑
logical, genetic, 
and clinical data

https:// brain 
minds. jp/ en/

[53]

China Brain 
Project

CN 2016 Human, animal Not available Not available [235]

Korea Brain 
Initiative

KR 2016 Human, animal Cell imaging, 
molecular, mini‑
brain cultures, 
AI technology, 
mapping

https:// www. 
kbri. re. kr/ new/ 
pages_ eng/ 
main/

[236]

Australian Brain 
Alliance

AU 2016 Human Not available https:// www. 
ans. org. au/ 
resou rces/ 
issues/ about‑ 
the‑ austr alian‑ 
brain‑ allia nce

[237]

CBRS CA 2017 Human Not available https:// canad 
ianbr ain. ca/

[238]

IBI International 
Brain Initiative

JP, AU, EU, US, 
CA, KR, CN

2017 Human, animal Diverse data 
sets repre‑
sented across 
international 
collaborators

https:// www. 
inter natio nalbr 
ainin itiat ive. 
org/

[239]

https://adni.loni.usc.edu
https://adni.loni.usc.edu
https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/research/domains/bluebrain/
https://www.humanconnectome.org
https://www.humanconnectome.org
https://www.humanconnectome.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
https://enigma.ini.usc.edu
https://enigma.ini.usc.edu
https://braincanada.ca
https://braincanada.ca
https://braininitiative.nih.gov/
https://braininitiative.nih.gov/
https://www.humanbrainproject.eu/en/
https://www.humanbrainproject.eu/en/
https://www.humanbrainproject.eu/en/
https://brainminds.jp/en/
https://brainminds.jp/en/
https://www.kbri.re.kr/new/pages_eng/main/
https://www.kbri.re.kr/new/pages_eng/main/
https://www.kbri.re.kr/new/pages_eng/main/
https://www.kbri.re.kr/new/pages_eng/main/
https://www.ans.org.au/resources/issues/about-the-australian-brain-alliance
https://www.ans.org.au/resources/issues/about-the-australian-brain-alliance
https://www.ans.org.au/resources/issues/about-the-australian-brain-alliance
https://www.ans.org.au/resources/issues/about-the-australian-brain-alliance
https://www.ans.org.au/resources/issues/about-the-australian-brain-alliance
https://www.ans.org.au/resources/issues/about-the-australian-brain-alliance
https://canadianbrain.ca/
https://canadianbrain.ca/
https://www.internationalbraininitiative.org/
https://www.internationalbraininitiative.org/
https://www.internationalbraininitiative.org/
https://www.internationalbraininitiative.org/
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and software for data-intensive computing, such as supercomputers and machine learn-
ing techniques, which were not conventionally used in Neuroscience and Neurology 
[54–58]. Most significantly, the Big Data revolution is improving our understanding and 
treatment of neurological diseases, see Tables 3–6 and Additional file 1: Tables S3-S6.

National projects and big data foundations: Connectomes, neuroimaging, and genetics

The human brain contains ~ 100 billion neurons connected via ~  1014 synapses, through 
which electrochemical data is transmitted [59]. Neurons are organized into discrete 
regions or nuclei and connect in precise and specific ways to neurons in other regions; 
the aggregated connections between all neurons in an individual comprises their con-
nectome. The connectome is a term coined by Sporns et al. designed to be analogous 
to the genome; like the genome, the connectome is a large and complex dataset charac-
terized by tremendous interindividual variability [60]. Connectomes, at the level of the 
individual or as aggregate data from many individuals, have the potential to produce a 
better understanding of how brains are wired as well as to unravel the “basic network 
causes of brain diseases” for prevention and treatment [60–63]. Major investments in 
human connectome studies in health and disease came in ~ 2009, when the NIH Blue-
print for Neuroscience Research launched the Blueprint Grand Challenges to catalyze 
research. As part of this initiative, the Human Connectome Project (HCP) was launched 
to chart human brain connectivity, with two research consortia awarded approximately 
$40 M. The Wu-Minn-Ox consortium sought to map the brain connectivity (structural 
and functional) of 1200 healthy young adults and investigate the associations between 
behavior, lifestyle, and neuroimaging outcomes. The MGH-UCLA (Massachusetts Gen-
eral Hospital-University of California Los Angeles) consortium aimed to build a special-
ized magnetic resonance imager optimized for measuring connectome data. The Brain 
Activity Map (BAM) Project was later conceived during the 2011 London workshop 
“Opportunities at the Interface of Neuroscience and Nanoscience.” The BAM group 
proposed the initiation of a technology-building research program to investigate brain 
activity from every neuron within a neural circuit. Recordings of neurons would be car-
ried out with timescales over which behavioral outputs or mental states occur [64, 65]. 
Following up on this idea, in 2013, the NIH BRAIN Initiative was initiated by the Obama 
administration, to “accelerate the development and application of new technologies that 

CH Switzerland , IL Israel, NO Norway, UK United Kingdom, KR South Korea, CA Canada, AU Australia, CN China, JP Japan

Table 1 (continued)

Name of 
project

Where Year Population Data type Link Sample 
References

The BRAIN 
Initiative 2.0

US 2018 Human, animal Neuroimaging, 
genetic, clinical, 
neurophysi‑
ological, simula‑
tions

https:// brain initi 
ative. nih. gov/ 
strat egic‑ plann 
ing/ acd‑ worki 
ng‑ groups/ 
brain‑ initi ative 
®‑ 20‑ cells‑ circu 
its‑ toward‑ cures

[240]

EBRAINS EU 2020 Human, animal Study data, 
computational 
models, and 
software

https:// ebrai 
ns. eu/

[241]

https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative®-20-cells-circuits-toward-cures
https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative®-20-cells-circuits-toward-cures
https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative®-20-cells-circuits-toward-cures
https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative®-20-cells-circuits-toward-cures
https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative®-20-cells-circuits-toward-cures
https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative®-20-cells-circuits-toward-cures
https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative®-20-cells-circuits-toward-cures
https://braininitiative.nih.gov/strategic-planning/acd-working-groups/brain-initiative®-20-cells-circuits-toward-cures
https://ebrains.eu/
https://ebrains.eu/
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Table 3 Sample of Connectome Studies and Evolving Big Data Use

Refs Date Author Vol Var Vel Ver Val

[66] 1986 White Imaging: “302 Neurons”, 
“5000 chemical synapses, 
2000 neuromuscular 
junctions and 600 gap 
junctions”

Anatomical EM studies 
of a Nematode nervous 
system

F M P

[242] 1993 Young Tabulated: 72 areas with 
connections coded via 
0 no, 1 one‑way, and 2 
two‑way connections

Neuroanatomical litera‑
ture review (Macaque 
cortical areas)

F M P

[67] 1995 Scannell Tabulated: 1139 reported 
corticocortical con‑
nections between 65 
cortical areas

Neuroanatomical 
literature review (Feline 
cortical areas)

F M P

[243] 2001 Stephan Tabulated: 270 
papers– > 4723 Brain 
Sites with connection 
data from 0 to 3 in 
strength to build CoCo‑
Mac database

Literature review 
of tracer studies in 
Macaque

F Mix P

[31, 244] 2003 Bota Tabulated: Multiple Data 
Set Types (e.g., Multiple 
Rat connectomes 
(50,000 + connectivity 
reports each))

Variety across data types 
and organisms (Rat & 
Macaque)

F Mix P

[245] 2010 Modha Tabulated: Focused on 
383 regions “spanning 
cortex, thalamus, and 
basal ganglia”; models 
“6,602 directed long‑
distance connections”

Collation of 410 
Macaque tracer studies 
from CoCoMac

F Mix P

[246] 2011 Bock Imaging: 1500 cell 
bodies of visual cortex 
with reconstruction of 
245 synapses originat‑
ing from 10 functionally 
characterized pyramidal 
neurons

Anatomical EM and 
Functional 2P imaging 
mouse visual cortex

F M P

[247] 2011 Briggman Imaging: 634 neuronal 
cell bodies, with 25 
Directionally Sensitive 
On–Off Cells in retina

Mouse Anatomical EM, 
Functional 2P, and visual 
stimulation results

F M P

[72] 2011 van den Heuvel Imaging: DTI (n = 21) 
focused on 12 strongly 
interconnected bihemi‑
spheric hub regions

DTI & random attack 
simulation assess con‑
nection weight from 21 
Humans

F A C

[230, 231, 232] 2011 Van Essen, Glasser Imaging and clinical 
data: Over 1000 subjects 
(healthy young adult 
22–35), over 1000 Aging 
adults (36–100 +), etc. 
following protocols of 
HCP

Multimodal imag‑
ing, clinical, genetic, 
biospecimens for 1000’s 
subjects

O A C

[248] 2012 Harriger Tabulated: 410 
studies from CoCo‑
Mac—> whole‑brain 
connection matrix (352 
regions) & cortical con‑
nectome for 242 regions 
and 4090 projections

Collation of 410 
Macaque tracer studies 
from CoCoMac

F A P

[249] 2012 Jarrell Imaging: 144 neurons, 64 
muscles, and 1 gonad (at 
synaptic level)

Nematode EM, Simula‑
tion and Correlation with 
past experiments

F* DML P
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Table 3 (continued)

Refs Date Author Vol Var Vel Ver Val

[250] 2013 Takemura Imaging: 379 neurons 
and 8,637 chemical syn‑
aptic contacts of Optic 
Medulla (focused on 
motion detection cells)

Anatomical EM studies 
from Fruit Fly

F Mix P

[251] 2014 Markov Imaging: “29 of the 91 
areas of the macaque 
cerebral cortex revealed 
1615 interareal path‑
ways”

Retrograde tracer injec‑
tion studies and simula‑
tions from Macaque

F A P

[252] 2014 Ingalhalikar Imaging: Structural 
connectome (“95 regions 
of interest (Regions of 
Interest; 68 cortical and 
27 subcortical regions)” 
from 949 DTIs

Human DTI Imaging 
(Male vs. Female, 428 
Male and 521 Female)

F A C

[253] 2014 Deligianni Imaging: “Simultaneous 
resting‑state EEG‑fMRI 
was acquired from 17 
adult volunteers”

Human (n = 17) EEG and 
fMRI comparisons

F A P

[71] 2015 Ohyama Imaging: Electron 
Microscopy spans 10,000 
neuron nervous system, 
but reconstructed 
multisensory circuit sup‑
porting synergy

Fruit Fly Anatomical EM, 
Behavioral, Optogenet‑
ics, Physiological Data

F Mix P

[254] 2015 Bota Tabulated: 16,000 BAMS 
database reports of 
histologically defined 
axonal connections to 
assess cognition 923 rat 
cortical association con‑
nections

Collation of histology 
studies from 16,000 rats

F* M P

[255] 2016 Ryann Imaging: 177 CNS 
neurons, 6618 synapses 
(including 1772 neu‑
romuscular junctions, 
augmented by 1206 gap 
junctions)

Anatomical EM (but 
includes 2P coregistered 
data for future use) from 
Tadpole larva)

F Mix P

[256] 2017 Hildebrand Imaging: Complete larval 
zebrafish brains but 
reconstructions focused 
on 2589 myelinated 
axons

Anatomical EM and 
Functional 2P from 
zebrafish larva

F Mix P

[257] 2017 Vishwanthan Imaging: 2967 somata 
identified with “22 
integrator neurons” “and 
annotated the pre‑ and” 
postsynaptic locations 
reconstructed

Anatomical EM and 
Functional 2P from 
zebrafish larva

F Mix P

[33] 2018 Zheng Imaging: Electron 
Microscopy spans 
100,000 neuron nervous 
brain, but reconstruction 
centered on the mush‑
room body (MB)

Fruit Fly Anatomical 
EM reconstructions 
with light microscopy 
databases

F* Mix P
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Table 3 (continued)

Refs Date Author Vol Var Vel Ver Val

[258] 2019 Ardesch Imaging: DTI Humans 
(n = 57) and chim‑
panzees (n = 20), with 
analysis focused on rich 
club organization from 
36 areas per hemisphere 
[72 in total] for both 
species

Human vs. non Human 
Primate DTI

F Mix P

[74] 2019 Van Essen Imaging: Differs across 
species

Human (MRI), Non‑
Human Primate (MRI), 
Mouse (tracer) imaging

F Mix P

[7] 2020 Scheffer Imaging: Around 25,000 
neurons, with most “clus‑
tered and named”, and 
approximately 20 million 
synapses mapped for 
the central brain circuits 
(assuming bilateral sym‑
metry)

Fruit Fly Anatomical 
EM studies and neural 
simulations

F* Mix P

[70] 2020 Wanner Imaging: 1003 neurons 
of Olfactory Bulb 
(Mitral cells (n = 745), 
interneurons, (n = 254), 
and “atypical projection 
neurons” (n = 4)

Anatomical EM, Func‑
tional 2P, and Simulation 
from zebrafish larva

F Mix P

[259] 2021 Ashaber Imaging and Behavioral: 
Recorded from 25 neu‑
rons simultaneously, but 
focused on reconstruc‑
tion of Explore Dorsal 
Excitor motor neuron 
DE‑3 and 531 synapses 
of the cell

Anatomical EM, Func‑
tional Voltage Sensitive 
Dye, Behavioral Observa‑
tion, X‑ray tomography 
from Medicinal Leech

F Mix P

[260] 2021 Scholl Imaging and stimulation 
data: Imaging and stimu‑
lation data: “155 visually 
responsive” “synapses 
imaged in vivo on 23 
dendritic segments from 
5 cells”

Anatomical EM, Func‑
tional 2P, and visual 
stimulation results from 
Ferrets

F Mix P

[261] 2021 Brittin Imaging: 2 complete 
connectomes (adult and 
larva)

Nematode Adult and 
Larva Anatomical EM

F Mix P

[262] 2021 Sorrentino Imaging: Structural con‑
nectomes of 58 healthy 
adults [26 females, 32 
males]

DTI and MEG combi‑
nation (MEG better 
temporal resolution) 
from Humans

F Mix P

[15] 2021 Demro 247 participants 
completed the study 
as of publication date 
following data collection 
protocols of HCP (mul‑
timodal imaging) and 
additional clinical/behav‑
ioral/cognitive data

Data as defined by HCP 
project, plus additional 
clinical, behavioral, and 
cognitive metrics in 247 
psych patients

O Mix C

[263] 2022 Scholl Imaging and stimula‑
tion data: Characterized 
5923 visually responsive 
dendritic spines from 35 
cells with focus on 28 
binocular cells

Anatomical EM, Func‑
tional 2P, visual stimulus, 
and simulation

F Mix P
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will enable researchers to produce dynamic pictures of the brain that show how individ-
ual brain cells and complex neural circuits interact at the speed of thought”. Other coun-
tries and consortia generated their own initiatives, such as the European Human Brain 
Project, the Japan Brain/MINDS project, Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA), and the 
China Brain Project. These projects aimed to explore brain structure and function, with 
the goal of guiding the development of new treatments for neurological diseases. The 
scale of these endeavors, and the insights they generated into the nervous system, were 
made possible by the collection and analysis of Big Data (see Table 1). Below, we suc-
cinctly exemplify ways in which Big Data is transforming Neuroscience and Neurology 
through the HCP (and similar initiatives), ADNI, and ENIGMA projects.

Table 3 (continued)

Refs Date Author Vol Var Vel Ver Val

[13] 2022 Bethlehem Imaging: MRI repository 
“aggregated 123,984 
MRI scans, across more 
than 100 primary studies, 
from 101,457 human 
participants between 
115 days post and 
conception to 100 years 
of age”

Longitudinal Information 
from 101,457 human 
participants (including 
modeled simulations)

O Mix C

[264] 2022 Chen Imaging: “Resting‑state 
functional connectivity 
(rs‑fcMRI) data from 1416 
healthy adults” (“whole 
brain into 300 parcels, 
including 27 cerebellar 
areas and 273 cerebral 
areas”)

rs‑fcMRI data combined 
with Markov model to 
ascertain functional 
connectivity from 1416 
healthy adult humans

F A C

We have classified the experiments with the classic 5 V’s definition. However, certain categories are not clearly defined in 
the review of prospective, retrospective, and data collation studies. For Volume (Vol): We focused on volume of Imaged 
Structures for histology-based Imaging (e.g., Anatomical EM studies) and the size of patient cohorts and experimental 
data for clinical studies. We chose this method as there is not a clear standard in reporting digital data sizes across the 
literature. For Variety (Var): We indicate the different data and specimen types. For Velocity (Vel): We reported the data 
Velocity as either ‘F’ for Fixed Studies (analyzing data from databases or studies which are no longer acquiring data) or ‘O’ 
for Ongoing studies (analyzing data from databases or clinical studies that are still acquiring data, although it should be 
noted that the reported results of the studies are based on analysis of a fixed data set with the noted volume at the time 
of the publication). We discuss this further in the text, but implemented this simplified standard given: 1. Few studies 
report data in a manner that allows one to calculate data Velocity acquisition and processing (e.g., for clinical trials, which 
are dependent on ‘unpredictable’ patient recruitment rates and Data Acquisition velocities are often not clearly reported), 
2. For the multimodal nature of data in the above studies there is not a standard of how velocity should be reported (e.g., 
Scheffer reported “over 50 person-years of proofreading effort over ≈2 calendar years” transforming 20 TB of raw data into 
26 MB useable network diagrams for the Imaging “25,000 neurons. most of which were clustered and named” with “about 
20 million chemical synapses” for an estimated speed of 400,000 synapses/person year or a transformation speed of 0.4 TB 
raw data/person year). Where any type of Velocity information is given, and a velocity calculation can be made, it is provided 
in the Additional file 1: Table S3 (and noted herein with a *). For Veracity (Ver): M Manual verification; A Data verified through 
automated analytical process (e.g., AI, statistical methods), Mix Automated Analytical and Manual (or semi-automated). 
However, all experimental data veracity is dependent on the methodological limitations of the core studies, thus we also 
provide examples of variability or error in the Additional file 1: Table S3 (if no explicit assessment of data Veracity is outlined 
in the publication or the data does not come from a validated database (e.g., primary research data), the study is just 
marked DML Dependent on Methodological Limitations and expanded upon in the Additional file 1: Table). For Value (Val): 
As neither study costs are disclosed, health economics assessments completed, nor a monetary cost assigned in the sale 
or purchase of any of the above data sets, we simply report on the study as having “P” for Preclinical or “C” for Clinical value 
dependent on the study species and Data Use. The limitations to these definitions and study information availability are 
described in the text. For Year we indicate the year of the earliest publication. Ref Reference
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Connectome

Ways in which Big Data is transforming Neuroscience and Neurology are exempli-
fied through advancements in elucidating the connectome (see for example Table  3 
and Additional file 1: Table S3). Early studies in organisms such as the nematode C. 
elegans used electron microscopy (EM) to image all 302 neurons and 5000 connec-
tions of the animal [66], while analyses on animals with larger nervous systems col-
lated neuroanatomical tracer studies to extract partial cerebral cortex connectivity 
matrices, e.g., cat [67] and macaque monkey [68, 69]. More recently, advancements in 
imaging and automation techniques, including EM and two-photon (2P) fluorescence 
microscopy, have enabled the creation of more complete maps of the nervous system 
in zebrafish and drosophila [7, 33, 70, 71]. Despite the diminutive size of their nerv-
ous systems, the amount of data is enormous. Scheffer and colleagues generated a 
connectome for portion of the central brain of the fruit fly “encompassing 25,000 neu-
rons and 20 million chemical synapses” [7]. This effort required “numerous machine-
learning algorithms and over 50 person-years of proofreading effort over ≈2 calendar 
years” processing > 20  TB of raw data into a 26  MB connectivity graph, “roughly a 
million fold reduction in data size” (note, a review of the specific computational tech-
niques is outside this paper’s scope, see [7, 33, 58, 70, 71] for more examples). Thus, 
connectomes can be delineated in simple animal models; however, without automa-
tion and the capacity to acquire Big Data of this type, such a precise reconstruction 
could not be accomplished. Extending this detailed analysis to the human brain will 
be a larger challenge, as evidenced by the stark contrast between the 25,000 neurons 
analyzed in the above work and the 100 billion neurons and ~  1014 synapses present in 
the human brain.

At present, the study of the human connectome has principally relied on clinical neu-
roimaging methods, including Diffusion Tensor Imaging (DTI) and Magnetic Resonance 
Imaging (MRI), to generate anatomical connectomes, and on neuroimaging techniques 
such as functional MRI (fMRI), to generate functional connectomes [9, 12]. For example, 
in what might be considered a “Small Data” step, P. van den Heuvel and Sporns, demon-
strated “rich-club” organization in the human brain (“tendency for high-degree nodes to 
be more densely connected among themselves than nodes of a lower degree, providing 
important information on the higher-level topology of the brain”) via DTI and simula-
tion studies based on imaging from 21 subjects focused on 12 brain regions [72]. This 
type of work has quickly become “Big Data” science, as exemplified by Bethlehem et al.’s 
study of “Brain charts for the human lifespan” which was based on 123,984 aggregated 
MRI scans, “across more than 100 primary studies, from 101,457 human participants 
between 115 days post-conception and 100 years of age” [13]. The study provides instru-
mental evidence towards neuroimaging phenotypes and developmental trajectories via 
MRI imaging. Human connectome studies are also characterized by highly heterogene-
ous datasets, owing to the use of multimodal imaging, which are often integrated with 
clinical and/or biospecimen datasets. For example, studies conducted under the HCP 
[32] have implemented structural MRI (sMRI), task fMRI (tfMRI), resting-state fMRI 
(rs-fMRI), and diffusion MRI (dMRI) imaging modalities, with subsets undergoing Mag-
netoencephalography (MEG) and Electroencephalography (EEG). These studies usually 
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involve hundreds to thousands of subjects, such as the Healthy Adult and HCP Lifespan 
Studies [73]. While the above connectome studies have primarily focused on anatomical, 
functional, and behavioral questions, connectome studies are used across the biological 
sciences (e.g., study evolution by comparing mouse, non-human primates, and human 
connectomes [74]) and as an aid in assessing and treating neuropathologies (as will be 
elaborated on further below).

ADNI

In the same period that the NIH was launching its Neuroscience Blueprint Program 
(2005), it also helped launch the ADNI in collaboration with industry and non-profit 
organizations. The primary objectives of ADNI are to develop “biomarkers for early 
detection” and monitoring of AD; support “intervention, prevention, and treatment” 
through early diagnostics; and share data worldwide [75–77]. Its Informatics Core [78], 
which was established for data integration, analysis, and dissemination, was hosted at 
University of Southern California, and highlights the Big Data underpinnings of ADNI 
(https:// adni. loni. usc. edu). ADNI was originally designed to last 5 years with bi-annual 
data collection of cognition; brain structural and metabolic changes via Positron Emis-
sion Technology (PET) and MRIs; genetic data; “and biochemical changes in blood, cer-
ebrospinal fluid (CSF), and urine in a cohort of 200 elderly control subjects, 400 Mild 
Cognitive Impairment patients, and 200 mild AD patients" [75, 76, 79]. The project is 
currently in its fourth iteration, ADNI4, with funding through 2027 [80, 81]. To date, 
ADNI has enrolled > 2000 participants who undergo continuing longitudinal assess-
ments. The ADNI study has paved the way for the diagnosis of AD through the usage of 
biomarker tests such as amyloid PET scans and lumbar punctures for CSF, and demon-
strated that ~ 25% of people in their mid-70’s has a very early stage of AD (“preclinical 
AD”), which would have previously gone undetected. These results have helped encour-
age prevention and early treatment as the most effective approach to the disease.

ENIGMA

During the same period that major investments were beginning in connectome projects 
(2009), the ENIGMA Consortium was established [82, 83]. It was founded with the ini-
tial aim of combining neuroimaging and genetic data to determine genotype–pheno-
type brain relationships. As of 2022, the consortium included > 2000 scientists hailing 
from 45 countries and collaborating across more than 50 working groups [82]. These 
efforts helped spur on many discoveries, including genome-wide variants associated 
with human brain imaging phenotypes (see, the 60 + center large-scale study with  >  
30,000 subjects that provided evidence of the genetic impact on hippocampal volume 
[84, 85], whose reduction is possibly a risk factor for developing AD). The group has also 
conducted large scale MRI studies in multiple pathologies and showed imaging-based 
abnormalities or structural changes [82, 83] in numerous conditions, such as major 
depressive disorder (MDD) [86] and bipolar disorder [87]. Other genetics/imaging-
based initiatives have made parallel advancements, such as the genome-wide association 
studies of UK Biobank [88–90], Japan’s Brain/MINDS work [53], and the Brainstorm 
Consortium [91]. For example, the Brainstorm Consortium assessed “25 brain dis-
orders from genome-wide association studies of 265,218 patients and 784,643 control 

https://adni.loni.usc.edu
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participants and assessed their relationship to 17 phenotypes from 1,191,588 individu-
als.” Ultimately, Big Data-based genetic and imaging assessments have permeated the 
Neurology space, significantly impacting patient care through enhanced diagnostics and 
prognostics, as will be discussed further below.

From discovery research to improved neurological disease treatment

The explosive development of studies spurred on by these national projects with grow-
ing size, variety, and speed of data, combined with the development of new technolo-
gies and analytics, has provoked a paradigm shift in our understanding of brain changes 
through lifespan and disease [7, 92–96], leading to changes in the investigation and 
treatment development for neurological diseases and profoundly impacting the field of 
Neurology. Over the past decade, such impact has occurred in multiple ways. First, Big 
Data has opened the opportunity to analyze combined large, incomplete, disorganized, 
and heterogenous datasets [97], which may yield more impactful results as compared 
to clean curated, small datasets (with all their external validity questions and additional 
limitations). Second, Big Data studies have improved our basic understanding (i.e., 
mechanisms of disease) of numerous neurological conditions. Third, Big Data has aided 
diagnosis improvement (including phenotyping) and subsequently refined the deter-
mination of a presumptive prognosis. Fourth, Big Data has enhanced treatment moni-
toring, which further aids treatment outcome prediction. Fifth, Big Data studies have 
recently started to change clinical research methodology and design and thus directly 
impact the development of novel therapies. In the remainder of this section, we will 
elaborate on the aforementioned topics, followed by the presentation of particular case 
studies in select areas of Neurology.

Opportunities and improved understanding

As introduced above, Big Data solutions have impacted our understanding of the funda-
mentals of brain sciences and disease, such as brain structure and function (e.g., HCP) 
and the genetic basis of disease (e.g., ENIGMA). Advancements in connectome and 
genetics studies, along with improved analytics, have advanced our understanding of 
brain changes throughout the lifespan and supported hypotheses linking abnormal con-
nectomes to many neurological diseases [13, 72, 92, 98]. Studies have consistently shown 
that architecture and properties of functional brain networks (which can be quantified 
in many ways, e.g., with graph theoretical approaches [94]) correlate with individual 
cognitive performance and dynamically change through development, aging, and neuro-
logical disease states including neurodegenerative diseases, autism, schizophrenia, and 
cancer (see, e.g., [92, 93, 95, 96]). Beyond genetics and connectomes, Big Data methods 
are used in vast ways in brain research and the understanding of diseases, such as from 
brain electrophysiology [99], brain blood-flow [100], brain material properties [101], 
perceptual processing [102, 103], and motor control [104].

Diagnostics/prognostics/monitoring

Big Data methods are also increasing in prevalence in diagnostics and prognostics. 
For example, the US Veterans Administration recently reported on the genetic basis 
of depression based on analysis from  > 1.2 M individuals, identifying 178 genomic risk 



Page 23 of 53Dipietro et al. Journal of Big Data  2023, 10(1):116 

loci, and confirming it in a large independent cohort (n > 1.3  M) [105]. Subsequent to 
the European Union (EU) neuGRID and neuGRID4You projects, Munir et. al. used 
fuzzy logic methods to derive a single “Alzheimer’s Disease Identification Number” 
for tracking disease severity [106]. Eshaghi et. al. identified MS subtypes via MRI Data 
and unsupervised machine learning [107] and Mitelpunkt et al. used multimodal data 
from the ADNI registry to identify dementia subtypes [108]. Big Data methods have 
also been used to identify common clinical risk factors for disease, such as gender, age, 
and geographic location for stroke [109] (and/or its genetic risk factors [110]). Big Data 
approaches to predict response to treatment are also increasing in frequency. For exam-
ple, for depression, therapy choice often involves identifying subtypes of patients based 
on co-occurring symptoms or clinical history, but these variables are often not sufficient 
for Precision Medicine (i.e., predict unique patient response to specific treatment) nor 
even at times to differentiate patients from healthy controls [17, 111]. Noteworthy pro-
gress has been made in depression research, such as successful prediction of treatment 
response using connectome gradient dysfunction and gene expression [18], through 
resting state connectivity markers of Transcranial Magnetic Stimulation (TMS) response 
[17], and via a sertraline-response EEG signature [111]. As another example, the Italian 
I-GRAINE registry is being developed as a source of clinical, biological, and epidemio-
logic Big Data on migraine used to address therapeutic response rates and efficiencies in 
treatment [112].

Additionally, Big Data approaches of combining high volumes of varied data at high 
velocities are offering the potential for new "real-time" biomarkers [113]. For instance, 
data collected with wearable sensors has been increasingly used in clinical studies to 
monitor patient behavior at home or in real-world settings. While the classic example is 
the use of EEG for epilepsy [114], numerous other embodiments can be found in the lit-
erature. For example, another developing approach is utilizing smartphone data to evalu-
ate daily changes in symptom severity and sensitivity to medication in PD patients [115]. 
This approach has led to a memory test and simple finger tapping and to track the status 
of study participants [116]. Collectively, these examples highlight Big Data’s potential for 
facilitating participatory Precision Medicine (i.e., tailored to each patient) in trials and 
clinical practice (which is covered in more detail in Sect. “Proposed Solutions”).

Evolving evaluation methods

The way in which new potential neurological therapies are being developed is also 
changing. Traditionally, Randomized Controlled Trials (RCTs) evaluate the safety and 
efficacy of potential new treatments. In an RCT the treatment group is compared to 
a control or placebo group, in terms of outcome measures, at predefined observation 
points. While RCTs are the gold standard for developing new treatments, they have sev-
eral limitations [117], which can include high cost, lengthy completion times, limited 
generalizability of results, and restricted observations (e.g., made at a limited number of 
predefined time points in a protocol (e.g., baseline, end of treatment)). Thereby, clinical 
practice is currently limited by RCT and evidence-based medicine interpretations and 
limitations [118], which are largely responsible for a predominant physician’s respon-
sive mindset. A wealth of recent manuscripts on Big Data analysis facilitates a poten-
tial solution for individual patient behavior prediction and proactive Precision Medicine 
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management [119] by augmenting and extending RCT design [117]. Standardization and 
automation of procedures using Big Data make entering and extracting data easier and 
could reduce the effort and cost of running an RCT. They can also be used to formu-
late hypotheses fueled by large, preliminary observational studies and/or carry out vir-
tual trials. For example, Peter et al. showed how Big Data could be used to move from 
basic scientific discovery to translation to patients in a non-linear fashion [120]. Given 
the potential pathophysiological connection between PD and inflammatory bowel dis-
ease (IBD), they evaluated the incidence of PD in IBD patients and investigated whether 
anti-tumor necrosis factor (anti-TNF) treatment for IBD affected the risk of developing 
PD. Rather than a traditional RCT, they ran a virtual repurposing trial using data from 
170 million people in two large administrative claims databases. The study observed a 
28% higher incidence rate of PD in IBD patients than in unaffected matched controls. In 
IBD patients, anti-TNF treatment resulted in 78% reduction in the rate of PD incidence 
relative to patients that did not receive the treatment [120, 121]. A similar approach was 
reported by Slade et  al. They conducted experiments on rats to investigate the effects 
of Attention Deficit Hyperactivity Disorder (ADHD) medication (type and timing) on 
the “rats’ propensity to exhibit addiction-like behavior”, which led to the hypothesis that 
initiating ADHD medication in adolescence “may increase the risk for SUD in adult-
hood”. To test this hypothesis in humans, rather than running a traditional RCT, they 
used healthcare Big Data from a large claim database and, indeed, found that “temporal 
features of ADHD medication prescribing”, not subject demographics, predicted SUD 
development in adolescents on ADHD medication [122]. A hybrid approach was used 
in the study by Yu et al. [123]. Their study examined the potential of vitamin K2 (VK2) 
to reduce the risk of PD, given its anti-inflammatory properties and inflammation’s role 
in PD pathogenesis. Initially, Yu et al. assessed 93 PD patients and 95 controls and deter-
mined that the former group had lower serum VK2 levels compared to the healthy con-
trols. To confirm the connection between PD and inflammation, the study then analyzed 
data from a large public database, which revealed that PD patients exhibit dysregulated 
inflammatory responses and coagulation cascades that correlate with decreased VK2 
levels [123].

Even though these pioneering studies demonstrate potential ways in which Big Data 
can be used to perform virtual RCT trials, several challenges remain. The processing 
pipeline of Big Data, from collection to analysis, has still to be refined. Moreover, it is 
still undetermined how regulatory bodies will ultimately utilize this type of data. In the 
US, the Food and Drug Administration (FDA) has acknowledged the future potential of 
“Big Data” approaches, such as using data that could be gathered from Electronic Health 
Records (EHRs), pharmacy dispensing, and payor records, to help evaluate the safety 
and efficacy of therapeutics [124]. Furthermore, the FDA has begun the exploration and 
use of High-Performance Computing (HPC) to internally tackle Big Data problems [125] 
and concluded that Big Data methodologies could broaden “the range of investigations 
that can be performed in silico” and potentially improve “confidence in devices and drug 
regulatory decisions using novel evidence obtained through efficient big data process-
ing”. The FDA is also employing Big Data based on Real World Evidence (RWE), such as 
with their Sentinel Innovation Center, which will implement data science advances (e.g., 
machine learning, natural language processing) to expand EHR data use for medical 
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product surveillance [126, 127]. Lastly, the exploration of crowdsourcing of data acquisi-
tion and analysis is an area still to be explored and outside the scope of this review [128].

Big Data case studies in neurology

To provide the reader with a sample of existing Big Data solutions for improving patient 
care (beyond those surveyed above), we focus on three separate disorders, PD, SUD, and 
Pain. While Big Data has positively impacted numerous other neuropathologies (e.g., 
[129–132]), we have chosen these three disorders due to their significant societal impact 
and their representation of varying stages of maturity in the application of Big Data to 
Neurology. Finally, we exemplify Big Data’s foreseeable role in therapeutic technology 
via brain stimulation, which is used in the aforementioned disorders and is particularly 
suitable for Precision Medicine.

PD

After AD, PD is the second most prevalent neurodegenerative disorder [133–135]. 
About 10,000 million people live with PD worldwide, with  ~ 1 million cases in the US. 
The loss of dopamine-producing neurons leads to symptoms such as tremor, rigidity, 
bradykinesia, and postural instability [136]. Traditional treatments include levodopa, 
physical therapy, and neuromodulation (including Deep Brain Stimulation (DBS) and 
Noninvasive Brain Stimulation (NIBS) [36, 137, 138].

The increasing significance of Big Data in both PD research and patient care can be 
measured by the rising number of published papers over the past decade (Fig. 3). Several 
national initiatives have been aimed at building public databases to facilitate research. 
For example, the Michael J. Fox Foundation’s Parkinson’s Progression Markers Initiative 
(PPMI) gathers data from about 50 sites in several nations including the US, Europe, 
Israel, and Australia with the objective of identifying potential biomarkers of disease 
progression [139, 140]. A major area of research involving Big Data analytics focuses 
on PD’s risk factors, particularly through genetic data analysis. The goal is to enhance 

Fig. 3 Cumulative number of papers on Big Data over time for different areas, as per Pubmed. The panels 
illustrate when Big Data started to impact the area and allow a comparison across areas As graphs were 
simply created by using the keywords “Big Data” AND “area”, with "area" being “Parkinson’s Disease”, “Addiction”, 
etc. as opposed to using multiple keywords that may be used to describe each field, actual numbers are likely 
to be underestimated
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our comprehension of the causes of the disease and develop preventive treatments. 
The meta-analysis of PD genome-wide association studies by Nalls et al. illustrates this 
approach, which involved the examination of “7,893,274 variants” among “13,708 cases 
and 95,282 controls”. The findings revealed and confirmed “28 independent risk variants” 
for PD “across 24 loci” [141]. Patient phenotyping for treatment outcome prediction is 
another research area that utilizes Big Data analytics. Wong et al.’s paper discusses this 
approach, reviewing the use of structural and functional connectivity studies to enhance 
the efficacy of DBS treatment for PD and other neurological diseases [142]. An emerging 
area of patient assessment is wearable sensors and/or apps for potential real-time moni-
toring of symptoms and response to treatment [143]. A major project in this area is the 
iPrognosis mobile app, which was funded by the EU Research Programme Horizon 2020 
and aimed at accelerating PD diagnosis and developing strategies to help improve and 
maintain the quality of life of PD patients via capturing data during user interaction with 
smart devices, including smartphones and smartwatches [144]. Similar to other diseases, 
PD analysis is also being conducted via social media (e.g., [16, 145]) and EHR [146, 147] 
analyses. See Table 4 and Additional file 1: Table S4 or review articles in [148–154] for 
further examples of Big Data research in PD.

SUD and Opioid Use Disorder (OUD)

The economic and social burden associated with SUDs is enormous. OUD is the leading 
cause of overdoses due to substance abuse disorders, where death rates have drastically 
increased, with over 68,000 people in 2020 [155]. The US economic cost of OUD alone 
and fatal opioid overdoses was $471 billion and $550 billion, respectively, in 2017 [156]. 
Treatments focus on replacement (e.g., nicotine and opioid replacement) and abstinence 
and are often combined with self-help groups or psychotherapy [157, 158].

Like PD, the increasing impact of Big Data in SUD and OUD research and patients 
care can be measured by the increased number of papers published in Pubmed over the 
past decade (Fig. 3). Several national initiatives have been aimed at building public data-
bases to facilitate SUD research. For example, since 2009, the ENIGMA project includes 
a working group specifically focused on addiction, which has gathered genetic, epige-
netic, and/or imaging data from 1000’s of SUD subjects from 33 sites as of 2020 [37]. 
As part of this research, Mackey et al. have been investigating the association between 
dependence and regional brain volumes, both substance-specific and general [159]. Sim-
ilarly, studies implementing data sets from the UK BioBank and 23andMe (representing  
> 140,000 subjects) have been used for developing the Alcohol Use Disorder Identifica-
tion Test (AUDIT) to identify the genetic basis of alcohol consumption and alcohol use 
disorder [160]. Big Data is also being used to devise strategies for retaining patients on 
medication for OUD, as roughly 50% of persons discontinue OUD therapy within a year 
[158]. The Veterans Health Administration is spearheading such an initiative based on 
data (including clinical, insurance claim, imaging, and genetic data) from > 9 M veterans 
[158]. Social media is also emerging as a method to monitor substance abuse and related 
behaviors. For example, Cuomo et al. reported on the results of an analysis of geo-local-
ized Big Data collected in 2015 via 10  M tweets from Twitter regressed with Indiana 
State Department of Health data on non-fatal opioid-related hospitalizations and new 
“HIV cases from the US Centers for Disease Control and Prevention" to examine the 
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Table 4 Sample of PD “Big Data” Studies

We have classified the example citations [116, 120, 123, 140, 141, 144, 180, 191, 265–279] with the classic 5 V’s definition. 
However, these are not always clearly defined in the prospective studies, retrospective studies, or review articles. For 
Volume: We focused on the size of patient cohorts. For Variety: We indicate the different data and specimen types 
derived from the cohorts (note, Variety can also be seen in patient type, tabulated in Volume; and vice versa the data 
type is indicative of volume indicated in Variety). For Velocity: We reported the data Velocity as either ‘F’ for Fixed studies 
(analyzing data from databases or studies which are no longer acquiring data) or ‘O’ for Ongoing studies (analyzing data 

Refs Year Author Vol Var Vel Ver Val

[140] 2010 Dinov PD (263 de novo, 
40 SWEDD), 127 
HC

PPMI imaging, 
genetics, clinical and 
demographic

O A C

[265, 266, 267] 2012 PDBP Cons  > 2000 Parkinso‑
nian, > 250 Lewy 
body

Biospecimen (e.g., 
blood), imaging (e.g., 
fMRI), clinical

O A C

[141] 2014 Nalls “7,893,274 variants 
across 13,708 
cases and 95,282 
controls”

Demographics, 
genetic, clinical

O Mix

[116] 2018 Prince 312 PD subjects & 
236 HC

Demographics, 
clinical, walking, voice, 
finger tapping

F(ApD) A C

[268] 2016 Cohen NA (but includes 
700,000 h smart‑
watch data from 
hundreds of PD)

Clinical, kinematics F(ApD) A C

[144, 269, 270, 271, 
272]

2017 Age Plat. EU  > 4500 Elderly 
Adults

Behaviroal (acitvity), 
location, typing, voice

O(ApD) A C

[273] 2017 Suo 153 PD, 81 HC Clinical, imaging (e.g., 
rs‑fMRI)

F Mix C

[180] 2017 Horn 95 PD patients 
with STN DBS [2 
centers]

Imaging (eg. rs‑fMRI), 
clinical

F A C

[274] 2018 Senthilarumugam 1479 patients (418 
PD, 172 HC, 62 
prodromal, 827 
genetic cohorts)

PPMI imaging, 
genetics, clinical and 
demographic

O A C

[120] 2018 Peter 170 million 
health care–cov‑
ered‑ > 144,018 IBD 
& 720,090 HC claim 
info

Incidence rates, anti‑
TNF Rx rates, ICD‑9 & 
10 codes

F ‑ C

[275] 2019 Sreenivasan 20 early‑stage 
drug‑naïve PD,,16 
HC

Clinical, imaging (e.g., 
MRI, fMRI)

F A C

[123] 2020 Yu 93 PD, 95 HC Clinical, serum VK2 
levels, genetic

F A C

[276] 2021 Wu 5,998 PD or ET 
DBS patients [283 
centers]

Medicare Claims Files 
(eg., reoperation rate)

O A C

[277] 2021 Zhang 60,000 dia‑
logues(40,000 
patients & 3000 
practitioners), 2895 
Demographics

Demographics, 
patient descriptions 
of symptoms

O(SM)* A C

[278] 2021 De Micco 147 drug‑naïve PD, 
38 HC

Clinical, imaging (e.g., 
rs‑fMRI), demograph‑
ics

F A C

[191] 2022 Monte‑Rubio 216 PD & 87 HC [4 
centers]

Imaging(MRI from 
multiple sites)

F Mix C

[279] 2022 Loh 75 PD DBS candi‑
dates

Demographic,clinical, 
imaging (e.g., MRI, 
rs‑fMRI)

F A C
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transition from "opioid prescription abuse to heroin injection and HIV transmission 
risk” [161]. Leveraging Big Data from online content is likely to aid public health practi-
tioners in monitoring SUD. Table 5 and Additional file 1: Table S5 summarize Big Data 
research in SUD and OUD.

Pain

Chronic pain is a widespread condition that affects a significant portion of the global 
population, with an estimated 20% of adults suffering from it and 10% newly diagnosed 
each year [162]. In the US, this condition is most prevalent and affects over 50 million 
adults. The most common pain locations are the back, hip, knee, or foot [163], which 
are chiefly due to neural entrapment syndromes (e.g., Carpal Tunnel Syndrome (CTS)), 
peripheral neuropathy (such as from diabetes), or unknown causes (such as non-specific 
chronic Lower Back Pain (LBP)). Pain treatment remains challenging and includes phys-
ical therapy, pharmacological and neuromodulation approaches [164]. As in other areas 
of Neurology, the Big Data revolution has been impacting pain research and manage-
ment strategies. As reviewed by Zaslansky et al., multiple databases have been created to 
monitor pain, for example the international acute pain registry PAIN OUT, established 
in 2009 with EU funds, to improve the management of surgeries [165, 166]. Besides risk 
factors [167], such as those based on genetic data (e.g., see [168, 169]), pain studies using 
Big Data mainly focus on management of symptoms and improving therapy outcomes. 
Large-scale studies aimed at comparing different treatments [170, 171] or at identifying 
phenotypes in order to classify and diagnose patients (see for example [172]) are particu-
larly common. Table 6 and Additional file 1: Table S6 summarize Big Data research in 
Pain, while Fig. 3 shows the increasing number of published papers in the field.

Example of Big Data impact on treatments and diagnostics‑brain stimulation

In the last twenty years, neurostimulation methods have seen a substantial rise in 
application for neurological disease treatment [36, 138, 173]. Among the most used 
approaches are invasive techniques like DBS [173–176], which utilize implanted devices 
to apply electrical currents directly into the neural tissue and modulate neural activ-
ity. Noninvasive techniques, on the other hand, like those applied transcranially, offer 
stimulation without the risks associated with surgical procedures (such as bleeding or 
infection) [36]. Both invasive and noninvasive approaches have been used for psychiat-
ric and neurological disorders treatments, including those for depression, PD, addiction, 

from databases or clinical studies that are still acquiring data, although it should be noted that the reported results of the 
studies are based on analysis of a fixed data set with the noted volume at the time of the publication). We also indicate if 
any “real-time” data was or will be gathered as part of the study (ApD Mobile App Realtime Dependent; SM Social Media 
Dependent). Where any type of velocity information is given, and a velocity calculation can be made, it is provided in the 
Additional file 1: Table S4 (and noted herein with a *). For Veracity: M Manual verification; A Data verified through automated 
analytical process (AI, statistical methods); and Mix Automated Analytical and Manual (or semi-automated). However, 
all experimental data veracity is dependent on the methodological limitations of the core studies; thus, we also provide 
examples of variability or error in the Additional file 1: Table S4. For Value: As neither study costs are disclosed, health 
economics assessments completed, nor a monetary cost assigned in the sale or purchase of any of the above data sets, 
we report "P" for Preclinical or “Cl” for Clinical value, dependent on the study species and data use. The limitations to these 
definitions and study information availability are described in the text (e.g., see “Proposed Solutions”). In the Additional file 
Section, Additional file 1: Table S4, we also include information on the tools used, database source(s), and methodological 
limitations. For Year we indicate the year of the earliest publication

Table 4 (continued)



Page 29 of 53Dipietro et al. Journal of Big Data  2023, 10(1):116 

Table 5 Sample of SUD and OUD “Big Data” Studies

Refs Year Author Vol Var Vel Ver Val

[280] 2016 Kohno 39 methamphetamine 
(MA)‑dependent subjects 
and 44 HC

Clinical, Imaging (e.g., rs‑
fMRI, PET)

F A C

[203] 2016 Mackey  > 10,000 subjects (review) Imaging (e.g., MRI), genetic O A C

[16] 2017 Kim NA Social media‑based metrics 
(e.g., number of likes on 
Facebook groups)

NA NA C

[160] 2017 Sanchez‑Roige  > 120,000 patients Alcohol Use Disorders 
Identification Test (AUDIT), 
genetics

F A C

[281] 2018 Ipser 46 MA‑dependent subjects 
and 26 HC

Clinical, Imaging (e.g., 
rs‑fMRI)

F A C

[282] 2018 Lisdahl 12,000 youth (21 US sites) 
[283]

Cognitive, clinical (SUD 
focus), culture & environ‑
ment, imaging (e.g., MRI), 
and bioassays

O A C

[284] 2018 Sun 78 heroin abusers and 79 HC Imaging (e.g., DTI), clinical, 
and genetic

F A C

[159] 2019 Mackey 23 labs, 2,140 SUD, 1100 HC Imaging (e.g., MRI), clinical 
for alcohol, nicotine, cocaine, 
methamphetamine, or can‑
nabis dependent patients

O A C

[285] 2019 Yip 74 methadone‑maintained, 
cocaine‑dependent subjects

Imaging (e.g., fMRI), data 
from Monetary Incentive 
Delay task, clinical

F A C

[286] 2019 Young NA‑This is a viewpoint paper Social media posts, location, 
cannabis outcomes

NA NA C

[161] 2020 Cuomo 10 M tweets‑ > 257 tweets 
about opioids, IV Drug Use 
or HIV hospitalizations and 
HIV cases

Twitter data, hospitalizations, 
and new HIV cases

F(SM) Mix C

[287] 2020 Segal “10 M medical insurance 
claims” “from 550,000 patient 
records”

Diagnosis & procedures, 
medications, episode counts

O A C

[122] 2020 Slade 11,778,912 records, 118,063 
with adolescent ADHD 
medication

Longitudinal clinical and 
medication hx, demograph‑
ics

F A PC

[288] 2020 Zhou  > 10,000 European ancestry 
OUD; > 70,000 opioid‑
exposed control
 > 5000 African ancestry 
OUD; > 25,000 opioid‑
exposed control

Genetic, clinical O A

[37] 2020 Thompson 33 sites, 12,347 individu‑
als (including 2277 adults 
with SUD (alcohol, nicotine, 
cocaine, MA, or cannabis)

Imaging (e.g., MRI), clinical, 
genetic, and epigenetic

O A C

[289] 2021 Flores 19,721 tweets identified with 
opioid keywords across 7 
US cities

Tweets, geolocation O(SM) Mix C

[290] 2021 Gelernter NA Clinical, genetics NA NA C

[291] 2021 Liu 31 heroin users Clinical, imaging (e.g., fMRI 
during visual cues)

F A C

[292] 2021 Purushothaman “56,464 Instagram posts and 
comments”, including 719 
posts containing “suicide, 
substance use and/or mental 
health”

Instagram posts O(SM)* Mix C

[293] 2021 Rosetti 660 Alcohol Dependence, 
326 controls

Imaging (e.g., DTI, MRI), clini‑
cal (e.g., drug use)

O A C
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and pain. While High Performance Computing has been used in the field for some time 
(see Fig. 4), Big Data applications have just recently started to be explored in brain stim-
ulation. For example, structural and functional connectome studies have yielded new 
insights into the potential targets for stimulation, in the quest to enhance stimulation 
effectiveness. Although DTI has optimized the definition of targets for DBS and non-
invasive stimulation technologies since mid-2000 [177–179], Big Data and advances in 
computational methods have enabled new venues for DTI to further improve stimu-
lation, which have enhanced clinical results. For example, in 2017, Horn et al. utilized 
structural and functional connectivity data of open-source connectome databases 
(including healthy subjects connectome from the Brain Genomics Superstruct Project, 
the HCP, and PD connectome from the PPMI) to build a computational model to predict 
outcomes following subthalamic nucleus modulation with DBS in PD. As a result, Big 
Data allowed the identification of a distinct pattern of functional and structural connec-
tivity, which independently accurately predicted DBS response. Additionally, the find-
ings held external validity as connectivity profiles obtained from one cohort were able to 
predict clinical outcomes in a separate DBS center’s independent cohort. This work also 
demonstrated the prospective use of Big Data in Precision Medicine by illustrating how 
connectivity profiles can be utilized to predict individual patient outcomes [180]. For a 
more comprehensive review of application of functional connectome studies to DBS, the 
reader is referred to [142], where Wong et al. discuss application of structural and func-
tional connectivity to phenotyping of patients undergoing DBS treatment and prediction 
of DBS treatment response. Big Data is also expected to augment current efforts in the 
pursuit of genetic markers to optimize DBS in PD (e.g., [148, 181, 182]).

Table 5 (continued)

Refs Year Author Vol Var Vel Ver Val

[294] 2021 Tretter NA NA NA NA C

[158] 2022 Hayes  > 9 M veterans Clinical, insurance claims, 
imaging (e.g., fMRI), genetics

O A C

[295] 2022 Li 46 MA‑dependent subjects 
and 40 HC

Clinical, imaging (e.g., 
rs‑fMRI)

F A C

[296] 2022 Ottino‑Gonzalez  > 700 subjects (cocaine 
(n = 147), MA (n = 132) nico‑
tine (n = 189), and HC = 333)

Imaging (DTI, MRI), clinical 
(e.g., drug use)

O A C

We have classified the example citations [16, 122, 159–161, 203, 280–282, 284–297] with the classic 5 V’s definition. 
However, these are not always clearly defined in the prospective studies, retrospective studies, or review articles. For Volume 
(Vol): We focused on the size of patient cohorts. For Variety: We indicate the different data and specimen types derived from 
the cohorts (note, Variety can also be seen in patient type, tabulated in Volume; and vice versa the data type is indicative 
of volume indicated in Variety). For Velocity (Vol): We reported the data Velocity as either ‘F’ for Fixed studies (analyzing data 
from databases or studies which are no longer acquiring data) or ‘O’ for Ongoing studies (analyzing data from databases or 
clinical studies that are still acquiring data, although it should be noted that the reported results of the studies are based on 
analysis of a fixed data set with the noted volume at the time of the publication). We also indicate if any “real-time” data was 
or will be gathered as part of the study (SM Social Media Dependent). Where any type of velocity information is given, and a 
velocity calculation can be made, it is provided in the Additional file 1: Table S5 (and noted herein with a *). For Veracity (Vol): 
M Manual verification, A Data verified through automated analytical process (AI, statistical methods), and Mix Automated 
Analytical and Manual (or semi-automated). However, all experimental data veracity is dependent on the methodological 
limitations of the core studies; thus, we also provide examples of variability or error in the Additional file 1: Table S5. For 
Value (Vol): As neither study costs are disclosed, health economics assessments completed, nor a monetary cost assigned in 
the sale or purchase of any of the above data sets, we report “P” for Preclinical, “C” for Clinical value or “PC” for Preclinical and 
Clinical, dependent on the study species and data use. The limitations to these definitions and study information availability 
are described in the text (e.g., see “Proposed Solutions”). In the Additional file 1, Additional file 1: Table S5, we also include 
information on the tools used, database source(s), and methodological limitations. For Year we indicate the year of the 
earliest publication. hx history



Page 31 of 53Dipietro et al. Journal of Big Data  2023, 10(1):116 

Table 6 Sample of Pain “Big Data” Studies

We have classified the [111, 165–172, 298, 299, 301–311] citations with the classic 5 V’s definition. However, these are not 
always clearly defined in the prospective studies, retrospective studies, or review articles. For Volume (Vol): We focused on 
the size of patient cohorts. For Variety (Vol): We indicate the different data and specimen types derived from the cohorts 
(note, Variety can also be seen in patient type, tabulated in Volume; and vice versa the data type is indicative of volume 
indicated in Variety). For Velocity (Vol): We reported the Data Velocity as either ‘F’ for Fixed studies (analyzing data from 
databases or studies which are no longer acquiring data) or ‘O’ for Ongoing studies (analyzing data from databases or 
clinical studies that are still acquiring data, although it should be noted that the reported results of the studies are based 
on analysis of a fixed data set with the noted volume at the time of the publication). We also indicate if any “real-time” data 
was or will be gathered as part of the study (HD Hospital upload Dependent). Where any type of velocity information is 
given, and a velocity calculation can be made, it is provided in the Additional file 1: Table S6 (and noted herein with a *). 
For Veracity (Vol): M Manual verification, A Data verified through automated analytical process (AI, statistical methods), and 

Refs Year Author Vol Var Vel Ver Val

[298] 2013 Kim 18,590 patients Insurance disease/procedure 
codes, tracking recurring 
surgical methods (e.g., fusion, 
laminectomy, open and endo‑
scopic discectomy, nucleolysis)

F A C

[165] 2015 Zaslansky  > 35,000 patients [299, 300] Surveys, medical records, ward 
practices

O (HD) A C

[169] 2016 Ultsch 535 pain genes Genes, pain types (e.g., chronic) F A C

[301] 2017 Taghva 178 patients with SCS Clinical, electrode location, 
paresthesia map, SCS programs

F Mix C

[168] 2017 Lotsch 4834 database‑queried drugs, 
20 genes

Genes, syndromes, analgesic 
drugs

F A C

[302] 2017 Nijs NA NA NA NA C

[303] 2017 Nomura 51,000 EHRs Clinical, sociodemographic, 
medication hx

O Mix C

[304] 2018 Min 2 M AEs:64,354 associated to 
painkillers

FDA’s Adverse Events Report‑
ing System Reports

O Mix C

[172] 2018 deVries 102 subjects (34 with radio‑
graphic signs of hip OA)

Clinical, imaging (e.g., MRI), gait 
biomechanics, & bone shape 
analysis

F Mix C

[305] 2018 Bomberg 26,733 German Network for 
Regional Anesthesia registry 
case reports

Clinical, imaging (e.g., ultra‑
sound), block site, surgical 
specialty

F A C

[306] 2020 Kwon 514,866 Health 
Records– > 204,066 Male 
records [160, 105 smokers, 43, 
961 nonsmokers]

Clinical (e.g., LBP diagnosis), 
self‑reported recreational drug 
use

O Mix C

[167] 2020 Mukasa  > 500,000 participants 
extracted from Korean National 
Health Insurance Service 
Database

Clinical, alcohol consumption, 
physical exercise, drug hx

O A C

[307] 2020 Schnabel 50,005 post‑op patients Clinical, Surgery parameters F A C

[142] 2020 Wong NA NA F A C

[166] 2021 Muller‑Wirtz NA NA NA NA C

[308] 2021 Yu 837 video‑assisted thoraco‑
scopic surgery cases

Clinical, medication hx F A C

[309] 2021 Huie 159 rats Genes, behavioral and histo‑
logical data, proteins

F A P

[310] 2021 Kringel 30/28 patients with high/com‑
mon opioid dosing

Genetics, opioid dosage F A C

[170] 2021 Wu 650 patients (n = 275 decom‑
pression group, n = 375 fusion 
group) (from 6 RCTs)

Demographics, treatment 
outcome and complications, 
clinical variables (e.g., VAS 
pain)‑ Classic Meta‑Analysis

F Mix C

[171] 2021 Lin 84 OA patients (42 tretinoin, 42 
sodium glutamate)

Clinical, gait kinematics (video‑
based)

F Mix C

[311] 2022 Anis “681 patients with IC/BPS” and 
3376 controls

Clinical variables, demograph‑
ics, diagnoses

F Mix C
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Compared to DBS, studies on NIBS have been sparser. However, the use of Big Data 
methodologies has facilitated the improvement and standardization of established 
TMS techniques (i.e., single and paired pulse), which had large inter-subject variability, 
by identifying factors that affect responses to this stimulation in a multicentric sample 
[184]. A similar paradigm was followed to characterize theta-burst stimulation [185]. 
Regarding disease, a large multisite TMS study (n = 1188), showed that resting state 
connectivity in limbic and frontostriatal networks can be used for neurophysiological 
subtype classification in depression. Moreover, individual connectivity evaluations pre-
dicted TMS therapy responsiveness better than isolated symptomatology in a subset of 
patients (n = 154) [17].

Mix Automated Analytical and Manual (or semi-automated). However, all experimental data veracity is dependent on the 
methodological limitations of the core studies; thus, we also provide examples of variability or error in the Additional file 1: 
Table S6. For Value (Vol): As neither study costs are disclosed, health economics assessments completed, nor a monetary 
cost assigned in the sale or purchase of any of the above data sets, we report "P" for Preclinical, “C” for Clinical value or “PC” 
for Preclinical and Clinical, dependent on the study species and data use. The limitations to these definitions and study 
information availability are described in the text (e.g., see “Proposed Solutions”). In the Additional file 1, Additional file 1: 
Table S6, we also include information on the tools used, database source(s), and methodological limitations. What should be 
noted in several of the studies, particularly with smaller patient samples, is the liberal use the “Big Data” classification by the 
authors (e.g., contrast [111] which is a classic meta-analysis with [171] which implements multimodal data sets (e.g., Clinical, 
imaging, kinematics) and Big Data analytic methods). For Year we indicate the year of the earliest publication.  SCS Spinal 
cord stimulation, OA osteoarthritis, IC interstitial cystitis, BPS bladder pain syndrome, VAS visual analog scale

Table 6 (continued)

Fig. 4 High Performance Computing solutions for modeling brain stimulation dosing have been explored 
for well over a decade. The above figure is adapted from [183], where Sinusoidal Steady State Solutions of the 
electromagnetic fields during TMS and DBS were determined from MRI derived Finite Element Models based 
on frequency specific tissue electromagnetic properties of head and brain tissue. The sinusoidal steady state 
solutions were then transformed into the time domain to rebuild the transient solution for the stimulation 
dose in the targeted brain tissues. These solutions were then coupled with single cell conductance‑based 
models of human motor neurons to explore the electrophysiological response to stimulation. Today, high 
resolution patient specific models are being developed (see below), implementing more complicated 
biophysical modeling (e.g., coupled electromechanical field models) and are being explored as part of large 
heterogenous data sets (e.g., clinical, imaging, and movement kinematic) to optimize/tune therapy
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Proposed solutions
As reviewed above, Big Data has been improving the care of patients with neurologi-
cal diseases in multiple ways. It has elevated the value of diverse and often incomplete 
data sources, enhanced data sharing and multicentric studies, streamlined multi-
disciplinary collaboration, and improved the understanding of neurological disease 
(diagnosis, prognosis, optimizing current treatment, and helping develop novel ther-
apies). Nevertheless, existing methodologies suffer from several limitations, which 
have prevented the full realization of Big Data’s potential in Neuroscience and Neu-
rology. Below, we discuss the limitations of current approaches and propose possible 
solutions.

Full exploitation of available resources

Many Neuroscience and Neurology purported “Big Data” studies do not fully implement 
the classic 3  V’s (i.e., “Volume, Variety, and Velocity”) or 5  V’s (i.e., “Volume, Variety, 
Velocity, Veracity and Value”) and/or are characterized by the high heterogeneity in 
which the V’s can be interpreted. For example, in “Big Data” Neuroscience and Neurol-
ogy studies, Volume sometimes refers to studies with hundreds of thousands of patients’ 
multidimensional datasets and other times to studies with 10’s of patients’ unidimen-
sional datasets. Value, a characteristic of Big Data typically defined in financial terms in 
other Big Data fields, is not usually considered in Big Data studies in Neuroscience and 
Neurology. In this paper, across studies and databases, we adopted a measure of clini-
cal or preclinical Value where financial information was not given (see Tables 2–6 and 
Additional file 1: Tables S2–S6). Data Veracity is not standardized in Neuroscience or 
Neurology and thus, we focused our analysis on both typical data Veracity measures and 
potential experimental sources of error in the data sets from studies that we reviewed 
above. In terms of Variety, few clinical studies make use of large multimodal data sets 
and even fewer are acquired and processed at a rapid Velocity. Data Velocity information 
is sparsely reported throughout the literature, but its clear reporting would enable a bet-
ter understanding and refinement of methodologies through the research community.

While these limitations may be simply labeled as semantics, we believe that these defi-
cits often result in Big Data analytics being underexploited, which limits the potential 
impact of a study and possibly increases its cost. Thus, aligning studies in Neuroscience 
and Neurology to the V’s represents an opportunity to leverage the knowledge, technol-
ogy, analytics, and principles established in fields that have been using Big Data more 
extensively, thereby improving the Big Data studies in Neurology and Neuroscience. 
Identifying whether a study is suitable for using Big Data approaches makes it easier to 
choose the best tools for the study and exploit the plethora of resources (databases, soft-
ware, models, data management strategies) that are already available (part of which we 
have reviewed herein, see for example Tables 1–2 and Additional file 1: Tables S1, S2).

Tools for data harmonization

The overall lack of tools for data harmonization (particularly for multimodal datasets 
used in clinical research and care) is a significant issue of current Big Data studies. Crea-
tion of methods for sharing data and open-access databases has been a priority of Big 
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Data initiatives since their inception. Data sharing is required by many funding agencies 
and scientific journals, and publicly available repositories have been established. While 
these repositories have become more common and organized (see Sect. “Existing Solu-
tions”), there has been less emphasis on the development of tools for quality control, 
standardization of data acquisition, visualization, pre-processing, and analysis. With 
the proliferation of initiatives promoting data sharing and pooling of existing resources, 
the need for better tools in these areas is becoming increasingly urgent. Despite efforts 
made by the US Department of Health and Human Service to establish standardized 
libraries of outcome measures in various areas, such as Depression [186, 187], and by 
the NIH that has spearheaded Clinical Trials Network (CTN)-recommended Common 
Data Elements (CDEs) for use in RCTs and EHRs [188], more work is needed to ensure 
data harmonization across not only clinical endpoints but also across all data types that 
typically comprise Big Data in Neuroscience and Neurology. For example, in neuroimag-
ing, quality control of acquired images is a long-standing problem. Traditionally, this is 
performed visually, but in Big Data sets, large volumes make this approach exceedingly 
expensive and impractical. Thus, methods for automatic quality control have become 
in high demand [189]. Quality control issues are compounded in collaborative datasets, 
where variability may stem from multiple sources. In multisite studies, a typical source 
of variability arises from the use of different MRI scanners (i.e., from different manufac-
turers, with different field strengths or hardware drifts [190, 191]). Variability can also 
arise from data pre-processing techniques and pipelines. For example, the pre-process-
ing pipeline of MRI data involves a variety of steps (such as correcting field inhomoge-
neity and motion, segmentation, and registration) and continues to undergo refinement 
through algorithm development, ultimately affecting reproducibility/Veracity of study 
results. As an additional example, while working on data harmonization methods in 
genome-wide association studies Chen et. al. have noted similar problems where an 
“aggregation of controls from multiple sources is challenging due to batch effects, dif-
ficulty in identifying genotyping errors and the use of different genotyping platforms” 
[192].

Some progress towards harmonization of data and analysis procedures [193] has been 
enabled by the availability of free software packages that incorporate widely accepted 
sets of best practices, see, e.g., Statistical Parametric Mapping (SPM), FreeSurfer, FMRIB 
Software Library (FSL), Analysis of Functional NeuroImages (AFNI), or their combina-
tion (such as Fusion of Neuroimaging Processing (FuNP) [194]). In addition, open-access 
pre-processed datasets have been made available (see Table  2 and Additional file  1: 
Table S2); for example, the Preprocessed Connectome Project has been systematically 
pre-processing the data from the International Neuroimaging Data-sharing Initiative 
and 1000 Functional Connectomes Project [195, 196] or GWAS Central (Genome-
wide association study Central) which “provides a centralized compilation of summary 
level findings from genetic association studies” [197]. As another example, EU-funded 
NeuGRID and neuGRID4You projects included a set of analysis tools and services for 
neuroimaging analysis [106]. Development of software like Combat (which was ini-
tially created to eliminate batch effects in genomic data [198] and subsequently adapted 
to handle DTI, cortical thickness measurements [199], and functional connectivity 
matrices [200]) can also help researchers harmonize data from various types of study, 
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regardless of whether they are analyzing newly collected or retrospective data gathered 
with older standards. For more detailed discussions on efforts to address data harmo-
nization challenges in neuroimaging, the reader is directed to the review papers of Li 
et al. [12], Pinto et al. [201], and Jovicich et al. [202]. In clinical studies using data differ-
ent from neuroimaging (and/or biospecimen sources), standardization of clinical assess-
ments and measures of outcome across multiple sites has also proven to be challenging. 
For example, as shown by the ENIGMA study group, multi-center addiction studies face 
notable methodological challenges due to the heterogeneity of measurements for sub-
stance consumption in the context of genomic studies [203].

Developing tools to harmonize datasets across different sources and data types (e.g., 
based on machine learning [191]) for Neurology-based clinical studies might allow 
researchers to exploit Big Data to their full potential. Tools for complex data visualiza-
tion and interactive manipulation are also needed to allow researchers from different 
backgrounds to fully understand the significance of their data [204]. For studies that are 
in the design phase, identifying whether tools for data harmonization are available or 
developing such tools in an early phase of the study will allow researchers to enhance the 
Veracity, and ultimately the impact of the study, while cutting costs.

New technologies for augmented study design and patient data collection

Traditional clinical studies are associated with several recognized limitations. However, a 
few recent Big Data studies have shown potential in mitigating some of these limitations.

First, traditional clinical studies, particularly RCTs which serve as the standard in clin-
ical trials, are often expensive and inefficient. The integration of Big Data, particularly in 
the form of diverse data types or multicenter trials, can further amplify these issues and 
lead to exponential increases in costs. Thus, there is a pressing need for tools that can 
optimize resources and contain expenses. Virtual trials are a promising but underuti-
lized approach that can potentially enhance study design and address cost-related chal-
lenges. To achieve this, health economics methods could be used to compare different 
scenarios, such as recruitment strategies or inclusion criteria, and select the most effec-
tive one prior to initiating an actual clinical study. These methods can also assign quan-
titative values to data sets or methods [205]. For studies testing interventions, virtual 
experiments that use simulations can be performed. For example, in the area of brain 
stimulation, virtual DBS is being explored [206] to supplement existing study design. 
Similarly, for NIBS, our group and others are building biophysics-based models that can 
be used to personalize interventions [58].

Second, traditional clinical studies, including RCTs, often suffer from limited data 
and limited generalizability of conclusions. Collected data is often too limited to fully 
account for highly multidimensional and heterogenous neurological conditions. PD is 
an example of this, where patients’ clinical presentation, progression and response to 
different treatment strategies can vary significantly, even within a single day [153]. Lim-
ited external validity due to discrepancies between the study design (patient inclusion 
criteria) and real-world clinical scenarios, as well as limited generalizability of findings 
to different time points beyond those assessed during the study are other known limita-
tions. Relaxing study criteria and increasing timepoints could provide more data, but 
often at the expense of increased patient burden and study cost. Mobile applications can 
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potentially help overcome some of these limitations while offering other advantages. 
For example, by allowing a relatively close monitoring of patients mobile applications 
may help capture features of symptoms not easily observable during hospital visits. This 
richer dataset could be used to design algorithms for patient classification/phenotyp-
ing or medication tuning. However, data collected via mobile technology is often lim-
ited to questionnaires or by the type of data that can be collected with sensors that can 
be embedded in mobile/wearable devices (typically accelerometers in motor disorders 
studies). Leveraging Big Data in this context would require the development of technol-
ogy to monitor patients outside the time and space constraints of a traditional clinical 
study/RCT (e.g., home, or other unstructured environments); such technology should be 
sufficiently inexpensive to be useful at scale, while still providing reliable and clinically 
valuable data. Other related approaches include additional nontraditional data sources, 
such as information gathered from Payer Databases, EHR, or social media particular to a 
disease and treatment to support conventional findings. For example, the FDA is poised 
to pursue Big Data approaches to continue to assess products through their life cycle to 
"fill knowledge gaps and inform FDA regulatory decision-making" [207].

Finally, clinical studies might be subject to bias due to important clinical information 
being missing. This is particularly true for studies that rely on databases for billing or 
claim purposes, part of which we have reviewed herein, as they use data which were 
not collected primarily for research (see Additional file 1: Tables S4–S6). A possible way 
to overcome this limitation is to more directly couple payer data with clinical data and 
correlating the results. This approach is still mostly theoretical: modern patient tracking 
systems like Epic are beginning to offer billing code data within the EHR, but the system 
was not designed for population-based analysis. Ideally, information such as payer data 
can be used for exploration purposes and results of the analysis can guide the design of 
more rigorous studies aimed at testing specific clinical hypotheses.

Tools for facilitating interdisciplinary research

As the use of Big Data continues to expand across various fields, there is a growing need 
for better tools that can facilitate collaborations among professionals with different back-
grounds. A project that exemplifies this need is the American Heart Association (AHA) 
Precision Medicine Platform [208]. This platform aims to "realize precision cardiovas-
cular and stroke medicine" by merging large, varying datasets and providing analytical 
tools and tutorials for clinicians and researchers. Despite the strong technological and 
community-based support of this platform, major challenges related to scalability, secu-
rity, privacy, and ease of use have prevented it from being integrated into mainstream 
medicine, subsequently obstructing its full exploitation.

Creating tools to visualize and interactively manipulate multidimensional data (e.g., 
borrowing from fields such as virtual or augmented reality that already use these tools 
[209]) might help overcome this type of issue.

Future directions

We have identified current limitations in the application of Big Data to Neuroscience 
and Neurology and have proposed general solutions to overcome them. One area where 
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the limitations in Big Data, as currently defined and implemented, could be addressed, 
and make a major impact is in the development of personalized therapies and Preci-
sion Medicine. In this field, the acceleration Big Data could enable has not yet occurred 
[210]. Unlike a traditional one-size-fits-all approach, Precision Medicine seeks to opti-
mize patient care based on individual patient characteristics, including genetic makeup, 
environmental factors, and lifestyle. This approach can help in preventing, diagnosing, 
or treating diseases. Precision oncology has been a driver of Precision Medicine for 
approximately two decades [211] and exploited availability of big, multi-omics data to 
develop data-driven approaches to predict risk of developing a disease, help diagnosis, 
identify patient phenotypes, and identify new therapeutic targets. In Neurology, availa-
bility of large neuroimaging, connectivity, and genetics datasets has opened the possibil-
ity for data-driven approaches in Precision Medicine. However, these approaches have 
not yet been fully integrated with clinical decision making and personalized care. Diag-
nosis and treatment are still often guided by only clinical symptoms. Currently, there are 
no widely used platforms, systems, or projects that analytically combine personalized 
data, either to generate personalized treatment plans or assist physicians with diagnos-
tics. However, the AHA Precision Medicine Platform [208] aims to address this gap by 
providing a means to supplement treatment plans with personalized analytics. Despite 
the strong technological and community-based support of this platform, integration of 
the software into mainstream medicine has been challenging, as discussed above (see 
SubSect. “Future Directions” in Sect. “Proposed Solutions").

As a potential way to acquire large real-time multimodal data sets for use in per-
sonalized care in the movement disorder, pain, and rehabilitation spaces we have been 
developing an Integrated Motion Analysis Suite (IMAS), which combines motion cap-
ture technology, inertial sensors (gyroscope/accelerometers), and force sensors to assess 
patient movement kinematics from multiple body joints as well as kinetics. The hard-
ware system for movement kinematic and kinetic data capture is underpinned with 
an AI driven computational system with algorithms for data reduction, modeling, and 
prediction of clinical scales, prognostic potential for motor recovery (e.g., in the case 
of injury such as stroke), and response to treatment. Ultimately, the low-cost hardware 
package is coupled to computational packages to holistically aid clinicians in motor 
symptom assessments. The system is currently being investigated as part of a stroke 
study [212] and supporting other studies in the movement disorder [213] and Chronic 
Pain [214, 215] spaces. As for the Big Data component, the system has been designed for 
different data streams and systems to be networked and interconnected. As a result, data 
such as multiple patients’ kinematic/kinetic, imaging, EHR, payer database, and clini-
cal data can be longitudinally assessed and analyzed to develop a continually improving 
model of patient disease progression. This approach also serves as a method to personal-
ize and optimize therapy delivery and/or predict response to therapy (see below).

Our group is also developing a new form of NIBS, electrosonic stimulation (ESS-
tim™) [138], and testing it in multiple areas (e.g., diabetic neuropathic pain [215], LBP, 
CTS pain [214], PD [138], and OUD [216]). While the RCTs that are being conducted 
for the device are based on classic safety and efficacy endpoints, several of our stud-
ies are also focused on developing models of stimulation efficacy through combined 
imaging data, clinical data, kinematic data, and/or patient specific biophysical models 
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of stimulation dose at the targeted brain sites to identify best responders to therapy 
(e.g., in PD, OUD, and Pain). These computational models are being developed with 
the goal of not only identifying the best responders but as a future means to person-
alize therapy based on the unique characteristics of the individual patients [58] and 
multimodal disease models. It is further planned that the IMAS system, with its Big 
Data backbone, will be integrated with the ESStim™ system to further aid in personal-
izing patient stimulation dose in certain indications (e.g., PD, CTS pain).

Finally, our group is working on developing a trial optimization tool based on health 
economics modeling (e.g., Cost Effective Analysis (CEA)) [205, 217]. The software we 
are generating allows for a virtual trial design and the predicting of the cost effective-
ness of the trial. We anticipate that the software could also be implemented to quan-
tify data set values in health economic terms or used to quantify non-traditional data 
for use in RCT design or assessment (e.g., for the OUD patient population CEA meth-
odologies could be used to quantify the impact of stigma on the patient, caregiver, or 
society with traditional (e.g., biospecimen) and non-traditional data sets (e.g., EHR, 
social media)). Ultimately, we see all these systems being combined into a personal-
ized treatment suite, based on a Big Data infrastructure, whereby the multimodal data 
sets (e.g., imaging, biophysical field-tissue interaction models, clinical, and biospeci-
men data) are coupled rapidly to personalize brain stimulation-based treatments in 
diverse and expansive patient cohorts (see Fig. 5).

Elaboration
The Section  “Existing Solutions” has reviewed the influence of Big Data on Neurosci-
ence and Neurology, specifically in the context of advancing treatments for neurologi-
cal diseases. Our analysis spans the last few decades and includes a diverse selection of 

Fig. 5 Schematic of our suite under development for delivering personalized treatments based on a Big 
Data infrastructure, whereby multimodal data sets (e.g., imaging, biophysical field‑tissue interaction models, 
clinical, biospecimen data) can be coupled to deliver personalized brain stimulation‑based treatments in a 
diverse and expansive patient cohort. Each integrated step can be computationally intensive (e.g., see Fig. 4 
for simplified dosing example for exemplary electromagnetic brain stimulation devices)
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cutting-edge projects in Neuroscience and Neurology that illustrate the continuing shift 
towards a Big Data-driven paradigm; also, it reveals that certain areas of neurological 
treatment development have not fully embraced the potential of the Big Data revolution, 
as demonstrated through our comprehensive review of clinical literature in Sect. “Pro-
posed Solutions”.

One sign of this gap is that there are differences between the definition of Big Data and 
the use the 3 V’s or 5 V’s across studies that are considered “Big Data” studies in Neuro-
science and Neurology literature. Several definitions can be found in the literature from 
these fields. For example, van den Heuvel et al. noted that the term “Big Data” includes 
many data types, such as “observational study data, large datasets, technology-generated 
outcomes (e.g., from wearable sensors), passively collected data, and machine-learning 
generated algorithms” [153]; Muller-Wirtz and Volk stated that “Big Data can be defined 
as Extremely large datasets to be analyzed computationally to reveal patterns, trends, 
and associations, especially relating to human behavior and interactions” [166]; and Eck-
ardt et al. referred to Big Data science as the “application of mathematical techniques 
to large data sets to infer probabilities for prediction and find novel patterns to enable 
data driven decisions” [218]. Other definitions also include the techniques required for 
data analysis. For example, van den Heuvel et al. stated that “these information assets 
(characterized by high Volume, Velocity, and Variety) require specific technology and 
analytical methods for its transformation into Value” [153]; and according to Banik and 
Bandyopadhyay, the term “Big Data encompassed massive data sets having large, more 
varied, and complex structure with the difficulties of storing, analyzing, and visualizing 
for further processes or results” [219]. Thus, what constitutes Big Data in Neuroscience 
and Neurology is not established nor always aligned with the definition of Big Data out-
side of these fields.

In addition, in the fields of Neuroscience and Neurology, often some V’s are incom-
pletely considered or even dismissed. At present, Neuroscience study data from “Big 
Data” studies are often just big and sometimes multimodal, and Neurology studies with 
"Big Data" are often characterized by small multimodal datasets. Incorporating all the 
V’s into studies might spur innovation. The area of research focused on OUD treatments 
is a particularly salient example. Adding “Volume” to OUD studies by integrating OUD 
patient databases, as it has been done for other diseases, could lead to better use of Big 
Data techniques and ultimately help understand the underlying disease and develop new 
treatments (e.g., see the work of Slade et. al. discussed above [122]). Similarly, adding 
“Velocity” to OUD studies by developing technology for increasing dataflow (e.g., inte-
grating clinical data collected during hospital visits with home monitoring signals col-
lected with mobile apps) might lead to using Big Data techniques for uncovering data 
patterns that could ultimately translate into development of new, personalized OUD 
treatments. In this vein, Variety in OUD studies could significantly add to the clinical 
toolbox of caregivers or researchers developing new technologies. For example, infovel-
liance of social media combined with machine learning algorithms, such as those devel-
oped for use during the COVID Pandemic [220], could be used to assess the stigma 
associated with potential treatment options for OUD patients, and quantify potential 
methods to lower patient treatment hesitancy. As for data Veracity, additional metrics 
of veracity could be garnered from clinical data sets to further assessment of the internal 
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and external validity of trial results. For example, in OUD, Big Data sets could be used 
to assess the validity of self-reported opioid use, such as data gathered from drug dia-
ries, in reference to other components of the Data Set (e.g., social media presence, sleep 
patterns, biospecimens, etc.). Finally, while we characterized Value herein as direct or 
indirect in terms of clinical utility, one could assign economic value to the Neurosci-
ence and Neurology data sets through health economics methods. For example, in the 
OUD patient population, CEA or cost benefit analysis methodologies could be used to 
quantify the value of the data in health economics terms and guide policy makers in the 
design of studies or programs for aiding OUD treatment.

Finally, the rapid growth of Big Data in Neuroscience and Neurology has brought to 
the forefront ethical considerations that must be addressed [221, 222]. For example, a 
perennial concern is data security and how to best manage patient confidentiality [223]. 
In the US, current laws and regulations require that SUD treatment information be kept 
separate from patient’s EHR, which can limit Big Data approaches for improving OUD 
treatment [158]. The cost versus benefit of making the information more accessible 
poses ethical challenges as there are risks to trying to acquire such sensitive protected 
health information (PHI). As of November 28, 2022, the US Health and Human Services 
Department, through the Office for Civil Rights (OCR) and the Substance Abuse and 
Mental Health Services Administration (SAMHSA) put forth proposed modifications to 
rules and has requested public comments on the issue [224]. Ultimately, as the use of Big 
Data in the treatment of neurological patients progresses, such challenges will need to 
be addressed in a manner which provides the most benefit to the patient with minimal 
risks [225, 226].

Conclusion
This paper has provided a comprehensive analysis of how Big Data has influenced Neu-
roscience and Neurology, with an emphasis on the clinical treatment of a broad sample 
of neurological disorders. It has highlighted emerging trends, identified limitations of 
current approaches, and proposed possible methodologies to overcome these limita-
tions. Such a comprehensive review can foster further innovation by enabling readers to 
identify unmet needs and fill them with a Mendeleyevization-based approach; to com-
pare how different (but related) areas have been advancing and assess whether a solu-
tion from an area can be applied to another (Cross-disciplinarization); or to use Big Data 
to enhance traditional solutions to a problem (Implantation) [227]. This paper has also 
tackled the issue of the application of the classic 5 V’s or 3 V’s definitions of Big Data in 
Neuroscience and Neurology, an aspect that has been overlooked in previous literature. 
Review of the literature under this perspective has contributed to highlight the limita-
tions of current Big Data studies which, as a result, rarely take advantage of AI meth-
ods typical of Big Data analytics. This can significantly impact treatment of neurological 
disorders, which are highly heterogeneous in both symptom presentation and etiology, 
and would benefit significantly from the application of these methods. At the same time, 
assessing the missing V’s of Big Data can provide the basis to improve study design. In 
light of our findings, we recommend that future research should focus on the following 
areas:
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A) Augment and standardize the way the 5 V’s are currently defined and implemented, 
since not all "Big Data" studies are truly "Big Data" studies.

B) Encourage collaborative, multi-center studies: especially in clinical research, adding 
Volume might help overcome the limitations of classical RCTs (e.g., type II error).

C) Leverage new technologies for real-time data collection: for diseases characterized 
by time-varying patterns of symptoms, higher data Velocity such as implemented in 
home monitoring or wearables might help personalize treatments and/or improve 
treatment effectiveness.

D) Diversify data types collected in the clinic and/or home: as data Variety can help 
uncover patterns in patients subtypes or treatment responses.

E) Enforce protocols for data harmonization to improve Veracity.
F) Consider each V in terms of Value and identify ways to categorize and increase Value 

out of a study, since adding V’s might amplify study costs (and not all data is preclini-
cally or clinically meaningful).

G) Funding agencies should encourage initiatives aimed at educating junior and estab-
lished scientists on the methods, tools, and resources that Big Data challenges 
require.

It often happens that when new methods/techniques/technologies are developed or 
simply get the attention of researchers in a field, that field changes trajectory. In Neuro-
science and Neurology, the use of Big Data has been an evolving trend, as evident from 
our review of over 300 papers and 120 databases. We discussed how Big Data is alter-
ing the course of these fields by leveraging computational tools to develop innovative 
treatments for neurological diseases, a major global health concern. While our analysis 
has identified significant advancements made in the fields, we also note that the use of 
Big Data remains fragmented. Nevertheless, we view this as an opportunity for progress 
in these rapidly developing fields, which can ultimately benefit patients with improved 
diagnosis and treatment options.
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