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Abstract 

Fraud datasets often times lack consistent and accurate labels, and are characterized by 
having high class imbalance where the number of fraudulent examples are far fewer 
than those of normal ones. Machine learning designed for effectively detecting fraud 
is an important task since fraudulent behavior can have significant financial or health 
consequences, but is presented with significant challenges due to the class imbalance 
and availability of reliable labels. This paper presents an unsupervised fraud detection 
method that uses an iterative cleaning process for effective fraud detection. We meas-
ure our method performance using a newly created Medicare fraud big dataset and 
a widely used credit card fraud dataset. Additionally, we detail the process of creating 
the highly-imbalanced Medicare dataset from multiple publicly available sources, how 
additional trainable features were added, and how fraudulent labels were assigned for 
final model performance measurements. The results are compared with two popular 
unsupervised learners and show that our method outperforms both models in both 
datasets. Our work achieves a higher AUPRC with relatively few iterations across both 
domains.

Keywords: Unsupervised learning, Fraud detection, High class-imbalance, Credit card 
fraud, Medicare fraud, Big data

Introduction
Fraud detection is the task of distinguishing fraudulent behavior from normal behav-
ior. It is a critical aspect in many real-world applications such as fraudulent credit card 
transactions, identity fraud such as identity theft, or healthcare insurance fraud. Fraud 
detection is a type of anomaly detection and, fundamentally, an anomaly is something 
that is dissimilar to the rest of the data and occurs at a significantly smaller rate. In gen-
eral, fraud datasets can lack consistent and accurate labels and are class imbalanced.

An example of a real word fraud detection task would be in Medicare fraud detection. 
Medicare is a federal health insurance for people 65 years or older in the US. The Federal 
Bureau of Investigation (FBI) has estimated that 10% of all Medicare related billings are 
fraudulent [1]. For instance, healthcare billing fraud is when a medical provider bills the 
insurance for a more complex, and costly, procedure than what was performed [2]. This 
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type of fraud has obvious financial consequences but can also pose additional risk to the 
patients if medically unnecessary procedures are completed in order to fraudulently bill 
insurance. Addressing the issue of Medicare fraud faces challenges. Healthcare data has 
big data challenges [3], feature dimensionality challenges [4], and has a high degree of 
class imbalance, which poses its own challenges [5]. We present a new Medicare Part D 
big dataset based on several publicly available sources. We enrich the dataset by increas-
ing the number of trainable features and prepare it with class labels for fraud detection. 
To the best of our knowledge, this is the first time a Medicare dataset has been prepared 
in this fashion and has been used in a study.

In the binary classification problem, class imbalance occurs when one class contains 
significantly more instances than the other. Fraud datasets fall into this category since 
fraudulent, or minority, examples are few and far between. In many cases these are of 
the most interest [6–8]. However, learners tend to over fit to the majority group and over 
classify it as a result of the majority class’s increased prior probability. Furthermore, the 
performance metric used needs careful consideration. Some metrics, such as the Area 
Under the Receiver Operating Characteristics (ROC) Curve (AUC) and accuracy, can be 
misleading when working with highly imbalanced data [9, 10]. Class labels themselves 
also present some challenges. For example, labeling requires additional effort beyond 
recording subject data, such as human labeling, which is relative slow, costly, and can 
be error prone. Class label noise is another issue presenting its own challenges [11]. An 
unsupervised approach is immune to these since it entirely relies on the data features 
and does not use or need class labels.

Our approach presented in this paper is motivated by the fact that we do not want 
to use labels when looking for fraud and want to iteratively clean the training data. The 
procedure iteratively cleans a training dataset using an anomaly score by re-training an 
underlying learner each time. By iteratively cleaning the data of the fraudulent class, the 
goal is to produce a trained model that efficiently learns the distribution of non-fraud-
ulent data. This can then in turn be used to identify fraudulent data effectively because 
a fraudulent example would produce a relatively high error. Our approach presented in 
this work uses an autoencoder as the underlying learner, so a fraudulent observation 
passed into a trained model would have high reconstruction error and a non-fraudulent 
instance would have a low reconstruction error. From here we can label which instances 
in the unseen test data are likely to be fraud or otherwise. This allows our approach to 
wholly adhere to the unsupervised paradigm. We use two big datasets in this work, a 
Medicare fraud dataset and a credit card fraud dataset. The credit card dataset consists 
of labeled credit card transactions where the majority of examples represent normal 
credit card usage, making it class imbalanced. Though both of these datasets are labeled, 
the training process is entirely unsupervised. Labels are only used to measure the effec-
tiveness of our approach. We compare our method to two widely used unsupervised 
learners, namely Isolation Forest and Copula-Based Outlier Detector (COPOD). Our 
results show that we outperform the existing learners. To the best of our knowledge, our 
work is the first to combine an unsupervised autoencoder with an error based iterative 
cleaning process for highly-imbalanced anomaly or outlier detection.

The remainder of this paper is organized as follows. “Related works” section provides 
a review of related works in the context of anomaly or outlier detection and highlights 
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where there are gaps in the existing research and how our research fits in. “Methodol-
ogy” section is where we detail the steps for our methodology and gives an overview of 
the different machine learning models used in this work. “Datasets” section gives details 
on how the newly prepared Medicare Part D big dataset was created and overviews the 
existing dataset we use. “Results” section discusses the performance metrics presented 
and details our experimental results on both datasets. The last section concludes the 
paper and discusses potential avenues for future work.

Related works
There are various existing categories of approaches for machine learning in the con-
text of anomaly or outlier detection: supervised learning, unsupervised learning, semi-
supervised learning, and hybrid approaches. Supervised learning consists of learning 
from labeled examples in the dataset that represent input–output pairs. A significant 
challenge that arises when using supervised classifiers is created by class imbalance. 
Class label imbalance, especially when is highly class imbalanced, significantly degrades 
the performance of machine learning [12, 13]. Unsupervised approaches rely on learning 
patterns and distributions in the features of the datasets without using any class label. 
Such a machine learning model is immune to the challenges derived from class labels, 
such as high class-imbalance or class label noise. Semi-supervised learning approaches 
utilize small set of labeled instances and a comparatively large number of unlabeled 
samples. With respect to binary labeled data, the labeled set can include positive and 
negative labels, only negative labels, or only positive labels. Hybrid approaches use a 
combination of any of the above, such as combining an unsupervised and supervised 
techniques. Carcillo et al. [14] has shown a combination of unsupervised and supervised 
techniques can be used for fraud detection.

Srivastava et  al. [15] demonstrated in their study the effectiveness of using a Hid-
den Markov Model (HMM) to identify credit card fraud. They trained the HMM using 
a dataset that consisted of only normal credit card behavior, i.e. non-fraudulent, and 
subsequently used it to detect fraud in new credit card transactions. This is similar to 
one class classifiers (OCC) in that it trains on data that has been filtered on having a 
non-fraud class label or trained on a dataset that is assumed to belong to one class [16]. 
Requiring large assumptions about the labels, or using them for filtering the training set, 
does not make this an unsupervised method from start to finish.

Liu et al. introduced EasyEnsemble (EE) in [17, 18], which they applied to an imbal-
anced fraud detection problem. Although EE is trained in an unsupervised manner and 
then used for undersampling imbalanced data, our method differs in that EE requires a 
supervised preprocessing step in which they sample exclusively from the non-fraudulent 
class. Our approach does not require any supervised step, pre-processing, or otherwise.

Zong et al. [19] employed a combination of deep autoencoding and a Gaussian mix-
ture model to detect anomalies in datasets that have significantly less class imbalance 
than the datasets we use in this paper. Like Liu et al. [17], Zong et al. filtered their train-
ing dataset by class label before training, assuming their data is clean. They use random 
undersampling in a preprocessing step to generate a balanced dataset that their mod-
els are directly trained on. Their study demonstrated that the autoencoder projects 
instances into a low-dimensional space while still preserving the necessary information 
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for effective anomaly detection. Using a network attack dataset, Pu et al. [20] introduced 
an unsupervised anomaly detection method combining sub-space clustering and a one-
class support vector machine (SVM). Similar to [19], Pu also utilized class labels in a 
pre-processing step to divide their data into various subsets. As such, this work is not 
completely unsupervised from start to finish.

In another study, Maleki et al. [21] used a long short-term memory (LSTM) autoen-
coder for unsupervised anomaly detection. Their work focused on an industrial gas tur-
bine dataset and a dataset describing CPU utilization of Amazon EC2 instances, both 
time series datasets. Their methodology made the assumption that a substantial portion 
of the initial training data is free of anomalies. Specifically, the two types of temporal 
datasets represent systems that have been operating for a sufficient amount of time with 
relatively few anomalies. Their work shows that an LSTM autoencoder can be effective 
in anomaly detection.

Pang et al. [22] used an iterative learning via self-training. Their work aimed to itera-
tively improve their anomaly detection model; however, their work used a semi-super-
vised learning method. In their iterations they train a model using a small, labeled subset 
of the data and then apply their trained model on the rest of the unlabeled data to gener-
ate more reliable labels. Beggel et  al. [23] used Adversarial Autoencoders for anomaly 
detection in images. In their work, they refine their training data using an iterative step. 
However, they are using a one-class SVM to determine potential anomalies by applying 
it to the autoencoder’s lower dimensional representations of the input images. For this to 
work, either one of the following is required: the one-class SVM requires a hyperparam-
eter that represents the expected upper bounds of the expected fraction of anomalies, or 
the assumption that the instances the one-class SVM is working with are from one class.

It is important to note that our approach wholly adheres to the definition of unsuper-
vised training from start to finish. Some of the related works above assume the train-
ing data used for anomaly detection is anomaly or outlier free. Others stated the model 
training is done in an unsupervised fashion on a dataset that was filtered in a supervised 
way. Our work differs than the works above in that we neither prefilter nor make large 
assumptions of the anomalous qualities of our datasets. Additionally, datasets used in 
our work have a significantly higher level of class imbalanced than the works reviewed.

Methodology
Our goal is to produce an effective fraud detection model that learns from unlabeled 
highly-imbalanced big data. The defining characteristic of our approach is it learns from 
the unlabeled data through an iterative training process where our procedure incre-
mentally cleans the training data by sequentially training randomly initialized learners. 
This work uses a fully connected Autoencoder as the underlying learner, however, our 
approach is flexible, and it is possible that any unsupervised machine learning model 
that outputs an anomaly score can be used.

To begin, a randomly initialized autoencoder is trained on the entire training data and, 
after the training process is completed, an anomaly score is calculated for each instance. 
Using these values, we calculate an error threshold (detailed in “Error thresholding” 
section). Values above this threshold have high anomaly scores and values below this 
threshold have low anomaly scores. High anomaly scores are considered anomalous 
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or fraudulent, and low anomaly scores are considered normal or non-fraudulent. At 
the end of each iteration, the training data is cleaned of fraudulent instances so that a 
slightly smaller set of data can be used in the next step. Then, using the cleaned train-
ing data a new, a randomly initialized autoencoder is trained, a new error threshold is 
calculated, and the process repeats itself for a desired number of iterations, as shown in 
Algorithm 1. Each iteration is training a new, though architecturally identical, autoen-
coder on increasingly clean data. After each passing iteration, a new autoencoder learns 
the distribution of increasingly clean data. The final iteration’s autoencoder, and error 
threshold value, is the end product and is used for fraud detection on unseen data. We 
manually set the number of iterations to 10.

Autoencoder

Our methodology uses a fully connected autoencoder as its underlying learner. An 
autoencoder is a type of artificial neural network used for unsupervised learning that 
learns to encode and decode data using a set of fully connected hidden layers [24]. A 
layer is fully connected to the next when each of the first layer’s neurons is connected 
to every neuron in the following layer. Autoencoders are made up of two main com-
ponents: an encoder and decoder. The encoder component maps the input data into a 
lower-dimensional space then the decoder component maps the lower-dimensional 
representation back into the high-dimensional space. The training objective of the 
autoencoder is to minimize the reconstruction error between the input and the output. 
This allows an autoencoder to be used for several different areas such as dimensional-
ity reduction, image and video processing, natural language processing, and anomaly 
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detection. We use the autoencoder for fraud detection, a type of anomaly detection by 
using tabular data.

The training process of an autoencoder is similar to that of other neural networks in 
that during training the parameters, or weights, between neurons are optimized to mini-
mize an objective function. Here the reconstruction error between the input and output 
layers is minimized with backpropagation, a widely used algorithm that employs gradi-
ent methods, such as gradient descent or stochastic gradient descent. An error metric, 
such as mean squared error (MSE), is used to quantify the reconstruction error between 
the input and output. The objective is to minimize this error metric. There are various 
different algorithms that can be used to minimize such as the Adam optimizer or sto-
chastic gradient descent.

Specifically, the architecture of our method’s underlying autoencoder stays the same 
for each iteration and dataset. The input layer has the same number of neurons as the 
number of features in the dataset it is being applied to. Described in “Datasets” sec-
tion, the input has a size of 29 and 328 when used for credit card fraud detection and 
Medicare Part D fraud detection, respectively. The encoder component of the autoen-
coder consists of two fully connected layers. The first layer has 100 neurons and the 
second has 50 neurons. Both of these each use the ReLu activation function (rectified 
linear unit). These are then connected to the decoder components of the architecture. 
This mirrors the encoder where the next fully connected layer has 50 neurons and the 
next one after that has 100 fully connected neurons. The layers in the decoder section 
both use the Tanh activation function. These are followed by the final output layer 
which uses the ReLu activation function. A visualization of the architecture is shown 
in Fig.  1. For both datasets in this work, the autoencoder is trained for 50 epochs 
for each iteration on the 80% training split. We use a learning rate of 0.0001, batch 
size of 512, the Adam optimizer function, and MSE as our loss function. We chose a 

Fig. 1 Autoencoder visualization of the encoder and decoder components
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fixed number of epochs after observing at 50 epochs both the training and validation 
loss had reached an asymptote. Keras, version 2.8.0, was used [25]. One limitation 
of our approach is it has relatively high training times, as compared to the other two 
baseline learners. Since we use a fixed number of epochs, this slow training can be 
mostly attributed to the number of training epochs we perform. Though we observed 
an asymptote of the training loss, and thus a relative minimum, evaluating different 
early stopping techniques may prove effective in reducing the overall training time 
while not negatively affecting performance.

Class imbalance

Class imbalance is a common issue for datasets when the distribution of the classes is 
imbalanced. Though this definition is applicable to multi-class datasets, we focus on 
the binary class datasets. However, the concepts still apply to the multi-class problem 
since it is possible to convert the multi-class problem into a set of binary class prob-
lems via class decomposition [26]. In many cases, a dataset can be considered class 
imbalanced when the ratio of the classes starts from 1:4 up to 1:100 [27]. If each class 
is well represented, class imbalance does not necessarily reduce model performance. 
High class-imbalance, a more severe case of class imbalance, is defined as datasets 
with an imbalance ratio of 1:1000 or greater [28]. These highly class imbalanced data-
sets pose additional challenges due to the relatively small number of minority samples 
and the large number of majority samples. Japkowicz et al. [29] show that as the prob-
lem complexity increases, its sensitivity to class imbalance also increases.

The experiments presented in this paper are conducted on two imbalanced fraud 
datasets. In the fraud datasets, the vast majority of the instances represent, and are 
labeled accordingly, non-fraudulent or normal behavior. There are significantly fewer 
labeled instances of fraudulent behavior since it can be difficult to accurately iden-
tify and label the fraudulent samples. This characteristic occurs in other domains as 
well such as in detecting oil spills [7]. Learning from highly imbalanced datasets is 
important because it is the rare events that we are interested in. For instance, we are 
interested in identifying credit card fraud or Medicare insurance fraud out of the very 
large number of transactions or claims.

Error thresholding

Our approach uses an error threshold as a cutoff point throughout the methodology. It 
is used in both the training process and iterative cleaning steps, as well as in the evalua-
tion of the performance. The error threshold is two standard deviations from the mean 
( �2SD ). �2SD = ǫ + 2 · σ , where σ is the standard deviation of the errors of the current 
iteration, and ǫ is the mean error for the current training iteration. The set of errors are 
recalculated after each of our method’s iterations and thus the �2SD only changes at each 
iterative cleaning step. When evaluating our method on an unseen holdout set, at the 
end of each iteration the same �2SD is used to categorize the test data as fraud or non-
fraud as was calculated in the training step of the same iteration. We use �2SD because it 
has been shown to be an effective error thresholding measure [30, 31].
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COPOD

We compare our iterative cleaning approach to existing unsupervised anomaly detec-
tion methods. One such model is called Copula-Based Outlier Detector (COPOD), first 
introduced by Li et al. [32]. COPOD, as the name suggests, is an outlier/anomaly detec-
tion algorithm that is inspired by copulas for modeling multivariate data distributions. 
It is parameter-free and is computationally efficient. Copulas are multivariate cumula-
tive distribution functions that enable the COPOD model to separate marginal distribu-
tions from a given data distribution. This gives COPOD the flexibility to be used in high 
dimensional datasets. More specifically, COPOD is based on fitting empirical cumula-
tive distribution functions, called an empirical copula. This allows the COPOD model 
to be nonparametric. This does however reduce the researcher’s ability to fine tune the 
COPOD model, whereas many other models have one or more tunable parameters. We 
use the implementation of COPOD which is included in the PyOD python library [33], 
version 1.0.7. We train on the 80% split, from our fivefold cross validation splits, and 
use the trained COPOD to predict on our 20% test split. The output from the COPOD 
test function is binary and indicates whether an instance is predicted to be an outlier 
or otherwise. We compare to the actual label to measure the model performance for 
comparison.

Isolation Forest

The second baseline learner we compare our method to is called the Isolation Forest (IF), 
originally introduced by Liu et al. in [34]. It is a popular unsupervised machine learning 
model for anomaly or outlier detection. It is a tree-based algorithm that aims to isolate 
anomalies from the rest of the data by partitioning the data into smaller and smaller sub-
sets. Liu et al. [34] defines isolation to mean “separating an instance from the rest of the 
instances”. Their reasoning was that anomalies are “few and different” and therefore they 
are more prone to isolation than non-anomalies or outliers. Specifically, an IF is a data-
induced random tree where the instances are recursively partitioned until all instances 
are isolated. They show that the random partitioning produces a shorter path for anoma-
lies (longer paths for non-anomalies) because of two reasons: (1) anomalies are fewer in 
number by nature and thus result in a smaller number of partitions; and (2) instances 
that have separable attribute values are more likely to be separated early in the parti-
tioning process. At the end of the algorithm, there is a forest of random trees. Instances 
that have shorter paths across many of the trees, it is highly likely to be an anomaly. The 
average path length, for a given instance, converges as the number of random trees in the 
forest increases.

Additionally, IF has previously been shown to be an effective unsupervised method 
for the high-imbalanced Medicare fraud detection [35], outperforming other approaches 
such as the deep learning framework called ORCA, local outlier factor (LOF), and ran-
dom forests when comparing AUC and processing time. We use the IF implementation 
provided in Scikit-learn [36], version 0.23.1, for our experiments. The IF used in this 
work is trained using the same 6 rounds of fivefold cross validation as the others, but 
it is trained independently. One parameter, namely the contamination rate, was chosen 
for our experiments, all other parameters were kept as the default. This parameter is the 
amount of anomalous contamination in the dataset. It is the percentage of the minority 
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class compared to the majority class. We set that to the level of imbalance for our data-
sets used in this study. This was calculated using labels; however, it is reasonable to 
assume that this piece of information would fall under domain expertise and would be 
available in practice. Additionally, we found that when this contamination rate was set, 
it produces an IF that had higher performance as measured by the area under the preci-
sion-recall curve (AUPRC). Thus, giving the IF the best case scenario results to compare 
our method to. It is important to note that this domain knowledge, the expected class 
imbalance, is unused in our approach.

Datasets
We present a newly prepared Medicare fraud big dataset. It is a high-imbalanced dataset 
derived from several publicly available Medicare datasets. Medicare fraud datasets have 
been used in other works [5, 37] but the one we present here is a significant improve-
ment in that the dataset is built from additional sources and has a significant increase in 
the number of trainable features. The Medicare program provides health insurance to 
individuals 65 years and older, and other individuals with approved disabilities [38]. In 
2020, there were 62 million Medicare beneficiaries and had a total expenditure greater 
than $926 billion US dollars [39]. The scale of the Medicare insurance program lends 
itself to being a target for fraudulent activity [40]. This data, in part, is publicly released 
by the Centers for Medicare and Medicaid Services (CMS), a United States federal 
agency, for analysis. The results in this paper are limited to just using data derived from 
the original Part D data. The original Medicare Part D fraud data is enriched with an 
additional 51 features for final use.

We use Medicare Part D data from 2013 through 2019, originally called the Medicare 
Part D Summary by Provider and Drug. It describes a medical provider’s prescription 
drug activity as it pertains to the Medicare program, for a given year and drug name. 
Each year CMS releases 1 year worth of data but lags by a couple of years; our data-
set contains data from 2013 through 2019. The original Part D spanning the 7 years has 
roughly 172 million records with 22 features. This makes it the largest of the Medicare 
datasets released thus far by CMS. The features include provider-level and claims-level 
information. The provider-level attributes include the healthcare provider’s national pro-
vider identifier (NPI), their specialty, gender, name, medical credentials, and geographic 
details. The data is the yearly aggregate of the NPI and prescription drug name. The 
claims-level attributes include the number of beneficiaries for the drug, cost, and num-
ber of prescriptions created.

First, the raw Part D data is cleaned and preprocessed to merge the years of data, nor-
malize columns, fill in missing values, and removing of duplicates. Missing values are 
rectified by using dictionary files provided by CMS. For example, instances with miss-
ing provider gender values are imputed with a third gender “U” for unknown. Another 
example is for the Tot_Bene, or total beneficiaries for a given drug and NPI, contain miss-
ing values but CMS states that this is done when the number is less than 10. A median 
value of 5 is filled in for any rows that are missing the Tot_Bene feature value. Other 
features that have missing values, such as provider name, are removed from entirely 
since it treated as personally identifiable information. Many other features require little 
preprocessing since they are consistently inputted and adhere to the dataset’s schema. 
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However, the drug cost feature can have string values representing floating point num-
bers and need to be processed. The provider type feature, a categorical feature, needs to 
be cleaned. There are some identical types with different inputted names that need to be 
combined. This reduces the cardinality for the provider type from 269 down to 249 after 
combining. The provider type and NPI are used for the data preprocessing steps but is 
omitted during the training and test phases of this work.

Next, the preprocessed dataset now is modified with data aggregation steps. The large 
number of instances in the Medicare data, especially Part D, drastically increases the 
computation and storage requirements and significantly increases the challenges of its 
class imbalanced nature [3]. A compressed representation of the data is created by data 
aggregation and aims to significantly reduce the size and dimensionality of the Part D 
data. It is aggregated over the NPI, year, and provider type. The drug name attribute is 
removed, and the reaming numeric attributes are converted to their summary statistics: 
minimum, maximum, median, mean, sum, and standard deviation. The summary sta-
tistics are for a given provider NPI. For example, the feature Tot_Clms (total claims) is 
replaced by Tot_clms_min, Tot_clms_max, Tot_clms_median, Tot_clms_mean, Tot_clms_
sum, Tot_clms_std. This aggregation step reduces the number of instances by a signifi-
cant amount while creating new features that represent the provider’s billing behaviors. 
The number of instances in Part D went from roughly 172 million records with 7 fea-
tures to roughly 6 million rows with 31 features, an 80% reduction in required computa-
tional memory.

Next, the preprocessed version of the Medicare Part D Summary by Provider and 
Drug with the CMS provided Medicare Part D Summary by Provider, a second and dis-
tinct data source, is used for enrichment. Similar to the previous CMS data, this too is 
from the years 2013 through 2019. This data does not include statistics at the drug level, 
but rather summary data that describes a medical provider’s services and beneficiaries 
over a given year. Like the pre-processed steps outlined above, this second data source is 
one record for each NPI per year. The aggregated data above is then enriched with this 
second source to produce the aggregated-enriched Medicare Part D data. We refer to 
this as just the Part D data in the rest of this paper. This enrichment steps adds 51 new 
features for a total of 82 features. These include beneficiary summary statistics, such as 
number of beneficiaries prescribed for per age group, gender, and Medicare or Medicaid 
membership. These statistics are divided into different categories: opiate drug claims, 
long-acting opiate drug claims, antibiotic drug claims, and anti-psychotic drug claims. 
The aggregated data and the Summary by Provider and Drug data set is joined on the 
NPI and year columns using an inner join. This results in a loss of roughly 1 million rows 
and the addition of the 51 features. One categorical feature, namely prescriber type, is 
one-hot encoded. This results in a total of 328 features for use in the experiments, sum-
marized in Table 1.

We have only discussed the features of the Medicare Part D thus far. Though we use 
an entirely unsupervised approach in this work, fraudulent labels are required for us 
to accurately measure the effectiveness of our approach. The data from CMS does not 
include fraudulent labels. The Part D data is labeled using the publicly available List of 
Excluded Individuals and Entities (LEIE) [41]. The LEIE data is maintained by the Office 
of Inspector General (OIG) and is a monthly updated list. The OIG can add providers 



Page 11 of 20Kennedy et al. Journal of Big Data          (2023) 10:106  

to the LEIE and they are excluded from being able to receive payment from any fed-
eral healthcare programs. This is a result of an individual or entity being convicted in 
a court of law for a verity of reasons such as conviction of program-related crimes, or 
conviction of fraud, kickbacks, and other prohibited activities [42]. The exclusion type 
ranges in offense and severity. The Part D data is labeled in the same manner as Bauder 
et al. [43]. They found a subset of exclusion rules that indicate fraud. The NPI number is 
used to match the fraudulent instances in the LEIE and label those in the Part D dataset. 
Summarized in Table 1, 3700 instances are labeled fraudulent which makes this dataset 
highly class imbalanced.

The smaller of the two datasets used in this study is a credit card fraud dataset [44]. 
Originally collected as a result of a research partnership between Worldline and the Uni-
versité Libre de Bruxelles. There are a total of 284,807 instances that represent real word 
credit card transactions. There are 30 independent features, and each have a binary class 
label. The class label is only used in the performance metric calculations. The card trans-
actions were made by European credit card holders between September 1st through 
September 30th, 2013. Summarized in Table  1, the dataset is highly-imbalanced with 
only 492 labeled fraudulent transactions. We drop one feature, namely time, and use the 
remaining 29 features for our learners. This dropped feature has been shown to not have 
any predictive value, contributes to noise and thus, was not used.

Results
We conduct experiments comparing our method to two baseline unsupervised learn-
ers on two different fraud datasets in different domains. We evaluate our method, using 
an autoencoder as the underlying learner, against two unsupervised outlier detection 
methods: Isolation Forest and COPOD. The first dataset is a new Medicare Part D data-
set that we prepared, using multiple public sources, for fraud detection. The other is a 
widely used credit card fraud dataset.

For each domain, we conduct 6 rounds of fivefold cross validation producing 30 sets of 
80/20 train/test splits and corresponding results. The AUC and AUPRC values shown in 
the result tables are the average value across the 30 replications [9]. The primary perfor-
mance metric is the AUPRC values since it is a better than AUC as an indicator of model 
performance in a highly imbalanced setting.

Performance metrics and statistical analysis

One main challenge for measuring model performance of fraud detection methods is 
that this task is class imbalanced. Our datasets used in this work are considered highly 
class imbalanced and thus further increase the negative effects of imbalance. The per-
formance metric used needs to be chosen with good reason. We use the area under the 

Table 1 Dataset class characteristics

Dataset Minority count Majority count Total count Minority 
imbalance (%)

Features

Medicare part D 3700 5,340,406 5,344,106 0.0692 328

Credit card 492 284,315 284,807 0.1727 28
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precision-recall curve (AUPRC) as our main performance metric when comparing our 
results. In addition, we also provide the area under the receiver operating curve (AUC) 
value since it is a widely used performance metric. However, AUPRC is a superior metric 
when comparing models in a high class imbalanced scenario since AUC has been shown 
to be a misleading performance metric in the presence of a severe class imbalance as is 
the case with the datasets used in this paper [9].

Fraud detection is a binary classification problem, and it is conventional to use a 
confusion matrix, illustrated in Table 2, to summarize the binary classification results. 
AUPRC and AUC values can be derived from the TP, FP, FN, and TN values.

The receiver operating characteristic curve (ROC), first introduced by Provost et  al. 
[45], is a widely used performance metric that summarizes the true positive rate vs. 
the false positive rate. This curve visualizes the trade-off between correctly classified 
positive instances and incorrectly classified negative instances, or correctly identified 
fraudulent instances and fraudulent instances that were missed, respectively. The AUC 
is the area under the ROC and is a single number that summarizes these performance 
measurements.

Davis et al. [9] show that the ROC curves, and thus the AUC values, can present overly 
optimistic results in the presence of highly imbalanced data. As a better alternative, 
precision-recall (PR) curves, and thus the AUPRC values, provide a better performance 
metric. The authors state that a curve can only dominate in ROC space if and only if it 
dominates in PR space. ROC summarizes a model’s performance in terms of true posi-
tive rate (TPR) and false positive rate (FPR), while the PR summarizes a model’s per-
formance in terms of precision and recall (also known as TPR). This makes AUC less 
sensitive to the changes in false positives as the size of the negative, or majority class 
grows, as it does in highly imbalanced datasets.

We use one-factor ANOVA (analysis of variance) as a statistical test to determine 
if there exist statistical differences between various metrics we compare. Addition-
ally we use the Tukey’s honestly significant difference (HSD) test to rank our results 
where needed [46, 47]. The Tukey HSD test ranks the metrics being tested from highest 
to lowest and assigns each row to a letter-group. The letter-groups indicate statistical 

(1)FPR =
FP

FP + TN

(2)Precision =
TP

TP + FP

(3)Recall = TPR =
TP

TP + FN

Table 2 Confusion matrix

Actual positive Actual negative

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)
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differences between the rows. For example, Table 10 shows the Tukey HSD results for 
the credit card datasets for each of our method’s iterations. The test ranks the AUPRC 
from greatest to least showing that the highest AUPRC was from iteration 9 and is sta-
tistically similar in value to iteration 8, 7, and 6 because they all belong to Group “a”. 
Another example, Table 12, shows the AUPRC values of our approach outperform the 
ones of COPOD which outperform the ones of IF.

Result analysis

For each of the datasets, we run our methodology for 10 iterations for each of the 6 
rounds of fivefold cross validation. The IF and COPOD models are run as designed, thus 
they do not have any iterative results. A breakdown of the class characteristics is shown 
in Table 1. Both the datasets are highly imbalanced, but the Medicare Part D is both sig-
nificantly larger and more class imbalanced than the credit card dataset.

In our approach, we split the data into 80% training and 20% test using fivefold cross 
validation, a newly initialized autoencoder is trained on the training data then �2SD is 
determined and used to remove instances with high anomaly scores. The then slightly 
smaller and cleaner dataset it used for training the next iteration’s new initialized 
autoencoder. This process is repeated for 10 iterations. At the end of each iteration, we 
use the trained autoencoder to make predictions on the 20% unseen test split. We then 
calculate the AUPRC and AUC for each iteration. Neither this process nor its perfor-
mance results affect any of the iterations that follow it. The unseen test split is used for 
all iteration results and is not changed during our method’s iterative process.

Additionally, at the beginning of the first iteration, when none of the instances have 
been cleaned out, it is functionally similar to just using the autoencoder of the same 
architecture. Thus, we can compare the AUPRC and AUC for our approach against the 
IF, COPOD, and autoencoder models.

Medicare part D dataset

The new Medicare Part D dataset that we prepared has 5,344,106 total instances, with 
only 3700 instances in the fraudulent class, giving this a class imbalance of 0.0692%. As 
can be seen in Table 3, the AUPRC significantly increases after each iteration. Starting 
from an AUPRC value of 0.238 and climbing up to 0.2598 at the final iteration. The AUC 
values exhibit a similar effect for the first few iterations but start to plateau after iteration 
4. The first few iterations the AUPRC increase is clear but towards the final interactions 
the AUPRC converges to the final value.

We calculate the ANOVA for each iteration and perform a Tukey HSD test, in Tables 4 
and 5, respectively. The Tukey HSD results clearly show that the highest performing iter-
ation is the final iteration and that the AUPRC does significantly continue to improve. 
The Group column shows that each iteration is in their own letter-group. Each letter-
group indicates that it is significantly different than the next. Additionally, the Tukey 
test shows that our method only outperforms using an autoencoder by itself after itera-
tion 2. An autoencoder alone, AE-0, produces an AUPRC of 0.0238 and after iteration 
2, our method, AE-2, has an AUPRC score of 0.0736, a 3× improvement. Similar trends 
are observed using the AUC metric. Due to the consistently increasing AUPRC, we can 
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conclude that in practice, iterating for at least as many iterations as we completed pro-
duces the best performing approach.

Our approach has the highest AUPRC at iteration 9 when working with our Medicare 
Part D dataset. We compare this model, AE-9, with the two baseline unsupervised learn-
ers, IF and COPOD. The bottom of Table 3 clearly shows that the 0.2598 AUPRC of AE-9 
outperforms both IF and COPOD by a significant amount which have AUPRC values 
of 0.0176 and 0.1176, respectively. For completeness, we present the results in Tables 6 
and  7 that show the Tukey HSD test, and associated ANOVA, confirms our observa-
tions. Our approach outperforms both IF and COPOD at iteration 4, with an AUPRC 

Table 3 Medicare part D results comparison

Medicare part D

Model AUC AUPRC

AE-0 0.5181 0.0238

AE-1 0.5276 0.0350

AE-2 0.5547 0.0736

AE-3 0.5791 0.1185

AE-4 0.5906 0.1516

AE-5 0.5975 0.1778

AE-6 0.6016 0.2010

AE-7 0.6033 0.2198

AE-8 0.6116 0.2468

AE-9 0.6093 0.2598

IF 0.5083 0.0176

COPOD 0.5668 0.1179

Table 4 Medicare part D iterations ANOVA

Df Sum Sq Mean Sq F value Pr(> F)

Iteration 9 1.9691 0.2188 1095 < 2e−16

Residuals 290 0.0579 0.0002

Table 5 Medicare part D autoencoder iteration comparison

Part D Tukey HSD test

Iterations AUPRC Group

9 0.2598 a

8 0.2468 b

7 0.2198 c

6 0.2010 d

5 0.1778 e

4 0.1516 f

3 0.1185 g

2 0.0736 h

1 0.0350 i

0 0.0238 i
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value of 0.1516. This shows the effectiveness of our approach as compared to existing 
unsupervised leaners when being used for fraud detection on a large, highly imbalanced 
dataset. This also highlights how effecting the iterative cleaning process is. Further anal-
ysis is needed to determine where AUPRC results stop improving. However, from these 
results, AE-9 would be used in practice since it is the highest performing model.

Credit card dataset

The credit card dataset has a total of 284,807 instances with only 492 instances in the 
fraudulent/minority class, giving this a class imbalance of 0.1727%. This is significantly 
more balanced than the Medicare Part D dataset, though still imbalanced. However, the 
number of fraud instances is significantly lower than the number of fraud instances in 
the Part D dataset, making these fraud cases significantly rarer.

Table  8 presents the AUPRC and AUC values for each of our methods iterations, 
IF, and COPOD. When looking at this dataset, our approach outperforms the base-
line autoencoder, AE-0, after the first cleaning iteration as measured in both AUC and 

Table 6 Medicare part D models ANOVA

Df Sum Sq Mean Sq F value Pr(> F)

Model 2 0.8889 0.4444 2931 < 2e−16

Residuals 87 0.0132 0.0002

Table 7 Medicare part D overall Tukey HSD

Medicare part D comparison

Model AUPRC Group

AE-9 0.2598 a

COPOD 0.1179 b

IF 0.0176 c

Table 8 Credit card fraud results

Credit card fraud

Model AUC AUPRC

AE-0 0.7261 0.3073

AE-1 0.8169 0.3738

AE-2 0.9035 0.4412

AE-3 0.8955 0.4462

AE-4 0.8814 0.4534

AE-5 0.8649 0.4553

AE-6 0.8553 0.4605

AE-7 0.8466 0.4632

AE-8 0.8401 0.4659

AE-9 0.8339 0.4667

IF 0.6586 0.3148

COPOD 0.8891 0.4455
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AUPRC. The AUPRC increases from 0.3073 to 0.3738 and the AUC increases from 
0.7261 to 0.8169. In the previous dataset it took 2 iterations to measure an increase in 
AUPRC. Similar to the previous dataset, we want to find at which iteration does our 
method best perform, when measuring AUPRC. These values are closer together than 
the previous dataset, so we must perform a Tukey HSD test to determine this.

Tables 9 and 10 show the ANOVA and Tukey HSD test when comparing the AUPRC 
across each of our method’s iterations, respectively. Starting from the bottom of 
Table 10, the results show that the AUPRC significantly improves after each iteration, as 
noted by group e, d, and c. Iterations that have shared letters in their group are not sta-
tistically different from each other. For example, iteration 2, 3, and 4 each have the letter 
“c” in it. This means the AUPRC value might be slightly higher as the iterations increase, 
but they are not significantly higher. Iterations that belong to the letter group “a” have 
the highest AUPRC value and are significantly higher than iterations not belonging to 
“a”. Each additional iteration has a computational cost associated with it and is removing 
additional, potentially useful, instances from its training dataset. Thus, we can conclude 
that the overall best iteration is iteration 9 since it is produces the highest AUPRC of 
0.4667 and belongs to the “a” group. Our approach shows slight AUPRC improvement 
from the fourth iteration to the ninth. However, the increase after the fourth is slight 
and is not statistically significant, as indicated by the Tukey HSD test. This shows clear 
diminishing returns after first several iterations.

We can compare AE-9, our approach’s best performing iteration, to the baseline 
unsupervised fraud detection methods, IF, and COPOD. Unlike the results in the pre-
vious section, the AUPRC values are much closer together for AE-9, IF, and COPOD. 
Tables 11 and 12 show the ANOVA and Tukey HSD results, respectively, when compar-
ing AE-9, IF, and COPOD using AUPRC. These tables confirm that AE-9 outperforms 

Table 9 Credit card iterations ANOVA

Df Sum Sq Mean Sq F value Pr(> F)

Iteration 9 0.7303 0.08114 283.3 < 2e−16

Residuals 290 0.0831 0.00029

Table 10 Credit card autoencoder iteration comparison

CC iteration Tukey HSD

Iterations AUPRC Group

9 0.4667 a

8 0.4659 a

7 0.4632 a

6 0.4605 a

5 0.4553 ab

4 0.4534 abc

3 0.4462 bc

2 0.4412 c

1 0.3738 d

0 0.3073 e
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both COPOD and IF when using AUPRC as a performance metric, though it outper-
forms the next best model by a smaller degree when looking at the credit card data as 
opposed to the Medicare Part D data. AE-9 has an AUPRC of 0.4667, COPOD is 0.445, 
but both are significantly greater than the 0.3148 AUPRC for IF. In both datasets, our 
model outperforms COPOD while IF is always the least performant. When using our 
approach in practice, AE-9 would be chosen since it is the highest performing model. 
However, if significant time or computation constraints existed, choosing AE-4 would 
produce statistically similar results, albeit with slightly less AUPRC.

Conclusion
This study presents an unsupervised and iterative methodology for fraud detection of 
high-imbalanced data. Our approach uses a fully connected autoencoder as its baseline 
learner. We compare our unsupervised fraud detection approach with existing unsuper-
vised fraud detection models, namely Isolation Forest and COPOD. Additionally, we 
present a new Medicare Part D dataset that uses several publicly available claims data 
from CMS. To the best of our knowledge, this is the first paper to utilize these CMS 
datasets to create a labeled fraud dataset for Medicare Part D claims. We also leverage 
the list of fraudulent Medicare providers from the LEIE to construct fraudulent labels.

We compare the AUPRC and AUC performance of our approach with IF and COPOD 
when using the presented Medicare Part D dataset as well as a widely used credit card 
fraud detection dataset. We present results and statistical analysis that show our meth-
odology outperforms both IF and COPOD in both datasets when using AUPRC. Our 
iterative cleaning method outperforms the baseline autoencoder in as few as one itera-
tion on the credit card dataset and as few as 2 iterations on the Part D dataset. Addition-
ally, we can conclude that across both datasets, our approach outperforms the baseline 
autoencoder, IF, and COPOD at the fourth iteration. Additional iterations increased 
AUPRC performance in the Part D data but did not significantly improve when using 
the credit card data. Additional analysis is needed to determine the precise reasoning 
for this. Future work includes expanding these results to other application domains as 
well as other baseline learners. Additionally, future work on measuring the effectiveness 
of our approach on big datasets that do not have high class imbalance. Another possible 

Table 11 Credit card models ANOVA

Df Sum Sq Mean Sq F value Pr(> F)

Model 2 0.3942 0.1971 310.6 < 2e−16

Residuals 87 0.0552 0.00063

Table 12 Credit card results comparison

Overall CC Tukey HSD

Model AUPRC Group

AE-9 0.4667 a

COPOD 0.4455 b

IF 0.3148 c
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avenue for future work is to explore potential early stopping techniques while training 
the autoencoders. This has the potential to reduce overall training time while not nega-
tively affecting the approach’s performance.
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