
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

METHODOLOGY

Kennedy et al. Journal of Big Data (2023) 10:106
https://doi.org/10.1186/s40537-023-00750-3

Journal of Big Data

Iterative cleaning and learning of big
highly-imbalanced fraud data using
unsupervised learning
Robert K. L. Kennedy1*, Zahra Salekshahrezaee1, Flavio Villanustre2 and Taghi M. Khoshgoftaar1

Abstract

Fraud datasets often times lack consistent and accurate labels, and are characterized by
having high class imbalance where the number of fraudulent examples are far fewer
than those of normal ones. Machine learning designed for effectively detecting fraud
is an important task since fraudulent behavior can have significant financial or health
consequences, but is presented with significant challenges due to the class imbalance
and availability of reliable labels. This paper presents an unsupervised fraud detection
method that uses an iterative cleaning process for effective fraud detection. We meas-
ure our method performance using a newly created Medicare fraud big dataset and
a widely used credit card fraud dataset. Additionally, we detail the process of creating
the highly-imbalanced Medicare dataset from multiple publicly available sources, how
additional trainable features were added, and how fraudulent labels were assigned for
final model performance measurements. The results are compared with two popular
unsupervised learners and show that our method outperforms both models in both
datasets. Our work achieves a higher AUPRC with relatively few iterations across both
domains.

Keywords: Unsupervised learning, Fraud detection, High class-imbalance, Credit card
fraud, Medicare fraud, Big data

Introduction
Fraud detection is the task of distinguishing fraudulent behavior from normal behav-
ior. It is a critical aspect in many real-world applications such as fraudulent credit card
transactions, identity fraud such as identity theft, or healthcare insurance fraud. Fraud
detection is a type of anomaly detection and, fundamentally, an anomaly is something
that is dissimilar to the rest of the data and occurs at a significantly smaller rate. In gen-
eral, fraud datasets can lack consistent and accurate labels and are class imbalanced.

An example of a real word fraud detection task would be in Medicare fraud detection.
Medicare is a federal health insurance for people 65 years or older in the US. The Federal
Bureau of Investigation (FBI) has estimated that 10% of all Medicare related billings are
fraudulent [1]. For instance, healthcare billing fraud is when a medical provider bills the
insurance for a more complex, and costly, procedure than what was performed [2]. This

*Correspondence:
rkennedy@fau.edu

1 College of Engineering &
Computer Science, Florida
Atlantic University, 777 Glades
Road, Boca Raton, FL 33431, USA
2 LexisNexis Business Information
Solutions, 245 Peachtree Center
Avenue, Atlanta, GA 30303, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00750-3&domain=pdf

Page 2 of 20Kennedy et al. Journal of Big Data (2023) 10:106

type of fraud has obvious financial consequences but can also pose additional risk to the
patients if medically unnecessary procedures are completed in order to fraudulently bill
insurance. Addressing the issue of Medicare fraud faces challenges. Healthcare data has
big data challenges [3], feature dimensionality challenges [4], and has a high degree of
class imbalance, which poses its own challenges [5]. We present a new Medicare Part D
big dataset based on several publicly available sources. We enrich the dataset by increas-
ing the number of trainable features and prepare it with class labels for fraud detection.
To the best of our knowledge, this is the first time a Medicare dataset has been prepared
in this fashion and has been used in a study.

In the binary classification problem, class imbalance occurs when one class contains
significantly more instances than the other. Fraud datasets fall into this category since
fraudulent, or minority, examples are few and far between. In many cases these are of
the most interest [6–8]. However, learners tend to over fit to the majority group and over
classify it as a result of the majority class’s increased prior probability. Furthermore, the
performance metric used needs careful consideration. Some metrics, such as the Area
Under the Receiver Operating Characteristics (ROC) Curve (AUC) and accuracy, can be
misleading when working with highly imbalanced data [9, 10]. Class labels themselves
also present some challenges. For example, labeling requires additional effort beyond
recording subject data, such as human labeling, which is relative slow, costly, and can
be error prone. Class label noise is another issue presenting its own challenges [11]. An
unsupervised approach is immune to these since it entirely relies on the data features
and does not use or need class labels.

Our approach presented in this paper is motivated by the fact that we do not want
to use labels when looking for fraud and want to iteratively clean the training data. The
procedure iteratively cleans a training dataset using an anomaly score by re-training an
underlying learner each time. By iteratively cleaning the data of the fraudulent class, the
goal is to produce a trained model that efficiently learns the distribution of non-fraud-
ulent data. This can then in turn be used to identify fraudulent data effectively because
a fraudulent example would produce a relatively high error. Our approach presented in
this work uses an autoencoder as the underlying learner, so a fraudulent observation
passed into a trained model would have high reconstruction error and a non-fraudulent
instance would have a low reconstruction error. From here we can label which instances
in the unseen test data are likely to be fraud or otherwise. This allows our approach to
wholly adhere to the unsupervised paradigm. We use two big datasets in this work, a
Medicare fraud dataset and a credit card fraud dataset. The credit card dataset consists
of labeled credit card transactions where the majority of examples represent normal
credit card usage, making it class imbalanced. Though both of these datasets are labeled,
the training process is entirely unsupervised. Labels are only used to measure the effec-
tiveness of our approach. We compare our method to two widely used unsupervised
learners, namely Isolation Forest and Copula-Based Outlier Detector (COPOD). Our
results show that we outperform the existing learners. To the best of our knowledge, our
work is the first to combine an unsupervised autoencoder with an error based iterative
cleaning process for highly-imbalanced anomaly or outlier detection.

The remainder of this paper is organized as follows. “Related works” section provides
a review of related works in the context of anomaly or outlier detection and highlights

Page 3 of 20Kennedy et al. Journal of Big Data (2023) 10:106

where there are gaps in the existing research and how our research fits in. “Methodol-
ogy” section is where we detail the steps for our methodology and gives an overview of
the different machine learning models used in this work. “Datasets” section gives details
on how the newly prepared Medicare Part D big dataset was created and overviews the
existing dataset we use. “Results” section discusses the performance metrics presented
and details our experimental results on both datasets. The last section concludes the
paper and discusses potential avenues for future work.

Related works
There are various existing categories of approaches for machine learning in the con-
text of anomaly or outlier detection: supervised learning, unsupervised learning, semi-
supervised learning, and hybrid approaches. Supervised learning consists of learning
from labeled examples in the dataset that represent input–output pairs. A significant
challenge that arises when using supervised classifiers is created by class imbalance.
Class label imbalance, especially when is highly class imbalanced, significantly degrades
the performance of machine learning [12, 13]. Unsupervised approaches rely on learning
patterns and distributions in the features of the datasets without using any class label.
Such a machine learning model is immune to the challenges derived from class labels,
such as high class-imbalance or class label noise. Semi-supervised learning approaches
utilize small set of labeled instances and a comparatively large number of unlabeled
samples. With respect to binary labeled data, the labeled set can include positive and
negative labels, only negative labels, or only positive labels. Hybrid approaches use a
combination of any of the above, such as combining an unsupervised and supervised
techniques. Carcillo et al. [14] has shown a combination of unsupervised and supervised
techniques can be used for fraud detection.

Srivastava et al. [15] demonstrated in their study the effectiveness of using a Hid-
den Markov Model (HMM) to identify credit card fraud. They trained the HMM using
a dataset that consisted of only normal credit card behavior, i.e. non-fraudulent, and
subsequently used it to detect fraud in new credit card transactions. This is similar to
one class classifiers (OCC) in that it trains on data that has been filtered on having a
non-fraud class label or trained on a dataset that is assumed to belong to one class [16].
Requiring large assumptions about the labels, or using them for filtering the training set,
does not make this an unsupervised method from start to finish.

Liu et al. introduced EasyEnsemble (EE) in [17, 18], which they applied to an imbal-
anced fraud detection problem. Although EE is trained in an unsupervised manner and
then used for undersampling imbalanced data, our method differs in that EE requires a
supervised preprocessing step in which they sample exclusively from the non-fraudulent
class. Our approach does not require any supervised step, pre-processing, or otherwise.

Zong et al. [19] employed a combination of deep autoencoding and a Gaussian mix-
ture model to detect anomalies in datasets that have significantly less class imbalance
than the datasets we use in this paper. Like Liu et al. [17], Zong et al. filtered their train-
ing dataset by class label before training, assuming their data is clean. They use random
undersampling in a preprocessing step to generate a balanced dataset that their mod-
els are directly trained on. Their study demonstrated that the autoencoder projects
instances into a low-dimensional space while still preserving the necessary information

Page 4 of 20Kennedy et al. Journal of Big Data (2023) 10:106

for effective anomaly detection. Using a network attack dataset, Pu et al. [20] introduced
an unsupervised anomaly detection method combining sub-space clustering and a one-
class support vector machine (SVM). Similar to [19], Pu also utilized class labels in a
pre-processing step to divide their data into various subsets. As such, this work is not
completely unsupervised from start to finish.

In another study, Maleki et al. [21] used a long short-term memory (LSTM) autoen-
coder for unsupervised anomaly detection. Their work focused on an industrial gas tur-
bine dataset and a dataset describing CPU utilization of Amazon EC2 instances, both
time series datasets. Their methodology made the assumption that a substantial portion
of the initial training data is free of anomalies. Specifically, the two types of temporal
datasets represent systems that have been operating for a sufficient amount of time with
relatively few anomalies. Their work shows that an LSTM autoencoder can be effective
in anomaly detection.

Pang et al. [22] used an iterative learning via self-training. Their work aimed to itera-
tively improve their anomaly detection model; however, their work used a semi-super-
vised learning method. In their iterations they train a model using a small, labeled subset
of the data and then apply their trained model on the rest of the unlabeled data to gener-
ate more reliable labels. Beggel et al. [23] used Adversarial Autoencoders for anomaly
detection in images. In their work, they refine their training data using an iterative step.
However, they are using a one-class SVM to determine potential anomalies by applying
it to the autoencoder’s lower dimensional representations of the input images. For this to
work, either one of the following is required: the one-class SVM requires a hyperparam-
eter that represents the expected upper bounds of the expected fraction of anomalies, or
the assumption that the instances the one-class SVM is working with are from one class.

It is important to note that our approach wholly adheres to the definition of unsuper-
vised training from start to finish. Some of the related works above assume the train-
ing data used for anomaly detection is anomaly or outlier free. Others stated the model
training is done in an unsupervised fashion on a dataset that was filtered in a supervised
way. Our work differs than the works above in that we neither prefilter nor make large
assumptions of the anomalous qualities of our datasets. Additionally, datasets used in
our work have a significantly higher level of class imbalanced than the works reviewed.

Methodology
Our goal is to produce an effective fraud detection model that learns from unlabeled
highly-imbalanced big data. The defining characteristic of our approach is it learns from
the unlabeled data through an iterative training process where our procedure incre-
mentally cleans the training data by sequentially training randomly initialized learners.
This work uses a fully connected Autoencoder as the underlying learner, however, our
approach is flexible, and it is possible that any unsupervised machine learning model
that outputs an anomaly score can be used.

To begin, a randomly initialized autoencoder is trained on the entire training data and,
after the training process is completed, an anomaly score is calculated for each instance.
Using these values, we calculate an error threshold (detailed in “Error thresholding”
section). Values above this threshold have high anomaly scores and values below this
threshold have low anomaly scores. High anomaly scores are considered anomalous

Page 5 of 20Kennedy et al. Journal of Big Data (2023) 10:106

or fraudulent, and low anomaly scores are considered normal or non-fraudulent. At
the end of each iteration, the training data is cleaned of fraudulent instances so that a
slightly smaller set of data can be used in the next step. Then, using the cleaned train-
ing data a new, a randomly initialized autoencoder is trained, a new error threshold is
calculated, and the process repeats itself for a desired number of iterations, as shown in
Algorithm 1. Each iteration is training a new, though architecturally identical, autoen-
coder on increasingly clean data. After each passing iteration, a new autoencoder learns
the distribution of increasingly clean data. The final iteration’s autoencoder, and error
threshold value, is the end product and is used for fraud detection on unseen data. We
manually set the number of iterations to 10.

Autoencoder

Our methodology uses a fully connected autoencoder as its underlying learner. An
autoencoder is a type of artificial neural network used for unsupervised learning that
learns to encode and decode data using a set of fully connected hidden layers [24]. A
layer is fully connected to the next when each of the first layer’s neurons is connected
to every neuron in the following layer. Autoencoders are made up of two main com-
ponents: an encoder and decoder. The encoder component maps the input data into a
lower-dimensional space then the decoder component maps the lower-dimensional
representation back into the high-dimensional space. The training objective of the
autoencoder is to minimize the reconstruction error between the input and the output.
This allows an autoencoder to be used for several different areas such as dimensional-
ity reduction, image and video processing, natural language processing, and anomaly

Page 6 of 20Kennedy et al. Journal of Big Data (2023) 10:106

detection. We use the autoencoder for fraud detection, a type of anomaly detection by
using tabular data.

The training process of an autoencoder is similar to that of other neural networks in
that during training the parameters, or weights, between neurons are optimized to mini-
mize an objective function. Here the reconstruction error between the input and output
layers is minimized with backpropagation, a widely used algorithm that employs gradi-
ent methods, such as gradient descent or stochastic gradient descent. An error metric,
such as mean squared error (MSE), is used to quantify the reconstruction error between
the input and output. The objective is to minimize this error metric. There are various
different algorithms that can be used to minimize such as the Adam optimizer or sto-
chastic gradient descent.

Specifically, the architecture of our method’s underlying autoencoder stays the same
for each iteration and dataset. The input layer has the same number of neurons as the
number of features in the dataset it is being applied to. Described in “Datasets” sec-
tion, the input has a size of 29 and 328 when used for credit card fraud detection and
Medicare Part D fraud detection, respectively. The encoder component of the autoen-
coder consists of two fully connected layers. The first layer has 100 neurons and the
second has 50 neurons. Both of these each use the ReLu activation function (rectified
linear unit). These are then connected to the decoder components of the architecture.
This mirrors the encoder where the next fully connected layer has 50 neurons and the
next one after that has 100 fully connected neurons. The layers in the decoder section
both use the Tanh activation function. These are followed by the final output layer
which uses the ReLu activation function. A visualization of the architecture is shown
in Fig. 1. For both datasets in this work, the autoencoder is trained for 50 epochs
for each iteration on the 80% training split. We use a learning rate of 0.0001, batch
size of 512, the Adam optimizer function, and MSE as our loss function. We chose a

Fig. 1 Autoencoder visualization of the encoder and decoder components

Page 7 of 20Kennedy et al. Journal of Big Data (2023) 10:106

fixed number of epochs after observing at 50 epochs both the training and validation
loss had reached an asymptote. Keras, version 2.8.0, was used [25]. One limitation
of our approach is it has relatively high training times, as compared to the other two
baseline learners. Since we use a fixed number of epochs, this slow training can be
mostly attributed to the number of training epochs we perform. Though we observed
an asymptote of the training loss, and thus a relative minimum, evaluating different
early stopping techniques may prove effective in reducing the overall training time
while not negatively affecting performance.

Class imbalance

Class imbalance is a common issue for datasets when the distribution of the classes is
imbalanced. Though this definition is applicable to multi-class datasets, we focus on
the binary class datasets. However, the concepts still apply to the multi-class problem
since it is possible to convert the multi-class problem into a set of binary class prob-
lems via class decomposition [26]. In many cases, a dataset can be considered class
imbalanced when the ratio of the classes starts from 1:4 up to 1:100 [27]. If each class
is well represented, class imbalance does not necessarily reduce model performance.
High class-imbalance, a more severe case of class imbalance, is defined as datasets
with an imbalance ratio of 1:1000 or greater [28]. These highly class imbalanced data-
sets pose additional challenges due to the relatively small number of minority samples
and the large number of majority samples. Japkowicz et al. [29] show that as the prob-
lem complexity increases, its sensitivity to class imbalance also increases.

The experiments presented in this paper are conducted on two imbalanced fraud
datasets. In the fraud datasets, the vast majority of the instances represent, and are
labeled accordingly, non-fraudulent or normal behavior. There are significantly fewer
labeled instances of fraudulent behavior since it can be difficult to accurately iden-
tify and label the fraudulent samples. This characteristic occurs in other domains as
well such as in detecting oil spills [7]. Learning from highly imbalanced datasets is
important because it is the rare events that we are interested in. For instance, we are
interested in identifying credit card fraud or Medicare insurance fraud out of the very
large number of transactions or claims.

Error thresholding

Our approach uses an error threshold as a cutoff point throughout the methodology. It
is used in both the training process and iterative cleaning steps, as well as in the evalua-
tion of the performance. The error threshold is two standard deviations from the mean
(�2SD). �2SD = ǫ + 2 · σ , where σ is the standard deviation of the errors of the current
iteration, and ǫ is the mean error for the current training iteration. The set of errors are
recalculated after each of our method’s iterations and thus the �2SD only changes at each
iterative cleaning step. When evaluating our method on an unseen holdout set, at the
end of each iteration the same �2SD is used to categorize the test data as fraud or non-
fraud as was calculated in the training step of the same iteration. We use �2SD because it
has been shown to be an effective error thresholding measure [30, 31].

Page 8 of 20Kennedy et al. Journal of Big Data (2023) 10:106

COPOD

We compare our iterative cleaning approach to existing unsupervised anomaly detec-
tion methods. One such model is called Copula-Based Outlier Detector (COPOD), first
introduced by Li et al. [32]. COPOD, as the name suggests, is an outlier/anomaly detec-
tion algorithm that is inspired by copulas for modeling multivariate data distributions.
It is parameter-free and is computationally efficient. Copulas are multivariate cumula-
tive distribution functions that enable the COPOD model to separate marginal distribu-
tions from a given data distribution. This gives COPOD the flexibility to be used in high
dimensional datasets. More specifically, COPOD is based on fitting empirical cumula-
tive distribution functions, called an empirical copula. This allows the COPOD model
to be nonparametric. This does however reduce the researcher’s ability to fine tune the
COPOD model, whereas many other models have one or more tunable parameters. We
use the implementation of COPOD which is included in the PyOD python library [33],
version 1.0.7. We train on the 80% split, from our fivefold cross validation splits, and
use the trained COPOD to predict on our 20% test split. The output from the COPOD
test function is binary and indicates whether an instance is predicted to be an outlier
or otherwise. We compare to the actual label to measure the model performance for
comparison.

Isolation Forest

The second baseline learner we compare our method to is called the Isolation Forest (IF),
originally introduced by Liu et al. in [34]. It is a popular unsupervised machine learning
model for anomaly or outlier detection. It is a tree-based algorithm that aims to isolate
anomalies from the rest of the data by partitioning the data into smaller and smaller sub-
sets. Liu et al. [34] defines isolation to mean “separating an instance from the rest of the
instances”. Their reasoning was that anomalies are “few and different” and therefore they
are more prone to isolation than non-anomalies or outliers. Specifically, an IF is a data-
induced random tree where the instances are recursively partitioned until all instances
are isolated. They show that the random partitioning produces a shorter path for anoma-
lies (longer paths for non-anomalies) because of two reasons: (1) anomalies are fewer in
number by nature and thus result in a smaller number of partitions; and (2) instances
that have separable attribute values are more likely to be separated early in the parti-
tioning process. At the end of the algorithm, there is a forest of random trees. Instances
that have shorter paths across many of the trees, it is highly likely to be an anomaly. The
average path length, for a given instance, converges as the number of random trees in the
forest increases.

Additionally, IF has previously been shown to be an effective unsupervised method
for the high-imbalanced Medicare fraud detection [35], outperforming other approaches
such as the deep learning framework called ORCA, local outlier factor (LOF), and ran-
dom forests when comparing AUC and processing time. We use the IF implementation
provided in Scikit-learn [36], version 0.23.1, for our experiments. The IF used in this
work is trained using the same 6 rounds of fivefold cross validation as the others, but
it is trained independently. One parameter, namely the contamination rate, was chosen
for our experiments, all other parameters were kept as the default. This parameter is the
amount of anomalous contamination in the dataset. It is the percentage of the minority

Page 9 of 20Kennedy et al. Journal of Big Data (2023) 10:106

class compared to the majority class. We set that to the level of imbalance for our data-
sets used in this study. This was calculated using labels; however, it is reasonable to
assume that this piece of information would fall under domain expertise and would be
available in practice. Additionally, we found that when this contamination rate was set,
it produces an IF that had higher performance as measured by the area under the preci-
sion-recall curve (AUPRC). Thus, giving the IF the best case scenario results to compare
our method to. It is important to note that this domain knowledge, the expected class
imbalance, is unused in our approach.

Datasets
We present a newly prepared Medicare fraud big dataset. It is a high-imbalanced dataset
derived from several publicly available Medicare datasets. Medicare fraud datasets have
been used in other works [5, 37] but the one we present here is a significant improve-
ment in that the dataset is built from additional sources and has a significant increase in
the number of trainable features. The Medicare program provides health insurance to
individuals 65 years and older, and other individuals with approved disabilities [38]. In
2020, there were 62 million Medicare beneficiaries and had a total expenditure greater
than $926 billion US dollars [39]. The scale of the Medicare insurance program lends
itself to being a target for fraudulent activity [40]. This data, in part, is publicly released
by the Centers for Medicare and Medicaid Services (CMS), a United States federal
agency, for analysis. The results in this paper are limited to just using data derived from
the original Part D data. The original Medicare Part D fraud data is enriched with an
additional 51 features for final use.

We use Medicare Part D data from 2013 through 2019, originally called the Medicare
Part D Summary by Provider and Drug. It describes a medical provider’s prescription
drug activity as it pertains to the Medicare program, for a given year and drug name.
Each year CMS releases 1 year worth of data but lags by a couple of years; our data-
set contains data from 2013 through 2019. The original Part D spanning the 7 years has
roughly 172 million records with 22 features. This makes it the largest of the Medicare
datasets released thus far by CMS. The features include provider-level and claims-level
information. The provider-level attributes include the healthcare provider’s national pro-
vider identifier (NPI), their specialty, gender, name, medical credentials, and geographic
details. The data is the yearly aggregate of the NPI and prescription drug name. The
claims-level attributes include the number of beneficiaries for the drug, cost, and num-
ber of prescriptions created.

First, the raw Part D data is cleaned and preprocessed to merge the years of data, nor-
malize columns, fill in missing values, and removing of duplicates. Missing values are
rectified by using dictionary files provided by CMS. For example, instances with miss-
ing provider gender values are imputed with a third gender “U” for unknown. Another
example is for the Tot_Bene, or total beneficiaries for a given drug and NPI, contain miss-
ing values but CMS states that this is done when the number is less than 10. A median
value of 5 is filled in for any rows that are missing the Tot_Bene feature value. Other
features that have missing values, such as provider name, are removed from entirely
since it treated as personally identifiable information. Many other features require little
preprocessing since they are consistently inputted and adhere to the dataset’s schema.

Page 10 of 20Kennedy et al. Journal of Big Data (2023) 10:106

However, the drug cost feature can have string values representing floating point num-
bers and need to be processed. The provider type feature, a categorical feature, needs to
be cleaned. There are some identical types with different inputted names that need to be
combined. This reduces the cardinality for the provider type from 269 down to 249 after
combining. The provider type and NPI are used for the data preprocessing steps but is
omitted during the training and test phases of this work.

Next, the preprocessed dataset now is modified with data aggregation steps. The large
number of instances in the Medicare data, especially Part D, drastically increases the
computation and storage requirements and significantly increases the challenges of its
class imbalanced nature [3]. A compressed representation of the data is created by data
aggregation and aims to significantly reduce the size and dimensionality of the Part D
data. It is aggregated over the NPI, year, and provider type. The drug name attribute is
removed, and the reaming numeric attributes are converted to their summary statistics:
minimum, maximum, median, mean, sum, and standard deviation. The summary sta-
tistics are for a given provider NPI. For example, the feature Tot_Clms (total claims) is
replaced by Tot_clms_min, Tot_clms_max, Tot_clms_median, Tot_clms_mean, Tot_clms_
sum, Tot_clms_std. This aggregation step reduces the number of instances by a signifi-
cant amount while creating new features that represent the provider’s billing behaviors.
The number of instances in Part D went from roughly 172 million records with 7 fea-
tures to roughly 6 million rows with 31 features, an 80% reduction in required computa-
tional memory.

Next, the preprocessed version of the Medicare Part D Summary by Provider and
Drug with the CMS provided Medicare Part D Summary by Provider, a second and dis-
tinct data source, is used for enrichment. Similar to the previous CMS data, this too is
from the years 2013 through 2019. This data does not include statistics at the drug level,
but rather summary data that describes a medical provider’s services and beneficiaries
over a given year. Like the pre-processed steps outlined above, this second data source is
one record for each NPI per year. The aggregated data above is then enriched with this
second source to produce the aggregated-enriched Medicare Part D data. We refer to
this as just the Part D data in the rest of this paper. This enrichment steps adds 51 new
features for a total of 82 features. These include beneficiary summary statistics, such as
number of beneficiaries prescribed for per age group, gender, and Medicare or Medicaid
membership. These statistics are divided into different categories: opiate drug claims,
long-acting opiate drug claims, antibiotic drug claims, and anti-psychotic drug claims.
The aggregated data and the Summary by Provider and Drug data set is joined on the
NPI and year columns using an inner join. This results in a loss of roughly 1 million rows
and the addition of the 51 features. One categorical feature, namely prescriber type, is
one-hot encoded. This results in a total of 328 features for use in the experiments, sum-
marized in Table 1.

We have only discussed the features of the Medicare Part D thus far. Though we use
an entirely unsupervised approach in this work, fraudulent labels are required for us
to accurately measure the effectiveness of our approach. The data from CMS does not
include fraudulent labels. The Part D data is labeled using the publicly available List of
Excluded Individuals and Entities (LEIE) [41]. The LEIE data is maintained by the Office
of Inspector General (OIG) and is a monthly updated list. The OIG can add providers

Page 11 of 20Kennedy et al. Journal of Big Data (2023) 10:106

to the LEIE and they are excluded from being able to receive payment from any fed-
eral healthcare programs. This is a result of an individual or entity being convicted in
a court of law for a verity of reasons such as conviction of program-related crimes, or
conviction of fraud, kickbacks, and other prohibited activities [42]. The exclusion type
ranges in offense and severity. The Part D data is labeled in the same manner as Bauder
et al. [43]. They found a subset of exclusion rules that indicate fraud. The NPI number is
used to match the fraudulent instances in the LEIE and label those in the Part D dataset.
Summarized in Table 1, 3700 instances are labeled fraudulent which makes this dataset
highly class imbalanced.

The smaller of the two datasets used in this study is a credit card fraud dataset [44].
Originally collected as a result of a research partnership between Worldline and the Uni-
versité Libre de Bruxelles. There are a total of 284,807 instances that represent real word
credit card transactions. There are 30 independent features, and each have a binary class
label. The class label is only used in the performance metric calculations. The card trans-
actions were made by European credit card holders between September 1st through
September 30th, 2013. Summarized in Table 1, the dataset is highly-imbalanced with
only 492 labeled fraudulent transactions. We drop one feature, namely time, and use the
remaining 29 features for our learners. This dropped feature has been shown to not have
any predictive value, contributes to noise and thus, was not used.

Results
We conduct experiments comparing our method to two baseline unsupervised learn-
ers on two different fraud datasets in different domains. We evaluate our method, using
an autoencoder as the underlying learner, against two unsupervised outlier detection
methods: Isolation Forest and COPOD. The first dataset is a new Medicare Part D data-
set that we prepared, using multiple public sources, for fraud detection. The other is a
widely used credit card fraud dataset.

For each domain, we conduct 6 rounds of fivefold cross validation producing 30 sets of
80/20 train/test splits and corresponding results. The AUC and AUPRC values shown in
the result tables are the average value across the 30 replications [9]. The primary perfor-
mance metric is the AUPRC values since it is a better than AUC as an indicator of model
performance in a highly imbalanced setting.

Performance metrics and statistical analysis

One main challenge for measuring model performance of fraud detection methods is
that this task is class imbalanced. Our datasets used in this work are considered highly
class imbalanced and thus further increase the negative effects of imbalance. The per-
formance metric used needs to be chosen with good reason. We use the area under the

Table 1 Dataset class characteristics

Dataset Minority count Majority count Total count Minority
imbalance (%)

Features

Medicare part D 3700 5,340,406 5,344,106 0.0692 328

Credit card 492 284,315 284,807 0.1727 28

Page 12 of 20Kennedy et al. Journal of Big Data (2023) 10:106

precision-recall curve (AUPRC) as our main performance metric when comparing our
results. In addition, we also provide the area under the receiver operating curve (AUC)
value since it is a widely used performance metric. However, AUPRC is a superior metric
when comparing models in a high class imbalanced scenario since AUC has been shown
to be a misleading performance metric in the presence of a severe class imbalance as is
the case with the datasets used in this paper [9].

Fraud detection is a binary classification problem, and it is conventional to use a
confusion matrix, illustrated in Table 2, to summarize the binary classification results.
AUPRC and AUC values can be derived from the TP, FP, FN, and TN values.

The receiver operating characteristic curve (ROC), first introduced by Provost et al.
[45], is a widely used performance metric that summarizes the true positive rate vs.
the false positive rate. This curve visualizes the trade-off between correctly classified
positive instances and incorrectly classified negative instances, or correctly identified
fraudulent instances and fraudulent instances that were missed, respectively. The AUC
is the area under the ROC and is a single number that summarizes these performance
measurements.

Davis et al. [9] show that the ROC curves, and thus the AUC values, can present overly
optimistic results in the presence of highly imbalanced data. As a better alternative,
precision-recall (PR) curves, and thus the AUPRC values, provide a better performance
metric. The authors state that a curve can only dominate in ROC space if and only if it
dominates in PR space. ROC summarizes a model’s performance in terms of true posi-
tive rate (TPR) and false positive rate (FPR), while the PR summarizes a model’s per-
formance in terms of precision and recall (also known as TPR). This makes AUC less
sensitive to the changes in false positives as the size of the negative, or majority class
grows, as it does in highly imbalanced datasets.

We use one-factor ANOVA (analysis of variance) as a statistical test to determine
if there exist statistical differences between various metrics we compare. Addition-
ally we use the Tukey’s honestly significant difference (HSD) test to rank our results
where needed [46, 47]. The Tukey HSD test ranks the metrics being tested from highest
to lowest and assigns each row to a letter-group. The letter-groups indicate statistical

(1)FPR =
FP

FP + TN

(2)Precision =
TP

TP + FP

(3)Recall = TPR =
TP

TP + FN

Table 2 Confusion matrix

Actual positive Actual negative

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)

Page 13 of 20Kennedy et al. Journal of Big Data (2023) 10:106

differences between the rows. For example, Table 10 shows the Tukey HSD results for
the credit card datasets for each of our method’s iterations. The test ranks the AUPRC
from greatest to least showing that the highest AUPRC was from iteration 9 and is sta-
tistically similar in value to iteration 8, 7, and 6 because they all belong to Group “a”.
Another example, Table 12, shows the AUPRC values of our approach outperform the
ones of COPOD which outperform the ones of IF.

Result analysis

For each of the datasets, we run our methodology for 10 iterations for each of the 6
rounds of fivefold cross validation. The IF and COPOD models are run as designed, thus
they do not have any iterative results. A breakdown of the class characteristics is shown
in Table 1. Both the datasets are highly imbalanced, but the Medicare Part D is both sig-
nificantly larger and more class imbalanced than the credit card dataset.

In our approach, we split the data into 80% training and 20% test using fivefold cross
validation, a newly initialized autoencoder is trained on the training data then �2SD is
determined and used to remove instances with high anomaly scores. The then slightly
smaller and cleaner dataset it used for training the next iteration’s new initialized
autoencoder. This process is repeated for 10 iterations. At the end of each iteration, we
use the trained autoencoder to make predictions on the 20% unseen test split. We then
calculate the AUPRC and AUC for each iteration. Neither this process nor its perfor-
mance results affect any of the iterations that follow it. The unseen test split is used for
all iteration results and is not changed during our method’s iterative process.

Additionally, at the beginning of the first iteration, when none of the instances have
been cleaned out, it is functionally similar to just using the autoencoder of the same
architecture. Thus, we can compare the AUPRC and AUC for our approach against the
IF, COPOD, and autoencoder models.

Medicare part D dataset

The new Medicare Part D dataset that we prepared has 5,344,106 total instances, with
only 3700 instances in the fraudulent class, giving this a class imbalance of 0.0692%. As
can be seen in Table 3, the AUPRC significantly increases after each iteration. Starting
from an AUPRC value of 0.238 and climbing up to 0.2598 at the final iteration. The AUC
values exhibit a similar effect for the first few iterations but start to plateau after iteration
4. The first few iterations the AUPRC increase is clear but towards the final interactions
the AUPRC converges to the final value.

We calculate the ANOVA for each iteration and perform a Tukey HSD test, in Tables 4
and 5, respectively. The Tukey HSD results clearly show that the highest performing iter-
ation is the final iteration and that the AUPRC does significantly continue to improve.
The Group column shows that each iteration is in their own letter-group. Each letter-
group indicates that it is significantly different than the next. Additionally, the Tukey
test shows that our method only outperforms using an autoencoder by itself after itera-
tion 2. An autoencoder alone, AE-0, produces an AUPRC of 0.0238 and after iteration
2, our method, AE-2, has an AUPRC score of 0.0736, a 3× improvement. Similar trends
are observed using the AUC metric. Due to the consistently increasing AUPRC, we can

Page 14 of 20Kennedy et al. Journal of Big Data (2023) 10:106

conclude that in practice, iterating for at least as many iterations as we completed pro-
duces the best performing approach.

Our approach has the highest AUPRC at iteration 9 when working with our Medicare
Part D dataset. We compare this model, AE-9, with the two baseline unsupervised learn-
ers, IF and COPOD. The bottom of Table 3 clearly shows that the 0.2598 AUPRC of AE-9
outperforms both IF and COPOD by a significant amount which have AUPRC values
of 0.0176 and 0.1176, respectively. For completeness, we present the results in Tables 6
and 7 that show the Tukey HSD test, and associated ANOVA, confirms our observa-
tions. Our approach outperforms both IF and COPOD at iteration 4, with an AUPRC

Table 3 Medicare part D results comparison

Medicare part D

Model AUC AUPRC

AE-0 0.5181 0.0238

AE-1 0.5276 0.0350

AE-2 0.5547 0.0736

AE-3 0.5791 0.1185

AE-4 0.5906 0.1516

AE-5 0.5975 0.1778

AE-6 0.6016 0.2010

AE-7 0.6033 0.2198

AE-8 0.6116 0.2468

AE-9 0.6093 0.2598

IF 0.5083 0.0176

COPOD 0.5668 0.1179

Table 4 Medicare part D iterations ANOVA

Df Sum Sq Mean Sq F value Pr(> F)

Iteration 9 1.9691 0.2188 1095 < 2e−16

Residuals 290 0.0579 0.0002

Table 5 Medicare part D autoencoder iteration comparison

Part D Tukey HSD test

Iterations AUPRC Group

9 0.2598 a

8 0.2468 b

7 0.2198 c

6 0.2010 d

5 0.1778 e

4 0.1516 f

3 0.1185 g

2 0.0736 h

1 0.0350 i

0 0.0238 i

Page 15 of 20Kennedy et al. Journal of Big Data (2023) 10:106

value of 0.1516. This shows the effectiveness of our approach as compared to existing
unsupervised leaners when being used for fraud detection on a large, highly imbalanced
dataset. This also highlights how effecting the iterative cleaning process is. Further anal-
ysis is needed to determine where AUPRC results stop improving. However, from these
results, AE-9 would be used in practice since it is the highest performing model.

Credit card dataset

The credit card dataset has a total of 284,807 instances with only 492 instances in the
fraudulent/minority class, giving this a class imbalance of 0.1727%. This is significantly
more balanced than the Medicare Part D dataset, though still imbalanced. However, the
number of fraud instances is significantly lower than the number of fraud instances in
the Part D dataset, making these fraud cases significantly rarer.

Table 8 presents the AUPRC and AUC values for each of our methods iterations,
IF, and COPOD. When looking at this dataset, our approach outperforms the base-
line autoencoder, AE-0, after the first cleaning iteration as measured in both AUC and

Table 6 Medicare part D models ANOVA

Df Sum Sq Mean Sq F value Pr(> F)

Model 2 0.8889 0.4444 2931 < 2e−16

Residuals 87 0.0132 0.0002

Table 7 Medicare part D overall Tukey HSD

Medicare part D comparison

Model AUPRC Group

AE-9 0.2598 a

COPOD 0.1179 b

IF 0.0176 c

Table 8 Credit card fraud results

Credit card fraud

Model AUC AUPRC

AE-0 0.7261 0.3073

AE-1 0.8169 0.3738

AE-2 0.9035 0.4412

AE-3 0.8955 0.4462

AE-4 0.8814 0.4534

AE-5 0.8649 0.4553

AE-6 0.8553 0.4605

AE-7 0.8466 0.4632

AE-8 0.8401 0.4659

AE-9 0.8339 0.4667

IF 0.6586 0.3148

COPOD 0.8891 0.4455

Page 16 of 20Kennedy et al. Journal of Big Data (2023) 10:106

AUPRC. The AUPRC increases from 0.3073 to 0.3738 and the AUC increases from
0.7261 to 0.8169. In the previous dataset it took 2 iterations to measure an increase in
AUPRC. Similar to the previous dataset, we want to find at which iteration does our
method best perform, when measuring AUPRC. These values are closer together than
the previous dataset, so we must perform a Tukey HSD test to determine this.

Tables 9 and 10 show the ANOVA and Tukey HSD test when comparing the AUPRC
across each of our method’s iterations, respectively. Starting from the bottom of
Table 10, the results show that the AUPRC significantly improves after each iteration, as
noted by group e, d, and c. Iterations that have shared letters in their group are not sta-
tistically different from each other. For example, iteration 2, 3, and 4 each have the letter
“c” in it. This means the AUPRC value might be slightly higher as the iterations increase,
but they are not significantly higher. Iterations that belong to the letter group “a” have
the highest AUPRC value and are significantly higher than iterations not belonging to
“a”. Each additional iteration has a computational cost associated with it and is removing
additional, potentially useful, instances from its training dataset. Thus, we can conclude
that the overall best iteration is iteration 9 since it is produces the highest AUPRC of
0.4667 and belongs to the “a” group. Our approach shows slight AUPRC improvement
from the fourth iteration to the ninth. However, the increase after the fourth is slight
and is not statistically significant, as indicated by the Tukey HSD test. This shows clear
diminishing returns after first several iterations.

We can compare AE-9, our approach’s best performing iteration, to the baseline
unsupervised fraud detection methods, IF, and COPOD. Unlike the results in the pre-
vious section, the AUPRC values are much closer together for AE-9, IF, and COPOD.
Tables 11 and 12 show the ANOVA and Tukey HSD results, respectively, when compar-
ing AE-9, IF, and COPOD using AUPRC. These tables confirm that AE-9 outperforms

Table 9 Credit card iterations ANOVA

Df Sum Sq Mean Sq F value Pr(> F)

Iteration 9 0.7303 0.08114 283.3 < 2e−16

Residuals 290 0.0831 0.00029

Table 10 Credit card autoencoder iteration comparison

CC iteration Tukey HSD

Iterations AUPRC Group

9 0.4667 a

8 0.4659 a

7 0.4632 a

6 0.4605 a

5 0.4553 ab

4 0.4534 abc

3 0.4462 bc

2 0.4412 c

1 0.3738 d

0 0.3073 e

Page 17 of 20Kennedy et al. Journal of Big Data (2023) 10:106

both COPOD and IF when using AUPRC as a performance metric, though it outper-
forms the next best model by a smaller degree when looking at the credit card data as
opposed to the Medicare Part D data. AE-9 has an AUPRC of 0.4667, COPOD is 0.445,
but both are significantly greater than the 0.3148 AUPRC for IF. In both datasets, our
model outperforms COPOD while IF is always the least performant. When using our
approach in practice, AE-9 would be chosen since it is the highest performing model.
However, if significant time or computation constraints existed, choosing AE-4 would
produce statistically similar results, albeit with slightly less AUPRC.

Conclusion
This study presents an unsupervised and iterative methodology for fraud detection of
high-imbalanced data. Our approach uses a fully connected autoencoder as its baseline
learner. We compare our unsupervised fraud detection approach with existing unsuper-
vised fraud detection models, namely Isolation Forest and COPOD. Additionally, we
present a new Medicare Part D dataset that uses several publicly available claims data
from CMS. To the best of our knowledge, this is the first paper to utilize these CMS
datasets to create a labeled fraud dataset for Medicare Part D claims. We also leverage
the list of fraudulent Medicare providers from the LEIE to construct fraudulent labels.

We compare the AUPRC and AUC performance of our approach with IF and COPOD
when using the presented Medicare Part D dataset as well as a widely used credit card
fraud detection dataset. We present results and statistical analysis that show our meth-
odology outperforms both IF and COPOD in both datasets when using AUPRC. Our
iterative cleaning method outperforms the baseline autoencoder in as few as one itera-
tion on the credit card dataset and as few as 2 iterations on the Part D dataset. Addition-
ally, we can conclude that across both datasets, our approach outperforms the baseline
autoencoder, IF, and COPOD at the fourth iteration. Additional iterations increased
AUPRC performance in the Part D data but did not significantly improve when using
the credit card data. Additional analysis is needed to determine the precise reasoning
for this. Future work includes expanding these results to other application domains as
well as other baseline learners. Additionally, future work on measuring the effectiveness
of our approach on big datasets that do not have high class imbalance. Another possible

Table 11 Credit card models ANOVA

Df Sum Sq Mean Sq F value Pr(> F)

Model 2 0.3942 0.1971 310.6 < 2e−16

Residuals 87 0.0552 0.00063

Table 12 Credit card results comparison

Overall CC Tukey HSD

Model AUPRC Group

AE-9 0.4667 a

COPOD 0.4455 b

IF 0.3148 c

Page 18 of 20Kennedy et al. Journal of Big Data (2023) 10:106

avenue for future work is to explore potential early stopping techniques while training
the autoencoders. This has the potential to reduce overall training time while not nega-
tively affecting the approach’s performance.

Abbreviations
ANOVA Analysis of Variance
AUC Area under the receiver operating curve
AUPRC Area under the precision–recall curve
CMS Center for Medicare and Medicaid Services
COPOD Copula-based Outlier Detector
EE EasyEnsemble
FBI Federal bureau of investigation
FN False negative
FP False positive
FPR False positive rate
HMM Hidden Markov Model
HSD Tukey’s honestly significant difference
IF Isolation Forest
LEIE List of Excluded Individuals and Entities
LOF Local outlier factor
LSTM Long short-term memory
MSE Mean squared error
NPI National provider identifier
OCC One-Class Classifier
OIG Office of Inspector General
PR Precision–recall
ReLu Rectified linear unit
ROC Receiver operating characteristic curve
SVM Support vector machine
TN True negative
TP True positive
TPR True positive rate

Acknowledgements
The authors would like to thank the reviewers in the Data Mining and Machine Learning Laboratory at Florida Atlantic
University.

Author contributions
RKLK and ZS carried out the concept and design of the research, performed the implementation and experimentation,
and drafted the manuscript. TMK and FV provided reviews on the manuscript. All authors read and approved the final
manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 April 2023 Accepted: 8 May 2023

References
 1. Morris L. Combating fraud in health care: an essential component of any cost containment strategy. Health Aff.

2009;28(5):1351–6.
 2. Bauder RA, Khoshgoftaar TM, Seliya N. A survey on the state of healthcare upcoding fraud analysis and detection.

Health Serv Outcomes Res Methodol. 2017;17:31–55.

Page 19 of 20Kennedy et al. Journal of Big Data (2023) 10:106

 3. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data.
2018;5(1):42.

 4. Johnson JM, Khoshgoftaar TM. Encoding techniques for high-cardinality features and ensemble learners. In: 2021
IEEE 22nd international conference on information reuse and integration for data science (IRI). IEEE; 2021. p. 355–61.

 5. Bauder RA, Khoshgoftaar TM. The effects of varying class distribution on learner behavior for medicare fraud detec-
tion with imbalanced big data. Health Inf Sci Syst. 2018;6:1–14.

 6. Wei W, Li J, Cao L, Ou Y, Chen J. Effective detection of sophisticated online banking fraud on extremely imbalanced
data. World Wide Web. 2013;16(4):449–75.

 7. Kubat M, Holte RC, Matwin S. Machine learning for the detection of oil spills in satellite radar images. Mach Learn.
1998;30(2):195–215.

 8. Cieslak DA, Chawla NV, Striegel A. Combating imbalance in network intrusion datasets. In: GrC; 2006. p. 732–7.
 9. Davis J, Goadrich M. The relationship between precision-recall and roc curves. In: Proceedings of the 23rd interna-

tional conference on machine learning. 2006. p. 233–40.
 10. Hancock JT, Khoshgoftaar TM, Johnson JM. Evaluating classifier performance with highly imbalanced big data. J Big

Data. 2023;10(1):1–31.
 11. Kennedy RK, Johnson JM, Khoshgoftaar TM. The effects of class label noise on highly-imbalanced big data. In: 2021

IEEE 33rd international conference on tools with artificial intelligence (ICTAI). IEEE; 2021. p. 1427–33.
 12. Salekshahrezaee Z, Leevy JL, Khoshgoftaar TM. A class-imbalanced study with feature extraction via PCA and con-

volutional autoencoder. In: 2022 IEEE 23rd international conference on information reuse and integration for data
science (IRI). IEEE; 2022. p. 63–8.

 13. Hasanin T, Khoshgoftaar TM, Leevy JL, Seliya N. Examining characteristics of predictive models with imbalanced big
data. J Big Data. 2019;6(1):1–21.

 14. Carcillo F, Le Borgne Y-A, Caelen O, Kessaci Y, Oblé F, Bontempi G. Combining unsupervised and supervised learning
in credit card fraud detection. Inf Sci. 2021;557:317–31.

 15. Srivastava A, Kundu A, Sural S, Majumdar A. Credit card fraud detection using hidden Markov model. IEEE Trans
Dependable Secure Comput. 2008;5(1):37–48.

 16. Lee C-Y, Li C-L, Yoon J, Sohn K, Arik S, Pfister T. Self-supervise, refine, repeat: improving unsupervised anomaly detec-
tion. arXiv preprint. 2022. arXiv: 2106. 06115.

 17. Liu X-Y, Wu J, Zhou Z-H. Exploratory undersampling for class-imbalance learning. IEEE Trans Syst Man Cybern B
Cybern. 2008;39(2):539–50.

 18. Liu T-Y. Easyensemble and feature selection for imbalance data sets. In: 2009 International joint conference on
bioinformatics, systems biology and intelligent computing. IEEE; 2009. p. 517–20.

 19. Zong B, Song Q, Min MR, Cheng W, Lumezanu C, Cho D, Chen H. Deep autoencoding Gaussian mixture model for
unsupervised anomaly detection. In: International conference on learning representations. 2018.

 20. Pu G, Wang L, Shen J, Dong F. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci
Technol. 2020;26(2):146–53.

 21. Maleki S, Maleki S, Jennings NR. Unsupervised anomaly detection with LSTM autoencoders using statistical data-
filtering. Appl Soft Comput. 2021;108: 107443.

 22. Pang G, Yan C, Shen C, Hengel AVD, Bai X. Self-trained deep ordinal regression for end-to-end video anomaly detec-
tion. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020. p. 12173–82.

 23. Beggel L, Pfeiffer M, Bischl B. Robust anomaly detection in images using adversarial autoencoders. In: Machine
learning and knowledge discovery in databases: European conference, ECML PKDD 2019, Würzburg, Germany,
September 16–20, 2019, Proceedings, Part I. Springer; 2020. p. 206–22.

 24. Ng A, et al. Sparse autoencoder. CS294A Lecture notes. 2011;72(2011):1–19.
 25. Chollet F, et al. Keras. 2015. https:// keras. io.
 26. Wang S, Yao X. Multiclass imbalance problems: analysis and potential solutions. IEEE Trans Syst Man Cybern B

Cybern. 2012;42(4):1119–30.
 27. Krawczyk B. Learning from imbalanced data: open challenges and future directions. Progr Artif Intell.

2016;5(4):221–32.
 28. Khoshgoftaar TM, Seiffert C, Van Hulse J, Napolitano A, Folleco A. Learning with limited minority class data. In: Sixth

international conference on machine learning and applications (ICMLA 2007). IEEE; 2007. p. 348–53.
 29. Japkowicz N. The class imbalance problem: significance and strategies. In: Proc. of the Int’l Conf. on artificial intel-

ligence, vol. 56; 2000. p. 111–7.
 30. Fang J, Xia S, Lin J, Xia Z, Liu X, Jiang Y. Alpha discovery neural network based on prior knowledge. 2019. arXiv

preprint. arXiv: 1912. 11761.
 31. Clark J, Liu Z, Japkowicz N. Adaptive threshold for outlier detection on data streams. In: 2018 IEEE 5th international

conference on data science and advanced analytics (DSAA). IEEE; 2018. p. 41–9.
 32. Li Z, Zhao Y, Botta N, Ionescu C, Hu X. COPOD: copula-based outlier detection. In: 2020 IEEE international conference

on data mining (ICDM). IEEE; 2020. p. 1118–23.
 33. Zhao Y, Nasrullah Z, Li Z. Pyod: a python toolbox for scalable outlier detection. J Mach Learn Res. 2019;20(96):1–7.
 34. Liu FT, Ting KM, Zhou Z-H. Isolation forest. In: 2008 eighth IEEE international conference on data mining. IEEE; 2008.

p. 413–22.
 35. Bauder RA, da Rosa R, Khoshgoftaar TM. Identifying medicare provider fraud with unsupervised machine learning.

In: 2018 IEEE international conference on information reuse and integration (IRI). 2018; IEEE. p. 285–92.
 36. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J
Mach Learn Res. 2011;12:2825–30.

 37. Johnson JM, Khoshgoftaar TM. Hcpcs2vec: healthcare procedure embeddings for medicare fraud prediction. In:
2020 IEEE 6th international conference on collaboration and internet computing (CIC). IEEE; 2020. p. 145–52.

 38. U.S. Government. US Centers for Medicare & Medicaid Services: the official U.S. government site for medicare.
https:// www. medic are. gov/.

http://arxiv.org/abs/2106.06115
https://keras.io
http://arxiv.org/abs/1912.11761
https://www.medicare.gov/

Page 20 of 20Kennedy et al. Journal of Big Data (2023) 10:106

 39. Centers for Medicare & Medicaid Services: trustees report & trust funds. https:// www. cms. gov/ Resea rch- Stati stics-
Data- and- Syste ms/ Stati stics- Trends- and- Repor ts/ Repor tsTru stFun ds/ index. html.

 40. van Capelleveen G, Poel M, Mueller RM, Thornton D, van Hillegersberg J. Outlier detection in healthcare fraud: a case
study in the medicaid dental domain. Int J Acc Inf Syst. 2016;21:18–31.

 41. U.S. Department of Health and Human Services Office of Inspector General: LEIE downloadable databases. https://
oig. hhs. gov/ exclu sions/ exclu sions_ list. asp.

 42. U.S. Department of Health and Human Services Office of Inspector General: exclusion authorities. https:// oig. hhs.
gov/ exclu sions/ autho rities. asp.

 43. Bauder RA, Khoshgoftaar TM. A novel method for fraudulent medicare claims detection from expected payment
deviations (application paper). In: 2016 IEEE 17th international conference on information reuse and integration
(IRI). 2016; IEEE. p. 11–19.

 44. Dal Pozzolo A, Caelen O, Johnson RA, Bontempi G. Calibrating probability with undersampling for unbalanced clas-
sification. In: 2015 IEEE symposium series on computational intelligence. IEEE; 2015. p. 159–66.

 45. Provost FJ, Fawcett T, et al. Analysis and visualization of classifier performance: comparison under imprecise class
and cost distributions. In: KDD, vol. 97; 1997. p. 43–8.

 46. Abdi H, Williams LJ. Tukey’s honestly significant difference (HSD) test. Encycl Res Des. 2010;3:1–5.
 47. Berenson M, Levine D, Goldstein M. Intermediate statistical methods and applications: a computer package

approach. Englewood Cliffs: Prentice-Hall; 1983.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/ReportsTrustFunds/index.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/ReportsTrustFunds/index.html
https://oig.hhs.gov/exclusions/exclusions_list.asp
https://oig.hhs.gov/exclusions/exclusions_list.asp
https://oig.hhs.gov/exclusions/authorities.asp
https://oig.hhs.gov/exclusions/authorities.asp

	Iterative cleaning and learning of big highly-imbalanced fraud data using unsupervised learning
	Abstract
	Introduction
	Related works
	Methodology
	Autoencoder
	Class imbalance
	Error thresholding
	COPOD
	Isolation Forest

	Datasets
	Results
	Performance metrics and statistical analysis
	Result analysis
	Medicare part D dataset
	Credit card dataset

	Conclusion
	Acknowledgements
	References

