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Abstract 

The proposed framework consists of three modules as an outlier detection method for 
indoor air quality data. We first use a long short-term memory autoencoder (LSTM-AE) 
based reconstruction error detector, which designs the LSTM layer in the shape of an 
autoencoder, to build a reconstruction error-based outlier detection model and extract 
latent features. The latent feature class-assisted vector machine detector constructs an 
additional outlier detection model using previously extracted latent features. Finally, 
the ensemble detector combines the two independent classifiers to define a new 
ensemble-based decision rule. Furthermore, because real-time anomaly detection 
proceeds with unsupervised learning, more stable and consistent external detection 
rules are defined than when using a single ensemble model. Laboratory tests with five 
random cases were performed for objective evaluation. Thus, we propose a framework 
that can be applied to various industrial environments by detecting and defining 
stable outlier decision rules.

Keywords:  Long short-term memory autoencoder, Environmental sensor, Anomaly 
detection, Multivariate time series, Condition monitoring

Introduction
 Recently, as social interest in the environment has increased, the importance of detect-
ing indoor air pollution (IAP), which can be harmful to the human body, has been 
emphasized. In particular, IAP is treated as a higher risk than outdoor air pollution 
because the time spent indoors is longer and because it is an enclosed space. Therefore, 
it is easy for pollutants to have an intensive and harmful effect on the body. Continu-
ous exposure to the contaminants and their long-term accumulation in the body may 
lead to serious risks, such as respiratory diseases, cardiovascular disease, lung can-
cer, and bronchial asthma [1, 2]. To address these problems, researchers have devised 
various approaches to identify the causes of pollutants and control indoor air quality 
[3]. The Overall mission of this filed is to understand how IAP impacts human health 
and well-being, and to develop strategies to reduce exposure to IAP. As an important 
aspect of these solutions, controlling major factors such as total volatile organic com-
pounds (TVOC) and CO2, which have harmful effects on the human body, and detecting 
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outliers is being emphasized [4]. Although various methods are being studied to define 
the range of outliers for each factor, it was far from the actual real world application 
due to the problems such as multiple sources of solution, cost and availability of moni-
toring equipment. So new and differentiated approach is needed to identify universal 
outliers that can be applied to information and communications technology-based envi-
ronmental monitoring sensors. In this way, we propose a new methodology that solves 
and approaches the IAP situation from an outlier perspective.

Outlier detection is a technique used to find abnormal values or patterns in large data-
sets. The “abnormal” that we defined is a concept that includes point, collective, and 
contextual outliers [5]. A point outlier is a specific data point with a large difference 
from other normal data. A collective outlier refers to data that show a change outside the 
predictable range among continuous patterns of change in consideration of the overall 
context of the data. Contextual outliers are extreme with respect to the whole set called 
global outliers [6]. To detect outliers in an indoor environment, real-time detection that 
can immediately identify air pollution is very important. Real-time outlier detection 
identifies anomalies in the data as indicators of the difference between the predicted val-
ues of the model and the measured values of the sensors [7]. Currently, algorithms that 
perform situation-specific outlier detection in real time from various types of sensor 
data are being actively researched [5]. When detecting situational outliers in the indoor 
environment in real time, the precondition for training the model becomes very difficult 
because the range of judgments that can be defined as outliers may be different for each 
environment. Therefore, we propose an artificial intelligence-based outlier detection 
model that can be robustly applied in several indoor environments.

In generally, to train the outlier detection model, only normal data used as training 
data. However, in the real world, because data are directly collected through a sensor, 
noise could be included in the data. Therefore, under the assumption that most data 
are normal samples with a certain level of noise, studies on unsupervised detection are 
conducted.

In outlier detection in the field of networks, an anomaly is defined as an exceptional 
pattern that does not follow the expected normal pattern of network traffic [8]. In auton-
omous driving, Resnet classification is used to diagnose component failures, and cases 
different from dynamic characteristics are defined as fault diagnoses [9]. Moreover, in 
natural images, when evaluating outlier detection methods through multi-class classifi-
cation, class labels are adjusted to the existing classification datasets [10].

In time-series data research, many studies have been conducted on bearing defect 
diagnosis problems or multivariate outlier detection [9, 11]. In a univariate time series, a 
point or subsequence that exceeds a certain threshold can be considered an anomaly [1]. 
By contrast, in multivariate time-series data, the relationship between the variables, the 
abnormal values of each characteristic, and the abnormalities of the subsequences must 
be considered [12].

An outlier was defined as an exceptional observation value that deviated from the nor-
mally collected cluster. Based on the normal data category, data outside the correspond-
ing decision boundary were determined as outliers. However, the range and value of 
outlier clusters vary depending on the environment. Indoor air quality is highly depend-
ent on the structure of a building, materials used in its construction, ventilation cycle, 
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and behavior of its occupants [13]. Therefore, it is necessary to verify the linearity of the 
sensor data as the indoor environment changes. We developed an anomaly detection 
framework that can analyze key environmental factors based on self-collected data from 
sensor devices and detect abnormal patterns that can be identified as outliers. Moreover, 
we built an anomaly detection framework that can monitor the conditions of the envi-
ronment and provide accurate alarms for dangerous situations.

We propose a long short-term memory autoencoder (LSTM-AE) as an algorithm to 
perform outlier detection on multivariate time-series data. The LSTM-AE is an algo-
rithm that extracts low-dimensional compression characteristics that best represent 
data by reflecting the time-series characteristics in the data. Based on the latent charac-
teristics extracted from the encoder, it reconstructs a restored value similar to the origi-
nal value possible in the decoder [14]. In LSTM-AE, the threshold for discriminating 
outliers is determined by calculating the difference between the restored output value 
and the original input value, and the final decision rule is defined [15]. Such a detec-
tion method is called a reconstruction error-based outlier detection method (RE-DM). 
RE-DM has the advantage of comprehensively evaluating multivariate environmental 
data to derive reasonable decision-making rules even in an unsupervised environment.

However, when RE-DM is used independently, it is not only vulnerable to noise 
included in the data but also unstable near the threshold and shows somewhat incon-
sistent classification results. Therefore, the false positive rate (FPR), which indicates the 
positive prediction misclassification of the model, increases, causing several false alarms 
[16]. To solve this problem in the LSTM-AE, we constructed a sub-algorithm using the 
latent feature space extracted from the encoder. The sub-algorithm makes the existing 
one-dimensional decision rule more complex to output more careful and generalized 
classification results. In addition, by combining two independent models that operate 
with different mechanisms, outliers can be distinguished from diverse viewpoints. To 
verify that our model can be robustly applied in various environments, we perform labo-
ratory (LAB) tests based on data collected from environmental monitoring sensors.

The LSTM-AE-based outlier detection framework presented in this study can detect 
various unpredictable abnormal situations by training deep neural networks (DNNs) in 
a multi-feature data pool that changes frequently depending on the indoor environment 
and timestamp for each domain. The main objective of this study is to perform low-cost 
and quick-time data anomaly detection with real-world data directly collected in a situa-
tion where the utilization of computing resources in various industries is limited.

Research methodology
As presented above, our proposed outlier detection method based on the ensemble of 
LSTM-AE and sub-algorithm builds a robust model considering the various uncertainty 
of the real-world. Through this methodology, we would like to propose a method for sta-
bly performing outlier detection in an unsupervised learning environment that has not 
yet been conquered.

Figure 1 shows the proposed anomaly detection framework, which can be divided into 
the following four major steps: (i) data cleansing stage, (ii) modeling stage, (iii) decision 
rule definition stage, and (iv) situational ab test stage.
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First, (i) data cleansing is the process of extracting and refining data collected by the 
sensors. The main components to be used for model training are extracted, and miss-
ing values ​​and outliers generated in the sensing process are corrected. (ii) The mod-
eling step trains the LSTM-AE model and extracts the latent characteristics contained 
in the data based on the trained encoder part. In the case of the existing outlier detec-
tion method using LSTM-AE, an outlier detection rule based on the reconstruction 
error using the difference between the original value and the restored value is used; 
however, we wanted to define an additional device for more consistent and accurate 
decision-making. (iii) The decision rule definition step is the process of constructing 
a sub-algorithm based on the lthrough the steadiness test and that the data that could 
be used for future atent characteristics passed through the encoder part of the LSTM-
AE and combining it with the RE-DM. By combining two independent rules, we pro-
pose a new outlier detection rule with a reduced FPR. (iv) Finally, a LAB test was 
performed to evaluate the performance of the framework defined above. In summary, 
steps (i) to (iii) represent the process of establishing the proposed anomaly detection 
framework, and step (iv) is the process of building a LAB test to evaluate the objective 
performance of the proposed anomaly detection framework.

Fig. 1  Framework of the proposed method: flowchart for outlier detection
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Data and devices

To comprehensively measure indoor air quality in the same environment, we used vari-
ous hazardous substances, such as particulate matter 2.5 (PM2.5), particulate matter 10 
(PM10), TVOC, CO2, CO, and CH2O, and a temperature and humidity sensors that pro-
vide basic information about the environment. Figure 2 shows the circuit design, inter-
nal structure diagram, and configuration of the designed environmental devices.

In addition, Table 1 summarizes the specifications and operation methods of the sen-
sors used in the self-manufactured environmental devices.

The operating principles of the sensors are semiconductor, optical, and electrochemi-
cal, depending on the gas and particles to be detected. Various communication methods 
such as wireless local area networks, long-term evolution, and fifth-generation environ-
mental sensors can be used. In addition, information is collected through various com-
plex devices, such as a universal asynchronous receiver transmitter, an inter-integrated 
circuit, and an analog-digital converter, installed inside the sensor. Functions, such as 
device function reset, and sensor cycle change can be performed through uplink and 
downlink transmissions and reception.

Outliers may occur because of mechanical defects depending on the operating prin-
ciple or communication method of each sensor used in the device. The classification of 
outlier detection technologies can be divided into statistical-based, nearest-neighbor-
based, clustering, and classification-based technologies [17]. In addition, a problem can 
be overlooked as a malfunction of the sensor or communication problem when labeling 
and processing the types of outliers [18]; thus, it was decided not to classify outliers that 
occur according to the characteristics of its sensor. In conclusion, the aim was to predict 

Fig. 2  Internet-of-Things environmental sensor device: a actual circuit diagram, b sensor device structure, c 
sensor device configuration

Table 1  Measurements of performance characteristics of the sensor devices

Sensor type Detection range Method

TVOC 0–60,000 ppb Semiconductor

CO2 400–60,000 ppm

PM 2.5 1–1000 µg/m3 Optical

PM 10 1–1000 µg/m3

CH2O 0–5 ppm Electrochemical

CO 0−1000 ppm

Temperature −20–80℃ Semiconductor

Humidity 0–100% (RH)
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abnormal elements of harmful factors regardless of the operation principle or communi-
cation method of the sensor by measuring with various sensors.

In addition, the experimental target group and target area were selected to collect data 
from environmental sensors. Samples of at least five different clusters (e.g., region, age, 
gender, facility, residential environment) were extracted, and participants were recruited 
from the metropolitan area and central regions of Korea (Seoul, Gyeonggi). In addition, 
the device was installed in 134 locations: general households, industrial complex areas, 
and smart city areas. In the case of an industrial complex area, it was installed in a loca-
tion where ventilation was smooth and local abnormalities did not occur. Because the 
indoor environment was different for each installation site, the installation sites were 
selected considering a certain level of common characteristics, such as ventilation and 
height, to control for some of the environmental conditions. Finally, the 134 sensors 
were periodically monitored, and it was confirmed that no significant defects or errors 
occurred in the sensors during measurement. The sensors used in this study have been 
certified for stability through several tests with standard test methods and procedures 
performed by domestic specialized laboratories, such as the Korea Electronics Technol-
ogy Institute and Korea Research Institute of Standards and Science. Figure 3 shows a 
diagram of the installation of environmental sensors at home and locations of the 134 
test beds.

When measuring multiple gases with a sensor, a disadvantage is that the measurement 
range becomes too wide if it is measured from too far away [19]. Therefore, environ-
mental sensors were placed at an appropriate distance within a controllable range, and 
cross-validation was performed between the same devices by placing several sensors in 
the same space to check the allowable error between the sensors were considered and 
evaluate the reliability factors of non-ideal sensors. When dividing the training and test 
sets, the study was conducted by not overlapping the divided range of each sensor. As a 
result, we secured a total of 17,000 real-world data, of which 11,000 learning data, 3000 
verification data, and 3000 test data. Through this verification process, the uncertainty 
inherent in the real-world data was resolved [20], and it was possible to substitute other 
sensor values for the defect values from the sensor [21]. The device was installed in the 

Fig. 3  Verification of sensor stability: a sensor installation at home and b test bed location configuration
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computer center of Soongsil University in Dongjak-gu, Seoul, and was operated in com-
pliance with the regulations and operation manual of “indoor air quality for multi-use 
facilities,” as prescribed by the Ministry of Environment of the Republic of Korea. In 
addition, in the configuration of the indoor environment, ventilation occurs at a certain 
level, and the sensors were placed at a certain distance from the door and window, as 
shown in Fig. 4.

Preprocessing

Time‑series data tuning  Univariate time-series data form a sequence of single observa-
tions at successive time points. The data index is generally considered to be the observed 
row, but time is an implicit variable [22]. The time-series data measured by the environ-
mental monitoring sensor showed continuous characteristics and were collected sequen-
tially. Because it is important to set the time at equal intervals, the values of each sensor 
were measured and simultaneously collected every 2 min and transmitted to the server 
as an unequally spaced series, owing to the characteristics of the sensor’s mechanical 
defects. Therefore, it is necessary to set the time intervals equally using approximation 
and interpolation [23, 24].

Stationarity

In time-series analysis, it is important to ensure that the data are stable and free from 
autocorrelation. Before using the clustering algorithm to detect outliers in the environ-
mental monitoring sensor, the data were checked for normality. Here, normality refers 
to the behavior in which the mean and standard deviation of the data change over time, 
and data with such behavior are considered abnormal. We performed an augmented 
Dickey–Fuller (ADF) test to quantitatively verify normality.

Fig. 4  Verification of sensor reliability: a actual sensor device installation and b experimental environment 
configuration
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Equation (1) is the amount of change at time t for each sensor gas data point; yt is the 
gas data point at time t, α is a constant, β is a coefficient for the time trend, and p is the 
drift order of the autoregression process. Furthermore, γ is the unit root and represents 
the influence of the previous yt−1 . Therefore, to determine whether γ is negative, the unit 
root test is performed under the null hypothesis that γ is 0 (Eq. 2), and γ is negative is the 
alternative hypothesis for the ADF test. Equation (3) can be computed and compared with 
the relevant threshold for the Dickey–Fuller test. In the ADF test, the null hypothesis is that 
there is a unit root, and the null hypothesis is rejected. A parameter was considered normal 
if the null hypothesis was less than 0.05, and the test statistic of the parameter was less than 
the critical value [25]. Thus, we confirmed that the normality was satisfied. For this test, 
only negative values were important, so if the calculated test statistic was less than the criti-
cal value, the null hypothesis was rejected, and the unit root did not exist. It was verified 
that each sensor data point was stable by proving that there was no unit root through the 
steadiness test and that the data that could be used for future modeling.

Missing values

A missing value is a case in which a specific part of the data is absent or contains mean-
ingless values [26]. The environmental sensors have two types of missing values. First one 
occurs when the measured value of the sensor changes rapidly, and the sensor cannot 
express the corresponding value [27]. Second, missing values may occur depending on the 
measurement range of the sensor [28]. The sensors used in this study had approximately 1% 
of missing values, which were processed through linear interpolation. Linear interpolation 
is a method of replacing missing values according to a linear distance using the values of 
both adjacent endpoints. In general, linear interpolation is used to deal with missing values 
in genotyping and machine translation [29]. Equation (4) shows the formula for linear inter-
polation. When the data values at two points p1 and p2 were f (p1) and f (p2) , any random 
between p1 and p2 is the expression for the imputation f (p) for the point p . Linear inter-
polation was used for each gas in the sensor, and values were missing at two time points at 
most; thus, they could be interpolated. Here, d1 is the distance from p1 to p , and d2 is the 
distance from p to p2.

Correlation analysis

Multivariate data refer to data that consist of several independent variables. The correla-
tion coefficient used to determine the correlation between variables is one approach that 

(1)�yt = α + βt + γ yt−1 + δ1�yt−1 + · · · + δp−1�yt−p+1 + εt

(2)H0 : γ = 0,H1 : γ < 0

(3)DFτ =
γ̂

SE
(

γ̂
)

(4)f (p) =
d2

d1 + d2
f (p1)+

d1

d1 + d2
f (p2)
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directly reflects the relationship between the two sequences [30]. In this study, the corre-
lation between variables was investigated using the Pearson correlation coefficient. The 
correlation coefficient is an indicator of the relationship between two variables regard-
less of the unit of measurement, and since the correlation of each pair of variables is an 
important factor in the proposed model, a correlation analysis was performed. In Eq. (5), 
rxy is the correlation coefficient. The correlation coefficient is obtained by dividing the 
covariance by each standard deviation, and x and y are gas data points.

Process method

LSTM‑AE  The multi-feature indoor air quality data used in this study are time-series 
data in which characteristic changes are observed along the time domain. When per-
forming outlier detection on such time-series data, it is very important to consider the 
characteristics and patterns of the data [31]. In general, a recurrent neural network-based 
model is used in this case, but it is difficult to expect good performance for long-sequence 
data because of well-known problems, such as the vanishing or exploding gradient [32]. 
Therefore, fundamental architectural transformation is required to solve this long-
dependency problem, and the LSTM has been proposed to overcome the problem. The 
LSTM layer adjusts the input/output information from the nonlinear gate unit to and 
from the memory cell. This allows the model to adaptively learn the long-term dynamic 
information of the sequence, demonstrating superior performance in time-series data 
modeling [33]. However, most recurrent neural network frameworks, including LSTM, 
operate under supervised learning and are unsuitable for unsupervised learning environ-
ments, including outlier detection. Data collected from multivariate environmental sen-
sors are unlabeled and cannot be used in a supervised learning framework, as it is very 
difficult to select objective evaluation criteria [14]. As such, the essence of the problem we 
want to point out is that most of the data obtained in the real world is unlabeled data, so 
we cannot fully utilize the existing high-performance artificial intelligence model raised. 
Thus, as additional procedures are required, we propose an outlier detection model that 
automatically learns time-series characteristics in an unsupervised learning environment 
based on the LSTM layer.

As shown in Fig.  5, LSTM-AE is a model in which LSTM layers are stacked in an 
autoencoder (AE) structure. AE is an unsupervised learning algorithm that is primarily 
used to learn latent features from unlabeled data that best represent the data. An AE is 
composed of an encoder and decoder. First, the encoder extracts the latent features by 
compressing the input value into a low-dimensional bottleneck layer. Then, the decoder 
restores the low-dimensional vector back to the original input value. This restored out-
put is used to calculate the difference between the original input, and the parameter is 
modified to minimize the difference. Outlier detection using the AE model determines 
the outliers for new inputs by setting a threshold based on this reconstruction error [15].

Most existing studies that perform outlier detection using LSTM-AE have one-dimen-
sional decision rules that compare reconstruction errors with pre-calculated thresholds. 

(5)
rxy =

∑n
i (Xi−

−

X)(Yi−
−

Y )
√

∑n
i (Xi−

−

X)
2

√
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i (Yi−

−
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However, such simple decision rules tend to cause performance instability, depending 
on the quality of the training data. If the model responds sensitively to small noise, the 
FPR can rise dramatically, causing numerous false alarms in the commercialization stage 
[16]. Sensing data, in particular, such as actual data, are bound to contain more noise, 
so detection models with simple decision rules inevitably result in poor performance. 
Therefore, in addition to RE-DM, we defined a sub-algorithm using latent features gen-
erated by encoders. Finally, we propose an accurate and consistent decision rule by com-
bining the discrimination results of RE-DM and the sub-algorithm.

Latent feature clustering and one‑class sub‑algorithm

The clustering technique, which is widely used in data mining, is a representative unsu-
pervised algorithm that binds data with the same characteristics and distributions into 
clusters. Density-based spatial clustering of applications with noise (DBSCAN) was first 
introduced in 1996 as an algorithm to generate clusters of unspecified shapes by calcu-
lating the density of neighboring data [34]. An advantage of DBSCAN is that it can be 
used even when the number of clusters is not known in advance, especially in unsuper-
vised learning environments [35]. The data used in this study are anomalous and have an 
unpredictable distribution; therefore, DBSCAN is suitable in this situation [16].

In the entire framework, DBSCAN was performed as a preliminary task to obtain a 
normal latent feature space. In general, clustering is performed on pure input data with-
out any processing procedures [14]. However, this results in poor performance in terms 
of explanatory power and compression because it does not reflect the high-level char-
acteristics derived by the model [36]. Therefore, we performed clustering on the latent 
features extracted from LSTM-AE. Thus, a high-level cluster that reflects the time-series 
and nonlinear properties can be created.

Then, we built a sub-algorithm based on the previously obtained normal clusters. In 
an actual industrial environment, only normal classes can be used as initial knowledge; 
therefore, a one-class classification (OCC)-based approach is required [37]. A one-class 

Fig. 5  LSTM-AE architecture
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support vector machine (OC-SVM) is a special case of the support vector machine 
(SVM) algorithm used to detect outliers, producing the smallest hyperplane containing 
training samples based on the premise that most data are normal data [38]. It is possi-
ble to determine whether to discriminate outliers based on the inside and outside of the 
decision boundary created by this hyperplane [31]. Additional quantitative evaluation is 
possible by calculating the distance difference between the decision boundary and the 
point.

As such, the latent features extracted through the bottleneck layer improved the per-
formance of the OCC classifier. Next, we define consistent and accurate outlier detec-
tion decision rules by combining the discrimination results of the OC-SVM with those 
based on the reconstruction error of the LSTM-AE.

Decision rule combining OC‑SVM and reconstruction threshold

In general, certain outlier detection methods perform better than others because the 
characteristics of the time-series data generated by each device are different [39]. In 
addition, the decision rules applied in a single model show somewhat distorted and 
biased results because the views defining the outliers are different, as are the character-
istics and advantages of each model. Therefore, we propose a new outlier decision rule 
that is reasonable and consistent by combining two different outlier detection models. 
Recently published papers on the air quality of the environment [40, 41] reported excel-
lent performance in terms of accuracy and efficiency when using several single mod-
els in an ensemble method. In this study, we defined a decision rule that combined the 
previous two models using a voting classifier, an ensemble method. The voting classifier 
combines the output results of multiple classifiers into one decision rule and is catego-
rized as hard or soft voting. The hard-voting classifier combines multiple classification 
results using the majority vote method. By contrast, the soft-voting classifier derives the 
final result by utilizing the decision probabilities of several independent models. In this 
study, a soft-voting classifier was constructed using the reconstruction error and SVM 
score [42].

The method of detecting outliers based on the reconstruction error of the LSTM-AE 
can be seen as a model-based approach [15]. If the model-based approach learns the fea-
tures of normal data and determines the outliers, then the OC-SVM algorithm is a con-
tent-based approach that detects outliers based on whether a particular point is included 
in the hyperplane formed by most normal data [43]. We intend to develop a generalized 
model that maintains the advantages of the two models but eliminates the disadvantages 
by combining two single models approached from different perspectives.

Laboratory test

Objective evaluation of unsupervised learning models, such as the LSTM-AE, has a limit 
because there are no separate labels. Therefore, to overcome this limitation, an objective 
evaluation of the model for the self-collected labeled data was performed by conducting 
a LAB test. The LAB test evaluated the outlier detection performance for various cases 
by periodically generating different events.

To objectively verify the proposed framework, we conducted LAB tests on five abnor-
mal situations and continuously monitored environmental sensors [44] to determine the 
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level of outliers and detection performance of the model. The evaluation was conducted 
for approximately two weeks.

The LAB test process was conducted as follows.

1.	 First, to increase data reliability, the same three sensor devices were arranged at equal 
intervals for data collection.

2.	 The spray method was applied four times a day at regular intervals. The reason for 
the regular intervals was that it was necessary to secure time for ventilation and 
device initialization for each event.

3.	 To maintain the test environment constant, environmental factors that could be vari-
ables in the test were controlled. Ambient environmental factors refer to various fac-
tors that can cause sensor defects or unintended outliers.

4.	 For the subsequent calculation of the classification index and the objective evaluation 
of the model, annotation was performed separately for each abnormality section.

Results
Preprocessing

It was necessary to verify the normality of the indoor air quality data used in the study 
before full-scale modeling because it is time-series data. Table 2 shows the p-value out-
put of the ADF test. In Table 2, it can be seen that the p-value of each harmful factor is 
lower than 0.05 and that the t-value is smaller than the critical value within the signifi-
cance level of 1%. Therefore, the null hypothesis that this is not a stationary time series 
can be rejected at a significance level of 5% [45]. A threshold is set according to the num-
ber of observations, and thus, the null hypothesis that there is a unit root can be rejected 
[46]. Since the null hypothesis was rejected, we are confident that all seven parameters 
are normal [47]. Therefore, temperature, humidity, TVOC, CO, CO2, CH2O, and PM do 
not require a difference and are in a steady state. In other words, because there is no unit 
root, normality is guaranteed.

In addition, approximately 0.92% of the values were not measured by the sensor owing 
to external factors. After confirming that the sections where the missing values occurred 
did not significantly affect the surrounding values, this study replaced the missing values 
using the linear interpolation method.

Additionally, as shown in Fig.  6, environmental substances with strong correlations 
were identified. TVOC-CO2, TVOC-CH2O, and TVOC-Humidity showed a strong 

Table 2  Augmented Dicky–Fuller test at various levels

Type Temperature Humidity TVOC CO CO2 CH2O PM10

ADF test −5.336495 −4.812659 −5.780521 −12.57404 −6.217924 −8.065061 −5.708918

Critical Value (1%) −3.959300 −3.959301 −3.959301 −3.959301 −3.959301 −3.959301 −3.959301

Critical Value (5%) −3.410747 −3.410748 −3.410748 −3.410748 −3.410748 −3.410748 −3.410748

Critical Value (10%) −3.127201 −3.127202 −3.127202 −3.127202 −3.127202 −3.127202 −3.127202

p-value 0.000048 0.000445 0.000006 5.1291e-20 7.5653e-07 5.0535e-11 0.000009
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correlation, and Temperature-TVOC showed a weak correlation. Before performing 
multivariate imputation for each variable, modeling was performed considering the 
characteristics of the variables that showed correlation. The reason for considering vari-
ables with clear correlation in the multivariate layer is that it has an important effect in 
understanding the correlation information restored from the bottleneck of the LSTM-
AE [48].

Modeling

LSTM‑AE

To train the LSTM layer, the data must be converted into a 3D format:[samples, 
timesteps, features]. Here, timestep is a hyperparameter representing the size of the win-
dow that the LSTM will accept as short-term memory, and the larger the timestep value, 
the longer the range of series accepted in the short-term memory. To find the optimal 
timestep, we performed a grid-based search task for four cases [1, 3, 5, 7]. As a result, 
when the timestep was 3, the model showed the best performance in terms of recon-
struction error and cluster cohesion. Therefore, considering that the data used in this 
study were measured in 2-min cycles, a window was formed in units of 6 min to train the 
short-term memory in the LSTM layer.

The reconstruction error scatter and distribution plots are shown in Fig. 7. More than 
75% of the learning data had a reconstruction error of less than 3% within the interquar-
tile range. This means that the model can restore an output that is similar to the input 
within an error range of approximately 3%, and it can be seen that feature learning has 
performed very well. In addition, the reconstruction error scatterplot in Fig. 7(a) shows 

Fig. 6  Pearson correlation between environmental substances
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strong cohesion at most points, except for periodically observed anomaly points, which 
can be seen as the model learning the latent features that best represent normal data, 
and it can be expected to show collective compressed features in the future.

Figure 8 shows the results of applying LSTM-AE to the training data and test data. In 
the figure, whenever the input value changes, it can be seen that the overall trend is well 
followed according to the corresponding amount of change. However, there is a some-
what conservative change when the values change rapidly. Thus, in abnormal sections 
that deviate from the existing trend and show different patterns, the recovery rate of the 
data decreases, resulting in a larger reconstruction error. Existing studies determine out-
liers based on the presence or absence of such a reconstruction error above the thresh-
old, which not only depends excessively on the reconstruction performance of the model 
but also creates a number of false alarms owing to simple decision rules [14]. Therefore, 
we define an additional sub-algorithm by utilizing the latent feature space of the LSTM-
AE encoder part. In addition, a more complex and consistent outlier determination rule 
was proposed by combining this sub-algorithm and the detection model based on the 
reconstruction error.

Latent feature DBSCAN clustering and OC‑SVM

We extracted latent features by constructing the bottleneck layer of the LSTM-AE into 
four nodes. DBSCAN was performed on the corresponding latent features for pre-oper-
ation and noise removal for the OC-SVM definition.

Figure 9(a) shows two latent feature components with the best degree of cohesion and 
separation among the four nodes to visualize the process of forming a DBSCAN cluster. 
The area where a large number of data points are gathered in the lower left is a normal 
cluster, and the data on the right side are noise included in the training data. Earlier, 

Fig. 7  Reconstruction error: a scatter plot and b distribution plot
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it was mentioned that noise in the data adversely affects the normal data characteris-
tic learning of the LSTM-AE. In addition, OC-SVM is performed under the assumption 
that most of the data are normal; therefore, we tried to remove this fine noise through 
clustering.

DBSCAN created clusters based on two important hyperparameters. The first is the 
maximum radius of the neighborhood, and the second is the minimum number of 
points that can create an independent cluster. We judged the dense population of point-
ers in the lower left-hand corner of Fig. 9(a) as a normal cluster and adjusted the hyper-
parameters to include all those points. As a result, a cluster representing the normal data 
distribution could be obtained (Fig. 9b).

Fig. 8  Truth and prediction error comparison: a training set and b test set

Fig. 9  DBSCAN clustering results a total data points and b normal data cluster points
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Normal clusters of latent feature spaces were obtained using the DBSCAN. However, 
DBSCAN only creates a normal cluster within the learning data and does not provide a 
scoring method to determine outliers in new data samples. Therefore, an additional sub-
algorithm is defined to determine the outliers in a latent feature space. The OC-SVM is 
a representative OCC outlier detection algorithm that can be trained with one class. As 
a result of applying the OC-SVM algorithm on latent features, a hyperplane to convert 
the outlier score for the new sample was obtained. In Fig. 10(a), it can be observed that a 
hyperplane containing most of the data was created, except for some data located at the 
boundary of the cluster.

Figure 10(b) shows the results of performing OC-SVM on the training and test data. It 
can be seen that the majority of the test data are well projected within the normal clus-
ter, and a small number of outliers colored yellow were detected outside the cluster. This 
is the result of the OC-SVM determination of data outside the decision boundary as an 
outlier, and it is randomly spread.

Decision rule combining OC‑SVM and reconstruction threshold

This section discusses the significant performance differences in consistency and accu-
racy when using reconstruction error-based and OC-SVM-based decision rules indepen-
dently and presents the results of the new decision rule combining the two algorithms.

Figure 11(a) shows a diagram that expresses the actual outliers included in the LAB 
test data from the CO2 perspective. As shown in the figure, outliers appear mainly at 
extreme and inflection points, and they occur at predetermined time intervals for each 
LAB test case.

Figure 11(b) shows the results of the detection of outliers based on the reconstruction 
error, and more outliers were detected than the actual outliers. Therefore, more outli-
ers occurred than in the general case, which considerably affected the normal data dis-
crimination of the LSTM-AE. In fact, it can be seen that the reconstruction error was 
high overall. Therefore, when using independent decision rules based on reconstruction 
errors, as previously mentioned in Sect. 2, it is expected that a high FPR will appear.

Figure 11(c) shows the results of the detection of outliers based on the OC-SVM. In 
the figure, adjacent data points show similar detection results. This can be interpreted 

Fig. 10  Latent feature space OC-SVM prediction results a training data and b training and test data
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as a result of distinguishing between pointers included in the hyperplane and pointers 
not based on their location. Similar to the reconstruction error-based determination 
method, it is predictable that a high FPR will appear.

Figure  12 shows the results of the LAB test using the hard-voting-based decision 
rule. In the figure, the number of outliers similar to the actual outlier distribution has 
been detected, and the outliers are determined for a specific section periodically. In 
comparison with the previously created independent models, we can also graphically 
confirm that the hard voting-based decision model performs more consistent and sta-
ble detection, while the normal data are easily confused with outlier data, even with 
small noise.

Figure 13 shows the results of defining the outlier detection rules using soft-voting-
based decision rules. In the figure, the number of outliers is significantly reduced in 
comparison with the previous rules; the outliers are identified only when the model is 
nearly certain. This is the result of the deliberate adjustment of the rules to reduce false 
alarms, which can also be interpreted as a more stable outlier detection.

Table 3 summarizes the classification metrics of theconducted LAB test. In the table, 
it can be observed that the ensemble based onthe voting classifier shows better perfor-
mance than when the models were usedindependently. In particular, the soft-voting clas-
sifier exhibited excellentaccuracy. Therefore, we propose this decision rule as the final 
model. Insummary, rather than using independent models separately in this outlierde-
tection process, we demonstrated that ensemble models combining the twoindependent 
models perform more complex and reasonable decision-making. 

Fig. 11  CO2 plot over time: a actual outliers, b reconstruction error-based model, and (c) OC-SVM-based 
model
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We table as above for an objective comparison of outlier detection performance 
and general performance guidelines on other datasets. The compared algorithms are 
promising algorithms that are evaluated as SOTA-level in the industry for performing 
outlier detection algorithms on the ECG5000 dataset. From the table above, we can 

Fig. 12  Hard-voting-based CO2 plot

Fig. 13  Soft-voting-based CO2 plot

Table 3  Results of laboratory test for model validation

Model Accuracy

Reconstruction error model 0.7992

OC-SVM model 0.7479

Hard-voting model 0.9072

Soft-voting model 0.9766
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see that in terms of accuracy indicators, our proposed model performs very well, even 
considering that the datasets are different.

Laboratory test verification

In order to verify the generalization performance of our model in a diverse envi-
ronment, we installed about 300 test bed sensors across the country to establish an 
experimental environment. Figure  14 is a picture of the current status and specific 
location of the test bad, and it can be seen that it is installed in a wide range of loca-
tions, mainly in major administrative areas.

Table  4 summarizes the LAB test results of the soft-voting model performed for 
each case. These data include major indicators used for prediction, such as latent 
components 1 and 2, SVM scores, and reconstruction error scores. The table shows 
the accuracy of each case. Latent components 1 and 2 are key elements that reduce 
time-series data in window units to a lower dimension, and SVM and reconstruc-
tion error scores are major predictive result indicators of each independent model. In 
addition, among the five cases, the average accuracy score was 0.9568, and no signifi-
cant differences were found for any of the cases. Because each case was independently 
conducted assuming a different abnormal situation, the abnormal values ​​detected by 
the sensor were different in each case. Therefore, when combined with the previous 

Fig. 14  Test bed installation status and location
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results, it can be interpreted that the model we built exhibited relatively consistent 
performance in various environments and cases.

Table  5 is the performance of our model for five abnormal situation sections con-
ducted through the laboratory test. All five abnormal situations were experimented with 
a slightly different variation, and Case A showed a slightly lower accuracy, but overall, it 
can be seen that all five abnormal situations showed consistent and excellent accuracy. 
From this table, we can estimate that our model shows more general and robust perfor-
mance for various abnormal situations.

Discussion
Previously, it was mentioned that LSTM-AE should be trained with normal data because 
the model can extract latent features of normal data better than those of abnormal data. 
The results affect both the reconstruction error-based model and the OC-SVM. How-
ever, the initial original data we collected were unlabeled and contained noise due to 
several physical and environmental factors. Therefore, the most important aspect of this 
study was the quality evaluation and refinement of the data. We not only conducted var-
ious data validation procedures, such as normality verification and correlation measure-
ment, to prove objective rationality for data quality but also processed the data several 
times to remove noise. Through these processes, we were able to obtain refined analyti-
cal data. As a result, the LSTM-AE could be trained stably.

Conclusion
We propose a new method  of LSTM-AE based Outlier Detection with Ensemble 
Method to perform robust & general outlier detection even in the Unsupervised envi-
ronment. This paper is significant in that it proposed a standard method to implement 

Table 4  Comparison with other outlier detection algorithm

Study Model Dataset Performance

Pankaj Malhotra at al. 2016 [49] SAE-C ECG5000 Acc 0.934

Gilles Vandewiele at al. 2019 [50] GENDIS ECG5000 Acc 0.94

Joao Pereira at al. 2019 [51] F-t ALSTM-FCN ECG5000 Acc 0.9496

Proposed Model LSTM-AE with Ensemble 
Method

Indoor Environment 
data

Acc 0.9766

Table 5  Results of the laboratory test for model validation

Label comp1 mean comp2 mean SVM_score RE_score Accuracy

Case A 3.850266 14.650074 242.539284 0.075596 0.9211

Case B 1.367582 3.634454 362.680808 0.035693 0.9480

Case C 4.224086 3.098875 371.604030 0.031248 0.9609

Case D 5.048500 0.328430 352.984160 0.034976 0.9778

Case E 10.387705 19.196732 148.181216 0.118963 0.9766

Total 4.975628 8.181713 295.597900 0.059295 0.9568
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Ensemble Method through sub-algebra as well as an artificial neural network-based 
anomaly detection approach, and it has contribution in that it proved its performance 
through real-world data collected by hands. Through this technology, it can contribute 
to protecting the health of many citizens living in daily life, including the city center, 
which is a densely populated area. Through this framework, we overcame the limitations 
of the previously proposed outlier detection methods and defined more stable outlier 
decision rules.

Additionally, we conducted additional LAB tests to demonstrate the effectiveness of 
the entire framework in real-world abnormal situations. By applying this framework to 
five different cases, key values used as major indicators of outlier detection, such as the 
SVM score and reconstruction error, were derived, and an ensemble method was applied 
to the values. Through this LAB test, we demonstrated that our proposed framework is 
consistent and outperforms other methods. In addition, a method for performing objec-
tive verification of the model in an unsupervised learning environment was proposed.

One of the main advantages of this framework is that it is relatively lightweight, in 
terms of time and memory. The LSTM-AE requires fewer parameters than other exist-
ing DNN models. Therefore, it requires relatively less hardware resources, such as cen-
tral processing units and random-access memory. Ensemble methods are generally used 
in building machine learning models. This is because in the case of machine learning, 
the training of a single model is simple and the number of parameters is small; there-
fore, multiple models can be trained simultaneously. However, deep learning requires a 
long time and effort to build an independent neural network. Therefore, in this study, the 
sub-algorithm derived from the LSTM-AE was used instead of constructing several deep 
learning models. Through this method, we achieved performance improvements using a 
single DNN model without the need to build multiple heavyweight DNN models.

This study highlighted the limitations and problems of previous outlier detection stud-
ies and suggested solutions, and this framework has a generalized structure that can be 
applied to various industrial environments. Through this research, it is expected that a 
more consistent and superior outlier detection model can be constructed using various 
multi-feature data collected from sensor devices widely adopted in the real world.
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