
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Kartelj and Djukanović Journal of Big Data (2023) 10:71
https://doi.org/10.1186/s40537-023-00743-2

Journal of Big Data

RILS-ROLS: robust symbolic regression
via iterated local search and ordinary least
squares
Aleksandar Kartelj1* and Marko Djukanović2

Abstract

In this paper, we solve the well-known symbolic regression problem that has been
intensively studied and has a wide range of applications. To solve it, we propose an
efficient metaheuristic-based approach, called RILS-ROLS. RILS-ROLS is based on the
following two elements: (i) iterated local search, which is the method backbone, mainly
solving combinatorial and some continuous aspects of the problem; (ii) ordinary least
squares method, which focuses on the continuous aspect of the search space—it effi-
ciently determines the best—fitting coefficients of linear combinations within solution
equations. In addition, we introduce a novel fitness function that combines important
model quality measures: R2 score, RMSE score, size of the model (or model complex-
ity), and carefully designed local search, which allows systematic search in proximity to
candidate solution. Experiments are conducted on the two well-known ground-truth
benchmark sets from literature: Feynman and StROgatz. RILS-ROLS was compared to 14
other competitors from the literature. Our method outperformed all 14 competitors
with respect to the symbolic solution rate under varying levels of noise. We observed
the robustness of the method with respect to noise, as the symbolic solution rate
decreases relatively slowly with increasing noise. Statistical analysis of the obtained
experimental results confirmed that RILS-ROLS is a new state-of-the-art method for
solving the problem of symbolic regression on datasets whose target variable is mod-
elled as a closed-form equation with allowed operators. In addition to evaluation on
known ground-truth datasets, we introduced a new randomly generated set of prob-
lem instances. The goal of this set of instances was to test the sensitivity of our method
with respect to incremental equation sizes under different levels of noise. We have also
proposed a parallelized extension of RILS-ROLS that has proven adequate in solving
several very large instances with 1 million records and up to 15 input variables.

Keywords: Symbolic regression, Iterated local search, Ordinary least squares, Ground-
truth benchmark sets

Introduction
The problem of symbolic regression (SR) [1] has attracted a lot of research inter-
est over the last decade. SR can be seen as a generalization of more specific vari-
ants of regression in which the functional form is fixed, e.g., the well-known linear

*Correspondence:
kartelj@matf.bg.ac.rs

1 Department of Informatics,
Faculty of Mathematics,
University of Belgrade, Belgrade,
Serbia
2 Faculty of Sciences
and Mathematics, University
of Banja Luka, Banja Luka, Bosnia
and Herzegovina

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00743-2&domain=pdf

Page 2 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

regression, polynomial regression [2], etc. All regression models have the same goal:
given a set of n-dimensional input data and its corresponding continuous output tar-
get variable, the aim is to find a mathematical expression (function) of n (input) vari-
ables that best fits the target variable. In the case of linear regression, the model is
presumed to be a linear combination of input variables. This is in general not well
enough, since the target variable might be dependent on a nonlinear function among
input variables. Unlike linear regression, SR allows for the search over a wider space
of possible mathematical formulas to find the best-fitting ones, i.e., those able to pre-
dict the target variable from input variables. The basis of constructing an explicit
formula is in elementary operations like addition and multiplication, as well as poly-
nomial, trigonometric, exponential, and other operations.

Coefficients inside SR formulas can indicate the absolute or relative importance of cer-
tain input variables. The appearance of an exponential function can be associated with
a specific physical phenomenon such as the intensity of radiation or acceleration over
time (see [3]). Additionally, SR models often have high generalization power unlike some
models with fixed functional forms like polynomial regression.

Practical applications of SR in chemical and biological sciences are listed in [4]. That
paper in particular describes the discovery of a series of new oxide perovskite catalysts
with improved activities. The application of SR to discovering physical laws from the
data extracted from a video is studied in [5]. The revealing complex ecological dynamics
by SR is presented in [6]. The paper [7] presents the application of the SR to model the
effects of mutations on protein stability in the domain of fundamental and applied biol-
ogy. A recent study in [8] is concerned with auto-discovering conserved quantities using
trajectory data from unknown dynamical systems. The application of the SR to model
analytic representations of exciton binding energy is shown in [9]. The use of SR in mate-
rial science is described in [10–13]. SR application to wind speed forecasting is given in
[14].

There are many different ways to tackle SR. Most of them are based on machine
learning (ML) techniques, genetic programming (GP), or some other metaheuristics.
Koza [15] introduced the SR problem as a specific application of GP. GP is also used
to optimize nonlinear structures such as computer programs represented by syntax
trees consisting of functions/operations over input variables and constants. Age-fitness
Pareto Optimization approach is proposed by Schmidt and Lipson [16]. Application of
the artificial bee colony programming to solve SR is proposed by Karaboga et al. [17].
Application of local-based heuristics for solving SR is reported by Kommenda in his
PhD thesis [18]. A GP-based approach, the gene-pool optimal mixing evolutionary algo-
rithm (GOMEA) is studied by Virgolin et al. [19]. Another evolutionary algorithm, the
interaction-transformation EA (ITEA) has been proposed by de Franca et al. [20]. Simu-
lated annealing to solve SR is proposed by Kantor [21]. Kommenda et al. [22] proposed
a method called Operon algorithm, which uses nonlinear least squares for parameter
identification of SR models further integrated into a local search mechanism in tree-
based GP. The C++ implementation of Operon is discussed in [23]. A GP approach
that uses the idea of semantic back-propagation (SBP-GP) is proposed in [24]. It is also
worth to mention the GP-based Eureqa commercial solver [25, 26] that uses age-fitness
Pareto optimization with co-evolved fitness estimation.

Page 3 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

The method based on Bayesian symbolic regression (BSR) is proposed in [27]—this
method belongs to the family of Markov Chain Monte Carlo algorithms (MCMC).
Deep Symbolic Regression (DSR), an RNN approach that utilizes the policy gradient
search, is proposed in [28]. This mechanism of search is further investigated in [29]. A
fast neural network approach, called OccamNet is proposed in [30].

Powerful hybrid techniques for solving SR are also well studied; among them, we
emphasize the Eplex, a GP-based SR implementation that uses eps-lexicase selec-
tion, proposed by [31, 32] and AI-Feynman algorithm, based on a physics-inspired
divide-and-conquer method combined with the neural network fitting, proposed by
[3]. The latter is one of the most efficient methods for physically-inspired models. We
would also like to mention the Fast Function Extraction (FFX) algorithm developed
by McConaghy [33], which is a non-evolutionary method combined with a machine
learning technique called path-wise-regularized learning, which quickly prunes a
huge set of candidate basis functions down to compact models.

A short overview of the most important literature methods to solve SR is given in
Table 1.

Table 1 SR methods overview

Algorithm Paper/year Short details

GP [15] (1994) Application of GP to SR

APF-FE [25, 26] (2009, 2011) Age-fitness Pareto optimization approach using co-evolved fit-
ness estimation

APF [16] (2010) Age-fitness Pareto optimization approach

FFX [33] (2011) The fast function extraction algorithm – non-evolutionary tech-
nique based on a machine learning technique called path-wise
regularized learning

ABCP [17] (2012) Artificial bee colony programming approach

EPLEX [32] (2016) A parent selection method called ǫ-lexicase selection

MRGP [34] (2014) It decouples and linearly combines a program’s subexpressions via
multiple regression on the target variable

Local optimization NLS [18] (2018) Constants optimization in GP by nonlinear least squares

FEAT [35] (2018) Features are represented as networks of multi-type expression
trees comprised of activation functions; differentiable features are
trained via gradient descent

SBP-GP [24] (2019) The idea of semantic back-propagation utilized in GP

BSR [27] (2019) ML-based approach; Bayesian symbolic regression

DSR [28] (2019) Deep symbolic regression based on a RNN approach further utiliz-
ing the policy gradient search

Operon [22] (2020) Utilizing nonlinear least squares for parameter identification of SR
models with LS

OccamNet [30] (2020) A fast neural network approach; the model defines a probability
distribution over a non-differentiable function space; it samples
functions and updates the weights with back-propagation based
on cross-entropy matching in an EA strategy

AI-Feynman [3] (2020) A physics-inspired divide-and-conquer method; it also uses neural
network fitting

GOMEA [19] (2021) A model-based EA framework called gene-pool optimal mixing
evolutionary algorithm

ITEA [20] (2021) EA based approach called the interaction-transformation EA

SA [21] (2021) Simulated annealing approach

Page 4 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

SR research lacks uniform, robust, and transparent benchmarking standards. Recently,
La Cava et al. [36] proposed an open-source, reproducible benchmarking platform for
SR called SRBench. SRBench1 is an open source project that brings together a large
number of different benchmark datasets, contemporary SR methods and ML methods
for joint model evaluation, and an environment for analysis. SRBench considers two
types of symbolic regression problems: 1) ground-truth problems, which are modelled
as known closed-form equations, and 2) black-box problems, where the exact model is
not known. Note that in our work, we consider only the former one, since RILS-ROLS
was not designed to solve black-box problems. La Cava et al. [36] extended PMLB [37],
a repository of standardized (mostly black-box) regression problems, with 130 ground-
truth SR datasets. In their extensive experimental evaluation, 14 SR methods and 7 ML
methods are compared on the set of 252 diverse regression problems. The remaining 122
SR datasets represent black-box problems. One of the most interesting conclusions from
[36] is that algorithms specialize either in solving problems with an underlying closed-
form equation (tested using ground-truth problem instances) or in black-box problems,
but not both.

In this work, we present a new approach to solving closed-form SR problems (with
ground-truth not necessarily known), which combines the popular iterated local
search metaheuristic (ILS) [38, 39] with the ordinary least square method (OLS) [40].
ILS mostly handles combinatorial (discrete) aspects of search space, while OLS deals
with the process of coefficient determination, so it handles some continuous parts of
the search space. As will be shown later, the proposed method has shown its robustness
w.r.t. introduced noise, which is why we called the method RILS-ROLS (with letters R
for regression and robust). Additionally, to navigate the search toward the exact model
(and not only the accurate one) the algorithm is equipped with a carefully constructed
fitness function that combines important model characteristics.

The summary of main contributions is as follows:

1. The proposed method outperforms 14 comparison methods on two ground-truth
benchmark sets from the literature—these methods and benchmarks are used in the
SRBench platform.

2. The method exhibits high relative robustness to noise, as evidenced by a comparison
to other algorithms w.r.t. obtained symbolic solution rate, in the presence of varying
degrees of noise in the data.

3. A new set of unbiased instances is introduced—it consists of randomly generated
formulae of various sizes and a number of input variables. This set was employed to
analyze the effect of model size and the level of noise on the solving difficulty.

4. A new set of very large datasets with 1 million records is generated to test the perfor-
mance of RILS-ROLS for a Big Data scenario. Our method is adapted to run multiple
RILS-ROLS regressors in parallel, thus acting as a kind of ensemble method.

1 https:// caval ab. org/ srben ch/.

https://cavalab.org/srbench/

Page 5 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

Problem definition and search space
In this section we formally define the SR problem.

Definition 1 Given is a dataset D = {(xi, yi)}ni=1 , where xi ∈ R
d represents the

i-th feature (input) vector while yi ∈ R is its corresponding target (output) vari-
able. Suppose that there exists an analytical model of the form f (x) = g∗(x, θ∗)+ ǫ
that is a generator of all observations from D. The goal of SR is to learn the mapping
f̃ (x) = g̃(x, θ̃) : Rd �→ R estimated by searching through the space of (mathematical)
expressions g̃ and parameters θ̃ where ǫ is the observed white noise within the given
input data.

Any mathematical expression can be represented by a syntax tree. As an example of
such a syntax tree, see Fig. 1. In essence, all valid syntax trees form the solution search
space of SR. That is, each sample model f̃ may be seen as a point in the search space,
represented by a respective syntax tree. The solution accuracy can be computed on
the basis of historical data D and the chosen error measure such as MSE, RMSE, R2 ,
their combination, etc. Interestingly, the nature of SR search space is twofold: dis-
crete and continuous. It is primarily modeled as a problem of discrete (combinatorial)
optimization, since the number of possible solution functional forms is countable.
However, it may also include elements solved by means of continuous (global) opti-
mization, e.g., constants (coefficients) fitting. It is common to use the set of the fol-
lowing elementary mathematical functions:

√
x, x2 , sin , cos , log , exp , arcsin , arccos , ax ,

and a set of standard arithmetic operators: + , −, · , and /.

The proposed RILS‑ROLS method
Our method relies on the following operations: + , −, · , /,

√
x , x2 , sin , cos , log and exp .

Beside these, the following set of constants enters the search space explicitly: −1 , 0, 1,
2, π , and 10. Before we provide details of our method for solving SR, we will explain

·

sin

x

·

x /

x y

Fig. 1 Syntax tree representation for the expression sin x · (x · x/y) = x2 sin x
y

Page 6 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

the two building blocks of RILS-ROLS: (1) iterated local search (ILS) metaheuristic
and (2) ordinary least squares (OLS) method.

Iterated local search

ILS [38] is an efficient, single-point search metaheuristic that iteratively generates a
sequence of solutions produced by the (embedded) heuristic, such as local search (LS)
or randomized greedy heuristics. When the search gets stuck in the local optimum, per-
turbation is performed, which is usually a non-deterministic step. This simple idea was
proposed by Baxter [41] in the early 1980s, and has since then been re-invented by many
researchers under different names. These are some of the names that were used: iterated
descent search [42], large-step Markov chains [43], chained local optimization [44], or
in some cases, combinations of those [45]. The most popular version of ILS is shown in
Algorithm 1. (Note that we use this version of ILS as the backbone of our RILS-ROLS
algorithm.)

An initial solution may be generated randomly or by using a greedy heuristic, which
is afterwards improved by local search. At each iteration, ILS applies three steps. First,
the current incumbent solution s is perturbed, i.e., partially randomized, yielding a new
solution s′ . Next, the solution s′ is potentially improved by an LS procedure. Thirdly, the
newly obtained solution s′ possibly becomes a new incumbent—this is decided upon the
acceptance criterion. Sometimes, ILS incorporates the mechanism of a tabu list, which
prevents the search from getting back into already visited solutions.

Ordinary least squares method

The ordinary least square method (OLS) is a linear regression technique. It is based on
applying the least-squares method to minimize the square residual (error) sum between
actual and predicted values (given by the model). More precisely, given the dataset D
of n points (xi, yi) where each xi is d-dimensional, the task is to determine linear map-
ping ŷ = kx + b , that is coefficients (line slope) k = (k1, . . . , kd) and b (intercept), so that
∑n

i (ŷi − yi)
2 is minimized. This sum is also known as the sum of squared errors (SSE).

There are many methods to minimize SSE. One of the analytical approaches is calcu-
lus-oriented so it takes into account the partial derivatives of SSE w.r.t. kj , j ∈ {1, . . . , d}
and b. This leads us to a system of d + 1 linear equations with d + 1 unknowns. The
obtained linear system can be solved efficiently since the expensive matrix inversion can

Page 7 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

be avoided by using, for example, the SVD technique which generates the pseudoinverse
solution that solves the original system (see [46]).

RILS‑ROLS method

We will now explain the proposed RILS-ROLS method in detail. The overall method
scheme is given in Algorithm 2.

Page 8 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

The RILS-ROLS algorithm receives the training dataset Dtr as input. In addition, it
has three key control parameters: penaltysize , orderrandom and sampleShareinit . There are
some other standard parameters like the maximum execution time, the maximum num-
ber of iterations, the pseudo-random number generator seed, etc. The first key param-
eter quantifies the importance of solution expression complexity in the overall solution
quality measure (more on this in “Fitness function” section). The second refers to the
way the candidate perturbations are arranged: if False (default), the perturbations are
arranged w.r.t. R2 , otherwise, the arrangement is random. The third parameter specifies
the proportion of the training sample to be used. If this value is set to 1, the entire train-
ing dataset is used. The default value of this parameter is 0.01 (1 percent). To avoid use-
less samples, there is a lower limit for the sample size—100. (Of course, in cases where
the size of the training dataset is less than 100, the entire training dataset is used.) The
size of the sample is later dynamically adjusted through the algorithm’s iterations—when
there are no solution improvements for a number of iterations, sample size is doubled
(lines 43–44 of Algorithm 2).

As previously stated, solution is represented by means of a tree. We use a simple solu-
tion initialization where the tree root node is set to zero constant. We interchangeably
use two solution variables: (i) s denotes the starting (or working) solution and (ii) bs
stands for the best solution so far, also known as the incumbent solution. Solution qual-
ity is measured by evaluating the fitness function (more about it in the subsequent “Fit-
ness function” section). Before entering the main loop, the best solution bs is set to the
initial solution (line 7).

The main loop iterates as long as none of the termination criteria are met: (i) the maxi-
mal running time has been reached; (ii) the maximal number of fitness calculations has
been made; (iii) the best solution is sufficiently good w.r.t. its R2 and RMSE scores. More
precisely, if R2 is sufficiently close to 1 and, at the same time RMSE is sufficiently close to
0, the algorithm stops prematurely, which significantly reduces the running times for the
majority of tested instances in the no-noise scenario.

One of the first steps in the main loop is to generate perturbations near the starting
solution s (line 11). As the name of this procedure (All1Perturbations) suggests,
the perturbation step is local, meaning that the closeness of the starting solution s and
any of perturbations is 1 (we sometimes call it 1-perturbation). The precise way of gener-
ating perturbation is described separately in “Perturbations” section.

Candidate perturbations are improved by performing OLS coefficient fitting (pro-
cedure FitOLS). This means that the coefficients in any of the linear combinations of
the current solution are being set by applying the ordinary least square method already
described in “Ordinary least squares method” section. Note that our implementation
uses the OLS method included as part of the popular Python package statsmod-
els.api. After this step, perturbations are usually better suited to the given sam-
ple data D′

tr . Further, these perturbations are sorted w.r.t. R2 metric in the descending
order (line 16).

Page 9 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

Now the algorithm enters the internal loop—it iterates over the ordered perturbations
and aims to find the one which improves the best solution bs. But before comparing can-
didate perturbation solution p with bs, p is first simplified (line 23), after which local
search is performed (line 24). Solution simplification is done in a symbolic fashion by
popular Python package SymPy [47]. The local search tries to find local optima expres-
sions close to the given p, explained in detail in “Local search” section. Finally, the fit-
ness function value of p is compared to the fitness function value of bs. If fitness of p is
better, bs is updated correspondingly and the internal loop, which goes across ordered
perturbations, is immediately terminated (it works in a first-improvement strategy). Oth-
erwise, the next perturbation is probed. Note that the probed perturbations are stored in
a set denoted by perturbationstried . The goal is to avoid checking the same perturbation
multiple times (lines 26–29), i.e., perturbationstried serves as a kind of tabu list, which is
known from the Tabu search metaheuristic (see [48]).

If some of sperturbations around the starting solution s yielded an improvement, bs becomes
the starting solution s in the next iteration of the main loop (line 33). Otherwise, it makes
no sense to set the starting solution to bs as the search becomes trapped in a local opti-
mum. Randomness is introduced in order to avoid this undesirable situation. First, a set
of local perturbations around bs is generated (startcandidates) in the same manner as before
(procedure All1Perturbations). If at least one of these was not previously used as a
starting solution (starttried), a single perturbation from the startcandidates \ starttried is ran-
domly picked (line 40). There is a minor chance that startcandidates\starttried = ∅ . In this
case, a random perturbation at distance 2 from bs is used.

Before returning the symbolic model, RILS-ROLS performs the final symbolic simpli-
fication and rounding of model coefficients.

Fitness function

The objective of symbolic regression is to determine the expression that fits available
data. It is also allowed to obtain an equivalent expression, since there are multiple ways
to express a symbolic equation. Although logically sound and intuitive, this objective is
not quantifiable during the solution search/training phase, because the goal expression
is not known at that point but only target values for some of the input data. Therefore
there are various numerical metrics in the literature that guide the symbolic regres-
sion search process. The most popular ones are the coefficient of determination, also
known as R2 , and the mean squared error (MSE) or root mean squared error (RMSE).
The important aspect of solution quality is solution expression complexity, which may
correspond to the model size of its tree representation. This follows the Occam’s razor
principle [30] that a simpler solution is more likely to be the correct one. The search pro-
cess of RILS-ROLS is guided by the non-linear combination of R2 , RMSE, and solution
expression size (complexity) presented in Eq. (1).

(1)fit(s) = (2− R2(s)) · (1+ RMSE(s)) · (1+ penaltysize · size(s))

Page 10 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

Where n stands for the number of records in the dataset under consideration, s(xi) for
the value predicted by the candidate model s for an input vector xi , yi for the (exact) tar-
get value, and y for the mean of all target values.

The size of expression is calculated by counting all nodes in the respective expression
tree—this includes leaves (variables and constants) and internal nodes (operations).

The presented fitness function needs to be minimized. The motivation behind the
structure of the fitness function is based on the following observations:

• higher R2 is preferred, ideally when R2(s) = 1 , the effect of term 2− R2(s) is neutral-
ized;

• lower RMSE is preferred, ideally when RMSE(s) = 0 , the whole term (1+ RMSE(s))
becomes 1;

• since penaltysize > 0 , larger expressions tend to have higher fitness (which follows
the Occam’s razor principle); therefore, simpler solutions are favorable.

Expression caching

In order to speed up fitness evaluation, we employ expression caching. This means that
values attached to expression trees or subtrees are stored in key-value structure, such
that the key is tree (subtree) textual representation, while the value is the |D′

tr |-size vec-
tor of corresponding expression values on the sample training dataset D′

tr . Of course,
once the D′

tr changes, which does not happen very frequently, the whole cache is cleared.
Caching is performed in a partial way—when determining the value of a given expres-
sion T, it is not required to find the exact hit inside the cache. So, if a subexpression
(subtree) of T is present in the cache, its value will be reused and further combined to
calculate the whole fitness function value.

For example, let T = y2 · (x + y)/z − sin(x + y) be an expression, and
D′
tr = {([1, 2, 5], 7), ([3, 4, 3], 5), ([4, 5, 3], 6), ([6, 7, 4], 3), ([3, 3, 6], 2)} be a sample training

dataset (here, input feature vector is labeled by [x, y, z]); let expression cache consist
of the following key-value entries cache = {(x + y, [3, 7, 9, 13, 6]), (y2, [4, 16, 25, 49, 9])} .
Expression T does not need to be fully evaluated since some of its parts are inside the
cache: y2 and x + y . Note that single variables do not need to enter the cache, since they
are already available as columns of D′

tr . Each newly evaluated (sub)expression (except
for the constant or variable alone) enters the cache. In this example, the new entries will
correspond to keys (x + y)/z , y2 · (x + y)/z , sin(x + y) and y2 · (x + y)/z − sin(x + y) .
The maximal number of cache entries is set to 5000. As soon as this number is reached,

(2)R2(s) = 1−
∑n

i=1

(

s(xi)− yi
)2

∑n
i=1

(

yi − y
)2

(3)RMSE(s) =

√

√

√

√

1

n

n
∑

i=1

(s(xi)− yi)2

Page 11 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

the cache is cleared, although a more sophisticated LRU (Least Recently Used) caching
strategy can be used.

Perturbations

Perturbations allow the algorithm to escape from local optima. As previously described,
perturbations are performed on two occasions: (i) during the exhaustive examination of
neighboring solutions around the starting solution, (ii) during selection of the next start-
ing solution, a non-exhaustive case. In both cases, the same Algorithm 3 is used.

Initially, the set of perturbations sperturbations is empty (line 2 of Algorithm 3).
This is followed by constant normalization during which coefficients that enter mul-

tiplication, division, addition or subtraction are set to 1, while those entering the power
function are rounded to integer, with the exception of square root, which is kept intact.
For example, for expression 3.3 · (x + 45.1 · y3.2) · 81 · x/√y the normalized version
is 1 · (x + 1 · y3) · 1 · x/√y . The reason for performing normalization is reducing the
search space of possible perturbations. This reduction is reasonable, since normalization
preserves the essential functional form. Note that coefficients get tuned later: the linear
coefficient during the OLS phase, and the remaining ones during local search, see “Local
search” section.

After performing the normalization process, the expression is simplified—getting
the compact expression is more likely after normalization than before it. The previous
expression will take the form (x + y3) · x/√y . In this particular case, the simplification
will usually only remove unnecessary coefficients, but in general it can also perform
some non-trivial symbolic simplification.

Perturbations are generated by making simple changes on the per-node level of s
expression tree. Depending on the structure of the expression tree (note that the expres-
sion does not need to have unique tree representation), the set of subtrees of the pre-
vious expression (x + y3) · x/√y might be {(x + y3) · x/√y, (x + y3), x/

√
y, x, y3,

√
y, y} .

Further, the set of perturbations is generated around each subtree n (lines 6–9 in
Algorithm 3).

Algorithm 4 shows how perturbations are generated around the given subtree.

Page 12 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

It can be seen that there are three possibly overlapping cases when performing per-
turbations on the per-node level.

Case 1. The observed node n is the whole tree s (see line 3 in Algorithm 4). Based
on the previous exemplary expression tree, this means that the multiplication node
that connects (x + y3) and x/√y is to be changed. For example, multiplication can be
replaced by addition, which forms a 1-perturbation expression (tree) (x + y3)+ x/

√
y.

Case 2. Node n has the arity of at least 1 (see line 6 in Algorithm 4). This means
that the left subtree exists, so the left subtree node is to be changed. For example, if
n = x + y3 , the overall perturbation might be (x/y3)+ x/

√
y (addition is replaced by

division). Another example would be the case of unary operation, e.g., when n = √
y .

In that case, some possible perturbations could be (x + y3) · x/
√

ln y (application of
logarithm to the left subtree y) or (x + y3) · x/√x (changing variable y to x), etc.

Case 3. Node n is a binary operation, meaning that the right subtree must exist
(Line 13 in Algorithm 4). The analogous idea is applied as in Case 2.

The algorithm allows for the following set of carefully chosen per-node changes
(method named NodeChanges in Algorithm 4):

1. Any node to any of its subtrees (excluding itself). For example, if (x + y3) is changed
to x, the perturbation is (x + y3) · x/√y → x · x/√y.

2. Constant to variable. For example, (1+ y3) · x/√y → (x + y3) · x/√y.
3. Variable to the unary operation applied to that variable. For example,

(x + y3) · x/√y → (x + y3) · ln x/√y.
4. Unary operation to another unary operation. For example,

(x + y3) · x/√y → (x + y3) · x/ sin y.
5. Binary operation to another binary operation. For example,

(x + y3) · x/√y → (x + y3) · (x +√
y).

Page 13 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

6. Variable or constant enter the binary operation with an arbitrary variable. For exam-
ple, (x + y3) · x/√y → (x + x/y3) · x/√y.

The method named Replace(s, n, nc) inside Algorithm 4 is simply used to replace
the node n with node nc inside the given expression tree s.

Local search

Perturbations are further improved by means of the local search procedure
(Algorithm 5).

For a given perturbation p, local search systematically explores the extended set of
1-perturbations around p. It relies on the best-improvement strategy, meaning that
all 1-perturbations (for all subtrees) are considered. Before checking if the candidate
solution (new) is better than the actual best bp, the OLS coefficient fitting (FitOLS)
takes place.

The set of used 1-perturbations is expanded in comparison to those used previously.
Namely, in addition to those six possible types of node changes, the following four are
added:

 7. Any node to any constant or variable. For example, (x + y3) · x/√y → y · x/√y or
(x + y3) · x/√y → (x + π) · x/√y.

 8. Any node to the unary operation applied to it. For example,
(x + y3) · x/√y → (x + y3) · x/ ln√y.

 9. Any node to the binary operation applied to that node and a variable or constant.
For example, (x + y3) · x/√y → (x + y3) · x/√y− x.

 10. Constant to its multiple, whereby possible multipliers are {0.01, 0.1, 0.2, 0.5, 0.8, 0.9,
1.1, 1.2, 2, 5, 10, 20, 50, 100} . For example, (1+ y3) · x/√y → (1.2+ y3) · x/√y.

Page 14 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

Change under point 10 is very important as it performs general coefficient tuning, unlike
OLS, which considers only coefficients in linear combinations.

Computational complexity of RILS‑ROLS algorithm

The most expensive part of the algorithm is the invocation of the local search for a given
subtree (line 24 of Algorithm 2). The total computational complexity incurred by calling
this line of code, during a single iteration of the main loop, is equal to the multiple of
|sperturbations| and the complexity of a single call to the local search.

Let us compute the number of sperturbations set, generated by Algorithm 3. The number
C(·) of subtrees (line 5) of a given binary tree T, with |V| vertices, depends on the tree
structure. The upper bound on the number of subtrees is proved by Székely and Wang in
[49]. The result states that the star tree K1,|V |−1 has 2|V |−1 + |V | − 1 = O(2|V |) subtrees.
On the other hand, |V|-vertex path P|V |−1 has the smallest number of subtrees, only
(

|V | + 1
2

)

 . Also, a constant number of perturbations (procedure All1Perturba-

tionsAroundNode) is generated for each subtree, which does not influence the com-
plexity in terms of O notation.

For a given perturbation, the local search tries to find the best improvement for each
of the subtrees. Therefore, in the worst case, the local search call itself is exponential.

In the worst case, the computational complexity of a complete iteration of the over-
all algorithm is therefore exponential to the size of the current solution, i.e., the num-
ber of tree vertices. However, real closed-form equations are usually relatively small,
so the exponential computational complexity is not such a major practical obstacle for
RILS-ROLS. Moreover, the number of subtrees will not be maximal on average, i.e., the
expression will rarely take the form of star tree K1,|V |−1.

RILS‑ROLS for parallel execution

RILS-ROLS can be executed in the parallel environment, which can be especially useful
for Big Data scenarios. This method, called RILS-ROLS Ensemble, is based on multiple
RILS-ROLS regressors with different settings of the pseudo-random number generator.
In addition, the orderrandom parameter is set to True (the default case is False). The use
of randomly ordered perturbations allows the regressors to have different search trajec-
tories through the search space. Once all regressors have finished their executions, their
symbolic models are evaluated on the whole training dataset, and the best one is selected
as the final symbolic model. The number of regressors, i.e., the degree of parallelism, is
given as the control parameter. Each regressor runs in a separate process, so the host
operating system decides how parallelism is controlled. In our experiments, described in
“Results on big data” section, each process was given its own logical core when the num-
ber of processes was less than the number of available logical cores.

Experimental evaluation
Our RILS-ROLS algorithm is implemented in Python 3.9.0, run and evaluated by
SRBench platform. All experiments concerning our method are conducted in the sin-
gle-core mode, on a PC with Intel i9-9900KF CPU @3.6GHz, 64GB RAM, under Win-
dows 10 Pro OS.

Page 15 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

The following 14 algorithms are compared to our approach: AI-Feynman, GOMEA,
Afp-Fe, Itea, Afp, Dsr, Operon, the gplearn from python package gplearn [50],
Sbp-Gp, Eplex, Bsr, Feat, Ffx, Mrgp.

The results of the competing methods are published in [36] and are also available
within the SRBench platform. The maximum computation time allowed for each run of
RILS-ROLS is set to 2 h, while the maximal number of fitness function evaluations is set
to 1 million. SRBench sets termination criteria to 8 h runtime and 1 million iterations,
but some methods tested within SRBench also use more restrictive settting, as we do.

RILS-ROLS was run ten times for each problem instance, using a different setting of a
random number generator for each run (the seeds are the same as for other comparison
algorithms). As with other comparison algorithms tested within SRBench, the training/
test data were randomly split in a 75%:25% ratio.

Datasets and SRBench

There are two groups of instances in the SRBench ground-truth problem set:

• Feynman instances are inspired by physics and formulas/models that describe vari-
ous natural laws. There are 116 instances, where each one consists of 105 samples
(see [3] for more details). Some exact models (equations) of Feynman instances are
listed in Table 2.

• Strogatz instances are introduced in [51]. Each instance represents a 2-state sys-
tem of first-order, ordinary differential equations. The aim of each problem is to pre-
dict the rate of change of the subsequent state. These equations describe the natural
processes modeled by non-linear dynamics exhibiting chaos. The equations for some
of the datasets that belong Strogatz are shown in Table 3. There are 14 Strogatz
instances in total.

The above-mentioned benchmark sets may be biased since the models which
describe physical laws usually impose various symmetries, periodicity, or internal
separability on some variables, etc. In order to test RILS-ROLS in unbiased setting,
we generated a set of random SR problem instances called Random. These instances
vary in size (total number of expression nodes) and number of variables. In total,
there are 235 random instances, or 5 randomly generated instances for each of the

Table 2 Some Feynman instances

Output Formula

d
√

(x2 − x1)2 + (y2 − y1)2

θ1 arcsin(n · sin θ2)
En m·c2

1− v2

c2

ω 1+ v
c

√

1− v2

c2

· ω0

A x1 · y1 + x2 · y2 + x3 · y3
Pwr (1/2 · ǫ · c · E2f) · (8 · π · r2/3) · (ω4/(ω2 − ω2

0)
2)

Page 16 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

following 47 (size, number of variables) combinations {(3, 1), {4, 5} × {1, 2}, {6}

×{1, 2, 3}, {7, 8, 9, 10, 11, 12} × {1, 2, 3, 4}, {13, 14, 15} × {1, 2, 3, 4, 5}} . Each of the Ran-

dom instances has 10,000 randomly generated samples. Some random instances are
listed in Table 4, while all instances can be found in the RILS-ROLS GitHub reposi-
tory. 2

Parameter tuning

The parameter penaltysize is essential for making a trade-off between the solution
accuracy and its complexity. It was empirically set to 0.001 for the considered bench-
marks. This value is also used as the default in the corresponding Python package
(described in the “Appendix”). For new datasets, one can either keep the default set-
tings or use a wrapper tuning algorithm around the RILS-ROLS regressor, e.g., grid-
search w.r.t. training or validation accuracy.

It should be noted that several other fitness functions were considered, including
structural risk minimization (SRM) loss [52] and Bayesian information criterion (BIC)
[53], R2 , RMSE, Huber loss [54], MAE, MAPE, etc. These functions did not require a
penaltysize parameter. Although attractive because of their simplicity, these measures
produced results worse than the proposed penalty-based approach. In the end, we

Table 3 Some StROgatz ODE instances

Output Formula

v′ −0.05 · v2 sin(θ)
θ ′ v − cos(θ)/v

x′ 10 · (y − 1
3
(x3 − x))

y′ − y
10

x′ 20− x − x·y
1+0.5x2

y′ 10− x·y
1+0.5x2

θ ′ cot(φ) cos(θ)

φ′
(cos2(φ)+ 0.1 · sin2(φ)) sin(θ)

Table 4 Some RandOm instances

Instance name Formula

random_04_02_0010000_00 ln (x0 + x1)

random_07_02_0010000_00 (x0 + 10) · (x1 + 1)

random_08_02_0010000_00 (x0 + ln x0) ∗ (x1 + 10)

random_10_03_0010000_02 ln (
√
x0 · x1/ cos x2)

random_12_04_0010000_04
√
x3 · exp x1 + cos (x2 · sin x0)

random_15_03_0010000_04 x0 · x1/2+ (cos (x2)− π2)2

2 https:// github. com/ karte lj/ rils- rols.

https://github.com/kartelj/rils-rols

Page 17 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

included SRM and BIC measures into the RILS-ROLS Python package as alternatives
to the proposed fitness function. Moreover, detailed results for BIC measure on Fey-
nman and Strogatz instances are available in the GitHub repository.3

Comparison to other methods

In this section we evaluate our RILS-ROLS algorithm and compare it to 14 other
competitors from the literature. The results for Feynman and Storgatz bench-
mark are given w.r.t. the following levels of noise: 0.0 (no-noisy data), 0.001 (low-level
noise), 0.01 (medium-level noise) and 0.1 (high-level noise). More precisely, the white
Gaussian noise is added to the target variable the same way as in [36].

The symbolic solution rate (or just solution rate) shows how often the method
reaches the true formula (ground-truth). The second measure, solution accuracy (or
R2 test), considers the solution to be accurate if it produces an R2 score greater than
0.999 on the test set. Note that no noise is added to the target variable of the test set.
The overall results, concerning symbolic solution rate, R2 test and simplified complex-
ity (formula complexity after simplification) are shown in Fig. 2.

One can notice that the simplest (final) models are found by DSR and ITEA, regard-
less of the noise level. RILS-ROLS ranks third in terms of simplified complexity. Inter-
estingly, AI-Feynman, one of the best approaches to closed-form equation regression
problems, often yields larger models than RILS-ROLS. This could be the reason why
RILS-ROLS performs better than AI-Feynman on the Strogatz benchmark, where
the exact models are not large considering the size of their tree representations.

The numerical results are given in Tables 5 and 6. The first table contains the com-
parisons in terms of symbolic solution rate, while the second table contains the com-
parison in terms of solution accuracy (R2 > 0.999). Each row of the tables contains
the results of the respective algorithm (indicated by the name in the first column).
In the three remaining blocks, the results of the respective algorithm are given for all

Fig. 2 Overall comparison w.r.t. (three) different metrics

3 https:// github. com/ karte lj/ rils- rols/ blob/ master/ paper_ resou rces/ srben ch/ tables

https://github.com/kartelj/rils-rols/blob/master/paper_resources/srbench/tables

Page 18 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

considered instances, the Feynman benchmark set, and the Strogatz benchmark
set, respectively. Each block shows the results for all four noise levels separately in
terms of (4) corresponding columns. The best results are marked in bold.

The following conclusions may be drawn from Table 5:

• As for the symbolic solution rate (in percentage) in the no-noise scenario, the best
algorithm is RILS-ROLS, which achieves a symbolic solution rate of 56.85%. The
second best approach is AI-Feynman, which achieves a symbolic solution rate
of 52.65%. Far behind these two are the other approaches. For example, the best
approach among the others is GPGOMEA, which achieves a solution rate of only
27.12%. As for the results for the benchmark set Feynman, the best approach is
AI-Feynman, which achieves a symbolic solution rate of 55.78%. Slightly worse
results are obtained by our RILS-ROLS , which succeeds in 53.88% of the cases.
Among the remaining approaches, AFP-FE and GPGOMEA are the best, achiev-
ing a symbolic solution rate of 26.98% and 26.83%, respectively. As for the results
for the Strogatz benchmark set, the most convincing approach is RILS-ROLS,
which achieves a remarkable solution rate of 81.43%, compared to the second best
approach, GPGOMEA, which yields a rate of only 29.46%. Note that AI-Feynman
achieves an accuracy of 27.14% and ranks third in this benchmark set.

• Concerning symbolic solution rate at low noise (0.001) for all problem instances,
RILS-ROLS performs quite well, achieving a solution rate of 54%, which is only
slightly worse than that of the non-noisy input data. The second best approach is
again AI-Feynman, whose solution rate is now 31.89%, which is a significant drop

Table 5 Comparison w.r.t. symbolic solution rate (%)

Algorithm All FeynmAn StrogAtz

Noise Noise Noise

0 0.001 0.01 0.1 0 0.001 0.01 0.1 0 0.001 0.01 0.1

RILS-ROLS 56.85 54 40.69 16.79 53.88 51.98 40.17 17.1 81.43 70.71 45 14.29
aI-Feynman 52.65 31.89 12.61 0.86 55.78 33.08 13.03 0.7 27.14 22.14 9.29 2.14

gPgOmea 27.12 10.62 4.69 1.46 26.83 11.03 5.09 1.64 29.46 7.14 1.43 0

aFP-Fe 26.23 21.23 20 12.31 26.98 21.9 20.78 13.53 20 15.71 13.57 2.14

Itea 20.77 13.77 7.69 1.46 22.41 14.57 7.84 1.47 7.14 7.14 6.43 1.43

aFP 20.48 19 16.31 12.15 21.12 19.66 16.9 13.1 15.18 13.57 11.43 4.29

dSR 19.71 19.15 18.92 16.62 19.72 19.14 18.97 16.81 19.64 19.29 18.57 15

OPeROn 16 12.31 1.92 0.08 16.55 13.19 2.07 0.09 11.43 5 0.71 0

gPLeaRn 15.48 16.16 16.05 15.77 16.27 16.99 16.87 16.55 8.93 9.29 9.29 9.29

SBPgP 12.6 0.69 0 0 12.72 0.78 0 0 11.61 0 0 0

ePLeX 12.02 9.54 8.23 9.31 12.39 9.57 8.71 10.17 8.93 9.29 4.29 2.14

BSR 2.31 0.62 0.08 0 2.48 0.6 0.09 0 0.89 0.71 0 0

Feat 0.1 0 0 0 0 0 0 0 0.89 0 0 0

FFX 0 0 0 0.08 0 0 0 0.09 0 0 0 0

mRgP 0 0 0 0 0 0 0 0 0 0 0 0

Page 19 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

compared to the rate achieved for noisy input data. The best approach among
the others is AFP-FE with 21.23% solution rate. The symbolic solution rate of the
other approaches is less than 20%.

• As for the medium noise scenario (level 0.01), RILS-ROLS still performs well—it
yields a solution rate of 40.69% on all problem instances. The second best approach
is AFP-FE; it achieves a solution rate of only 20%. The best approach among the
others is DSR, which achieves a symbolic solution rate of 18.92%. AI-Feynman’s
performance deteriorates significantly at this level of noise, so it comes in 6th
place with a symbolic solution rate of only 12.61%.

• Concerning the scenario with the high-level noise (level of 0.1), RILS-ROLS still
performs best considering all real problem cases, achieving a symbolic solution
rate of 16.79%. The second best performing approach is DSR, which achieves a
slightly worse symbolic solution rate of 16.62%, followed by Gplearn and AFP-
FE, which achieve 15.77% and 12.31% symbolic solution rate, respectively. Note
that DSR is shown to be robust to noise, with a consistent symbolic solution rate
between 15% and 19% across all 8 combinations of benchmark datasets and noise
levels. The same is true for Gplearn, but with lower symbolic solution rates.

The following conclusions concerning the obtained solution accuracy (i.e.,
R2 > 0.999) may be drawn from Table 6:

Table 6 Comparison w.r.t. (R2 > 0.999) solution accuracy (%)

Algorithm All FeynmAn StrogAtz

Noise Noise Noise

0 0.001 0.01 0.1 0 0.001 0.01 0.1 0 0.001 0.01 0.1

mRgP 92.69 91.54 88.46 1.92 93.1 92.24 91.81 2.16 89.29 85.71 60.71 0

OPeROn 86.92 86.54 86.54 73.46 86.21 85.78 85.78 82.33 92.86 92.86 92.86 0

RILS-ROLS 80 81.15 80 21.92 78.45 79.74 78.45 19.4 92.86 92.86 92.86 42.86
SBPgP 74.23 74.23 75 53.85 73.71 75.43 75 60.34 78.57 64.29 75 0

aI-Feynman 73.83 73.64 67.86 10.16 78.51 77.39 71.43 10.53 35.71 42.86 39.29 7.14

gPgOmea 71.54 70.38 73.46 67.69 71.55 70.26 73.71 71.98 71.43 71.43 71.43 32.14

aFP-Fe 55.77 50.38 50.38 50 59.05 52.16 52.59 53.45 28.57 35.71 32.14 21.43

ePLeX 44.23 45.38 52.31 46.92 46.98 47.84 56.03 51.72 21.43 25 21.43 7.14

aFP 42.69 41.92 40.38 40.77 44.83 44.4 42.67 43.97 25 21.43 21.43 14.29

Feat 40 43.08 40.77 13.46 39.66 42.24 40.52 13.36 42.86 50 42.86 14.29

gPLeaRn 30 29.23 27.13 21.92 32.76 31.9 29.13 23.71 7.14 7.14 10.71 7.14

Itea 26.92 26.92 26.92 25.77 27.59 27.59 27.59 26.72 21.43 21.43 21.43 17.86

dSR 23.85 24.62 25 25 25 25.86 26.29 26.29 14.29 14.29 14.29 14.29

BSR 11.92 10.77 11.92 6.92 10.78 10.34 12.07 7.76 21.43 14.29 10.71 0

FFX 0 0 2.69 17.69 0 0 2.59 19.83 0 0 3.57 0

Page 20 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

• In a no-noise scenario, our RILS-ROLS method achieves 80% solution accuracy
(3rd among 15 competitors). Better methods are MRGP and Operon with 92.69%
and 86.92%, respectively. On the other hand, the symbolic solution rates of these
two approaches are rather low: 0% and 16%, respectively. These two algorithms are
therefore more suitable for so-called black-box regression.

• In the presence of low-level noise, our method RILS-ROLS has a solution accuracy
of 81.15% (third place again). As before, MRGP and Operon are the two best, with
91.54% and 86.54% solution accuracy, respectively.

• In the presence of medium intensity noise, the situation is almost the same. MRGP and
Operon are the two best approaches, achieving 88.46% and 86.54% solution accuracy,
respectively. The proposed RILS-ROLS achieves 80% solution accuracy, ranking third
again. AI-Feynman, one of the leading approaches for solving closed-form equation
regression, ranks 6th, with a solution accuracy of 67.86%.

• In the presence of the high-level noise, Operon is the best approach with 73.46%
solution accuracy. GPGOMEA achieves 67.69% solution accuracy as the second best
approach. The solution accuracy of MRGP, the leading approach for black-box regres-
sion at low and medium noise, deteriorates significantly for the high noise input data,

(a) No-noise scenario (b) Low-level noise
Fig. 3 Statistical evaluation

(a) Medium-level noise (b) High-level noise
Fig. 4 Statistical evaluation

Page 21 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

where its solution accuracy is only 1.92%. RILS-ROLS ranks 9th with a solution accu-
racy of 21.92%

• Note that RILS-ROLS and Operon perform equally well (and better than the other
approaches) on the Strogatz benchmark set in terms of solution accuracy with up to
moderate noise in the input data. With high noise on the Strogatz benchmark set,
RILS-ROLS outperforms all approaches in terms of solution accuracy.

• We can conclude that RILS-ROLS achieves state-of-the-art performances regarding
symbolic solution rate, see Fig. 2. It also shows high robustness to noise. In terms of
solution accuracy, which is not so relevant for ground-truth problems, RILS-ROLS
performs quite well even in the presence of low to medium noise.

Statistical evaluation

Figures 3, 4 give summary significance levels of pairwise tests of significance between the
(15) competitors on ground-truth problems w.r.t. obtained symbolic solution rate. Sta-
tistical analysis is based on the Wilcoxon signed-rank test in all (105) cases. Note that a
Bonferroni correction was applied. We emphasize that this methodology for valuating sta-
tistical significance of multiple estimators over many datasets is proposed by Demšar [55].

The following conclusions can be drawn from the statistical analyses applied:

• In the results for the no-noise scenario on all 130 ground truth problem instances (i.e.,
1300 runs), RILS-ROLS and AI-Feynman achieve a significantly better solution rate
than the other (13) approaches. The difference between these two approaches is not
statistically significant.

• In the low noise scenario, RILS-ROLS claims its dominance as the obtained symbolic
solution rate is statistically significantly better than that of all other approaches. Note
that the second best approach according to the solution rate, AI-Feynman, is statisti-
cally on par with DSR, but performs statistically better than the other (12) approaches.

• In the results for the medium noise scenario, RILS-ROLS achieved a significantly bet-
ter solution rate than all other approaches. Concerning other approaches, DSR, AFP-
FE, AFP, gplearn, and AI-Feynman are the best, with no significant differences
among them, while they are significantly better than the remaining (8) approaches.

• In the high noise scenario, RILS-ROLS, as mentioned earlier, provides the best solu-
tion rate. However, it is not statistically better than the following approaches: DSR and
gplearn, AFP-FE, AFP, and EPLEX. The remaining (9) approaches are significantly
outperformed by RILS-ROLS.

RILS‑ROLS sensitivity to noise and solution sizes

In this section we study the sensitivity of RILS-ROLS w.r.t. size of instance problems
under different (4) levels of noise and solution sizes. Since we do not compare RILS-
ROLS to other competitors here, but just assess method sensitivity to noise and solu-
tion size, experimental setup is different. First, we run each instance only once—note
that there are 5 randomly generated instances for each of 47 combinations (size,

Page 22 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

variable count). Second, the exit criteria are different: (1) maximal running time is 300 s
instead of 2 hours, and (2) maximal number of fitness evaluations is 100,000 instead of
1,000,000. As before, the test set takes 25% of total data. For the sake of simplicity, we
split the instances from the Random benchmark into three parts as follows:

• Small-sized instances: instances with solution size from 3 to 7.
• Medium-sized instances: those with solution size from 8 to 11.
• Large-sized instances: instances with solution size from 12 to 15.

The results are displayed in Fig. 5, grouped in accordance to the above-mentioned parts
(x-axis). The obtained solution rate of RILS-ROLS is shown on the y-axis.

This leads to the following conclusions:

• As expected, solution rate is the highest for small-sized instances—it is sightly
below 90% in a no-noise scenario. For noisy data, the solution rate naturally
decreases as the level of noise increases. For example, on the small-sized problem
instances with the low and medium level of noise, the solution rate achieved by
RILS-ROLS is still reasonably high, at about 75% and 46%, respectively. In the case
of the high noise, the solution rate for the small instances is only about 20%.

• For medium-sized instances when there is no noise, the solution rate is about 45%.
It also decreases as the noise level increases—for the medium-noise level, solution
rate of RILS-ROLS method is just about 8%. In case of the high-level noise, the
rate drops to 2%.

• For large-sized instance problems, where no noise is added, the solution rate is
about 25%, which means that the increase in size affects the overall algorithm per-
formance, but not dramatically. In case of the high-level noise, the solution rate
drops to 2%.

• We can conclude that increased formula size and noise level jointly contribute to
deterioration of overall RILS-ROLS solution rate, which is expected and natural.

small medium large
0

10

20

30

40

50

60

70

80

90

100

model size

so
lu
ti
on

ra
te

[%
]

α = 0.00
α = 0.001
α = 0.01
α = 0.1

Fig. 5 Solution rates for varying levels of noise and solution sizes

Page 23 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

The diagram suggests that this deterioration behaves similarly across different lev-
els of noise when instance size changes from small to medium almost linearly, and
with almost exact slope. On the other hand, the relative deterioration of solution
rate under no-noise level, when going from a medium to a large instance, is higher
than under noisy data. A possible explanation for this is that the solution rate of
medium instances has already significantly deteriorated in a noisy scenario. A fur-
ther increase in size therefore does not have a significant impact.

Results for R2 > 0.999 accuracy, therefore called solution accuracy, are presented in
Fig. 6.

The following conclusions may be drawn from these results:

• For small-sized instances with no noise, RILS-ROLS almost delivers the perfect
score. In the presence of low and medium noise, the solution accuracy is still hold-
ing high, at about 95% and 88%, respectively. In the case of high-level noise, the
solution accuracy is about 24%, which is significantly (negatively) correlated with
the increase in noise level.

• Concerning medium-sized instances in a no-noise scenario, the solution accuracy
is around reasonable 65%. Having low noise does not affect the results consider-
ably. However, under the higher noise, the impact is significant and very similar
to the effect observable in small-sized instances—it reduces solution accuracy to
about 45% in the presence of the medium-level noise and to just about 8% in the
presence of the high noise.

• In the case of large-sized instances without noise, solution accuracy is slightly
above 60%, which is very small relative deterioration in comparison to middle-sized
instances. Not surprisingly, large instances under the medium and high noise are the
most difficult to solve, where solution accuracies of about 40% and 4% are obtained,
respectively.

small medium large

20

30

40

50

60

70

80

90

100

model size

(R
2
>

0.
99
9)

so
lu
ti
on

ac
cu

ra
cy α = 0.00

α = 0.001
α = 0.01
α = 0.1

Fig. 6 Solution accuracy for varying levels of noise and formulae sizes

Page 24 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

Results on big data

The RILS-ROLS Ensemble method, introduced in “RILS-ROLS for parallel execution”,
was run on four datasets designed to be difficult to solve with a small data sample.

All generated datasets correspond to a function f (x1, . . . , x5) =
∑5

i=1 sin(1/xi) , which
was chosen because sin(1/x) becomes very unstable as x approaches zero; each dataset
consists of 1 million records.

• Dataset large1 has five input variables x1, . . . , x5 and the target variable y is equal
to the true value of f (·) for all input data.

• Dataset large2, on the other hand, has 10 additional decoy input variables
x6, . . . , x15 , where the variables x6, . . . , x10 are obtained by adding high-noise level to
x1, . . . , x5 while medium-level noise was applied to the variables x11, . . . , x15.

• Dataset large3 contains only decoy variables x6, . . . , x15 , with no real variables
x1, . . . , x5.

• Dataset large4 contains only decoy variables with high-level noise x6, . . . , x10 . This
dataset was also run in a mode with the medium-noise level applied to the target
variable—this setting is denoted by large4’.

Experiments were performed with a parallelism level of 10 on an Intel i9-9900KF
@3.6GHz processor with 8 physical and 16 logical cores (threads). Thus, the processor
utilization (dedicated to this task) was approximately 10/16. Each instance was run three
times, once for each value of the initial sample size sampleShareinit ∈ {0.0001, 0.001, 0.01}
to show that sampling was associated with a loss of solution quality. The exit criterion
was 1 million iterations. As expected, the memory requirement (RAM) depended on
sampleShareinit—for the value 0.01 it was about 20 GB (out of 64GB available).

Table 7 reports the findings, and its structure is as follows: the first column contains
the name of the instance; the next three blocks contain results for different values of
sampleShareinit , where each block reports on R2 , RMSE scores on the test set, model
size, and total running time (t[s]) in seconds.

The following conclusions can be drawn from the results:

• The R2 value reaches the perfect value in the case of the data set large1 for all
three sample sizes. The produced models are symbolically correct after rounding the
coefficients. Thus, as expected, the large1 is the simplest to solve. Regarding other

Table 7 Results for big data instances

Instance Sample size 0.0001 Sample size 0.001 Sample size 0.01

R
2 RMSE Size t[s] R

2 RMSE Size t[s] R
2 RMSE Size t[s]

large1 1 0.0019 31 2904.3 1 0.0019 31 7312.1 1 0.0019 31 57282.9

large2 0.9165 0.9918 88 5383 0.9759 0.5329 65 10664.7 0.9588 0.6968 62 79454.5

large3 0.8473 1.3414 75 5640.3 0.9588 0.6969 62 10513.7 0.9533 0.7415 72 78778.4

large4 0.6506 2.0288 62 6154.8 0.7628 1.6717 50 10115.2 0.7714 1.6412 54 66820.5

large4’ 0.592 2.1924 50 5613.1 0.7638 1.668 50 10291.8 0.7721 1.6384 57 66682.8

Page 25 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

datasets, when the sample size is small (0.0001), the R2 scores are much worse than
R2 scores for samples of size 0.001 or 0.01.

• The RMSE value is nearly perfect in the case of large1. For other data sets, similar
to R2 , the values are better (smaller) when the sample size is larger, although there are
some exceptions. For example, for the data set large2, the RMSE of 0.001 is better
than when the sample size is 0.01 (0.5329 versus 0.6968). However, the model size
for sample 0.001 is worse than the model size for sample 0.01. This is to be expected
given that the fitness function balances accuracy and model complexity.

• As expected, the runtimes of RILS-ROLS increase with increasing sample size. This
is also true for memory consumption.

Conclusions and future work
In this paper we dealt with solving the well-known symbolic regression (SR) problem.
We proposed a metaheuristic approach called RILS-ROLS, built upon the iterated local
search (ILS) scheme. The crucial element of this scheme is the ordinary least square
method (OLS), used to efficiently determine the best-fitting linear coefficients within
solution equations. Another key aspect is the utilization of a carefully designed fitness
function which combines three important measures of the solution: RMSE, R2 , and solu-
tion size. Further, we designed an efficient local search that systematically explores the
solution space around the candidate solution.

The RILS-ROLS method is compared to 14 other competing methods from the litera-
ture on two ground-truth benchmark sets from the literature: Feynman and Strogatz.
Experimental evaluation confirmed the quality of our method—RILS-ROLS produced
the best overall solution rate under varying levels of noise in data. Our algorithm was
able to obtain 56.85%, 54%, 40.69%, and 16.79% solution rate under no-noise, low-level,
medium-level, and high-level noise on all ground-truth problem instances, respectively.
The second best approach, AI-Feynman, obtains fairly worse percentages: 52.65%,
31.89%, 12.61%, and 0.86%. In addition, statistical analysis of the obtained results con-
firmed that RILS-ROLS performed statistically significantly better than the other 14
approaches at low and medium noise.

In addition to well-known benchmarks from the literature, we introduced a new non-
biased benchmark set of randomly generated instances. This benchmark was used to test
RILS-ROLS sensitivity, by varying size of the models and noise levels. To test our algo-
rithm for a Big Data scenario, we proposed RILS-ROLS for parallel execution and gen-
erated some very large datasets with 1 million records, designed to be difficult to solve
with a small data sample.

In the future, one could think of constructing a hybrid of RILS-ROLS method with
some other metaheuristics to further boost the quality of the obtained results. For exam-
ple, replacing the ILS scheme of RILS-RILS with a more general Variable neighborhood
search (VNS) scheme is a reasonable option. Also, RILS-ROLS could be used to solve
practical problems from various domains. For example, it can be used in physics or
chemistry to help set up reasonable hypotheses or obtain valuable insights into obtained
experimental evaluations. Another improvement direction is incorporating top-level

Page 26 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

constraints into the method. For example, if one knows that the modeled function needs
to be monotonically decreasing or differentiable, or both, this knowledge can be used
to alter the search—eliminate inadequate parts of the search space (hard constraint) or
more subtly penalize this behavior through fitness function (soft constraint).

Appendix: RILS‑ROLS Python package
RILS-ROLS algorithm is available for installation in the well-known Python package
repository https:// pypi. org, so it can be easily installed by typing commands:

In this work, we used version 1.2 of RILS-ROLS. So if someone wants to reproduce
the results shown, the safest thing to do is to specify the version during installation:

RILS-ROLS PyPI project page is available at https:// pypi. org/ proje ct/ rils- rols. Here,
one can find a minimal working example on how to use RILS-ROLS:

Python sources, experimental results and all other RILS-ROLS resources can be
found at the project GitHub page https:// github. com/ karte lj/ rils- rols.
Acknowledgements
Not applicable.

https://pypi.org
https://pypi.org/project/rils-rols
https://github.com/kartelj/rils-rols

Page 27 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

Author contributions
Both AK and MD contributed to the conception of the work. AK worked on the implementation of method and the
design of experiments. MD worked on analysis and discussion of the results, introduction and literature review. All
authors read and approved the final manuscript.

Funding
A. Kartelj was supported by Grant 451-03-47/2023-01/200104 funded by Ministry of Science Technological Development
and Innovations of the Republic of Serbia.

Availability of data and materials
All accompanying resources regarding this paper can be found in the GitHub repository https:// github. com/ karte lj/
rils- rols.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 14 December 2022 Accepted: 2 May 2023

References
 1. Billard L, Diday E. Symbolic regression analysis. In: Jajuga K, Sokołowski A, Bock H-H, editors. Classification, clustering,

and data analysis. Berlin, Heidelberg: Springer; 2002. p. 281–8.
 2. Stimson JA, Carmines EG, Zeller RA. Interpreting polynomial regression. Sociol Methods Res. 1978;6(4):515–24.
 3. Udrescu SM, Tegmark M. AI Feynman: a physics-inspired method for symbolic regression. Sci Adv. 2020;6(16):1–16.
 4. Weng B, Song Z, Zhu R, Yan Q, Sun Q, Grice CG, Yan Y, Yin W-J. Simple descriptor derived from symbolic regression

accelerating the discovery of new perovskite catalysts. Nat Commun. 2020;11(1):1–8.
 5. Udrescu SM, Tegmark M. Symbolic pregression: discovering physical laws from distorted video. Phys Rev E.

2021;103(4): 043307.
 6. Chen Y, Angulo MT, Liu Y-Y. Revealing complex ecological dynamics via symbolic regression. BioEssays.

2019;41(12):1900069.
 7. Louis BB, Abriata LA. Reviewing challenges of predicting protein melting temperature change upon muta-

tion through the full analysis of a highly detailed dataset with high-resolution structures. Mol Biotechnol.
2021;63(10):863–84.

 8. Liu Z, Tegmark M. Machine learning conservation laws from trajectories. Phys Rev Lett. 2021;126(18): 180604.
 9. Liang J, Zhu X. Phillips-inspired machine learning for band gap and exciton binding energy prediction. J Phys Chem

Lett. 2019;10(18):5640–6.
 10. Wang Y, Wagner N, Rondinelli JM. Symbolic regression in materials science. MRS Commun. 2019;9(3):793–805.
 11. Wang C, Zhang Y, Wen C, Yang M, Lookman T, Su Y, Zhang T-Y. Symbolic regression in materials science via dimen-

sion-synchronous-computation. J Mater Sci Technol. 2022;122:77–83.
 12. Burlacu B, Kommenda M, Kronberger G, Winkler S, Affenzeller M. Symbolic regression in materials science: Discover-

ing interatomic potentials from data. 2022: arXiv preprint arXiv: 2206. 06422.
 13. Kabliman E, Kolody AH, Kronsteiner J, Kommenda M, Kronberger G. Application of symbolic regression for constitu-

tive modeling of plastic deformation. Appl Eng Sci. 2021;6: 100052.
 14. Abdellaoui IA, Mehrkanoon S. Symbolic regression for scientific discovery: an application to wind speed forecasting.

In: Proceedings of IEEE SSCI 2021—the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021:1–8.
IEEE.

 15. Koza JR. Genetic programming as a means for programming computers by natural selection. Stat Comput.
1994;4(2):87–112.

 16. Schmidt MD, Lipson H. Age-fitness pareto optimization. In: Proceedings of GECCO 10—the 12th Genetic and Evolu-
tionary Computation Conference, 2010;543–544.

 17. Karaboga D, Ozturk C, Karaboga N, Gorkemli B. Artificial bee colony programming for symbolic regression. Inf Sci.
2012;209:1–15.

 18. Kommenda M. Local optimization and complexity control for symbolic regression. PhD thesis, Johannes Kepler
University 2018.

 19. Virgolin M, Alderliesten T, Witteveen C, Bosman PA. Improving model-based genetic programming for symbolic
regression of small expressions. Evol Comput. 2021;29(2):211–37.

 20. de França FO, Aldeia GSI. Interaction-transformation evolutionary algorithm for symbolic regression. Evol Comput.
2021;29(3):367–90.

 21. Kantor D, Von Zuben FJ, de Franca FO. Simulated annealing for symbolic regression. In: Proceedings of GECCO 21—
the 23rd Genetic and Evolutionary Computation Conference, 2021;592–599.

https://github.com/kartelj/rils-rols
https://github.com/kartelj/rils-rols
http://arxiv.org/abs/2206.06422

Page 28 of 28Kartelj and Djukanović Journal of Big Data (2023) 10:71

 22. Kommenda M, Burlacu B, Kronberger G, Affenzeller M. Parameter identification for symbolic regression using nonlin-
ear least squares. Genet Program Evolvable Mach. 2020;21(3):471–501.

 23. Burlacu B, Kronberger G, Kommenda M. Operon C++ an efficient genetic programming framework for symbolic
regression. In: Proceedings of GECCO 20—the 22nd Genetic and Evolutionary Computation Conference Compan-
ion, 2020;1562–1570.

 24. Virgolin M, Alderliesten T, Bosman PA. Linear scaling with and within semantic backpropagation-based genetic pro-
gramming for symbolic regression. In: Proceedings of GECCO 19—the 21st Genetic and Evolutionary Computation
Conference, 2019;1084–1092.

 25. Schmidt M, Lipson H. Distilling free-form natural laws from experimental data. science 324(5923), 2009;81–85.
 26. Schmidt M. Machine science: Automated modeling of deterministic and stochastic dynamical systems. PhD thesis,

Cornell University 2011.
 27. Jin Y, Fu W, Kang J, Guo J, Guo J. Bayesian symbolic regression. 2019; arXiv preprint arXiv: 1910. 08892.
 28. Petersen BK, Larma ML, Mundhenk TN, Santiago CP, Kim SK, Kim JT. Deep symbolic regression: Recovering math-

ematical expressions from data via risk-seeking policy gradients. 2019; arXiv preprint arXiv: 1912. 04871.
 29. Landajuela M, Petersen BK, Kim SK, Santiago CP, Glatt R, Mundhenk TN, Pettit JF, Faissol DM. Improving exploration in

policy gradient search: Application to symbolic optimization. 2021; arXiv preprint arXiv: 2107. 09158.
 30. Costa A, Dangovski R, Dugan O, Kim S, Goyal P, Soljačić M, Jacobson J. Fast neural models for symbolic regression at

scale. 2020; arXiv preprint arXiv: 2007. 10784.
 31. La Cava W, Helmuth T, Spector L, Moore JH. A probabilistic and multi-objective analysis of lexicase selection and ε

-lexicase selection. Evol Comput. 2019;27(3):377–402.
 32. La Cava W, Spector L, Danai K. Epsilon-lexicase selection for regression. In: Proceedings of GECO 16—the 18th

Genetic and Evolutionary Computation Conference, 2016; pp. 741–748.
 33. McConaghy T. FFX: Fast, scalable, deterministic symbolic regression technology. In: Proceedings of GEVO 11—the

13th Genetic and Evolutionary Computation Conference, 2011; pp. 235–260.
 34. Arnaldo I, Krawiec K, O’Reilly U-M. Multiple regression genetic programming. In: Proceedings of GECCO 14—the

16th Genetic and Evolutionary Computation Conference, 2014; pp. 879–886.
 35. La Cava W, Singh TR, Taggart J, Suri S, Moore JH. Learning concise representations for regression by evolving net-

works of trees. 2018; arXiv preprint arXiv: 1807. 00981.
 36. La Cava W, Orzechowski P, Burlacu B, de França FO, Virgolin M, Jin Y, Kommenda M, Moore JH. Contemporary sym-

bolic regression methods and their relative performance. 2021; arXiv preprint arXiv: 2107. 14351.
 37. Olson RS, La Cava W, Orzechowski P, Urbanowicz RJ, Moore JH. Pmlb: a large benchmark suite for machine learning

evaluation and comparison. BioData mining. 2017;10(1):1–13.
 38. Lourenço HR, Martin OC, Stützle T. Iterated local search. In: Handbook of Metaheuristics, Springer, New York, 2003;

pp. 320–353.
 39. Lourenço HR, Martin OC, Stützle T. Iterated local search: framework and applications. New York: Springer; 2010. p.

129–68.
 40. Leng L, Zhang T, Kleinman L, Zhu W. Ordinary least square regression, orthogonal regression, geometric mean

regression and their applications in aerosol science. J Phys: Conf Ser. 2007;78(1): 012084. https:// doi. org/ 10. 1088/
1742- 6596/ 78/1/ 012084.

 41. Baxter J. Local optima avoidance in depot location. J Oper Res Soc. 1981;32(9):815–9.
 42. Baum E. Iterated descent: a better algorithm for local search in combinatorial optimization. Technical report 1998.
 43. Martin O, Otto SW, Felten EW. Large-step markov chains for the traveling salesman problem. Complex Syst.

1991;5:299–326.
 44. Martin OC, Otto SW. Combining simulated annealing with local search heuristics. Ann Oper Res. 1996;63(1):57–75.
 45. Applegate D, Cook W, Rohe A. Chained lin-kernighan for large traveling salesman problems. INFORMS J Comput.

2003;15(1):82–92.
 46. Golub GH, Van Loan CF. Matrix Computations. JHU press, 2013.
 47. ...Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnay-

ake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka
V, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A. Sympy symbolic computing in python. PeerJ Comput Sci.
2017;3:103. https:// doi. org/ 10. 7717/ peerj- cs. 103.

 48. Glover F, Laguna M. Tabu Search. New York: Springer; 1998. p. 2093–229.
 49. Székely LA, Wang H. On subtrees of trees. Adv Appl Math. 2005;34(1):138–55.
 50. Stephens T. Genetic Programming in Python With a Scikit-Learn Inspired API: GPLEARN 2016.
 51. La Cava W, Danai K, Spector L. Inference of compact nonlinear dynamic models by epigenetic local search. Eng Appl

Artif Intell. 2016;55:292–306.
 52. Shawe-Taylor J, Bartlett PL, Williamson RC, Anthony M. Structural risk minimization over data-dependent hierarchies.

IEEE Trans Inf Theory. 1998;44(5):1926–40.
 53. Bartlett DJ, Desmond H, Ferreira PG. Exhaustive symbolic regression. 2022; arXiv preprint arXiv: 2211. 11461.
 54. Huber PJ. Robust estimation of a location parameter. Breakthroughs in statistics: Methodology and distribution,

1992;492–518.
 55. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1910.08892
http://arxiv.org/abs/1912.04871
http://arxiv.org/abs/2107.09158
http://arxiv.org/abs/2007.10784
http://arxiv.org/abs/1807.00981
http://arxiv.org/abs/2107.14351
https://doi.org/10.1088/1742-6596/78/1/012084
https://doi.org/10.1088/1742-6596/78/1/012084
https://doi.org/10.7717/peerj-cs.103
http://arxiv.org/abs/2211.11461

	RILS-ROLS: robust symbolic regression via iterated local search and ordinary least squares
	Abstract
	Introduction
	Problem definition and search space
	The proposed RILS-ROLS method
	Iterated local search
	Ordinary least squares method
	RILS-ROLS method
	Fitness function
	Expression caching
	Perturbations
	Local search

	Computational complexity of RILS-ROLS algorithm
	RILS-ROLS for parallel execution

	Experimental evaluation
	Datasets and SRBench
	Parameter tuning
	Comparison to other methods
	Statistical evaluation
	RILS-ROLS sensitivity to noise and solution sizes
	Results on big data

	Conclusions and future work
	Appendix: RILS-ROLS Python package
	Acknowledgements
	References

