
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Kim et al. Journal of Big Data           (2023) 10:65  
https://doi.org/10.1186/s40537-023-00741-4

Journal of Big Data

Design and implementation of I/O 
performance prediction scheme on HPC 
systems through large-scale log analysis
Sunggon Kim1, Alex Sim2, Kesheng Wu2, Suren Byna2,4 and Yongseok Son3* 

Abstract 

Large-scale high performance computing (HPC) systems typically consist of many 
thousands of CPUs and storage units used by hundreds to thousands of users simul-
taneously. Applications from large numbers of users have diverse characteristics, such 
as varying computation, communication, memory, and I/O intensity. A good under-
standing of the performance characteristics of each user application is important for 
job scheduling and resource provisioning. Among these performance characteristics, 
I/O performance is becoming increasingly important as data sizes rapidly increase and 
large-scale applications, such as simulation and model training, are widely adopted. 
However, predicting I/O performance is difficult because I/O systems are shared 
among all users and involve many layers of software and hardware stack, including the 
application, network interconnect, operating system, file system, and storage devices. 
Furthermore, updates to these layers and changes in system management policy can 
significantly alter the I/O behavior of applications and the entire system. To improve 
the prediction of the I/O performance on HPC systems, we propose integrating infor-
mation from several different system logs and developing a regression-based approach 
to predict the I/O performance. Our proposed scheme can dynamically select the 
most relevant features from the log entries using various feature selection algorithms 
and scoring functions, and can automatically select the regression algorithm with the 
best accuracy for the prediction task. The evaluation results show that our proposed 
scheme can predict the write performance with up to 90% prediction accuracy and 
the read performance with up to 99% prediction accuracy using the real logs from the 
Cori supercomputer system at NERSC.

Keywords: High performance computing, Distributed file system, Performance 
modeling

Introduction
Due to the vast data produced by traditional HPC applications and recent machine 
learning and big data applications, the I/O performance on HPC systems has a sig-
nificant impact on the overall performance. Understanding the I/O performance and 
predicting it on HPC systems paves the path to optimizing applications. Accurately 
predicting the I/O performance of HPC jobs also allows the systems to better allocate 

*Correspondence:   
sysganda@cau.ac.kr

1 Seoul National University 
of Science and Technology, 
Seoul, Republic of Korea
2 Lawrence Berkeley National 
Laboratory, Berkeley, USA
3 Chung-Ang University, Seoul, 
Republic of Korea
4 The Ohio State University, 
Columbus, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00741-4&domain=pdf


Page 2 of 27Kim et al. Journal of Big Data           (2023) 10:65 

CPU, I/O, and networking resources. It enables computer centers to better provision 
resources when they purchase systems. In this paper, we focus on understanding the 
performance characteristics of the jobs running on these HPC systems, in particular, 
the I/O performance that is known to be difficult to predict.

The I/O performance on HPC systems primarily depends on I/O libraries and the 
underlying parallel file systems, such as Lustre [38] and IBM’s SpectrumScale (previ-
ously known as GPFS) [36]. Parallel file systems allow parallel access to a large num-
ber of I/O servers. However, this introduces a new challenge in managing a large 
number of separate storage servers and providing consistency of the file system. An 
application might experience poor I/O performance in many ways, for example, heavy 
metadata accesses, unexpected data traffic from other applications, or network traffic 
passing through portions of the I/O data path. Thus, it is important to understand the 
application performance in large HPC environments and orchestrate them from the 
perspective of efficiency and priority.

Moreover, HPC systems are continuously monitored by various tools. For example, 
Slurm workload manager [51] records the progress of each job, Lustre Monitoring 
Tool (LMT) [46] logs file system activities, and darshan [42] monitors the I/O activi-
ties. These tools continuously collect the system status, such as CPU usage and the 
application I/O behavior, such as access pattern. However, these systems produce log 
files that are separate from each other. There is no easy way to combine them to pro-
vide coherent information to understand application behaviors.

Many studies have been conducted to understand the I/O performance using HPC 
system logs. Lockwood et al. [23] ran I/O-intensive scientific benchmarks and stud-
ied the logs to determine various factors that affect the performance. Using applica-
tion I/O and scheduler logs, TOKIO [22] provides a comprehensive graphical display 
that helps users understand the I/O behavior. Various efforts have been made to pre-
dict the I/O performance. For instance, I/O performance models [3, 4] based on spe-
cific applications estimate I/O performance tuning parameters. In contrast to these 
efforts, in this paper, we analyze a large number of logs in a large HPC system (Cori at 
NERSC), finding key features that impact the I/O performance and predicting the I/O 
performance using the features.

In this article, we analyze the system and I/O logs from a large production system 
and proposed a performance prediction scheme to predict the I/O performance of 
HPC applications. Our paper aims to answer two research questions: (1) Is it possible 
to capture a significant correlation between the I/O performance and I/O character-
istics of an application and system? (2) If so, is it possible to devise a model that cov-
ers all applications in a complex HPC system without a large overhead?. Our analysis 
results demonstrate that the I/O performance of applications is affected not only by 
the application behavior but also by the file system behavior. In addition, the correla-
tion between features and the I/O performance changes according to the I/O intensity 
of applications, and it is important to dynamically identify relative features. Through 
the analysis, our paper presents a deep understanding of I/O systems in a large HPC 



Page 3 of 27Kim et al. Journal of Big Data           (2023) 10:65  

environment and helps both system administrators and users understand the system 
and coordinate multiple I/O intensive applications to avoid performance degradation.

With the analysis findings, we proposed a prediction scheme which selects the impor-
tant features from the system logs using various feature selection algorithms and uses 
combinations of various regression algorithms to predict various system metrics such 
as the I/O performance and runtime. Our evaluation showed that various feature selec-
tion and regression algorithms can predict the performance with an accuracy of up to 
90% for write throughput, 99% for the read throughput, and 95% for runtime. In our 
previous work [15], we focused on predicting the I/O performance using various regres-
sion algorithms. This article extends our scheme by using various feature selection algo-
rithms and scoring functions to improve prediction accuracy. Our analysis shows that 
using various feature selection and scoring functions can help to improve the predic-
tion accuracy of medium and low I/O-intensity applications that have less correlation. In 
addition, we further evaluated our scheme and presented results for read performance 
and runtime prediction.

HPC Environment and tools
In Fig. 1, we present the architecture of Cori supercomputer at NERSC with compute 
nodes, network interconnects (e.g. Infiniband), and a storage system. Cori supercom-
puter at NERSC is based on Lustre parallel file system [38]. Lustre contains Metadata 
Servers (MDS) to manage file operations, such as file create, modify, and permission 
operations. MDS is responsible for maintaining a global and consistent view of the file 
system, it handles every metadata operation. Lustre’s Object Storage Servers (OSS) are 
responsible for storing and retrieving user data. Cori is equipped with 248 OSSs and 
each OSS is connected to a single Object Storage Target (OST), which is a set of HDDs 
grouped by RAID. The computation and storage systems are connected via Infiniband 
[35], providing a fast storage area network between the computation server and storage 
server.

As the example HPC system is a complicated system designed for multiple users, it 
is important for the administrators to monitor the system status and analyze possible 
bottleneck while providing the service. To do this, there are many analysis tools that 

Fig. 1 Overall architecture of Cori supercomputer



Page 4 of 27Kim et al. Journal of Big Data           (2023) 10:65 

continuously monitor various system statuses. Slurm workload manager [51] allocates 
compute nodes and processes on HPC systems. It stores a complete history of jobs, user-
names, numbers of processes, and other information as logs using MySQL database. 
Darshan I/O characterization tool [6] is an I/O characterization tool that collectes I/O 
information of a job in memory and stores the information as a file in Lustre file sys-
tem. It stores I/O characteristics such as the number of bytes written, a histogram of the 
request size, the time spent in I/O operations, and more. As Darshan stores the detailed 
I/O information for each application execution, it is a crucial tool for users to analyze 
the I/O behavior of applications and understand the bottlenecks that are orthogonal 
to other application behavior. While Darshan is focused on a single application, Lustre 
monitoring tool (LMT) [46] is designed to monitor file system activities. It collects infor-
mation, such as MDS CPU usage, MDS operations per second, OSS write throughput, 
and more in five-second intervals and stores the information using MySQL database. For 
example, LMT is used to determine the file system performance after a major update to 
the system by analyzing any abnormal MDS or OSS usage. This information can provide 
insight into the abnormal behavior of the file system. These tools are widely deployed at 
production HPC sites, and previous analyses have shown that they have negligible runt-
ime overhead [23, 41, 46]. Therefore, utilizing these logs can help understand I/O char-
acteristics without introducing additional overhead to the system.

I/O Performance prediction method
Integrated database for system logs

Slurm, Darshan, and LMT logs have different fields and are stored in different locations. 
To use them, we first store them in an integrated SQLite database to collect, store, and 
access information during the prediction phase. We build the database using Darshan 
log entries, which create an I/O log for each program execution. We use the JobID as a 
unique key in the database. We process Darshan logs using the Darshan-parser [6] tool 
that parses a Darshan compressed format to a text file format. We then read the out-
put file and extract the I/O related information such as the application execution start 
time (StartTime), runtime (RunTime), and total bytes written by the application (Total-
BytesWritten). We use the JobID from the Darshan log to search the entry in the Slurm 
database to extract the information from a Slurm log. As Slurm stores the history of 
jobs using MySQL, we perform a simple select operation using the JobID and store the 
fetched information to the integrated database. In contrast to Darshan and Slurm, LMT 
continuously collects the information using time information. Thus, it is impossible to 
collect information using the JobID. To overcome this issue, we use the StartTime and 
RunTime acquired from the Darshan log to select the time interval related to the appli-
cation. Using TOKIO tool [22], we extract the file system usage from the StartTime and 
end time (StartTime + RunTime) of the application. This process of building the data-
base can be done daily, prior to application execution. Based on our analysis, process-
ing all the log information during a 4-month period with a single server took 51  min 
and 27 s, and the size of the resulting database was 1.6 GB. Our proposed scheme can 



Page 5 of 27Kim et al. Journal of Big Data           (2023) 10:65  

effectively collect and access the I/O behavior of applications and the file system by con-
tinuously updating the integrated database with information collected from these three 
logs.

Selecting features

Since the prediction must be made at the start of the execution, only limited information 
is available For example, although LMT collects the file system information continuously 
in 5-second intervals, information collected before the application execution can be 
irrelevant. Similar to LMT, Darshan collects information at the termination of the appli-
cation. While Darshan intercepts the I/O requests during the execution, it reports the 
information at the end of the runtime. Thus, the information from LMT and Darshan is 
only available after the application execution.

In contrast to LMT and Darshan, Slurm and Lustre require users to specify the 
resources at the start of execution. For example, when executing an application, a user 
must specify the resources, such as the number of processes and nodes. In addition to 
Slurm, users must specify the stripe size and count of the output directory on Lustre 
before the application execution using a Lustre command. Darshan logs from the pre-
vious executions of the same application can be used for analysis. This information is 
important because many HPC applications, especially I/O-intensive applications, have 
similar I/O behavior such as access patterns and request size. In addition to the informa-
tion from the same environment, if the application history with the identical application 
name exists, we can use that information for the prediction. An execution history with 
an identical application name indicates that the application is executed multiple times 
with similar I/O characteristics. For example, out of the 3,543,538 studied application 
executions, only 2039 distinct application names exist, suggesting that only a small set 
of applications are executed multiple times in the example system. This finding allows 
our scheme to use the information, such as the access pattern and request size, from the 
previous executions to predict the performance of a target application,

In addition to the information availability, determining which information is important 
when predicting application I/O performance is also important [16, 30]. To dynamically 
adjust the features based on the characteristics of applications, we use various feature 
selection algorithms with different scoring functions at the start of the prediction to 
determine the optimal set of features rather than using a set of predefined features. We 
use the univariate feature selection functions for the feature selection function because 
they are widely used and exhibit good performance with relatively low overhead. Since 
our scheme predicts the target metric with all combinations and selects the combina-
tion with the highest prediction accuracy, it is important to have a low overhead. Out of 
many univariate feature selection functions, we utilize K-Best (KBest), false positive rate 
(Fpr), false discovery rate (Fdr), and family wise error (Fwe). For scoring functions of fea-
ture selection functions, we use univariate linear regression test (f_regression), mutual 
information (mutual_info), and chi-squared test (chi2). Our evaluation results indicate 
that the prediction accuracy depends on the feature selection algorithm and scoring 
function. ven if the identical feature selection algorithm was used, the selected features 
can be different based on the scoring functions. Thus, it is important to determine the 



Page 6 of 27Kim et al. Journal of Big Data           (2023) 10:65 

optimal features using a feature selection algorithm and scoring function based on the 
correlation between the features and target metric.

Regression algorithms

With the information from the logs, we use various regression algorithms to predict 
the I/O performance of applications. We have selected several regression algorithms 
with distinct characteristics, including statistical, instance-based, tree-based, and neu-
ral network-based regression algorithms. Table 1 shows the list of regression algorithms 
and Table 2 shows the hyperparameters used for each algorithm. For statistical regres-
sions, we used linear and polynomial regression methods. While statistical regressions 
are simple and fast, the prediction accuracy may suffer when the data records do not 
fit in a linear or polynomial equation. For instance-based machine learning regression, 
we use the K-nearest neighbors (KNN) [9]. For tree-based machine learning regressions, 
we use gradient boosting random forest (GBDT) [10, 11], and random forest (RF) [21] 
algorithms. Finally, we used the multilayered perceptron (MLP) [32] and convolutional 
neural network (CNN) [13, 18, 53] regression algorithms for neural network-based 
machine learning regressions. We used various regression algorithms as the accuracy 
of algorithms can be different based on the correlation between the features and the tar-
get metrics. Thus, it is important to evaluate each algorithm and dynamically select the 
algorithm when target applications, features, and target metrics change. Our evaluation 
result shows that the accuracy of the algorithm is dependent on the information. Thus, 
rather than statically choosing a single algorithm, our proposed scheme predicts I/O 

Table 1 List prediction models used in the paper

Algorithm Description

Linear Linear model based on distance

Polynomial Polynomial model based on distance

K-nearest neighbors Model based on distance and group of adjacent data sets

Gradient boosting random forest (GBDT) Model based on decision trees and boosting for combining trees

Random forest (RF) Model based on decision trees and bagging for combining trees

Multilayers precentron (MLP) Feedforward artificial neural network

Convolutional neural network (CNN) Artificial neural network based on convolution

Table 2 Hyperparameters of the model

Name Description

Linear None

Polynomial degree=2

KNN n_neighbors=2

RF random_state_42, n_estimators=1000

GBDT loss=ls, n_estimators=1000, max_depth=3, subsample=1.0, random_state=42

MLP 2 layers, num_nerons=256, activation=relu, loss=mse, optimizer=adam

CNN num_filters=256, size_filter=3X3, activation=relu, inputshape=X_test.columns, loss=mse, 
optimizer=RMSprop(0.01)



Page 7 of 27Kim et al. Journal of Big Data           (2023) 10:65  

performance using various combinations of regression algorithms that exhibit different 
characteristics.

I/O Prediction algorithm

To predict the I/O performance using the existing system logs, we prepare the data, 
select the important features, and perform prediction using the data. Figure 2 shows the 
overall procedure of the proposed scheme. As shown in the figure, there are three main 
procedures in the proposed scheme: Data preparation, Feature Selection, and Predic-
tion. We first extract the necessary data from the integrated database, perform feature 
selection using various selector algorithms and scoring functions, and finally perform 
prediction using the extracted data and selected important features that are correlated to 
the target metric.

PROCEDURE 1 Overall procedure of data preparation.
1: Target = [StartTime, ProgName, UserName, GroupID]
2: TargetFeature = Read/Write Throughput
3: DB = integrated database
4: ApplicationFeatures = [Features from Darshan logs]
5: FileSystemFeatures = [Features from LMT logs]
6: If Select Target.ProgName From DB != []
7: //Previous records of the target application exists
8: AvailableFeatures = [Features from Slurm and Darshan logs]
9: UnavailableFeatures = [Features from LMT logs]
10: Else
11: //No previous record of the target application
12: AvailableFeatures = [Features from Slurm logs]
13: UnavailableFeatures = [Features from LMT and Darshan logs]

Fig. 2 Overall procedure of the proposed scheme



Page 8 of 27Kim et al. Journal of Big Data           (2023) 10:65 

PROCEDURE 2 Overall procedure offeature selection.
1: ScoringFuction = [f_regression, mutual_info, chi2]
2: SelectorAlgorithms = [KBest, Fpr, Fdr, Fwe]
3: Function SelectFeatures (TargetFeature, selector)
4: If UnavailableFeatures.find(TargetFeature) == false
5: HistoryRecords = SELECT * FROM DB
6: Else
7: HistoryRecords = SELECT AvailableFeatures FROM DB
8: SelectedFeatures = selector(TargetFeature, HistoryRecords)
9: /* Sort and Select the correlated features */
10: X_train = SELECT (SelectedFeatures) FROM DB
11: Y_train = SELECT (Target) FROM DB
12: For FeatureValue in SelectedFeatures
13: If FeatureValue != Available and FeatureValue.Feature ==Application-

Features
14: MissingFeatureValue = SELECT FeatureValue.Feature FROM DB

WHERE ProgName==Target.ProgNameANDUserName==Target.UserName
AND GroupID == Target.GroupID ORDER BY StartTime

15: If MissingFeatureValue == [] ///No records
16: /* Relax the select condition until the record exist */
17: FeatureValue = Value from the most recent execution
18: If FeatureValue != Available and FeatureValue.Feature == FileSystem-

Features
19: MissingFeatureValue = Prediction(X_train, Y_train, X_test)
20: TargetRecords.replace(FeatureValue, MissingFeatureValue)
21: X_test = TargetRecords
22: retrun X_test

Data preperation

Procedure 1 shows the overall procedure of data preparation. At the start of the pro-
cedure, we initialize the values (e.g. TargetProgName) from the target application and 
feature. This is to select only relevant features and data. Then, we check whether the 
target application was previously executed by searching for the application name in 
the database. This is to determine which feature values are available. If the previous 
record of the application exists (i.e. a recurring application), we can utilize the infor-
mation from the previous executions. Thus, we set the available feature as the features 
from Slurm and Darshan logs, and the unavailable features as the features from LMT 
log. However, if there is no previous record of the application, then there is no infor-
mation from previous executions. Thus, we set the available features as the features 
from Slurm log, and the available features as the features from Darshan and LMT 
logs.



Page 9 of 27Kim et al. Journal of Big Data           (2023) 10:65  

PROCEDURE 3 Overall procedure of prediction.
1: RegressionAlgorithms = [Linear, Polynomial, KNN, RF, MLP, CNN, GBDT]
2: Function Prediction (X_train, Y_train, X_test)
3: Prediction, Coefficient = 0
4: For Algorithm in RegressionAlgorithms
5: Algorithm.fit(X_train, Y_train)
6: TempPrediction = Algorithm.predict(X_test)
7: TempCoefficient = Algorithm.predict(X_test).Coefficient
8: If TempCoefficient > Coefficient
9: Prediction = TempPrediction
10: return Prediction

Feature selection

In the feature selection function, our proposed scheme selects the features that are 
correlated to the target feature (TargetFeature) that needs to be predicted. Proce-
dure 2 shows the feature selection procedure of the proposed scheme. To select fea-
tures, we must first determine the target feature. The target feature can be either the 
target metric such as read/write throughput or an unavailable feature such as write 
time and the number of write requests. In the case of predicting a target metric, we 
select all features that exist in our integrated database as possible features (Histo-
ryRecords) that can have a correlation with the target feature. In the case of predicting 
an unavailable feature, we select only features that are available (AvailableFeatures) as 
possible features.

With the records selected from the features (HistoryRecords), we select features 
that have a high correlation with the target feature. To dynamically select the best 
feature selection algorithm with the best scoring function, our proposed scheme 
uses various feature selection algorithms (SelectorAlgorithms) and scoring functions 
(ScoringFunction) to predict the target feature and use the combination with the 
highest prediction accuracy. Feature selection algorithms determine the features that 
are highly correlated to the target feature. Scoring functions are used by the feature 
selection algorithm to evaluate the correlation between each possible feature and the 
target feature.

In terms of the equation and implementation of each scoring function, we used the 
implementation of the scoring function from scikit-learn [34]. For f_regreesion scoring 
function, we used the following equation from pearson’s correlation [5].

For mutual_info, we used the following equation [17].

For chi2, we used the following equation [12]

(1)r =

∑n
i=1(xi − x)(yi − y)

√

∑n
i=1(xi − x)2(yi − y)2

(2)I(x, y) = H(x)−H(x|y) = H(y)−H(y|x)



Page 10 of 27Kim et al. Journal of Big Data           (2023) 10:65 

Based on our experiments, features with the highest scoring value do not yield the high-
est performance. In addition, the final prediction accuracy of the target metric is highly 
affected by the feature selection algorithm, prediction algorithm, correlation, and appli-
cation type. To overcome this issue, we perform the prediction using all combinations 
of features selected by feature selection algorithms and scoring functions and determine 
the prediction accuracy using the r-squared value. While mathematical modeling can 
reduce the search space of optimal combinations of various algorithms, we take a brute 
force grid search approach as the computational complexity is 2.08 s for predicting 153 
different executions with various algorithms. Thus, our proposed scheme can determine 
the best combination of feature selection algorithm and scoring function by employing 
various feature selection algorithms and scoring functions, and choose the combination 
with the highest prediction accuracy. We return the selected features that have a strong 
correlation with the target feature.

Then, our scheme prepares two types of data: data for building a model (training 
phase) and data for the prediction (testing phase). In the training phase, records from 
the previous executions are used to build a model for the selected features and target fea-
ture. To do this, we select all records of the selected features (X_train) from the feature 
selection function and target feature (Y_train). In the testing phase, records of the target 
applications are used as input for the model to determine the value of the target feature. 
For unavailable features related to application behavior, we use the values from the most 
recent execution in the case of recurring applications to overcome this issue. We first 
select records that share the application name, user name, and group ID. If no records 
that share all information, we relax the select conditions to find records that share any 
of the three conditions. Finally, we select the record from the most recent execution to 
replace the unavailable feature value. We do this because the application behavior can 
change due to the application library and system update. By using the record from the 
latest execution, our proposed scheme can reflect the changed application behavior. 
For unavailable features related to file system behavior, we use the predicted file system 
values by performing the prediction using the available information to predict the file 
system behavior. Our scheme uses values from the current execution (from Slurm) and 
the most recent execution (from Darshan) to predict the unavailable feature. Thus, by 
using the features from the recent execution of an identical application and predicting 
unknown file system features, our scheme can select the important feature and prepare 
the data of selected features.

Prediction

With the prepared data, we make the prediction using a predefined set of regression 
algorithms (RegressionAlgorithms). The prediction procedure is identical in all six 
regression algorithms. We first build a model using the information on selected features 
(X_train) and the target feature (Y_train) from the database. With the model based on 
the history of all applications, we predict the target feature using the model and informa-
tion from the selected feature (X_test) related to the target application. We repeat this 

(3)χ̃2 =
1

d

n
∑

k=1

(Ok − Ek)
2

Ek



Page 11 of 27Kim et al. Journal of Big Data           (2023) 10:65  

process for all combinations of feature selection algorithms, scoring fictions, and regres-
sion algorithms, and determine the coefficient of determination for all the combinations. 
Finally, by comparing the coefficient of determination, we select the combination with 
the highest accuracy and return the prediction

To automatically and dynamically select the features and prediction algorithm, we 
evaluate the algorithms and build a new model when there is a possible I/O pattern 
change. If there is a possible I/O pattern change due to a software/hardware update, a 
user can perform the proposed procedure to select new features and build a new model 
that reflects the new correlation between features and the target metric. When choosing 
a feature selection algorithm, scoring function, and regression algorithm, our proposed 
scheme chooses an algorithm that shows the highest prediction accuracy. If the change 
from software/hardware update is dominant and the existing system logs degrade the 
accuracy of the prediction, a user can adjust the training data to include more recent 
execution logs and build a model that reflects recent changes. Thus, our proposed 
scheme can dynamically and automatically select the prediction algorithms by perform-
ing predictions with various algorithms and selecting the algorithm with the highest 
accuracy. We utilized the R-squared metric to measure the accuracy of our model. We 
chose R-squared over other indicators, such as mean squared error (MSE), because I/O 
characteristics can be highly diverse even within a single HPC system, especially when 
a large number of I/O servers are used. Consequently, a few instances with unique I/O 
behavior could have a significant impact on the MSE. To minimize the impact of such 
cases, we utilized R-squared as the accuracy metric and adjusted our algorithms based 
on the resulting accuracy.

For the implementation, we used Python to build our proposed prediction algorithm. 
For the database operations, we used the sqlite3 DB-API module provided in Python. For 
the feature selection algorithm and scoring functions, we used the algorithm provided 
by Pandas dataframe and scikit-learn library [5, 27]. In the case of the regression algo-
rithms, we used the scikit-learn library [34] with except for the CNN using TensorFlow 
[1, 8].

Analysis of I/O logs
This section presents our analysis results on the I/O behavior of HPC applications and 
the correlation between their I/O characteristics and performance. We used 3,543,538 
application logs from October 2017 to January 2018, acquired from the Cori system. 
This number does not represent distinct applications; it represents the jobs dispatched 
to the system. For example, if an application is executed on 10 occasions, it creates 10 
different logs. The average run time of the executions was 1015.6 s and the average num-
ber of nodes 1.2 with an average number of processes of 85.1. In terms of I/O, the aver-
age read and written bytes were 283.5 GBs, and the average I/O rate was 14GB/s.

Application I/O characteristics

While the I/O performance of an application is affected by many factors, the I/O behav-
ior of the application itself is one of the critical factors in both small- and large-scale 
systems [19, 29, 39]. We conducted an analysis using the information acquired by Slurm 
and Darshan to determine the effect of the I/O behavior on the performance. Table 3 



Page 12 of 27Kim et al. Journal of Big Data           (2023) 10:65 

presents the information extracted from Slurm and Darshan logs. The top four features 
in the table are from Slurm logs, and the other features are from Darshan logs.

To find the correlation between the I/O behavior and write throughput, we analyzed 
the correlation using metrics presented in Table 3. By clustering the execution history, 
we aimed to create five clusters with distinct I/O behaviors and check the correlation 
between a set of I/O behavior and write throughput. We used the Gaussian mixture 
model [44] from the Scikit-learn python library [34] to build clusters and set the number 
of clusters as five. Also, to reduce the difference in the unit for different metrics, we used 
a minmax scaler and scaled the values between 0 and 1.

Figure  3 shows clusters that are clustered using the clustering algorithm and their 
write throughput. We used a hyperparameter of five for the number of clusters. Each 
line denotes the cluster formed by the clustering algorithm. There are 20.1%, 37.9%, 
4.7%, 4.1% and 33.2% of executions in cluster 1, 2, 3, 4, and 5, respectively. As shown 
in the figure, the I/O behaviors of each cluster are relatively similar. This shows that the 
I/O behaviors of applications are not distinct enough to form clusters with distinct I/O 
behaviors. However, although the clusters exhibit similar I/O behaviors, Clusters 3 and 
4 have higher write throughput than the other clusters (1, 2, and 5). This result suggests 

Table 3 Information from Slurm and Darshan logs. (S) - SLURM, (D) - Darshan

Name Description

ProgName Name of the program (S)

UserName Name of the user (S)

GroupID Group ID of the user (S)

NumProcs Number of processes (S)

NumNodes Number of computation nodes (S, D)

StripeCount Number of OSS used by the write bursts of the application (D)

StripeSize Amount of data written to an OSS per request (D)

NumFile Number of files used by the application (D)

Seq[Read/Write]Pct Percentage of sequential read/write requests (D)

Consec[Read/Write]Pct Percentage of consecutive read/write requests (D)

[Read/Write]Less1M Number of read/write requests less than 1M (D)

TotalMetaReq Number of metadata requests (D)

Total[Read/Write]Req Number of read/write requests (D)

[Read/Write]BytesTotal Total bytes read/written by the application (D)

[Read/Write]Throughput Read/Write throughput by the application (D)

Fig. 3 Correlation between I/O behavior metrics and WriteThroughput



Page 13 of 27Kim et al. Journal of Big Data           (2023) 10:65  

that, in addition to considering application behavior, the impact of other applications 
and file system activity must be taken into account to accurately predict I/O perfor-
mance in HPC environments [15].

File system activities

The analysis results from the previous subsection suggest that an analysis of the file sys-
tem activities is needed to understand the I/O performance, in addition to the appli-
cation behavior itself. For example, when the application is scheduled during a busy 
interval, such as a massive backup period, the application can exhibit very unusual per-
formance [23]. Thus, we focused on the LMT, which collects the Lustre file system infor-
mation in 5-second intervals. Table 4 shows the list of information extracted from the 
LMT logs. As LMT collects the file system status continuously, we first collect the start 
time and run time of the job from the Darshan log and selected information from LMT 
log during the application run time.

Figure 4 shows the correlation between the file system activity (ossWrite95) and write 
throughput. As shown in the figure there is no correlation between the OSS write activ-
ity and write throughput. However, we focus on the linear data points starting from 0 to 
1000. These linear data points suggest that in certain types of applications, as the write 
activity of the file system increases, the write performance of the application increases 
as well. Thus, while not all the HPC applications follow an identical correlation with 

Table 4 Information from LMT logs

Name Description

mdsCPU[Mean/95] Mean and 95th percentile of the CPU usage of a MDS server during application runtime 
(percentage)

mdsOPS[Mean/95] Mean and 95th percentile of the operations per second of a MDS server during application 
runtime (ops)

ossCPU[Mean/95] Mean and 95th percentile of the CPU usage of OSSs during application runtime (percent-
age)

ossWrite[Mean/95] Mean and 95th percentile of the write throughput of OSSs during application runtime 
(GB/s)

ossRead[Mean/95] Mean and 95th percentile of the read throughput of OSSs during application runtime (GB/s)

Fig. 4 Correlation between ossWrite95 and write throughput



Page 14 of 27Kim et al. Journal of Big Data           (2023) 10:65 

write throughput, in certain applications, the general activity of the file system can have 
a strong correlation with write throughput.

I/O‑intensive applications

To further investigate the analysis results presented above, we focused on the correlation 
between OSS write activity and write throughput. From Fig. 4, we observed that there 
can be a correlation between two metrics in a certain group of applications. By analyz-
ing the write activity of the file system when an intensive I/O application is running, 
we found that I/O-intensive applications can have a dominant effect on the file system. 
When an application has a very low I/O activity, it is hard to investigate the I/O behavior 
of the application from the perspective of the file system due to its low impact on the file 
system. Thus, the correlation between file system activity and application write through-
put is more significant when the write activity of a certain application dominates the file 
system activity [15].

To find the applications that induce heave I/O activity, we extracted the list of OSTs 
used by an application. Although the Lustre usage is not available for all logs, applica-
tions compiled with the Lustre information flag have Lustre usage information such as 
which OSTs are used by the application. We used 10,641 executions that were com-
piled with Lustre information flag and performed more than 10GB of I/O operations 
to select I/O-intensive applications. Note that while the Lustre information flag had to 
be included manually at the time, Cori now compiles all the applications with Lustre 
information flag automatically, and the Lustre information is available for all execution 
logs. With the list of used OSTs, we propose a new metric called WriteBytesPct and 
ReadBytesPct.

Equations   4 and  5 shows how we calculate WriteBytesPct and ReadBytesPct, respec-
tively. As shown in the equation, WriteBytesPct represents the number of written bytes 
in OSTs used by a certain application over the number of written bytes in all OSTs in the 
file system. While OSTs can be shared by many applications, it is the closest estimation 
with available logs and an I/O-intensive application should have a high WriteBytesPct. 
Similar to WrtieBytesPct, an application execution entry with high ReadBytesPct repre-
sents that the application is an I/O-intensive application. Thus, we utilize this metric to 
select applications that have high I/O intensity in terms of the effect on the file system. 
To calculate these values, we first extracted the list of OSTs used by the application and 
the start and end time of the application from the darshan log. Then, we collected the 
written and read bytes of used OSTs and all OSTs during the application run time from 
the LMT logs. Finally, we calculated WriteBytesPct and ReadBytesPct using the collected 
write and read throughput.

(4)WriteBytesPct =
WriteBytesUsedOSTs

WriteBytesAllOSTs

(5)ReadBytesPct =
ReadBytesUsedOSTs

ReadBytesAllOSTs



Page 15 of 27Kim et al. Journal of Big Data           (2023) 10:65  

With the new metric (WriteBytesPct), we select high I/O-intensity applications and 
find the correlation between the OSS write activity and write throughput. We selected 
high I/O-intensity applications with a WriteBytesPct of 80% or higher, which suggests 
that the application accounts for more than 80% of the file system activity, to find appli-
cations with a strong influence on the file system. Figure  5 presents the correlation 
between the OSS write activity and application write throughput for high I/O-intensity 
applications. As illustrated in the figure, the application performance strongly correlates 
with the file system activity because the file system performance is the application per-
formance when an application dominates the I/O activity of the file system.

Based on our analysis, we made two significant observations on the I/O characteristics 
of HPC applications. First, no single I/O characteristic is dominant enough to observe 
a clear correlation with the write throughput, demonstrating that HPC systems have a 
very complex I/O performance model. Second, a strong correlation exists between OST 
usage and application write performance in I/O-intensive applications. These obser-
vations suggest that, while the correlation between the I/O characteristics and write 
throughput is complex, in specific scenarios where I/O performance is dominant in the 
overall application performance, the I/O characteristics can accurately predict the I/O 
performance of HPC applications.

Evaluation
For the evaluation, we used identical logs from the analysis section. We divided logs 
into training and test data using dates. We used logs from October 1 to November 30, 
2017 for training data and logs from December 1, 2017, to January 31, 2018 for test data. 
The training data selected from October 1 to November 30 was 87% and the test data 
from December 1 to January 31 was 13%. By dividing the data based on date, we were 
able to demonstrate the ability to predict future performance using past logs. We vali-
date our proposed scheme by predicting the performance of the test data, visualizing 
the predicted performance alongside the actual recorded performance, and presenting 
the R-squared value for each model. We used the 10,641 execution logs that have Lustre 

Fig. 5 Correlation between ossWrite95 and write throughput on high I/O intensity applications



Page 16 of 27Kim et al. Journal of Big Data           (2023) 10:65 

information and performed more than 10GB of I/O operations.1 Out of I/O operations 
performed on-site, more than 95% of I/O operation was included in the selected logs. In 
terms of I/O intensity, the percentage of high, medium, and low I/O-intensity applica-
tions was 3.2%, 3.6%, and 93.2%, respectively. To standardize the values with different 
units, we used a standard scaler.

High I/O-intensity applications: We first predicted write and read throughput using 
the application with high I/O-intensity. These applications have WriteBytesPct and 
ReadBytesPct values of over 80%.

Figure  6 shows the graphs of prediction results of write throughput using different 
combinations of feature selection algorithms with scoring functions and regression algo-
rithms (Intermediate evaluation results to predict the unknown feature value are pre-
sented in our previous paper [15]). Table 5 shows the list of features that were selected 
by the algorithms that yield the highest accuracy. As shown in the first row of the table, 
features such as ossWriteMean, writeBytesTotal, and TotalStatReq were selected, sug-
gesting that global file system status and total written bytes are important features. 
This is because high-I/O intensity applications dominate the write activity of the global 
file system. Combinations listed in Fig. 6a, b, and c have coefficients of determination 
of 0.90, 0.88, and 0.88, respectively. In terms of comparison with existing schemes, the 
coefficients of determination using a single model of linear regression, K-best, and ran-
dom forest are 0.29, 0.71, and 0.71, respectively. In terms of computational complexity, 
when using the combinations of algorithms listed in Fig. 6a, feature selection took 0.16 s, 
model training took 1.37 s, and prediction took 0.1 s. The entire process of model train-
ing and prediction, involving 153 executions with high I/O intensity, was completed in 
2.08 s. Fig. 6a, b and c have data points close to the dotted black line, which represents 
100% accuracy. These accuracy results suggest that the write throughput can be pre-
dicted accurately in high I/O-intensity applications, which is in line with our observa-
tions from the analysis. In conclusion, features from high I/O-intensity applications have 
a strong correlation with the write throughput, our proposed scheme can accurately pre-
dict the performance.

Figure 7 shows the prediction results of the read throughput (ReadThroughput) on 
high I/O-intensity applications. During the feature selection phase, features such as 
ossReadMean, TotalOpenReq, and totalMetaReq were selected, suggesting that global 
file system status and total written bytes are important features. Similar to write 

Fig. 6 Prediction results of the write throughput (WriteThroughput) on high I/O-intensity applications

1 While we cannot reveal the name of applications due to the Lab’s policy, many widely used representative HPC appli-
cations such as HACC I/O, GTC, and Vasp are included in the evaluation process.



Page 17 of 27Kim et al. Journal of Big Data           (2023) 10:65  

throughput prediction, high-I/O intensity applications dominate the read activity of 
global file systems. In contrast, metadata operations such as TotalOpenReq had more 
impact on read performance compared to the write performance. To reflect these I/O 
characteristics, metadata related features were selected during the feature selection 
phase. The combinations of the feature selection algorithm, scoring functions and 
regression algorithms listed in Fig. 7a, b, and c have the coefficient of determination 
of 0.81, 0.81, and 0.57, respectively. Compared with the prediction results of write 
throughput, prediction results of read throughput are less accurate because the read 
throughput variance of high I/O-intensive applications is higher. While the prediction 
results of an application execution at 20,000 on the x-axis are inaccurate, most of the 
prediction results represented as blue dots are placed near the black line, suggest-
ing that the predictions are generally accurate. For example, the combination listed in 
Fig. 7c presents accurate prediction results except for the one prediction near 20,000, 
which suggests that, while the general prediction accuracy is good compared with the 
other combinations listed in Fig. 7a and b, the single inaccurate prediction result low-
ers the coefficient of determination. In terms of the feature selection and regression 
algorithm, algorithms that use distance metrics showed good performance predic-
tion results. The prediction results can be grouped as presented in Fig. 7 near 50 and 
100 on the x-axis. Thus, these prediction results indicate that our scheme can accu-
rately predict both write and read throughput when applications share similar I/O 
characteristics.

Medium I/O-intensity applications: We evaluated our scheme by predicting the write 
and read throughput of applications with less I/O activity. To do this, we used applica-
tions that have WriteBytesPct and ReadBytesPct values of between 30% and 80%, which 

Fig. 7 Prediction results of the read throughput (ReadThroughput) on high I/O-intensity applications

Table 5 Selected features for different I/O-intensity and target metrics

Type Target Features

High I/O Write ossWriteMean, writeBytesTotal, TotalStatReq

High I/O Read ossReadMean, TotalOpenReq, totalMetaReq

Medium I/O Write ossWriteMean, writeLess1m, consecWritePct

Medium I/O Read NumOST, ReadBytesTotal, TotalMetaReq

Low I/O Write ConsecReadpct, totalIOReq, WriteBytesTotal

Low I/O Read ossRead95, numOST, seqReadPct

Quantum chemistry Write WriteBytesTotal, ReadBytesTotal, TotalMetaReq

Biology 1 Write WriteLess1m, TotalIOReq, Numfile

Biology 2 Write NumFile, TotalWriteReq, SeqWritePct



Page 18 of 27Kim et al. Journal of Big Data           (2023) 10:65 

suggests that OSTs used by applications were generating 30% to 80% of the file system 
activity.

Figure 8 shows the write throughput prediction graph of the top three combinations 
of algorithms with the highest coefficient of determination. The coefficient of deter-
mination for Fig. 8a, b and c is 0.56, 0.56, and 0.55, respectively. The overall accuracy 
decreased compared with the evaluation with high I/O-intensity applications because 
the features used to predict write throughput had less correlation than that of high 
I/O-intensity applications. While high I/O-intensity applications have similar I/O 
behavior and effect on the file system, medium I/O-intensity applications have diverse 
characteristics. Thus, although the regression algorithms are identical, the overall accu-
racy decreased significantly.

As shown in the figures, the prediction results of two application executions at 60,000 
on the x-axis decreased the overall accuracy. This is because the correlation between 
features and target metric (WriteThroughput) is different in the two executions than the 
correlation in other executions used to train the model. Thus, because the coefficient 
of determination is calculated by computing the distance between the predicted and 
measured value, while most of the predictions in Fig. 8a, b, and c are accurate, the two 
most inaccurate data points lead to low prediction accuracy. In conclusion, the correla-
tion between I/O characteristics and performance is lower when the I/O performance is 
not the crucial factor in the application performance. However, the results demonstrated 
that our scheme can accurately predict I/O performance by analyzing other factors.

Figure  9 shows the prediction results of read throughput (ReadThroughput) on 
medium I/O-intensity applications. The combinations listed in Fig. 9a, b, and c have the 
coefficient of determination of 0.99, 0.99, and 0.96. Similar to read throughput predic-
tion results for high I/O-intensity applications, the read throughput prediction results 
are more accurate than write throughput prediction results due to the low variance in 
read throughput. In addition, as shown in Fig. 9a and b, performance trends, with the 

Fig. 8 Prediction results of the write throughput (WriteThroughput) on medium I/O-intensity applications

Fig. 9 Prediction results of the read throughput (ReadThroughput) on medium I/O-intensity applications



Page 19 of 27Kim et al. Journal of Big Data           (2023) 10:65  

groups of data points are similar (i.e., near 50 and 75 on the x-axis). This results in nearly 
perfect prediction accuracy. Another important factor is that features selected by the 
feature selection algorithms were application-specific features, such as NumOST, Read-
BytesTotal, and TotalMetaReq. Thus, only a single regression algorithm was used for 
each combination to predict read throughput. The selected features and the accurate 
prediction results suggest that the selected applications share similar I/O characteristics 
and the performance is relatively independent of the file system status compared with 
other applications. Thus, these results suggest that even if the I/O-intensity applications 
are selected to perform the prediction if we can select the relevant features and if the 
correlation between the features and target metric is stable, our proposed scheme can 
accurately predict the I/O performance.

Low I/O-intensity applications: To evaluate our scheme in low I/O intensive applica-
tions, we used applications that have WriteBytesPct and ReadBytesPct of below 30% and 
predicted write and read throughput.

Figure 10 lists the prediction results of write throughput on low I/O-intensity appli-
cations. Combinations listed in Fig. 10a, b, and c have the coefficient of determination 
of 0.58, 0.54, and 0.49, respectively. The prediction accuracy of low I/O-intensity appli-
cations is similar to that of medium I/O-intensity applications based on the coefficient 
of determination. However, in the case of low I/O-intensity applications, most predic-
tions near 0 on the x-axis are randomly scattered around the black line, and predictions 
beyond 100,000 are far from the black line, suggesting that the predictions are either 
too high or too low. Because the predictions do not show any distinct pattern, they indi-
cate that the regression model failed to create a single model that can predict a diverse 
pattern. In addition, the selected features from various feature selection algorithms and 
scoring functions include ConsecReadPct and SeqReadPct, which are factors that do not 
strongly correlate to write throughput, as presented in Sect. 4. Thus, these results sug-
gest that while the coefficient of determination is similar to that of medium I/O-intensity 
applications because applications have diverse I/O behavior, it can be difficult to create a 
model that includes diverse I/O behavior, resulting in poor prediction accuracy.

Figure 11 shows the prediction results of read throughput on low I/O-intensity appli-
cations. Combinations listed in Fig. 11a, b and c have the coefficient of determination 
of 0.91, 0.90, and 0.88, respectively. Compared with the prediction results of write 
throughput on low I/O-intensity applications, results of read throughput have very high 
accuracy because applications with low I/O-intensity share similar I/O characteristics 
in terms of read. However, similar to write throughput prediction, the predictions are 

Fig. 10 Prediction results of the write throughput (WriteThroughput) on low I/O-intensity applications



Page 20 of 27Kim et al. Journal of Big Data           (2023) 10:65 

inaccurate for applications with high read performance, suggesting that the I/O behavior 
of these applications is different from other applications.

I/O performance for individual applications: By evaluating high and medium I/O-
intensity applications, we discovered that the prediction accuracy is related to the 
correlation between the application I/O behavior and the I/O performance. While cat-
egorizing applications based on I/O activity enabled us to explore how the I/O behavior 
of applications in each category is correlated with the performance, it also revealed the 
difficulty of predicting application performance accurately with different I/O behavior 
from other applications in the same category. We evaluated the applications by select-
ing target applications and predicting their performance using system application logs to 
validate that our proposed scheme works if we categorize the applications by application 
name rather than by relative I/O activity to the file system.

For target applications, we selected a quantum chemistry application and two biology 
applications that ran continuously in the system and have medium to high I/O-intensity. 
These are very well-known applications, and widely used in HPC systems. For all three 
applications, Kbest selector with f_regression scoring function had the highest accuracy. 
For the quantum chemistry application, WriteBytesTotal, ReadBytesTotal, and TotalMe-
taReq were selected as the most correlated features with the write throughput. For the 
biology applications (e.g., Biology1 and Biology2), we used WriteLess1m, TotalIOReq, 
and NumFile, and NumFile, TotalWriteReq, and SeqWritePct, respectively. In the case 
of biology applications, all correlated features were available. Thus, we did not perform 
additional predictions to predict the unavailable information.

Figure 12 shows the prediction results of write throughput on targeted applications. 
Using the RF algorithm in all phases, our proposed algorithm predicted the write 
throughput for the Quantum chemistry, Biology1, and Biology2 applications with 
0.88. 0.73, and 0.80 coefficients of determination, respectively. Similar to high I/O-
intensity applications, our prediction algorithm predicted the write throughput with 

Fig. 11 Prediction results of the read throughput (ReadThroughput) on low I/O-intensity applications

Fig. 12 Prediction results of write throughput (WriteThroughput) on targeted applications



Page 21 of 27Kim et al. Journal of Big Data           (2023) 10:65  

high accuracy. This is because, in contrast to medium I/O-intensity applications, the 
I/O behavior of applications remains relatively stable between each execution which 
enables accurate prediction based solely on the characteristics of the target applica-
tions. Thus, the evaluation results indicate that, while the prediction results using the 
logs of the entire application can be inaccurate due to diverse characteristics, the pre-
diction accuracy can be improved if we can capture a set of applications that share 
I/O characteristics.

Runtime prediction: In addition to write and read throughput, we performed predic-
tion of runtime using identical data. Figure 13 shows the prediction results of runtime 
using high, medium, and low I/O-intensity applications. As shown in the figure, the 
prediction accuracy of the high, medium and low I/O-intensity applications were 0.95, 
0.61, and 0.76, respectively. KBest selector with mutual information and gradient boost 
regression was used in both high and medium I/O-intensity applications and fpr selector 
with f_regression and random forest regression was used in low I/O-intensity applica-
tions. In the case of high I/O-intensity applications, features such as total written bytes, 
request size, and the number of metadata operations were used, suggesting that many 
high I/O-intensity applications are write heavy and runtime is highly correlated with 
the amount of written data. In the case of medium I/O-intensity applications, features 
such as total metadata, write, and read requests were used, suggesting that applications 
have a more balanced I/O pattern compared with the high I/O-intensity applications. As 
the applications have a more diverse pattern, the correlation between features and runt-
ime was smaller, resulting in lower prediction accuracy. In the case of low I/O-intensity 
applications, while features such as sequential write percentage, average MDS OPS, and 
total written bytes were used, the overall correlation between the features and runtime 
was much lower. While the general prediction accuracy was higher as many executions 
follow the model, many data points are placed far from the prediction line compared 
with Fig. 13a and b. Thus, these runtime prediction results show that our scheme can be 
extended to other target metric predictions.

Experiment analysis: Compared with the general prediction accuracy of write 
throughput, that of read throughput is generally higher in most cases. When analyzing 
the evaluation results, we discovered that the number of unique applications used in 
both modeling and prediction can impact prediction accuracy. For example, when pre-
dicting the performance of write and read throughput of high I/O-intensity applications, 
while there were 39 unique applications when predicting the write throughput, there 
were only 29 unique applications when predicting the read throughput. Since many read 

Fig. 13 Prediction results of runtime



Page 22 of 27Kim et al. Journal of Big Data           (2023) 10:65 

applications were benchmarks that have more stable performance, the prediction accu-
racy was higher when predicting read throughput than write throughput.

Similar trends were observed when predicting the write throughput of individual 
applications. As we manually selected the applications and build a model on an applica-
tion, the prediction accuracy was very high. This is because executions of an individual 
application share similar I/O trends. Similar to prediction on high I/O-intensity applica-
tions, our evaluation results show that the prediction accuracy highly depends on select-
ing executions that share a similar correlation between features and target metric.

In the perspective of the regression algorithm, ensemble regressions such as random 
forest and gradient regression exhibited the most accurate prediction results compared 
with other regression algorithms in all evaluation scenarios. We believe that statistical 
approaches such as linear and polynomial regression performs worse than ensemble 
regressions as they create a single model for all the data points. Thus, if there are multi-
ple groups of data points that have a different correlation between the features and the 
target metric, these algorithms cannot create a model that reflects a different correla-
tion. In the case of CNN regression, we believe that our data is not suitable for CNN 
as it does not benefit from new features created by the convolutional layer. As our data 
does not have a strong correlation between each other in contrast to image or audio 
data, the convolutional layer does not add new information. In the case of MLP regres-
sion, we believe that there can overfit to low or high performance executions. While this 
can be addressed by increasing the number of hidden layers, as our prediction scheme 
aims to perform real-time prediction, we believed that ensemble regressions with high 
accuracy and low prediction overhead can outperform MLP regression with an accept-
able number of hidden layers. In addition, when there is no strong correlation between 
features and the target metric (e.g., low I/O-intensity applications) the prediction accu-
racy cannot be improved even with a high number of hidden layers. In contrast, because 
ensemble regression divides the inputs into small subsets and performs the decision tree 
algorithm for each subset, it can build a model reflecting both the low-performing and 
high-performing executions. Thus, according to our evaluation results, we believe that 
using random forest and gradient regression with linear or polynomial regression which 
have low computational and conceptual overhead can be a good starting point when 
adapting our proposed scheme to different HPC environments.

In terms of feature selection algorithms, KBest feature selection algorithm was pre-
ferred in most cases. This is because, KBest selected more features compared with Fpr, 
Fdr, and Few feature selection algorithms which select features based on the score. Based 
on the prediction result, we believe that the additional features selected by KBest were 
essential to predict the outliers. Thus, according to our evaluation results, we believe 
that KBest feature selection algorithm can be a good starting point to select important 
features from I/O related system logs.

Related work
Understanding I/O characteristics of applications: There have been many studies that 
explored the characteristics of HPC applications. Lang et al. [20] analyzed hardware and 
software libraries and their effect on application performance. By performing experi-
ments with different configurations, they found the correlation between configurations 



Page 23 of 27Kim et al. Journal of Big Data           (2023) 10:65  

and scalability from the perspective of hardware and software components in the HPC 
system. Teng et al. [45] proposed a method for integrating I/O logs from the HPC system 
and performed an analysis on the system. Their analysis revealed that comprehensive log 
analysis is needed to determine the root cause of performance degradation. Lockwood 
et al. [23] presented a year-long analysis of the HPC file system. By running an identi-
cal benchmark, they analyzed the performance while controlling the I/O behavior of the 
application. Their analysis showed that factors such as system upgrades and continuous 
execution of I/O-intensive applications could affect the application performance. Kim 
et  al. [14] performed an analysis of the distributed file system used in the HPC envi-
ronment. They discovered that most applications do not use the parallelism provided 
by the distributed file system and proposed an autonomous algorithm to improve I/O 
performance.

Our paper is in line with these studies in terms of analyzing the I/O performance in 
the HPC environment. These studies are focused on characterizing I/O characteristics 
using logs [45], and studying the impact of software/hardware configurations on the 
HPC application performance [14, 20, 23]. Different from previous studies we focus on 
analyzing I/O characteristics by integrating multiple logs and predicting I/O perfor-
mance metrics using the system logs. To improve prediction accuracy, we proposed a 
scheme that automatically evaluates various scoring functions, feature selection algo-
rithms, and regression algorithms, and dynamically chooses the best combination with 
the highest prediction accuracy. Thus, our proposed scheme predicts I/O performance 
in a large HPC system by utilizing multiple system logs and dynamically select the opti-
mal combination of algorithms.

Prediction using system characteristics: There have been several studies on predicting 
the performance of the application to minimize interference and improve the user expe-
rience. Ernest [43] is a framework to predict the performance of large scale analytical 
applications by building a model based on resources. By studying hardware and applica-
tion, the model predicts the application performance designed for a distributed system. 
Lux et al. [24] proposed a model by analyzing a benchmark with different configurations. 
The analysis showed that their multivariate model can accurately predict the I/O perfor-
mance of the HPC system. Schmidt et al. [37] proposed a prediction scheme using an 
artificial neural network in an HPC system to predict the disk I/O time of each request 
with different size. Other works [25, 26, 49, 50] have also tried to predict various perfor-
mance metrics for large clusters. Xie et al. [47, 48] proposed the regression based I/O 
performance prediction scheme considering I/O performance variance. They also pro-
posed prediction based I/O middleware configuration to improve the overall I/O per-
formance. Agarwal et al. [2] proposed a prediction-based storage system configuration 
adjustment scheme for recurring applications that utilize the execution history of the 
previous execution of the same application. Meswani et al. [28] proposed a prediction 
scheme that accumulates I/O calls using a base system and uses the I/O calls to build a 
machine learning based prediction model. In addition, there have been many researches 
[7, 40, 52] that proposed prediction algorithms using system characteristics in the area 
of aero-engine, traffic volume and cloud computing.

Table 6 shows the list of related works and the comparison with the proposed scheme. 
Similar to these studies, our scheme aims to predict the performance of the application 



Page 24 of 27Kim et al. Journal of Big Data           (2023) 10:65 

using characteristics of the system and building a machine learning model. Different 
from previous studies, our proposed scheme utilizes the existing system logs generated 
from real applications to dynamically select relevant features and build a model. This 
allows our proposed scheme to predict I/O performance of all applications in the sys-
tem without prior benchmark results with different configurations and does not require 
additional information. In addition, our proposed scheme can reflect the characteristics 
of HPC applications that are executed in an identical environment and adapt to vari-
ous system activities. By utilizing application specific I/O characteristics, the proposed 
scheme can accurately predict the performance of I/O intensive applications with sus-
tainable performance. However, the approach proposed in the previous paper [48, 49] is 
needed to accurately predict the performance with high I/O variability.

Discussion and future works
In terms of limitation of our proposed scheme, the proposed scheme is bound by utili-
zation of the specific logs. This is because we targeted Cori HPC system with Lustre as 
the file system and darshan, LMT, and SLURM logs as system logs. However, the pro-
posed scheme can be extended to other systems that use different file systems and log-
ging tools. Since the proposed scheme predicts the performance using information from 
the system logs, other systems can adapt the scheme by processing information from 
the logs and using the information as new features. For example, PBS pro [31] is another 
widely used scheduler that collects system logs. As many other system tools collect dif-
ferent aspects of HPC data such as storage resources and network resources, it is impor-
tant to integrate the information from other sources and utilize the information for the 
prediction. In our proposed scheme, we dynamically select the most correlated feature 
using various feature selection algorithms and scoring functions. Thus, even if new sys-
tem logs are introduced to the system, by parsing the log data and inserting the informa-
tion into the database, our proposed scheme can dynamically integrate new information 
into the prediction.

For future works, we will continue to explore other system logs and features that 
impact the performance of HPC applications. The proposed scheme only shows high 
accuracy as we are utilizing I/O performance logs. For example, network-intensive or 
compute-intensive applications need a different approach to accurately predict the 
performance. With more comprehensive analysis, our study can be extended to power 
consumption and QoS management in large-scale systems. To do this, we will investi-
gate other system logs and propose a scheme to better categorize the executions with 

Table 6 List and comparison of related works and the proposed scheme

Paper Target Unit New app 
prediction

Add’l Data App

[2] I/O configuration App X X Benchmark

[37] I/O time I/O req X O Benchmark

[28] I/O performance I/O req X O Benchmark

[43] Performance App X O ML apps

Proposed I/O performance App O X All apps



Page 25 of 27Kim et al. Journal of Big Data           (2023) 10:65  

different characteristics. In addition, in terms of I/O-intensive applications, we will 
investigate I/O imbalance problems. In HPC systems, capacity and performance imbal-
ance can degrade the overall I/O performance [23, 33]. In future work, we plan to utilize 
the performance and runtime prediction result to improve the balance between multiple 
storage servers in the system.

Conclusion
In this paper, we proposed an I/O performance prediction scheme for HPC envi-
ronments. To do this, we first collected multiple system logs into a single integrated 
database and used various combinations of regression algorithms to predict the I/O per-
formance using the database. Our analysis of logs from the example HPC system indi-
cated that no single I/O feature can be used to accurately predict the I/O performance of 
applications. By selecting the most relevant features and the best regression algorithm, 
our scheme can predict the I/O performance with up to 99% accuracy. We believe that 
the presented analysis results can help users predict the I/O performance of their appli-
cations and schedule their applications efficiently, avoiding I/O interference from other 
applications. Also, our scheme can help system administers understand I/O behaviors in 
a large HPC system and efficiently allocate and manage resources in a complex system. 
In terms of limitations, our research only focuses on I/O performance, and including 
more comprehensive resources such as computation and network can improve the accu-
racy of the prediction. In addition, the proposed prediction scheme can be extended to 
manage QoS of the system and improve the overall efficiency and power consumption of 
complex systems.
Acknowledgements
Not applicable.

Author’s information
Sunggon Kim is an assistant professor in the department of Computer Science at Seoul National University of Science 
and Technology (SeoulTech) since 2022. He received his B.S. degree in Computer Science from University of Wisconsin-
Madison, Madison, USA, and Ph.D. degree from Seoul National University in 2015 and 2021, respectively. He was an intern 
at Lawrence Berkeley National Laboratory, California, USA, in 2018, 2019 and 2020. His research interests are file systems, 
cloud computing, distributed systems, and operating systems.
Alex Sim is currently a Senior Computing Engineer at Lawrence Berkeley National Laboratory. He authored and co-
authored over 300 technical publications, and released a few software packages under open source license. His current 
research and development activities include data modeling, data analysis methods, learning models, distributed 
resource management, and high performance data systems. He is a senior member of IEEE.
Kesheng Wu is a Senior Scientist at Lawrence Berkeley National Laboratory. He works extensively on data management, 
data analysis, and scientific computing topics. He is the developer of a number of widely used algorithms including Fast-
Bit bitmap indexes for querying large scientific datasets, Thick-Restart Lanczos (TRLan) algorithm for solving eigenvalue 
problems, and IDEALEM for statistical data reduction and feature extraction.
Suren Byna received his Ph.D. degree in 2006 in Computer Science from Illinois Institute of Technology, Chicago. He 
was a Senior Scientist in the Scientific Data Management (SDM) Group in CRD at Lawrence Berkeley National Labora-
tory (LBNL). Currently, he is a professor in the Department of Computer Science and Engineering at The Ohio State 
University. He works on optimizing parallel I/O and on developing systems for managing scientific data. He is the PI of 
the ECP funded ExaIO and ExaHDF5 projects, and various projects on managing scientific data. Yongseok Son received 
his B.S. degree from Ajou University in 2010, and his M.S. and Ph.D. degrees from Seoul National University in 2012 and 
2018, respectively. He was a postdoctoral research associate at University of Illinois at Urbana-Champaign. Currently, he is 
an assistant professor in Department of Computer Science and Engineering, Chung-Ang University. His research interests 
are operating, distributed, and database systems.

Author contributions
SK: conceptualization, methodology, software, writing. AS: conceptualization, discussion, supervision. KW: conceptualiza-
tion, discussion, supervision. SB: conceptualization, discussion, supervision. YS: conceptualization, supervision, writing, 
corresponding author. All authors read and approved the final manuscript.



Page 26 of 27Kim et al. Journal of Big Data           (2023) 10:65 

Funding
This work was supported by the National Research Foundation of Korea grant (No.2021R1C1C1010861, 2022R1A4A50
34130, P0012724, RS-2022-00166541). Also, this work was supported by the Office of Advanced Scientific Computing 
Research, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and also used 
resources of the National Energy Research Scientific Computing Center (NERSC) (Corresponding Author: Yongseok Son).

Availibility of data and materials
The datasets generated and/or analysed during the current study are not publicly available due to the Lab’s policy but 
are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 29 August 2022   Accepted: 20 April 2023

References
 1. Abadi M et al. Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating 

Systems Design and Implementation ( {OSDI} 16); 2016. p. 265–83.
 2. Agarwal M, Singhvi D, Malakar P, Byna S. Active learning-based automatic tuning and prediction of parallel i/o 

performance. In: 2019 IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW), IEEE; 2019. p. 20–9.
 3. Behzad B et al. Improving parallel I/O autotuning with performance modeling. In: Proceedings of the 23rd Interna-

tional Symposium on High-Performance Parallel and Distributed Computing, Association for Computing Machinery, 
New York, NY, USA; 2014. p. 253–56. https:// doi. org/ 10. 1145/ 26002 12. 26007 08.

 4. Behzad B et al. Pattern-driven parallel I/O tuning. In: Proceedings of the 10th Parallel Data Storage Workshop, ACM, 
New York, NY, USA; 2015. p. 43–48. https:// doi. org/ 10. 1145/ 28349 76. 28349 77.

 5. Benesty J, et al. Pearson correlation coefficient. In: Davis GM, editor., et al., Noise reduction in speech processing. 
Heidelberg: Springer; 2009. p. 1–4.

 6. Carns P et al. 24/7 characterization of petascale I/O workloads. In: 2009 IEEE International Conference on Cluster 
Computing and Workshops, IEEE; 2009. p. 1–10.

 7. Chen Q, Sheng H, Zhang T. A novel direct performance adaptive control of aero-engine using subspace-based 
improved model predictive control. Aeros Sci Technol. 2022;128: 107760.

 8. Chollet F. et al. Keras; 2015. https:// keras. io.
 9. Dudani SA. The distance-weighted k-nearest-neighbor rule. IEEE Trans Syst Man Cybern; 1976. p. 325–7.
 10. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.
 11. Friedman JH. Stochastic gradient boosting. Comput stat Data Anal. 2002;38:367–78.
 12. Greenwood PE, Nikulin MS. A guide to chi-squared testing, vol. 280. Hoboken: John Wiley & Sons; 1996.
 13. Khoshboresh-Masouleh M, Shah-Hosseini R. Quantum deep learning in remote sensing: achievements and chal-

lenges. Photonics Quantum. 2021;2021(11844):42–5.
 14. Kim S et al. Dca-io: A dynamic i/o control scheme for parallel and distributed file systems. In: 2019 19th IEEE/ACM 

International Symposium on Cluster, Cloud and Grid Computing (CCGRID); 2019. p. 351–60.
 15. Kim S et al. Towards hpc i/o performance prediction through large-scale log analysis. In: Proceedings of the 29th 

International Symposium on High-Performance Parallel and Distributed Computing; 2020. p. 77–88.
 16. Kira K, Rendell LA. A practical approach to feature selection. In: Sleeman D, Edwards P, editors. Machine learning 

proceedings. Amsterdam: Elsevier; 1992. p. 249–56.
 17. Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev E. 2004;69: 066138.
 18. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural 

Inf Process Syst. 2012;60:1097–105.
 19. Kroeger TM, Long DD. The case for efficient file access pattern modeling. In: Proceedings of the Seventh Workshop 

on Hot Topics in Operating Systems, IEEE; 1999. p. 14–9.
 20. Lang S. et al. I/o performance challenges at leadership scale. In: Proceedings of the Conference on High Perfor-

mance Computing Networking, Storage and Analysis, IEEE; 2009. p. 1–12.
 21. Liaw A, et al. Classification and regression by randomForest. R News. 2002;2:18–22.
 22. Lockwood GK. et al. TOKIO on ClusterStor: connecting standard tools to enable holistic i/o performance analysis; 

2018.
 23. Lockwood GK, et al. A year in the life of a parallel file system. In: SC18: International Conference for High Perfor-

mance Computing. Storage and Analysis. IEEE: Networking; 2018. p. 931–43.
 24. Lux TC. et al. Predictive modeling of i/o characteristics in high performance computing systems. In: Proceedings of 

the High Performance Computing Symposium, Society for Computer Simulation International; 2018. p. 8.

https://doi.org/10.1145/2600212.2600708
https://doi.org/10.1145/2834976.2834977
https://keras.io


Page 27 of 27Kim et al. Journal of Big Data           (2023) 10:65  

 25. Matsunaga A, et al. On the use of machine learning to predict the time and resources consumed by applications. In: 
2010 10th IEEE/ACM International Conference on Cluster. IEEE: Cloud and Grid Computing; 2010. p. 495–504.

 26. McKenna R et al. Machine learning predictions of runtime and IO traffic on high-end clusters. In: 2016 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), IEEE; 2016. p. 255–8.

 27. McKinney W. Data structures for statistical computing in python. In: van der Walt S, Millman J, editors. Proceedings 
of the 9th Python in Science Conference; 2010. p. 51–6.

 28. Meswani MR, Laurenzano MA, Carrington L, Snavely A. Modeling and predicting disk I/O time of HPC applications. 
In: 2010 DoD High Performance Computing Modernization Program Users Group Conference, IEEE; 2010. p. 478–86.

 29. Min Co. SFS: random write considered harmful in solid state drives. In: FAST. 2012. p. 1–16.
 30. Navot A et al. Is feature selection still necessary?. In: International Statistical and Optimization Perspectives Work-

shop” Subspace, Latent Structure and Feature Selection”. Springer; 2005. p. 127–38.
 31. Nitzberg B, et al. PBS pro: Grid computing and scheduling attributes. In: Nabrzyski J, Schopf JM, Węglarz J, editors., 

et al., Grid resource management. Boston: Springer; 2004. p. 183–90.
 32. Pal SK, Mitra S. Multilayer perceptron, fuzzy sets, and classification. IEEE Trans Neural Netw. 1992;3:683–97.
 33. Patel T. et al. Revisiting I/O behavior in large-scale storage systems: the expected and the unexpected. In: Proceed-

ings of the International Conference for High Performance Computing, Networking, Storage and Analysis; 2019. p. 
1–13.

 34. Pedregosa F, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
 35. Pfister GF. An introduction to the infiniband architecture. In: High Performance Mass Storage and Parallel I/O. 2001; 

ch. 42, p. 617–32.
 36. Quintero D. et al. IBM Spectrum Scale (formerly GPFS). IBM Redbooks. 2017.
 37. Schmidt JF, Kunkel JM. Predicting I/O performance in HPC using artificial neural networks. Supercomput Front 

Innov. 2016;3:19–33.
 38. Schwan P. et al. Lustre: Building a file system for 1000-node clusters. In: Proceedings of the 2003 Linux symposium; 

2003. p. 380–6.
 39. Shan H. et al. Characterizing and predicting the I/O performance of hpc applications using a parameterized syn-

thetic benchmark. In: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, IEEE Press; 2008. p. 42.
 40. Shang P, Liu X, Yu C, Yan G, Xiang Q, Mi X. A new ensemble deep graph reinforcement learning network for spatio-

temporal traffic volume forecasting in a freeway network. Digital Signal Process. 2022;123: 103419.
 41. Snyder S, Carns P, Harms K, Latham R, Ross R. Performance evaluation of Darshan 3.0. 0 on the Cray XC30. Technical 

Report. Argonne National Lab.(ANL), Argonne, IL (United States); 2016.
 42. Snyder S. et al. Modular HPC I/O characterization with darshan. In: 2016 5th Workshop on Extreme-Scale Program-

ming Tools (ESPT), IEEE; 2016. p. 9–17.
 43. Venkataraman S. et al. Ernest: efficient performance prediction for large-scale advanced analytics. In: 13th {USENIX} 

Symposium on Networked Systems Design and Implementation ( {NSDI} 16); 2016. p. 363–78.
 44. Verbeek JJ, Vlassis N, Kröse B. Efficient greedy learning of gaussian mixture models. Neural Comput. 2003;15:469–85.
 45. Wang T. et al. Iominer: Large-scale analytics framework for gaining knowledge from I/O logs. In: 2018 IEEE Interna-

tional Conference on Cluster Computing (CLUSTER), IEEE; 2018. p. 466–76.
 46. Wartens CH, Garlick J. LMT-the lustre monitoring tool; 2010.
 47. Xie B, Tan Z, Carns P, Chase J, Harms K, Lofstead J, Oral S, Vazhkudai SS, Wang F. Applying machine learning to under-

stand write performance of large-scale parallel filesystems. In: 2019 IEEE/ACM Fourth International Parallel Data 
Systems Workshop (PDSW), IEEE; 2019. p. 30–9.

 48. Xie B, Tan Z, Carns P, Chase J, Harms K, Lofstead J, Oral S, Vazhkudai SS, Wang F. Interpreting write performance of 
supercomputer I/O systems with regression models. In: 2021 IEEE International Parallel and Distributed Processing 
Symposium (IPDPS), IEEE; 2021. p. 557–66.

 49. Xie B. et al. Predicting output performance of a petascale supercomputer. In: Proceedings of the 26th International 
Symposium on High-Performance Parallel and Distributed Computing; 2017. p. 181–92.

 50. Xu G. et al. Simulation-based performance prediction of HPC applications: a case study of HPL. In: 2020 IEEE/ACM 
International Workshop on HPC User Support Tools (HUST) and Workshop on Programming and Performance 
Visualization Tools (ProTools), IEEE; 2020. p. 81–88.

 51. Yoo AB, Jette MA, Grondona M. SLURM: Simple linux utility for resource management. In: Feitelson D, Rudolph L, 
Schwiegelshohn U, editors. Workshop on job scheduling strategies for parallel processing. Berlin: Springer; 2003. p. 
44–60.

 52. Yu J, Gao M, Li Y, Zhang Z, Ip WH, Yung KL. Workflow performance prediction based on graph structure aware deep 
attention neural network. J Ind Inf Integr. 2022;27: 100337.

 53. Zhu Y, Chowdhury F, Fu H, Moody A, Mohror K, Sato K, Yu W. Entropy-aware I/O pipelining for large-scale deep 
learning on HPC systems. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of 
Computer and Telecommunication Systems (MASCOTS), IEEE; 2018. p. 145–56.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Design and implementation of IO performance prediction scheme on HPC systems through large-scale log analysis
	Abstract 
	Introduction
	HPC Environment and tools
	IO Performance prediction method
	Integrated database for system logs
	Selecting features
	Regression algorithms
	IO Prediction algorithm
	Data preperation
	Feature selection
	Prediction


	Analysis of IO logs
	Application IO characteristics
	File system activities
	IO-intensive applications

	Evaluation
	Related work
	Discussion and future works
	Conclusion
	Acknowledgements
	References


