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Abstract 

In this study, two machine-learning algorithms based on the artificial neural network 
(ANN) model are proposed to estimate the ultimate compressive strength of square 
concrete-filled steel tubular columns. The development of such prognostic models is 
achievable since an extensive set of experimental tests exist for these members. The 
models are developed to use the simplest possible network architecture but attain 
very high accuracy. A total dataset of 1022 specimens with 685 stub columns and 337 
slender columns subjected to pure axial compression is collected from the available lit-
erature. This is significant for the development of the initial model considering that for 
this field it falls under the scope of big data analysis. The ANN models are validated by 
comparison with experimental results. The validation study has shown the superiority 
of surrogate models over the Eurocode 4 design code. The empirical equation derived 
from the best-tuned Bayesian regularization algorithm shows a better agreement with 
the experimental results than those obtained by the Levenberg–Marquardt algorithm, 
and Eurocode 4 design code. A similar conclusion applies to stub and slender columns 
independently. The Bayesian regularization-based model is negligibly slower than the 
one developed on the Levenberg–Marquardt algorithm but gives a better generaliza-
tion even with simplified ANN. Generally, besides its high accuracy, one of the key 
benefits of the presented ANN model is its applicability to a broader range of columns 
than Eurocode 4 and other studies.

Keywords: Compressive strength, Machine learning, Levenberg–Marquardt, Bayesian 
regularization, Empirical equations, CFST columns

Introduction
In recent years, numerous machine learning (ML) techniques have found applications in 
different fields within civil engineering. The main reasons are less computational effort 
and the possibility of achieving optimized solutions referring to the price and required 
performance relations in various practical problems.

Due to the very complex highly nonlinear behavior of concrete-filled steel tubular 
(CFST) columns, it is crucial to correctly predict their ultimate compressive capacity in 
order to avoid an abrupt failure. Experimental testing is one of the most important part 
in this research field, but it is very time-consuming and expensive. These tests involve 
subjecting CFST columns to axial loading until failure and collecting data about their 
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load–displacement behavior. This data are then used to calculate the ultimate compres-
sive strength of the column but also to validate existing models. Theoretical models 
and design codes can be used to forecast the performance of CFST columns for vari-
ous parameter combinations, while predictive models are typically built on experimental 
data acquired from tests.

The paper will explore how regression models can be applied to manipulate numerical 
values related to axial capacity. Also, it will discuss the potential implications and appli-
cations of such manipulations in the context of the specific domain, such as how the pre-
dicted numerical values can be used for decision-making or other practical applications. 
The limitations, challenges and future research directions related to the implementation 
of machine learning algorithms to regression problems will be considered. The authors 
will highlight the performance of the implemented algorithms, such as their coefficient 
of determination (R2), or different error metrics.

Many authors have investigated the behavior of concrete-filled steel tubular columns, 
intending to implement various regression-based ML techniques to predict the ultimate 
compressive strength of rectangular or circular CFST columns. Regression models such 
as Decision tree (DT) and Random forest (RF) were employed by Đorđević and Kostić 
[9] for circular CFST columns. However, due to the small amount of collected data with 
just 236 stub columns and 272 slender columns, the relevance of the obtained R2 results 
of 0.989 for stub and 0.985 for slender columns is somewhat limited. In many previous 
studies, the same limitations in the size of the dataset and, consequently, the reliability 
of the derived conclusions are present. Tran et al. [62] have trained an ANN with 300 
samples of square CFST columns subjected to concentric loading. Tran et al. [63] devel-
oped an ANN model for CFST columns with ultra-high-strength concrete using a data-
base of 768 finite element models created by the ABAQUS software and compared the 
results with those obtained by different design codes such as EC4 [13], ANSI/AISC 360-
10 [2] and GB 50936 [15]. Le et al. [29] collected 880 samples of rectangular columns, 
and achieved a training coefficient of determination of 0.982, using the backpropagation 
(BP) rule and feed-forward neural network (FNN). Authors employed the network with 
27 neurons in hidden layer, and consequently a significantly higher number of learnable 
parameters, using log-sigmoid and hyperbolic-tangent activation function for input-to-
hidden and hidden-to-output layers, respectively. Khalaf et al. [24] collected a database 
of 280 circular CFST specimens with experimental results. The developed multilayered 
feed-forward ANN model based on the backpropagation rule had two hidden layers 
with eight neurons and hyperbolic-tangent activation function and six neurons with 
pure linear function, respectively. However, the authors did not provide sufficient infor-
mation on data preprocessing. Allouzi et al. [1] implemented a conventional approach 
using 3D nonlinear finite element (FE) model for predicting the behavior of concrete-
filled double-skin steel tube columns while Tran and Kim [61] successfully applied the 
ANN model with eight input parameters and one hidden layer with 17 nodes and the 
same associated activation functions (hyperbolic-tangent and pure linear), implemented 
on the same task. Tran et al. [60] conducted a study with 145 tests of elliptical CFST col-
umns under axial loading by establishing a combination of ANN and interior-point (IP) 
algorithm. Several authors, Bu et al. [5], Dinaharan et al. [7], and Soepangkat et al. [57] 
recommended the application of the basic Levenberg–Marquardt (LM)-ANN algorithm. 
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Zarringol et al. [67], using the same algorithm, achieved better performance for circu-
lar than rectangular CFST columns but with a more complex network architecture. In 
addition, Zarringol et al. [66] made analyses with a different number of neurons using 
ANN and support vector regression (SVR) and concluded that referring to the ANN 
model with the Bayesian regularization rule, the best accuracy is achieved with the net-
work with two hidden layers with 5 and 25 neurons in them, respectively. Some pre-
vious studies as Du et al. (12) or Nguyen et al. (48) have focused on the development 
of ANN models, but without reporting the resulting empirical equations. Vu et al. [64] 
proposed a gradient tree boosting (GTB) surrogate model with a similar dataset size as 
in this study (1017 samples), consisting of circular CFST samples subjected to concentric 
loading. They compared it with the support vector machines (SVM), RF and DT models 
and obtained R2 values of 0.999, 0.965, 0.971, and 0.963, respectively, for all data. Addi-
tional alternative single methods for successful determination of the axial compressive 
strength of CFST columns, such as fuzzy logic (FL), multivariate adaptive regression 
splines (MARS), gene expression programming (GEP) and adaptive neuro-fuzzy infer-
ence system (ANFIS), were recommended by Moon et al. [44], Luat et al. [35] and Man-
souri et al. [40], Payam et al. [51], Güneyisi et al. [17] and Iqbal et al. [21], Ly et al. [37], 
Le and Phan [31] and Saed et al. [54]. The hybrid intelligent approaches such as PANN 
as a combination of ANNs and particle swarm optimization (PSO), a fusion of ANN and 
genetic algorithm (GA), a mixture of ANN and ABC algorithms for prediction of infilled 
reinforced concrete frame frequencies, or conjunction of GA, ABC and PSO algorithms 
with Bayesian Additive Regression Tree (BART) have been successfully applied by 
Nguyen and Kim [47], Nikoo et al. [49], Asteris and Nikoo [3] and Luat et al. [36]. These 
proposed hybrid algorithms generally provide highly precise results but require more 
complex model structures.

The study presented here focuses on the ANN models with the aim to develop the 
networks with the simplest viable architecture but with an accuracy comparable to the 
most accurate previously developed models. This way, the obtained empirical expres-
sions involve fewer parameters and are simpler. In order to achieve this, special attention 
is made to selection of hyperparameters. In the paper, two approaches are selected: the 
early stopping rule of the LM algorithm and the regularization method of the Bayes-
ian regularization (BRA) algorithm, and developed in MATLAB [25] environment. Both 
approaches for predicting the square CFST column’s ultimate capacity provide more 
accurate predictions than other available solutions, including the Eurocode 4 (EC4) 
design code. It can be concluded that the use of a well-suited ML algorithm has the 
potential to greatly enhance performance levels [46].

Problem definition
Due to their high load-bearing capacity and durability, CFST columns are widely used 
in the construction industry. To guarantee the safety and exployability of these columns 
in structural design, it is crucial to correctly predict their ultimate compressive strength. 
On the other side, these members consist of steel and concrete portions, i.e. a combina-
tion of two materials that have very different material behavior. Therefore, the resulting 
behavior of a composite column is highly nonlinear and the exact analytical solutions 
for the column’s capacity do not exist. The use of ANNs in predicting the axial capacity 



Page 4 of 22Đorđević and Kostić  Journal of Big Data           (2023) 10:67 

of CFST columns has several advantages. ANNs are a type of machine learning algo-
rithm that can learn from data and generalize to new data, making them suitable for 
predicting complex and nonlinear relationships. ANNs are the best choice for modeling 
the behavior of CFST columns because they can manage big datasets. The goal of this 
study is to create model that accurately predicts the ultimate strength of concrete-filled 
steel tubular columns based on a variety of input parameters. The model will be trained 
and validated using experimental data obtained from tests on CFST columns. To assess 
the accuracy and efficiency of the suggested ANN model, it will be contrasted with other 
existing models and EC4 design code that are already in use. The results of this study will 
provide valuable insights into the use of ANNs in predicting the ultimate compressive 
strength of CFST columns and may lead to the development of improved design code 
guidelines for the safe and reliable use of these columns in structural design. Figure 1 
illustrates a sample of the square CFST column subjected to axial load. Besides geomet-
rical parameters shown in this figure (B, L, t), the column axial capacity also depends on 
the parameters that define the material behavior of steel and concrete. The use of CFST 
columns is expected to increase due to the increasing demand for sustainable and resil-
ient infrastructure.

Existing solutions
In this chapter the current state-of-the-art in the field is established and it provides a 
basis for comparison with the best ANN model, delivered by this study. The behavior of 
CFST columns under axial loading has been extensively studied, and various theoretical 
models [, , , 22, 27, 34, 58] have been developed. The majority of the existing approaches 
rely on finite element analysis (FEA), but they have certain limitations in the form of 
resource consumption, which makes them computationally very expensive and a less 
optimal solution. To overcome the limitations of existing methods, researchers have 

Fig. 1 a CFST column specimen subjected to axial load, b square cross-section
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explored a number of alternative machine learning methods to predict the axial com-
pression capacity of CFST columns. As ANNs are capable of learning intricate nonlinear 
relationships between input and output features, they can be used to forecast how CFST 
columns will behave. The authors firstly present the key characteristics of the database of 
square columns before reviewing and evaluating the various regression models.

Dataset description

This study uses the experimental dataset with 1022 samples of square CFST columns. 
The entire database is extracted from the following researchers: Denavit [6] (470 sam-
ples), Thai et al. [59] (263 samples), Goode [16] (166 samples) and Belete [4] (123 sam-
ples), and represents the largest database of square columns currently collected in 
this field, which places it in the domain of big data problems. The database consists 
of the samples exposed to pure compression only, without load eccentricity and steel 
reinforcement.

The selected input features are the square section width ( B ), the thickness of the 
steel tube ( t ), the length of column ( L ), steel yield stress ( fy ) and concrete compres-
sive strength ( fc

′

 ). Table 1 shows the experimental test ranges and distribution of input 
features. As can be seen, the database contains a wide range of samples considering 
geometric and material properties. In cases when for some samples, the concrete com-
pressive strength for the cube samples ( fcu ) was reported, these values are converted to a 
cylinder strength ( fc

′

 ) using the Eq. (1) proposed by L’Hermite [33]:

Referring to the length-to-width ratio ( L/B ), CFST columns are commonly catego-
rized as stub columns for ratios less than or equal to 4 (i.e. L/B ≤ 4), and as slender 
columns for ratios greater than 4 (i.e. L/B > 4) [67]. The database used in this study 
contains specimens from both categories: 685 stub columns and 337 slender col-
umns. The section slenderness is defined as the ratio between B and t , and, accord-
ing to EC4, the specimens are not prone to local buckling effects when the following 
relation holds: B/t ≤ 52

√

235

fy
 . Figure  2 shows the matrix of the correlation values 

between input and output variables throughout a heatmap. As expected, this matrix 
shows that the strongest correlations (0.810, 0.636) exist among the ultimate com-
pressive strength Nexp and input attributes ( B, t ) as presented in Fig.  3. Zarringol 
et al. [66] obtained similar results, as well as Đorđević and Kostić [10], where a com-
parable level of correlations for circular columns is reached. However, there is a 

(1)fc
′

=
[

0.76+ 0.21·log10(fcu/19.6)
]

·f cu

Table 1 Range and distribution features of the variables

Parameter Unit Mean Std. dev Min Max

B mm 157.71 70.32 60 750

t mm 4.47 2.25 0.70 16

L mm 936.85 859.47 180 4500

fy MPa 388.22 162.06 115 835

fc
′ MPa 52.10 31.01 6.99 164.1

Nexp kN 2318.13 2302.55 105.40 24,294
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noticeable low correlation between the input parameters, which is why special care 
must be taken in case of possible application of dimensionality reduction proce-
dures. It is certain that principal component analysis (PCA) would not be suitable, 
so the application of autoencoder neural networks would be recommended in this 
case.

In order to present the high range of column parameters from the database, the 
histograms of the number of the experimental specimens for steel yield stress fy , 
concrete compressive strength fc

′

 , relative slenderness ( � ) and section slenderness 
( B/t ) are presented in Fig. 4.

In this figure, the dash-dot red lines represent the limitations given by the EC4. 
These limitations are also summarized later in Table 2. Most of the specimens have 
properties that meet the criteria given by the EC4. However, there are specimens 
(although a noticeably smaller number of them) with properties outside the EC4 
limits. These primarily refer to high steel and concrete strengths and specimens with 
higher section slenderness. For these reasons, the derived expressions are more gen-
eral considering this extended range of column properties.

Fig. 2 Heatmap of the correlation matrix of the variables

Fig. 3 Relationship between input and output parameters: a B −  Nexp, b t −  Nexp
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Axial strength according to Eurocode 4 design code

Eurocodes are a series of separate standards for designing structures. EC4 [13], a 
design code for composite structures offers a simplified method for calculating the 
ultimate compressive strength of CFST members. The ultimate compressive strength 
( NEC4

u  ) calculates from the following Eq. (2):

Fig. 4 Distribution of the dataset referred to: a steel yield stress, b concrete compressive strength, c relative 
slenderness and d section slenderness

Table 2 Limitations regarding column properties for the application of the simplified method of the 
EC4 design code

Design code Limitation

Eurocode 4 (EC4) B/t ≤ 52 ·
√

235/fy

235 ≤ fy ≤ 460MPa

20 ≤ f
′

c ≤ 50MPa

0.2 ≤ δ ≤ 0.9
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where χ is the reduction factor for the relevant buckling mode, defined as in Eq. (3):

Parameter � and the relative slenderness � are calculated from Eqs. 4 and 5:

where Ncr is the elastic critical force for the relevant buckling mode calculated with the 
effective flexural stiffness EIeff  obtained from Eq. (6):

The plastic resistance to compression Nus for rectangular and square columns can be 
determined from Eq. (7):

Table 2 shows the major limitations in the geometric and material properties given by 
the EC4 for evaluating the axial capacity of CFST columns by a simplified method.

As mentioned before, when the first condition from Table 2 is satisfied, the local buck-
ling of the steel tube can be neglected. The second and third constrains refer to the lim-
itations of the steel and concrete material properties. The last limitation from Table 2 
refers to the steel contribution ratio δ . It should satisfy Eq. (8) (where Npl,Rd is calculated 
from the same expression as Nus but with the design values for fy and f ′c , i.e. fyd and fcd):

Solutions from the literature

So far, the analysis of the behavior of CFST columns exposed to axial loading, using 
advanced methods is mainly limited to the observation of circular or rectangular col-
umns. Despite the extensive and very detailed analyzes that the researchers did, their 
studies chiefly contained only a few hundred samples, except for some that managed 
to collect over a thousand members, as presented in the previous sections. Averagely a 
small number of collected members is justified considering their production limitations 
and expenses. Conversely, except already mentioned study by Tran et al. [62] with just 
300 samples, only a few researchers have included square columns in their studies, also 
using scarcer databases.

Namely, Sarir et al. [55] have implemented metaheuristic-based neural network algo-
rithms, i.e. PSO-ANN, and competitive imperialism algorithm (ICA) neural network for 
prediction of ultimate axial load of SCFST columns, on 149 samples with  R2 values of 
0.913 and 0.857 on all data, respectively. Ben Seghier et al. [56] used GEP method for 

(2)NEC4
u = χ · Nus

(3)χ = 1/[�+

√

�2 − �2] ≤ 1

(4)� = 0.5 · [1+ 0.21 ·
(

�− 0.2
)

+ �
2
]

(5)� =
√

Nus/Ncr

(6)EIeff = Es · Is + 0.6 · Ec · Ic

(7)Nus = As · fy + Ac · fc
′

(8)0.2 ≤ δ = As · fy/Npl,Rd ≤ 0.9
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modeling the nonlinear behavior of square columns using 300 specimens, and achieved 
 R2 of 0.9943. However, the size of the dataset requires a more extensive discussion of the 
results. Ren et al. [53] obtained training performance of 0.932, using a hybrid PSO-SVM 
method on only 180 SCFST specimens. On similar tasks, also using about 300 sam-
ples, Le [28], Le and Le [30], and Mai et al. [39] have applied other hybridized methods 
such as Gaussian process regression (GPR), Kernel-based Gaussian process regression 
(KGPR), and combination of radial basis function neural network (RBFNN) and firefly 
algorithm (FFA). These paradigms achieved the training  R2 values of 0.968, 0.993, and 
0.9992, respectively. However, although some models achieve impressive results, the 
generalization and achieved performance of such models are questionable, considering 
the size of the database.

In order to overcome the shortcomings of existing analyzes of SCFST columns, 
more precisely, on one hand, to cover the limitation in the number of samples, and on 
the other hand, to achieve better accuracy and efficiency of the developed model, the 
authors of this work provided a wider set of input experimental results, and developed a 
simpler and more practical model.

Proposed solution
The proposed solution is built on the observation of two ANN paradigms based on the 
approximation of the second derivative of the Hessian matrix, using the first derivative 
of the performance function. This approach is followed by the LM and BRA algorithms, 
which were used to perform the execution, and as a result, a very good generalization 
of the task was obtained. The final solution’s use of a feed-forward neural network with 
one hidden layer makes it computationally efficient and reduces the risk of overfitting. 
Implemented algorithms additionally help prevent overfitting and improve the gener-
alization of the model, but also represent an excellent basis for the development of even 
more advanced models through the transfer learning (TL) procedure as in Đorđević [8], 
using feature extraction or fine-tuning techniques. In addition, new perspectives are 
clearly opened for a deeper analysis of these members through the potential application 
of techniques to analyze visual imagery for recognition and classification of damage, and 
prediction of limit states.

Artificial neural networks

An ANN model is a network of interconnected neurons based on the biological human 
nervous system. The first attempts to construct a system based on natural neural net-
works were made by McCulloch and Pitts [41]. In this study, two ANN algorithms, 
LM and BRA, are used to predict the axial capacity of square CFST columns. Both 
approaches are based on the most used multilayer perceptron (MLP) feedforward neural 
network. The Levenberg–Marquardt algorithm uses an early stopping rule in the learn-
ing phase. The Bayesian method is based on the determination of regularization param-
eters and is characterized by reaching a better generalization than the LM method [50]. 
Several prediction models based on the ANN algorithms have been developed in the last 
few years. However, most of them use very complex network architectures. Therefore, 
the main goal of this study is to obtain relatively simple practical expressions for ultimate 
column capacity, focused on the networks with the smallest number of neurons. On the 
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other side, the derived ANN models need to perform comparably well as some of the 
most sophisticated regression models developed by other authors. In order to achieve 
this goal and make prevention of overfitting, adjustment of the model hyperparameters 
is performed, as explained below.

The widespread application of ANN models on different problems comes from their 
success in describing arbitrary nonlinear relations. In an ANN, the mathematical rela-
tions between the output of the neuron k in the current layer m, amk , and the outputs 
from neurons in the previous layer m − 1, am−1

k  , are given by Eqs. (9) and (10):

where zmk  is the input signal in the current layer m, wm
k ,l are the weights, n is the number 

of neurons in layer m − 1, bmk  are the biases of the current layer and f m is the activation 
function for the current layer m.

In this paper, the proposed neural networks have one hidden layer, and the activation 
functions for the hidden and output layers are adopted as hyperbolic-tangent and pure 
linear (see Fig. 5), respectively. Functions were adopted based on a suggestion given by 
Đorđević and Kostić [11] and Ho and Le [18], but also based on the implemented data 
normalization procedure.

These functions are given by Eqs. (11) and (12):

The mathematical background and working principles of applied advanced LM and BRA 
algorithms are presented in the following subsections. The intention of this study is to show 
the basic differences between early-stopping and regularization techniques, as well as their 
validation methods, key advantages and disadvantages in terms of interpretability, gener-
alization and final performance of the developed models. It is important to note dataset 

(9)zmk =

n
∑

l=1

wm
k ,l · a

m−1

l + bmk

(10)amk = f m(zmk )

(11)f (x) = (ex − e−x)/(ex + e−x)

(12)f (x) = x

(a) Hyperbolic tangent (b) Pure linear
Fig. 5 Activation functions: a hidden layer and b output layer
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division strategies in the stages of tuning hyperparameters and unbiased final evaluation of 
the models. Namely, a strategy based on division 70/15/15% for training, validation and test 
set is proposed, respectively. However, this division was achieved in two ways, in accord-
ance with the applied algorithm. Early-stopping based algorithm uses a single validation set, 
while the one based on the regularization rule enables a more sophisticated K-fold cross-
validation technique. During the final evaluation, both approaches are tested on the same 
15% of the data, which generated the results under the same circumstances. Keeping the 
same samples in the training and test set of both algorithms is enabled by using the random 
number generator (rng) command with identical seed value. This is significant due to the 
equality of both models. The decision on the final division strategy was made on the basis 
of the recommendations and experiences of other works, but also considering the available 
number of training samples to get the best adaptation and representativeness of the model. 
A more detailed description of model training and validation strategies can be found in the 
following chapters. In a preprocessing phase, input and output parameters are normalized 
to the range between − 1 and 1, according to Eq. (13):

where y is a normalized value of x , xmax and xmin are maximum and minimum origi-
nal values, ymax and ymin are expected maximum and minimum values, i.e. 1 and − 1, 
respectively.

Levenberg–Marquardt algorithm

The Levenberg–Marquardt algorithm belongs to the early-stopping algorithms where the 
initial dataset needs to be divided into three parts: training, validation and test sets. As 
opposed to the basic BP gradient descent algorithms, LM is a high-performance, robust 
algorithm based on the standard numerical optimization methods using the Gauss–New-
ton algorithm, such as conjugate gradient and quasi-Newton methods. In contrast to 
Newton’s method described by Eq. (14), the LM algorithm avoids the calculation of the sec-
ond-order derivatives of the Hessian matrix ( Ak) . As a substitute, it uses an approximation 
with the first-order Jacobian matrix J [20], as described by Eqs. (15) and (16):

where gk—current gradient, J—Jacobian matrix, µ—adaptive (damping) parameter, I
—identity matrix, JT · e—approximated gradient, xk—current value of variable x , xk+1

—the updated value of variable x , HLM—LM approximation of the Hessian matrix.

Bayesian regularization

The Bayesian regularization/optimization method efficiently upgrades the basic LM 
algorithm. It generally shows superior behaviour over the LM algorithm, even for ANN 

(13)y = (ymax − ymin) · (x − xmin)/(xmax − xmin)+ ymin

(14)xk+1 = xk−A−1

k · gk

(15)xk+1 = xk −
[

JT · J + µ · I
]−1

· JT · e

(16)HLM = JT · J
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networks with simpler architecture. In addition to the better generalization that BRA 
possesses, with a slightly modified performance function, it tends to limit the weights 
and biases. This way, it reduces the chance of potential overfitting. The BRA appreciably 
penalizes large weights and makes a smoother network response. During the training 
phase, some network parameters can lose their purpose and thus break the connec-
tions between some neurons from adjacent layers. To prevent this, the effective network 
parameters are calculated.

Using the LM notation from Eq. (15), for network training, the BRA approximation of 
the second-order Hessian matrix is given by Eqs. (17)–(19):

where HBRA—BRA approximation of the Hessian matrix, α and β are the regularization 
parameters, nt is the total number of ANN parameters, EW  is the sum of the squared 
weights and EP is the selected performance measure. The effective number of network 
parameters ( γ ) is equal to the total number of ANN parameters nt in the first iteration, 
and further is calculated from Eq. (20) [10]:

The modified performance function is calculated as a combination of the errors as 
given by Eqs. (21)–(23):

where MSE is the mean squared error, yi is a target value, yi is the predicted value, n is 
the number of samples, and wj,k are the network weights defined in Eq. (9).

Elaboration
The authors provide a detailed description of the proposed ANN models and the evalu-
ation of its performance using two approximated second-order training algorithms 
(Levenberg–Marquardt and Bayesian regularization) and various metrics. This paper 
utilizes a dataset of experimental results from previous studies to train and validate the 
proposed ANN models. The results of this study contribute to the development of more 
accurate and efficient models for structural engineering applications. It is proven that 
ANN models require less computational resources and time than FEM, and that they 

(17)HBRA = 2 · β · JT · J + 2 · α · I

(18)α = γ /(2 · EW(w))

(19)β = (nt − γ )/(2 · EP(x))

(20)γ = nt − 2 · α · tr(HBRA)
−1

(21)F(x) = β · EP(x)+ α · EW (x)

(22)EP(x) = MSE = 1/n ·

n
∑

i=1

(yi − yi)
2

(23)EW (x) = 1/n ·

n
∑

i=1

(wj,k)
2
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can be easily updated and adapted to new and bigger datasets, whose growth is expected 
over time.

Quality evaluation

The performance of developed predictive models is assessed through several error indi-
cators, similar to Murad et al. [45] and Wu et al. [65]: coefficient of determination ( R2 ), 
MSE , root mean squared error ( RMSE ), mean absolute error ( MAE ) and mean absolute 
percentage error ( MAPE).

These indicators express agreement between the experimental and the predicted 
results. Namely, lower values of MSE, RMSE, MAE and MAPE errors and the higher 
value of R2 show a better agreement with the actual experimental results.

ANN hyperparameters

In order to find the most appropriate ANN model with the best generalization, it is 
necessary to observe an additional set of hyperparameters used in the ANN algorithm. 
Proposed algorithms distinguish the following hyperparameters for preventing overfit-
ting and adequately adjusting the learning speed: µ , µdec and µinc . Parameter µ is known 
as the damping factor and can be decreased or increased by the other two factors µdec 
and µinc , as presented by Howard and Mark [19]. After previously defined activation 
functions for the hidden and output layer, the following values of hyperparameters  
( µ;µdec;µinc ) are explored (0.001, 0.01, 0.1; 0.001, 0.01; 10, 50), and then adopted using 
trial-and-error method. Accompanying network architectures subjected to analy-
ses are (5-4-1, 5-5-1, 5-6-1, 5-8-1, 5-10-1, 5-12-1, 5-14-1). Finally, the total number of 
considered combinations is 140 (2·10·7). The LM algorithm obtained results from five 
runs, while the BRA algorithm used fivefold cross-validation technique with different 
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validation subsets in each fold. The use of 5 runs/folds strategies enabled an approxi-
mately equal participation of the number of samples in the training and validation set, 
and therefore their comparison under approximately equal conditions. However, the 
K-fold cross-validation technique is more sophisticated over the early-stopping rule, 
which can be confirmed from several perspectives. In general. it offers several advan-
tages over the classical validation set approach, including better utilization of data, 
reduced bias, more reliable performance estimation, flexibility in hyperparameter tun-
ing, and the better ability to detect overfitting.

The results of the least sensitive LM and BRA models are given in Fig.  6. This is 
reflected in the smallest standard deviation of the results around the mean value of the 
coefficients of determination. To select the best combination, a minimum average over 
five runs/folds was selected as a criterion.

The best ANN models have network architectures 5-12-1 and 5-8-1 as in Fig. 7a and b, 
with associated hyperparameter configurations (0.1, 0.01, 10 and 0.1, 0.001, 10), respec-
tively for LM and BRA approaches. Both algorithms have small standard deviations 
around the mean R2 values of 0.977 and 0.984 for LM and BRA, respectively. However, 
the BRA model is more efficient concerning the consumption of the resources, network 
dimensions and overall results [23].

Results

The performances of the developed ANN models and the corresponding error distribu-
tions are depicted in Fig.  8a–d. Both methods show a good convergence, as it can be 
seen from the performance plots. LM and BRA algorithms with corresponding archi-
tectures and hyperparameters, achieved the best results after only 64 and 189 epochs, 
respectively. Besides the more optimal data division strategy that BRA has, it also shows 
a better agreement with the experimental results than LM. The R2 values for training 
and test data are (0.987, 0.985), as illustrated in Fig. 9a and b. Both ANN algorithms give 
more accurate results than EC4 on the entire data set, with coefficients of determination 
(0.986, 0.982, 0.953) for BRA, LM and EC4, respectively (see Fig. 10a–c).

Table 3 shows the values of the coefficients of determination, and Table 4 contains the 
results of other performance scores (MSE, RMSE, MAE, MAPE) for all data.

Figures 9 and 10 show that the proposed network with one hidden layer and the opti-
mal number of neurons estimated by the trial-and-error method is very productive.

(a) LM (0.1; 0.01; 10) (b) BRA (0.1; 0.001; 10)

Fig. 6 Results of testing the best LM and BRA models with associated hyperparameters
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(a) LM architecture (b) BRA architecture
Fig. 7 The architectures of the ANN models

(a) LM performance functions (b) BRA performance functions

(c) LM error distributions (d) BRA error distributions

Fig. 8 Performance functions a LM, b BRA and error distributions c LM, d BRA
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The values of different error indicators are summarized in Table  4. As mentioned 
before, in general, smaller error values and larger coefficients of determination indi-
cate good prediction performances. The two used ANN algorithms, BRA and LM, 
outperform the EC4 in all measured criteria. The BRA shows outstanding accuracy 

(a) BRA - Train (b) BRA - Test
Fig. 9 BRA regression lines for training and test data

(a) LM - All (b) BRA - All

(c) EC4 - All
Fig. 10 Regression lines for a LM, b BRA and c EC4

Table 3 Coefficients of determination of LM, BRA and EC4

Dataset R2

– LM BRA EC4

Training 0.984 0.987 –

Validation 0.980 – –

Test 0.976 0.985 –

All 0.982 0.986 0.953
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and is recommended for predicting the axial capacity of square CFST columns. By 
applying the BRA method, the error measures are about two to three times lower 
than those obtained by the EC4 design code.

Figure  8 depicts the regression lines for the two ANN models and the EC4. These 
results also support the conclusion that the Bayesian regularization method performs 
the best. The EC4 shows the most significant scatter in the vicinity of the regression line. 
For stub and slender columns separately, the BRA gave the highest coefficients of deter-
mination 0.986 and 0.981, respectively, while EC4 gave 0.965 and 0.901, for all data.

Figure 11a–d present the effects of geometric and material properties on predicting 
the axial capacity of square CFST columns. It can be concluded that the results of both 
ANN algorithms are closer to the experimentally measured values than the results of the 
EC4, which agrees well with the conclusions by Lee et al. [32] and Peng et al. [52]. The 
results obtained by the BRA algorithm have the smallest dissipation.

The BRA model gives a better generalization of the column’s ultimate compressive 
capacity within and outside the ranges prescribed by EC4. The output results of the 
LM algorithm are generally close to the experimentally obtained results with only a few 

Table 4 Performance scores of LM, BRA and EC4 on the entire dataset (All data)

Criteria Unit LM BRA EC4

MSE (·10−4kN2) 6.480 5.182 20.789

RMSE (·10−2 kN) 2.546 2.276 4.559

MAE (·10−2 kN) 1.601 1.593 2.531

MAPE – 2.797 2.596 6.259

(a) Steel yield stress (b) Concrete compressive strength

(c) Section slenderness (d) Relative slenderness
Fig. 11 Effects of geometric and material properties on prediction
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discrepancies. The EC4 results have the most significant disagreements with the experi-
mental results. These disagreements show a similar tendency for samples irrespective of 
the EC4 limitations (steel yield stress, concrete compressive strength, section slender-
ness and relative slenderness).

Finally, both presented ANN models can very accurately predict the axial column 
capacity. However, since the BRA algorithm has shown superior over the LM algorithm, 
only the empirical equations developed from the best BRA model are presented in the 
next section.

Empirical equations

This section presents the proposed empirical equations from the best ANN model based 
on the BRA algorithm for calculating the ultimate compressive strength of square CFST 
columns. These relations are given by Eq. (24) and can be used in practice:

A review of weighting coefficients and biases, either in their raw form or in the form of 
proposed equations, can be significant. It provides insights into the favoritism of certain 
network parameters or the uselessness of others, as well as their overall contribution to 
the final results.

Conclusions
In this study, two efficient ANN algorithms, LM and BRA, have been used to predict the 
axial capacity of square CFST columns exposed to pure compression. The benefits of 
ANN models are demonstrated through their ability to predict the behaviour of CFST 
columns without any initial assumptions and limitations. In order to develop the LM 
and BRA models with the simplest viable architecture but with very high accuracy, a 
trial-and-error method is applied, with the error measures of the performance function 
separately evaluated on the validation and test set. The BRA method has been shown to 
be superior to the LM method but also to other existing solutions, even for a network 
with a simpler architecture. The power of the proposed paradigm is evident also through 
the rest performance indicators that are far better than the same results delivered by 
other studies.

(24)

NBRA
u = NBRA

u,1−5 + NBRA
u,6−bias

NBRA
u,1−5 = −0.4671 ·H1

′

− 1.1038 ·H2

′

− 0.5282 ·H3

′

+ 1.2333 ·H4

′

+ 1.5672 ·H5

′

NBRA
u,6−bias = 1.2206 ·H6

′

+ 1.0629 ·H7

′

+ 0.5564 ·H8

′

− 1.0483

H1

′

= Tanh(−0.9403 · B+ 0.2286 · t + 0.4207 · L− 0.1215 · fy + 0.4746 · fc
′

− 1.1450)

H2

′

= Tanh(−1.1573 · B− 0.0472 · t + 0.9783 · L− 0.5106 · fy − 0.5421 · fc
′

+ 0.0192)

H3

′

= Tanh(−1.7479 · B− 0.4537 · t + 0.0949 · L− 0.3828 · fy + 0.6636 · fc
′

+ 0.1835)

H4

′

= Tanh(−1.5380 · B+ 0.1467 · t − 0.0696 · L− 0.1619 · fy + 0.7047 · fc
′

+ 0.8060)

H5

′

= Tanh(1.1602 · B+ 0.0850 · t + 0.2129 · L+ 0.0374 · fy + 0.4069 · fc
′

− 0.2206)

H6

′

= Tanh(−0.5765 · B− 1.0415 · t + 0.5566 · L− 0.4352 · fy − 0.6928 · fc
′

− 0.4365)

H7

′

= Tanh(−0.8107 · B+ 0.6465 · t + 1.0041 · L− 0.3866 · fy − 0.2070 · fc
′

+ 1.3571)

H
′

8 = Tanh(−0.0170 · B+ 1.8764 · t − 0.3339 · L+ 0.4202 · fy + 0.8104 · f
′

c + 0.5257)
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Since hyperparameters play a significant role in an ANN model, their values are 
determined with a special attention. Both presented ANN algorithms are validated by 
comparison with the experimental results and have shown output results closer to the 
experimentally measured values than those obtained by the EC4 design code. The new 
empirical equations for the calculation of the axial column strength of square CFST col-
umns are derived from the best BRA model.

As the analysis showed that BRA can handle noisy and ill-conditioned data, in future 
research on big data sets, the developed model can serve as a basis for the application 
of TL, and it’s implementation to improved and more sophisticated models for other 
but related problems including tensile stress, shear stress, torsional stress, etc. Derived 
equations have shown high overall accuracy, not only for those specimens that satisfy 
the EC4 limitations. Therefore, the suggested empirical equations and publicly available 
scripts on the GitHub reporsitory (https:// github. com/ filip 94grf/ Square- CFST- colum 
ns- ANN- predi ction- models- BRA- LM. git), with instruction manual for application of 
the developed models may be beneficial for engineers and professionals who deal with 
coupled structures in practice, but also for those who work with software solutions and 
their implementation. In order to further simplify the equations, the application of sym-
bolic regression is recommended for subsequent investigations, in order to obtain more 
interpretable output equations. It would also be very useful to control the differences in 
model performance in more detail using statistical tests such as t-test or Analysis of vari-
ance (ANOVA) test.

In general, ML models have been proven to provide higher productivity and reliabil-
ity compared to traditional and conservative FEM methods. Evidently, this trend will be 
even more visible in the future, as evidenced by various modern computer methods and 
platforms for speeding up the process up to 1000 times and even more, such as Data-
Flow by the Maxeler DataFlow Engine, or ASIC DataFlow by Google Tensor Process-
ing Unit [, 26, 38]. However, if algorithms need acceleration, while the technology is 
to stay the same, options are: (a) The existing computing paradigm could be enhanced 
[43]; (b) A new computing paradigm could be invented [14]; (c) The number of itera-
tions in iterative algorithms could be decreased using machine intelligence [46]; or (d) 
Each iteration of iterative algorithms could be shortened using suboptimal computing 
[42]. These are options in case big data starts togrow uncontrollably. In addition to soft-
ware solutions, progress in material science is also important, which is reflected in the 
accelerated development of modern materials in recent years. This can lead not only to 
the expansion of databases in various construction sectors but also to a reduction in the 
cost of manufacturing structural elements and even entire buildings. In synergy with the 
already mentioned advanced software platforms, in further research, it is necessary to 
find compromise solutions for newly opened interdisciplinary tasks but also to make 
them available to the wider community for use, which is a very challenging task for cur-
rent and future generations.
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