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Abstract 

This paper presents a transfer learning approach to the crop classification problem 
based on time series of images from the Sentinel-2 dataset labeled for two regions: 
Brittany (France) and Vojvodina (Serbia). During preprocessing, cloudy images are 
removed from the input data, the time series are interpolated over the time dimension, 
and additional remote sensing indices are calculated. We chose TransformerEncoder 
as the base model for knowledge transfer from source to target domain with French 
and Serbian data, respectively. Even more, the accuracy of the base model with the 
preprocessing step is improved by 2% when trained and evaluated on the French 
dataset. The transfer learning approach with fine-tuning of the pre-trained weights on 
the French dataset outperformed all other methods in terms of overall accuracy 0.94 
and mean class recall 0.907 on the Serbian dataset. Our partially fine-tuned model 
improved recall of crop types that were poorly classified by the base model. In the case 
of sugar beet, class recall is improved by 85.71%.

Keywords: Transfer learning, Remote sensing, Encoder–decoder architecture, Domain 
adaptation, Crop classification, Attention mechanism

Introduction
In recent decades, machine learning techniques (ML) have played an increasingly 
important role in solving problems in various areas of the geosciences. This is largely due 
to the rapid development of spatial information acquisition techniques (remote sens-
ing, global navigation satellite systems, etc.) and the integration of mathematical algo-
rithms into spatial mapping and analysis software [1]. One of the areas of geoscience 
that has successfully harnessed these innovations is the field of agriculture and crop pro-
duction, which has led to the development of new disciplines such as digital agriculture 
(smart agriculture) and precision agriculture [2, 3]. These new disciplines are making 
agriculture more productive, more competent, and more environmentally friendly [2]. 
Considering all that the new spatial data collection technologies entail, the volume of 
data collected, the temporal and spatial resolution of data collection, the diversity of data 
sources, data quality, and reliability, this type of data could be classified as Big Data [4].
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Motivation

However, regardless of the benefits that new spatial data collection technologies bring 
in terms of their volume and diversity, the major limitations for ML applications in solv-
ing geoscience problems are the dependence on extensive labeled data and the training 
costs associated with in situ measurements [5, 6]. One way to overcome this problem is 
to apply models developed for larger data sets to a specific task where we have a smaller 
number of instances. A central postulate in many ML and data mining algorithms is that 
the training and test data must be in the same feature space and with the same distribu-
tion. However, in many geoscience applications, this assumption does not hold [7].

This problem is related to the nature of geospatial data. In particular, their proper-
ties are strongly dependent on their location in geographic space. In both regression and 
classification tasks, unsatisfactory results are often obtained when the training data used 
to build the model is collected from one image or geographic region and then applied to 
another region [8]. Obtaining training data that match the feature space, data distribu-
tion, and predicted data distribution of the test data can be difficult and expensive [9]. 
Therefore, it is necessary to build a powerful learning model for a target domain trained 
using a related source domain. In this case, the transfer learning (TL) approach [7], in 
which a model developed for one learning task is adapted as a starting point for building 
a model for another learning task, provides some strategies to overcome this challenge.

Crop classification is a good example of a problem that, because of its scale and com-
plexity, is solved almost exclusively through the use of (geospatial) remote sensing data. 
Accurate crop type maps are a valuable and often essential source of information for 
various applications, such as food security, crop rotation, crop yield prediction, and dis-
aster preparedness [10, 11].

Previous work

TL techniques have been successfully used in many real-world applications, such as 
image processing, human activity classification, software fault classification, multilingual 
text classification, etc. [9]. Especially in recent years, TL has become an important and 
useful tool for geoscience applications. The fields of application are diverse: geological 
and geotechnical studies [12–14], forestry [15–17], soil science [18, 19], agronomy and 
agriculture [20–23].

The basic feature of all these studies is that freely available datasets, which can be 
referred to as Big Data, are used as covariates (predictors or features) in ML models. 
These data are mainly remote sensing data collected from satellite platforms as multi-
spectral optical [24–26] or radar images [23] and even RGB drone images [22]. In some 
studies, the data sources are also combined with covariates derived from the digital ter-
rain models (slope length factors, aspects, topographic wetness indices) [18].

Although most of these applications in agriculture can be categorized as classification 
tasks, the TL approach has also found its application in regression tasks. For example, 
Bursać et  al. [27] proposed an instance-based TL method for estimating soil organic 
carbon (SOC) on croplands in different European countries by adopting SOC-related 
knowledge from the global source domain (LUCAS 2015 survey [28]). When it comes 
to the problem of crop classification, there is a long history of research on the use of 
remote sensing for this task. Early classifiers were developed based on single images and 
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simpler mathematical models [29]. The emergence of satellite missions with finer spatial, 
temporal, and radiometric resolution (especially open data missions such as Landsat and 
Sentinel-2), classical ML methods began to be applied to crop classification based on 
image time series [30, 31]. The current research focus is shifting to state-of-the-art deep 
learning algorithms [32–34], which achieve high accuracy in solving the of crop classifi-
cation problem.

These algorithms require large amounts of training data to achieve high performance. 
Some countries make their farmers’ data available through public portals that contain 
information on field boundaries and crops. However, in most areas, crop type data are 
not available or are of limited quality and spatial and temporal coverage. Here, we focus 
on TL to improve crop classification performance in the target domain with less data.

Russwurm et al. [35] compared different crop classification models and found that the 
TransformerEncoder model had the highest overall accuracy in most cases. A self-atten-
tion model for classification of raw satellite time series was presented in study [36]. The 
model architecture was developed by Vaswani et al. [37], who proposed a Transformer 
model based on an encoder–decoder architecture with an attention layer that eliminates 
the need for recurrence in sequence-to-sequence modeling. This approach is widely 
used in various areas of sequence-to-sequence modeling: machine translation, natural 
language processing [38], etc. Since the crop classification problem based on satellite 
image time series is a sequence-to-label problem, the authors in study [35] discarded the 
decoder part of the architecture from study [37] and added a fully connected layer fol-
lowed by Softmax as an adaptation to the classification model.

We refer to state-of-the-art TL models for crop classification and related tasks based 
on satellite image time series. Hao et al. [25] used a transfer learning approach with a 
random forest model on variable-length NDVI time series data with high confidence 
pixels sampled at 30-m and 15-day resolution from harmonized Landat-8 and Sentinel-2 
data in the training dataset. The test datasets were selected for three different regions in 
China. Recently, Nowakovski et al. [22] used a transfer learning approach for crop clas-
sification based on high-resolution drone images. They applied the fine-tuning strategy 
of VGG16 and GoogLeNet CNN models to two datasets (Malawi and Mozambique) and 
reported high accuracy scores for the TL approach. A very interesting application of an 
unsupervised adaptive domain adversarial neural network for maize yield prediction was 
proposed by Ma et al. [24]. The authors used an adversarial network to reduce domain 
shift and learn domain invariant features. Another approach of unsupervised multi-
source domain adaptation for crop mapping is proposed by Wang et al. [39], who based 
their model for classifying corn and soybean on the Multiple Feature Spaces Adaptation 
Network (MFSAN) architecture in combination with multiple layers of the (pre-trained) 
ResNet-50 model. The model was trained on the USA Cropland Data Layer (CDL) for 
2018 and transferred to three provinces in Northeast China. Accuracy was assessed by 
comparing its outputs with previously published classification maps for the same region.

Contribution

Our contribution to crop classification based on satellite image time series consists of 
the following:
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• a base model with modified self-attention architecture and preprocessing step with 
the improved overall accuracy on the BreizhCrops dataset [35],

• transfer learning approaches for the base model with improved overall accuracy 
compared to the base model for the Vojvodina dataset,

• publicly available code contributed to the project in study [35].

Paper organization

In the “Materials and methods" section, we present the data sets, the preprocessing strat-
egy, the formulation of the transfer learning problem, and a description of the model 
architecture. The “Results” section provides an overview of the evaluation and an inter-
pretation of the results in terms of evaluation metrics. Finally, the “Discussion" section 
summarizes the main results of the paper, while the “Conclusion” section suggests some 
possible directions for future work.

Materials and methods
This section is organized as follows. “Data” and “Preprocessing” sections describe the 
data set, covariates, target classes, interpolation and noise removal techniques etc. 
“Transfer learning approaches” section gives a self-contained presentation of the trans-
fer learning and transfer approaches that we applied to the adopted self-attention model. 
Since “Scaled dot-product attention layer” and “Multi-head attention layer” sections 
are the crucial parts of the basic model used in the transfer learning process, they are 
described in separate subsections. We also dedicate a subsection to the architecture of 
the “TransformerEncoder model”. The last “Classification performance metrics” Subsec-
tion briefly describes the metrics used to evaluate model performance.

Data

We trained a machine learning model to identify which crop was grown in a given field 
using remote sensing data. Input features for the classifier were created from time series 
of Sentinel-2 images. Sentinel-2 [40] is a satellite mission launched by ESA as part of the 
Copernicus program. It consists of 2 twin satellites in the same orbit, but phased 180◦ , 
with a repetition frequency of 5 days or less. Each satellite carries a multispectral instru-
ment (MSI) with 13 spectral channels (bands) in the visible/near-infrared (VNIR) and 
shortwave infrared (SWIR) part of the electromagnetic spectrum. MSI acquires images 
at 3 spatial resolutions: 10 m, 20 m, and 60 m. The radiometric and spectral resolutions 
of each band are listed in Table 1.

To train the base model (BMP), we used crop type data from the work of Russ-
wurm et al. [35]. French farmers submitted data on plot geometries and crops grown 
as part of the subsidy application process. These data were anonymized and pub-
lished by the RPG (Registre Parcellaire Graphique) with an open licensing policy. 
The authors used 2017 field data from the Brittany region—a total of 608,489 par-
cels divided into 9 crop categories: barley, wheat, rapeseed, maize, sunflower, 
orchards, nuts, permanent meadows, and temporary meadows. For each plot 
(parcel), the authors created a time series of Sentinel 2 images for 2017, which were 
then processed using the MAJA [41, 42] processing chain. MAJA is a cloud detection 
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and atmospheric correction tool for optical remote sensing imagery (from various 
satellite missions) specifically designed for use with multitemporal methods. The 
processed images have 10 spectral bands (the 60 m resolution bands were discarded 
during processing). For each imaging date, the reflections in each band were aver-
aged at the field level. This resulted in 10 time series for each field, which were used 
as input for classification.

Plot labels for Serbia were collected during a field campaign in early summer 2022 
at various locations in Vojvodina province. Most of the territory of Vojvodina con-
sists of agricultural land (94.8%), of which 77.8% belongs to arable land and 6.8% to 
forest. Vojvodina province is an important agricultural area in Serbia for the culti-
vation of basic grain crops [43] (wheat, maize, sugar beet, sunflower, clover, etc.). 
Crop labels and parcel boundaries were recorded for 4409 fields. Table 2 contains a 
comparison of the two in situ datasets. The map with sampling locations and crop 
distribution between fields is shown in Fig. 1.

Table 1 Sentinel-2 bands and their spatial and radiometric resolutions

Band Resolution (m) Central wavelength 
(nm)

Bandwidth (nm) Description

B1 60 443 21 Ultra blue (coastal and aerosol)

B2 10 490 66 Blue

B3 10 560 36 Green

B4 10 665 31 Red

B5 20 705 15 Visible and near infrared (VNIR)

B6 20 740 15 Visible and near infrared (VNIR)

B7 20 783 20 Visible and near infrared (VNIR)

B8 10 842 106 Visible and near infrared (VNIR)

B8a 20 865 21 Visible and near infrared (VNIR)

B9 60 940 20 Short wave infrared (SWIR)

B10 60 1375 31 Short wave infrared (SWIR)

B11 20 1610 91 Short wave infrared (SWIR)

B12 20 2190 175 Short wave infrared (SWIR)

Table 2 Crop types and number of labels in two datasets

Crop France Serbia

Barley 36922 187

Wheat 89617 763

Rapeseed 14746 63

Maize 153995 2108

Soya / 234

Sugar beet / 14

Sunflower 19 1033

Orchards 3054 /

Nuts 49 /

Permanent meadows 127835 /

Temporary meadows 182252 /
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Preprocessing

The length of the time series varies depending on the location of the parcel. Since most 
machine learning algorithms require fixed-length input data, the data had to be har-
monized. Russwurm et al. [35] used sampling with replacement to harmonize the time 
series, with no filtering for cloudy data. We took a slightly different approach to prepar-
ing the data. First, the time series were filtered to remove cloudy dates, since reflectance 
values obtained from these images are blunders and do not contain useful information 
(they may even have a negative impact on model performance). After filtering, addi-
tional features were added to the data (besides the 10 Sentinel-2 spectral bands)—vari-
ous spectral indices calculated from the original bands.

Finally, the time series of each parcel were harmonized with respect to the fixed time 
grid with a time step of 7 days starting on February 1 and ending on November 1. We 
chose these dates because they cover the growing and harvesting periods for most crop 
types. The linear interpolation method is used to impute missing data. Forward and 
backward padding is used in cases where data were missing at the beginning or end of 
the time grid. The preprocessing steps are shown in Fig. 2. The abrupt drops in NDVI 
values are due to clouds rather than to phonological development of the crop.

To justify the transfer learning approach, we confirmed the difference between the 
probability distributions of the inputs in the source and target domains using the Kol-
mogorov-Smirnov test. Figure 3 shows the p-value of the test and the time series of the 
reflectance values. For each of the basic input variables (Sentinel-2 reflectance bands), all 
training samples in each country were averaged and plotted. Both the p-values and the 
plots show that the distributions of the input data from the two data sets are different. 
Band 11 is the most similar between the two datasets, but the similarity is still very low.

Transfer learning approaches

Supervised learning is one of the most commonly used types of machine learning 
that requires a labeled dataset in both the learning and testing phases. Even when 
labels are available, the main assumption that both the feature space and the target 

Fig. 1 Locations of crop labels in Vojvodina
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are the same and come from the same probability distribution usually fails. In many 
real-world applications such as machine translation, natural language processing, 
medical imaging, and remote sensing, the availability of labeled datasets is limited. 
This phenomenon has motivated the development of a very popular area of machine 
learning called transfer learning. We distinguish two main concepts: domain 
and task. In [7] we have a concise overview of transfer learning with a commonly 

Fig. 2 Preprocessing workflow: (1) input time series (2) cloudy dates removed (middle) (3) final time series 
(cropped and resampled)

Fig. 3 Averaged reflectances of each band for two training datasets, with p values of Kolmogorov–Smirnov 
test



Page 8 of 19Antonijević et al. Journal of Big Data           (2023) 10:54 

accepted classification. Domain consists of the feature space X  and the probabil-
ity distribution P(X) , where X is a learning sample consisting of n instances, i.e., 
X = {x1, . . . , xn} , n ∈ N , xi ∈ R

d , i ∈ {1, . . . , n} . On the other hand, task consists of a 
set of labels Y and an objective loss function f. In our use case, the domain consists 
of a feature space composed of d different spectral bands and vegetation indices [44] 
over satellite image time series datasets. The set of labels Y for the crop classifica-
tion problem consists of different crop classes, while the objective is a cross-entropy 
loss function. Transfer learning is generally about transferring knowledge between 
different domains and tasks. For simplicity, we consider two domains: source domain 
(XS ,P(XS)) and target domain (XT ,P(XT )) . The sets of labels are denoted by YS and 
YT  in the source and target domains, respectively. In this paper, we focus on a par-
ticular type of transductive transfer learning, which we call supervised domain 
adaptation, where XS  = XT  or P(XS)  = P(XT ) , while the task in the source and tar-
get domains is the same (crop classification), although the sets of labels YS and YT 
are different [45–47].

As XS , we use BreizhCrops, a publicly available, tagged, large-scale satellite image 
time series dataset extracted from Sentinel-2 for mapping harvests in the region of 
Brittany, France [35]. The target dataset XT  extracted from the time series Sentinel-2 
for the Vojvodina region is also labeled. The set of labels YS in the source domain 
consists of 9 crop categories: barley, wheat, rapeseed, maize, sunflower, orchards, 
nuts, permanent grassland, and temporary grassland. The set of designations in the 
target domain YT  consists of 7 crop categories: barley, wheat, rapeseed, maize, soya, 
sugarbeet, and sunflower. Our main goal in this work is to use the larger, publicly 
available dataset BreizhCrops to improve crop classification in a smaller dataset for 
Vojvodina, where the number of labeled instances is limited.

In our use case, the source and target domains have similar labels, while the prob-
ability distributions of the input data are different. Supervised domain matching is 
typically used when the target domain dataset is much smaller and more expensive 
to label, while the source domain dataset is larger and cheaper (i.e., publicly avail-
able, etc.).

We start with the model proposed by Russwurm et  al. [35], based on the Trans-
formerEncoder architecture (explained in detail in the next section), and refer to this 
model as the base model (BM). To improve the performance of the model, we per-
form several preprocessing steps on the input data. We refer to this model improved 
by preprocessing as BMP. In the first preprocessing step, cloudy timestamps are 
removed from the input time series, followed by interpolation across the time 
axis so that all instances contain the same number of observed signals at the same 
timestamps. Raw satellite spectral bands are used to compute task-specific vegeta-
tion indices, which are added as additional input features [44]. Unifying the time 
axis across the training samples, allowed us to remove the positional encoding layer 
from the originally proposed architecture in [36, 37] without compromising model 
accuracy. We compare the performance of the original model (BM) with our model 
(BMP).

In this paper, we also propose three transfer learning approaches to solve the super-
vised domain adaptation problem mentioned above, all based on the BMP model.
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Feature extraction approach (FE)

In this approach, all parameters of the model are set to the values of the correspond-
ing parameters of the pre-trained BMP. In addition, all parameters are frozen except 
for the last linear output layer. In this way, we extract the learned features from the 
pre-trained model (without optimizing these parameters) and train only the linear 
regression parameters in the last output layer.

Partial fine‑tuning (PFT)

While in the feature extraction approach we freeze all model parameters (except in 
the output layer), in fine-tuning only the parameters in the input layer are frozen 
while the other parameters are trained. Typically, the parameters in the input layer 
are trained to extract some general features, while the layers closer to the output 
extract task-specific features. We call this approach partial fine-tuning because we do 
not train all model parameters, but only the parameters that are expected to extract 
task-specific features.

Full fine‑tuning (FFT)

In the third method, we unfreeze all layers and re-train all model parameters. This 
means that both the general feature extraction parameters and the task-specific fea-
ture parameters are re-trained.

Since the TransformerEncoder architecture is the basic building block of our trans-
fer learning approaches, we give a self-contained description of this architecture at 
the technical level. For more details, the interested reader can refer to the seminal 
work of Vaswani et  al. [37] and the application of this technique to the problem of 
crop classification in the paper of Russwurm et al. [36]. In BMP, our contribution to 
the model architecture is the incorporation of the preprocessing steps described ear-
lier. This includes removing noise (e.g., clouds), enriching the input dataset with addi-
tional features, and interpolating missing values on the time axis. Due to the applied 
interpolation, our time series contain measurements at the same time points, elimi-
nating the need for positional encoding and slightly reducing the complexity of the 
model. On the other hand, the proposed transfer learning approaches further improve 

Source Domain

Target Domain

TransformerEncoder

Fe
at

ur
e 

E
xt

ra
ct

io
n 

(F
E

)

P
ar

tia
l f

in
e-

tu
ni

ng
 (P

FT
)

Fu
ll 

fin
e-

tu
ni

ng
 (F

FT
)

Noise Removal

Interpolation

Fig. 4 Domain adaptation approach



Page 10 of 19Antonijević et al. Journal of Big Data           (2023) 10:54 

the performance of the BMP on the Vojvodina data (Fig. 4). First, we give a mathe-
matical description of the scaled attention layer, which is one of the attention mecha-
nisms where the input vector is transformed by a linear operator represented by the 
attention matrix. Second, we give an overview of the multi-head attention layer. At 
the end, we summarize the overall architecture of TransformerEncoder.

Scaled dot‑product attention layer

We use this type of attention mechanism as a cornerstone for other attention-based (sub)
layers. The attention layer maps a query and a set of key-value pairs to an output [37]. The 
input of the layer is defined by a set of vectors ht ∈ R

dh , t ∈ {1, . . . ,T } , where T is the 
length of the time series of vectors of hidden dimension dh . The hidden dimension dh is 
given as the hyperparameter of the model. Since we have T input vectors (one for each 
timestamp), the input can be expressed as a matrix H ∈ R

T×dh whose rows are vectors hTt  , 
t ∈ {1, . . . ,T } . The output vector h′t ∈ R

dh , t ∈ {1, . . . ,T } are given as the weighted sum 
of the input vectors ht ∈ R

dh , t ∈ {1, . . . ,T } considering the weights given in the vector 
at = [at1 . . . atT ]

T ∈ R
T
+ as follows:

where 
∑T

j=1 atj = 1 , for t ∈ {1, . . . ,T } . From (1) it follows that h′t = HTat or, equiva-

lently, h′Tt = aTt H . If we represent T output vectors h′t ∈ R
dh by the matrix H′ ∈ R

T×dh , 
(1) can be expressed by the following matrix equation:

On the other hand, the attention matrix A ∈ R
T×T is defined by query and key matri-

ces, i.e., Q ∈ R
dh×dk and K ∈ R

dh×dk , dk ∈ N ( dk is a hyperparameter of the model), as 
follows:

where the matrix product QKT is divided by 
√

dh to reduce scalar products, which tend 
to grow rapidly and bring gradients to extremely small values, making training difficult. 
The function Softmax is taken column-wise to normalize the attention weights.

If we replace A in (2) with (3), we get:

The equation (1) gives some insight into the attention mechanism. We see that h′t is 
expressed as a linear combination of hj with coefficients atj ∈ (0, 1) , j ∈ {1, . . . ,T } . Thus, 
the coefficient atj can be interpreted as the “fraction of attention” that the input vector 
hj ∈ R

dh contributes to the output vector h′t ∈ R
dh.

(1)h′t =

T
∑

j=1

atjhj ,

(2)H′ = ATH.

(3)A = softmax

(

QKT

√

dh

)

,

(4)H′ =

(

softmax

(

QKT

√

dh

))T

H.
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Multi‑head attention layer

This is the crucial part of the attention mechanism in the architecture of Transformer-
Encoder. To avoid sequential execution, this layer performs in parallel the L transforma-
tions defined in (4) on the input H ∈ R

T×dh . Each computation has its own version of 
the scaled dot product attention, where the query and key matrices are computed as lin-
ear projections of the input matrix H through the matrices Qi ∈ R

dh×dk and Ki ∈ R
dh×dk , 

for i ∈ {1, . . . , L} . The input matrix H is also projected by the matrix Vi ∈ R
dh×dv , for 

i ∈ {1, . . . , L} , where dv ∈ N is also a hyperparameter of the model. After computing the 
L operations in (3), the resulting matrices are concatenated and projected by the matrix 
W ∈ R

Ldv×dh (Fig. 5).
This calculation can be expressed as follows:

where Qi ∈ R
dh×dk , Ki ∈ R

dh×dk , Vi ∈ R
dh×dv , for i ∈ {1, . . . , L} and W ∈ R

Ldv×dh are 
trainable matrices and H′ ∈ R

T×dh is the output matrix.

TransformerEncoder model

The model used in transfer learning follows an architecture described in [35, 36] with 
some differences. Since the input data is interpolated with respect to the time axis so 
that each data instance contains a fixed number of timestamps during the season, posi-
tional encoding layer is omitted here. The positional encoding layer provides informa-
tion about the absolute and/or relative position of the data in the sequence, since the 

H′ =

(

Conc
L
i=1 softmax

(

HQiK
T
i H

T

√

dh

)

HVi

)

W,

Fig. 5 Architecture of multi-head attention layer
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architecture of TransformerEncoder does not include convolutional or recurrent layers 
[37]. However, the timeline in the preprocessed dataset contains input features at prede-
fined times, so there is no need to explicitly encode the position. Although input embed-
ding is typically used in natural language processing and machine translation to embed 
discrete variables in a continuous space, we use a fully connected layer that embeds the 
input data X ∈ R

T×di , where di is the input dimension, in the space of dimension dh . 
After the fully connected layer, we pass the input sequence to the TransformerEncod-
erLayer, which consists of Multi-head attention layer and the fully connected layer. The 
multi-head attention layer is followed by a normalization layer that takes the original 
input and the input obtained after the multi-head attention layer, adds the two together, 
and normalizes the result. The normalized output is passed to the fully connected layer, 
which contains a hidden layer of dimension df  . After the fully connected layer, the same 
addition and normalization steps are performed as after the multi-head attention prob-
lem. This layer is repeated N times.

After the TransformerEncoderLayer, we apply the maximum pooling layer to reduce 
the time axis. The fully connected layer is used to reduce the output of dimension dh to 
the number of classes. In the end, the function Softmax maps the outputs to probabili-
ties for each class (Fig. 6).

Classification performance metrics

We used the following metrics to evaluate the performance of the models: overall accu-
racy (OA), balanced accuracy (BA) or class-mean recall, weighted F-score (WF), macro 
(class-mean) F-score (MF) and Cohen’s kappa (κ).

Overall accuracy is a basic performance measure that is not sensitive to low minority 
class performance in unbalanced data sets such as ours. More informative is balanced 
accuracy, which gives equal importance to all classes. For the same reasons, we included 
the macro F-score in addition to the weighted F-score, while using Cohen’s kappa as the 
standard measure for classifier comparison.

Results
We implemented our models in Python 3.10.8 and Pytorch 1.13.1 using the pub-
licly available code repository referenced in [35], while our code and list of addi-
tional computed input features are publicly available in the Github repository.1 The 
strategy for loading the data into memory was changed when we preprocessed our 
data by unifying the number of timestamps. Since we pre-trained the model on 
the BreizhCrops dataset, we used the same architectural hyperparameters refer-
enced in [35]. Although we made additional adjustments to our hyperparameters, 
there are no significant differences from the hyperparameters chosen in [35] for the 
TransformerEncoder model. The dimension of the hidden layer dh is 64, while the 
dimension of the inner fully connected layer df  is set to 128. The evaluation met-
rics for the test data are based on a stratified 4-fold cross-validation. The number 
of TransformerEncoder layers N is 5, while the number L of multi-head attention 

1 https:// github. com/ sjelic/ vojvo dina_ crop_ class ifica tion. git.

https://github.com/sjelic/vojvodina_crop_classification.git
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Fig. 6 TransformerEncoder model architecture

Table 3 Classification metrics for BM and BMP models trained on BreizhCrops dataset

Highest performing values are highlighted in bold

Model Overall Accuracy Balanced accuracy Macro f‑score Kappa

BM 0.81 0.59 0.81 0.76

BMP 0.83 0.61 0.83 0.78
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layers computed in parallel is 2. The training process is performed using the stochas-
tic gradient descent minibatch algorithm on a workstation with Intel(R) Core(TM) 
i7-10700K CPU @ 3.80GHz, 2 x NVIDIA GeForce RTX 3070 and 130 GB RAM.

First, we report on the comparison of the  BM  and BMP models on the Breizh-
Crops dataset (Table 3).

Table  4 shows the performance of the transferred models and the BMP model 
trained on Vojvodina data. All models were evaluated using the same train-test 
splits from the 4-fold stratified cross-validation, with performance metrics calcu-
lated using the aggregated results from the 4 folds. The PFT model showed the high-
est performance among all tested models. The performances of the above models 
per class are shown in Table 5. The confusion matrices for all models tested on the 
Vojvodina dataset are shown in Fig. 7. They provide an overview of the performance 
of the classifiers for each of the crop classes.

Figure  8 gives a more insightful representation of the results of the confusion 
matrix by comparing the classifiers BMP and PFT in terms of the errors they make 
on each crop class. In addition to the percentage labels shown on the y axis, the bars 
of the graph show the total number of correctly and incorrectly classified samples 
(except for small errors, i.e. < 3% samples).

To statistically test whether the PFT model performs significantly better than the 
BMP model on the Vojvodina dataset, we used McNemar’s [48] test. It is used to 
compare the performance of two classifiers based on a 2 by 2 contingency table of 
the predictions of the two classifiers. The results of the overall and class comparison 
are shown in Table 6. At a significance level of α = 0.05 , the values of the test sta-
tistic between − 1.96 and 1.96 show that there is no significant difference between 
the performances of the classifiers, while values < − 1.96 and > 1.96 show that one 

Table 4 Classification metrics for different models tested on Vojvodina dataset

Highest performing values are highlighted in bold

Model Overall accuracy Class‑mean recall Macro f‑score Weighted f‑score Kappa

BMP 0.924 0.767 0.764 0.923 0.889

FE 0.936 0.896 0.896 0.936 0.906

PFT 0.940 0.907 0.906 0.939 0.911
FFT 0.939 0.896 0.905 0.939 0.911

Table 5 Models’ F1 score for each crop class, calculated on Vojvodina test dataset

Highest performing values are highlighted in bold

Barley Maize Rapeseed Soya Sugar beet Sunflower Wheat

BMP 0.856 0.946 0.857 0.838 0.0 0.913 0.936

FE 0.842 0.955 0.915 0.879 0.815 0.928 0.939

PFT 0.868 0.958 0.924 0.856 0.857 0.934 0.943

FFT 0.873 0.956 0.93 0.853 0.846 0.932 0.947



Page 15 of 19Antonijević et al. Journal of Big Data           (2023) 10:54  

(a) Base model with preprocessing (BMP) (b) Feature extraction approach (FE)

(c) Partial fine-tuning approach (PFT) (d) Full fine-tuning approach (FFT)
Fig. 7 Confusion matrices

Fig. 8 Comparison of class errors and its distribution, for BMP and PFT models
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classifier performed significantly better ( < − 1.96 directly trained model (BMP) per-
formed better, > 1.96 transferred model (PFT) performed better).

Discussion
Although supervised deep learning models are data hungry and perform well on raw 
data by extracting and learning task-specific features, specific preprocessing steps and 
enrichment with provably important features are very important to improve the accu-
racy of the underlying deep learning model. It is not easy to systematically compare crop 
classification studies because of the variations in the quality of the training and testing 
samples that determine the performance of the classifier. Therefore, it is not possible to 
explicitly compare our results with other crop classification studies. However, we can 
make a comparison with the results published in [35], listed in Table 3. The overall accu-
racy of the model from [35] improves from 0.81 to 0.83, i.e., by 2.5%, while the balanced 
accuracy improves from 0.59 to 0.61, as can be seen in Table 3. This is undoubtedly due 
to the application of preprocessing steps that remove cloudy values from the time series, 
but also due to the included vegetation indices—in contrast to the work of Russwurm 
et al. [35].

On the other hand, the use of transfer learning proved to be very important for case 
studies where less in situ data or even lower quality data are available. Figure 7 shows 
that all models perform worst in predicting sugar beet, soya and barley. However, it is 
interesting to note that PFT has the highest improvement compared to BMP (Table 4). 
The results of the McNemar test from Table 6 confirm that the classifier PFT performs 
significantly better than BMP in classifying 4 (out of 7) classes. For example, in Fig. 7a, c 
we see that the recall for sugar beet improved from 0 to 85%.

Even more interesting is the fact that sugar beet was not present in the BreizhCrops 
dataset. This proves that the adapted model succeeded in learning domain-invariant 
features in the first layers through a partial fine-tuning strategy, which contributed sig-
nificantly to the compilation of features in the last output layer (before Softmax). To the 
best of our knowledge, this is the first crop classification study based on satellite remote 
sensing that uses transfer learning based on labeled in-situ samples in both the source 
and target domains. All previous studies from this field [25, 39, 49] consider the mod-
els trained on existing crop classification maps such as CDL [50]. Most of these studies 
evaluated the performance of the transferred models by comparing the output to previ-
ously published classification maps from the target domain. In addition, most of these 
studies used images without atmospheric corrections (Sentinel-2 LIC) and focused on 
fewer crop types, often developed to distinguish between two classes, such as corn and 
soybean [39] or corn and rice [49].

Table 6 McNemar test statistic comparing PFT and BMP on Vojvodina dataset, overall and for 
specific crops

Test statistic values that indicate a difference between the performance of the classifiers are highlighted in bold

Overall Barley Maize Rapeseed Soya Sugar beet Sunflower Wheat

McNemar 4.371 0 1.988 1.633 0.784 3.464 2.380 2.058
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Conclusion
We confirmed that the knowledge transfer from the source to the target domain was 
successful from both accuracy and computational resource perspectives. The simplicity 
and efficiency of the obtained model are promising for extending this research in two 
directions. More specifically, we ask whether the problem of optimal sampling design 
can be formulated and solved in such a way that the optimal size of the labeled data set 
in the target domain can be determined while maintaining the overall accuracy of the 
chosen model. The positive answer to this question would be of great impact on other 
fields of geoscience, including both classification and regression problems. On the other 
hand, the applicability of the model to distant regions that differ significantly in terms of 
climate and vegetation would also be an interesting research topic.
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