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Abstract 

In the pre-big data era, many traditional databases supported spatial queries via spatial 
indexes. However, modern applications are seeing a rapid increase of the volume and 
ingestion rate of spatial data. Log-structured Merge (LSM) tree is used by many big 
data systems as their storage structure in order to support write-intensive large-volume 
workloads, which are usually only optimized for single-dimensional data. Research has 
studied how spatial indexes can be supported on LSM systems, but focused mainly on 
the local index organization, that is, how data is organized inside a single LSM com-
ponent. This paper studies various aspects of LSM spatial indexing, including spatial 
merge policies, which determine when and how spatial components are merged. 
Three stack-based and one leveled merge policies have been studied, which have 
been implemented on a common big data system Apache AsterixDB. The write and 
read performance on various workloads is evaluated, and our findings and recom-
mendations are discussed. A key finding is that Leveled policies underperform other 
stack-based merge policies for most types of spatial workloads.
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Introduction
Due to the increasing need of (mobile) applications such as navigation systems, location-
based review systems, and geo-tagged social media, the volume and ingestion rate of 
spatial data are increasing rapidly. Database systems have been moving to log-structured 
merge (LSM) tree [1] storage architectures to facilitate high write throughput. Such sys-
tems include Apache AsterixDB [2], Cassandra [3], and HBase [4], Google Bigtable [5], 
and LevelDB [6], Facebook RocksDB [7], and ScyllaDB [8]. LSM systems provide supe-
rior write performance than many traditional relational databases, MySQL with InnoDB 
for example [7]. However, most of these systems do not have native support of spatial 
queries, which often rely on spatial indexes.

In most applications, a spatial index cannot live alone and must be created as a sec-
ondary index that is dependent on a primary index to query any non-spatial attrib-
utes. Most LSM systems do not have the direct support of the general secondary 
index, as a result, they are unable to support spatial index. In AsterixDB, LSM-fica-
tion is a generic framework to convert a class of indexes to LSM secondary indexes 
[9]. Using this framework, two options to index spatial data are available. The first 
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option is a B+-tree-based solution that indexes single-dimensional data projected 
from multidimensional spatial data through linearization. Note that this option also 
applies to systems (e.g, LevelDB and RocksDB) that use Sorted-String-Table (SSTable) 
and binary search methods to support range queries. The second option is a native 
spatial index, for example, R-tree, as a local index. To the best of our knowledge, 
AsterixDB is the only LSM storage engine with native support of LSM R-tree index; 
all other LSM-based systems only support B+-tree index at most. Based on the results 
from [10, 11], the R-tree-based solution is the general preferable option for LSM spa-
tial index in most scenarios, hence in this paper, LSM R-tree indexes are focused only.

In addition to the organization of the local index discussed above, which deter-
mines how data is organized in a single LSM component (file), another key design 
choice for spatial LSM indexes is the merge policy, which determines when and how 
components are merged. The two main merge paradigms considered are stack-based 
and leveled. In stack-based policies, components are organized as a stack, where the 
most recent components are higher in the stack. Leveled policies use (almost) fixed-
size components, with newer components on higher levels; lower levels have more 
components per level. Stack-based LSM trees usually have better write performance 
and good read performance. Leveled LSM tree is the most popular paradigm in the 
industry with very good read performance, but higher write amplification in general 
[12].

The typical query for spatial indexing is a region query, where the region is typically 
expressed as a Minimum Bounding Rectangle (MBR). For each component, its MBR is 
maintained, so it is easy to filter components based on the query MBR. This filtering 
is generally not effective in stack-based policies, as most components have very large 
MBRs, comparable to the whole space in many applications. On the other hand, this fil-
tering can be more effective for Leveled policy, because the components on the same 
level are mostly disjoint in key ranges. In the case of R-tree indexing, this means that the 
components at the same level have non-overlapping MBRs, or possibly limited overall, 
depending on the partitioning algorithm employed.

To achieve minimal spatial overlap in Leveled policies, spatial partitioning algorithms, 
specifically Sort-Tile-Recursive (STR) [13] and R*-Grove [14], are employed. There are 
several subtle implementation decisions that significantly affect the merge performance. 
It is found that a critical one is the choice of comparator, which compares two spatial 
records, because different comparator performs differently in high and low selectiv-
ity queries; certain combinations of comparator and partitioning algorithm in Leveled 
policy can effectively create disk components of disjoint MBRs, which significantly 
improves filtering efficiency.

A key contribution of the paper is that several LSM spatial indexing algorithms are 
implemented on a common database system, AsterixDB, and compared them for write 
and read performance using two spatial workloads. A key conclusion is that stack-based 
policies generally perform better with low write and read cost. Although Leveled policy 
had very high write amplification, certain configurations could achieve comparable write 
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throughput to stack-based policies. Its read performance was also very competitive in 
low selectivity queries.

In summary, this work makes the following contributions: 

1. How an LSM architecture can be extended to support secondary spatial indexes is 
studied ("Spatial LSM index based on R-tree"). Several design decisions and architec-
tures are considered.

2. A number of optimized partitioning algorithms for Leveled LSM R-tree index are 
examined, which minimize the overlap among MBRs while also minimizing the I/O 
cost ("Partitioning in leveled LSM R-tree").

3. All compared LSM spatial indexing policies on AsterixDB are implemented, and the 
source code is publicly available at [15].

4. All LSM spatial indexing algorithms using a real-world dataset and a synthetic data-
set are experimentally compared ("Experimental evaluation").

5. Our observations and recommendations are discussed, which challenge the current 
popularity of Leveled policies ("Discussion").

Background
"LSM tree" discusses the fundamentals of an LSM tree and how data is maintained. 
"LSM architectures and merge policies" discusses two LSM architectures, stack-based 
and leveled, and several state-of-the-art merge policies compared and evaluated for each 
architecture.

LSM tree

An LSM tree [1] generally consists of two layers, one layer in memory which contains 
one active memory component (a.k.a MemTable), and one layer on disk where data is 
organized into one or multiple sorted runs [16]. Every sorted run contains records 
sequentially ordered by the indexed key. Depending on the LSM tree architecture (dis-
cussed in  "LSM architectures and merge policies"), a sorted run can have one or mul-
tiple immutable disk components. Components are typically implemented using a tree 
structure, such as B+-tree. A tree structure usually partitions records into blocks or 
pages as nodes (some may group multiple blocks or pages into frames as nodes). This 
partition is usually referred to as local partition within a physical file. On the other hand, 
a sorted run may be a virtual file that is partitioned into multiple physical files, which 
is referred to as global partition. Local partition is often bound with the data structure 
used in physical files, where global partition is associated with the LSM tree architec-
ture. Therefore, in this paper, only the global partition is primarily focused on.

All records inserted or updated are batched into the memory component. When the 
memory component reaches its capacity, it is scheduled to be flushed to disk, creating a 
disk component, as shown in Fig. 1. A flush operation sorts the records in the memory 
component PM , then bulk-writes the sorted records to a disk component P2 . A compara-
tor, which compares two keys, is used to sort records in the memory component. A key 
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is inserted to a separate in-memory delete table PD when a record is deleted (e.g. 2). PD 
is flushed together with the PM , adding anti-matter (a.k.a tomestone) records (e.g. -(2)) 
to P2.

Reads become slower as the number of disk components increases. To improve the 
read performance, disk components are merged based on a merge policy (a.k.a. com-
paction strategy). A merge operation scans all records from all merging components 
and creates a sorted stream using a priority queue and the same comparator, then bulk-
writes the unique records into new disk component(s), as illustrated in Fig. 2. Obsolete 
(old version) records are discarded during a merge, leaving only the newest version. For 
example, (3, X, 18) from P1 gets removed because P2 has a newer version (3, Z, 18). An 
antimatter record will overwrite any old versions of the same record (e.g record with 
key 2), but will be overwritten by a new version of the same valid record (from a later 
insertion). Anti-matter records can be deleted when the oldest sorted run is involved 
in a merge. Write amplification is a common measurement of the write cost in an LSM 
system. A read query first checks the metadata of all components, and adds components 
whose key range contains the searched key to an ordered list of operational components. 

Fig. 1 LSM flush operation. Primary (double line) and secondary (single line) memory components are 
flushed independently to the top of disk components of the corresponding index. Delete table is flushed 
together with the corresponding memory component ( PM and PD , SM and SD ), creating antimatter (a.k.a 
tombstone) records (marked with -) in the flushed component. Index keys are underlined. The primary index 
P’s schema is (CarID, OwnerID, ManufactureYear). A secondary index S is built on OwnerID 

Fig. 2 LSM merge operation. Primary index and secondary index are merged independently. Anti-matter 
records (marked with -) can be completely deleted if the oldest disk component (e.g. P1 or S1 ) is involved in 
the merge
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All operational components may contain records to answer the query, thus, the num-
ber of operational components is usually used to compute the read amplification, which 
measures the read cost in the worst case.1

LSM architectures and merge policies

Stack‑based LSM tree

In a stack-based LSM tree, every single disk component is a sorted run (thus compo-
nent and sorted run are interchangeable), where disk components are ordered by the 
time created from flushes or merges. Stack-based merge policies generally merge only 
consecutive disk components and create only one single disk component per merge.

Most stack-based merge policies make merge decisions based on certain size ratio 
conditions, where every single merge involves similar sized disk components. Such 
merge policies are often referred to as tiering style. The term tiering came from the 
SizeTiered policy in Cassandra (described later in this section), while the term stack-
based came from Bigtable [17, 18]. Tiering style merge policies are a subset of stack-
based merge policies. A key difference is that component sizes in tiering style merge 
policies are non-decreasing with respect to their time of creation, such that older 
components are usually no smaller than any newer components, while such restric-
tion does not hold for the general stack-based merge policies, where there is no rela-
tion between component sizes and freshness. Certain stack-based policies choose to 
restrict the total number of disk components to a constant number which limits the 
worst case read amplification. These policies are called bounded-depth policies [18].

In this research, the following three stack-based merge policies are selected for 
evaluation:

• Binomial policy was originally proposed by Mathieu et  al. [17], then formally 
defined and evaluated in [12, 18]. The name Binomial came from the fact that it 
uses a Binary Search Tree to make merge decisions. It is a bounded-depth pol-
icy that maintains an optimal write cost with an upper bound of worst case read 
amplification by only one parameter k, which restricts the maximum number of 
disk components. Compared to the other online merge policies, whose merge 
schedules are based on heuristic information such as component sizes, Binomial 
policy is an offline policy whose merge schedule is pre-determined only on the 
number of flushes. It was originally designed for append-only workload, but can 
be adjusted for workloads with updates or deletions as well.

• Tiered (a.k.a SizeTiered) policy is the default policy in Cassandra [19], and had 
been adopted as Universal Compaction [20] in RocksDB. It groups disk compo-
nents into tiers. Every tier has B disk components. Whenever a tier has B disk 
components, all the B disk components are merged into a new component of B 
times larger into the top of the next tier. B is also called size ratio or fanout fac-
tor. The implementation of Tiered policy varies in different systems. For exam-

1 Some operational components may be skipped by filters such as Bloom filter, reducing the actual read amplification.
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ple, besides selecting similar sized components to merge, the Universal compac-
tion in RocksDB can also select components that have more overlapping keys to 
reduce space amplification, or simply merge several components to enforce the 
total number of components to the number specified by level0_file_num_compac-
tion_trigger [20], if the other two options cannot be performed. In this paper, the 
Tiered policy is implemented in a similar way to Cassandra, which only selects 
components based on size ratio, thus ignoring components’ contents.

• Concurrent policy was recently added to AsterixDB to replace Prefix policy as its 
new default policy [21]. Unlike Prefix policy, which tends to merge similar sized 
components and excludes components whose sizes are larger than a user defined 
threshold, Concurrent policy is bounded-depth by a parameter k. The disk compo-
nents to be merged are determined by a minimum length C, a maximum length D 
and a size ratio � . Starting from the newest disk component, the policy considers 
any longest sequence with disk components {Di,Di−1, . . . ,D1} where C + 1 ≤ i ≤ D , 
and merges them into a single disk component if |Di| ≤ �

∑i−1
j=1 |Dj| , where |Dj| is the 

size of the disk component Dj.

Leveled LSM tree

In a Leveled LSM tree [6, 7] every level is a sorted run which is partitioned into multi-
ple (typically) disjoint disk components of the same size [22]. The number of disk com-
ponents in level i ≥ 2 is B times more than the number in level i − 1 . There may also 
be a special level 0 which contains B0 disk components as a buffer, which holds flushed 
disk components as multiple sorted runs. When a level reaches its capacity ( B0 or Bi ), a 
disk component is selected and merged with all overlapping disk components in the next 
level, creating one or multiple new disk components in the next level. While the oldest 
disk component in level 0 must be selected, any disk component in other levels can be 
selected. A point query only needs to check all disk components in level 0, and at most 1 
disk component in every level i ≥ 1 . A range query may just need to check a few compo-
nents in each level, reducing the total size to be checked.

Comparing different merge policies

The major differences between stack-based and leveled LSM trees in terms of merge 
operations are illustrated in Fig. 3. All sorted runs (disk components/levels) are ordered 
from newer to older in top-down direction, where blue and orange rectangles represent 
input and output components of a merge, respectively. Three consecutive components 
are merged into a single component in a stack-based LSM tree, where in a leveled LSM 
tree, one component ([3,  6]) from one level ( L1 ) is merged with the only overlapping 
component ([2, 5]) in the next level ( L2 ) and the two output components are placed in 
the next level (L2).

To better illustrate the difference among the four compared merge policies, their 
sorted run sizes after some number of flushes are listed in Table 1. Component sizes in 
Tiered and Concurrent are always non-decreasing. For Binomial, it is possible that some 
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newer sorted runs are larger. For example, after 40 flushes, the third sorted run has size 
20 while the fourth sorted run has size 15. Also the number of sorted runs in Binomial 
never exceeds k = 4.

Fig. 3 Examples of merges in stack-based and leveled LSM trees. Input and output components in a merge 
are marked in blue and orange, respectively. Keys in a component are represented by the numbers inside the 
rectangle

Table 1 Sorted run sizes of the four compared merge policies, where newer sorted runs are on the 
left

Each number is the size of a sorted run with respect to the MemTable size. Tiered, Concurrent and Leveled always have 
sorted runs in non-decreasing order. The first two sorted runs in Leveled policy are two disk components in level 0, the 
other numbers are the number of disk components of size 1 in the corresponding levels. Default parameters for Concurrent: 
k = 30,C = 3,D = 10, � = 1.2.

Merge policy 20 Flushes 40 Flushes 60 Flushes 80 Flushes 100 Flushes 120 Flushes

Binomial 
( k = 4)

1, 4, 15 2, 3, 20, 15 10, 50 10, 20, 50 15, 35, 50 1, 3, 10, 106

Tiered ( B = 4) 4, 16 4, 4, 16, 16 4, 4, 4, 16, 16, 
16

16, 64 4, 16, 16, 64 4, 4, 16, 16, 16, 64

Concurrent 
(default)

3, 17 1, 1, 3, 35 1, 59 3, 77 1, 1, 3, 95 1, 119

Leveled 
( B0 = 2, B = 4)

1, 1, 4, 14 1, 1, 4, 16, 18 1, 1, 4, 16, 38 1, 1, 4, 16, 58 1, 1, 4, 16, 64, 
14

1, 1, 4, 16, 64, 34

Fig. 4 Types of LSM-based spatial indexes
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LSM secondary spatial index
This section first covers how LSM secondary indexes are maintained ("LSM Second-
ary Index"), which affects the trade-off between write and read performance. Then 
it discusses two approaches to index the spatial data, which are special type of sec-
ondary data, on LSM systems: a B+-tree-based solution is discussed in "Spatial LSM 
Index based on B+-tree", an R-tree-based solution is discussed in "Spatial LSM Index 
based on R-tree". How different merge policies affect the spatial index performance 
and present a partitioning algorithm for the Leveled policy is then discussed. Fig. 4 
presents all the spatial LSM indexing approaches discussed in this paper.

LSM secondary index

Before talking about the spatial index, how LSM secondary indexes are constructed and 
maintained must be explained. An LSM secondary index has almost identical architec-
ture to the primary index, except it is sorted by a composite key 〈SK ,PK 〉 , where SK is 
the secondary key, and PK is the primary key. Records are first ordered by SK then by PK 
in disk components. When a record gets updated or deleted in the primary index, the 
current composite key in a secondary index may become invalid as SK is no longer valid 
for PK. During record insertion, an eager strategy uses the PK (2 and 3 in Fig. 1) to find 
the old value of SK (Y for 2 and X for 3), and then inserts an antimatter record with the 
old SK and PK (two entries in SD ) to all secondary indexes, so any read on a secondary 
index will only return valid records thus the primary index does not need to be checked. 
A lazy strategy does not update secondary indexes during records insertion but needs an 
extra step, querying the primary index, to verify the returned records. Writes are usually 
slower in the eager strategy due to the checking on all secondary indexes but reads can 
be faster. On the other hand, the lazy strategy provides faster writes, but reads are slower 
due to the extra validation in the query time. Detailed discussion about these secondary 
indexing strategies can be found in [9, 23, 24].

An LSM secondary index can have its own memory component budget, and flushes 
and merges are triggered independently of the primary index. Or it can share a global 
budget with the primary index. In this design, the primary index and all secondary 
indexes are always flushed together, but they may use different merge policies. Merges 
may not be triggered at the same time, although certain merge policies (CorrelatedPrefix 
policy in AsterixDB) can enforce the merges for all indexes at the same time. Read que-
ries on an LSM secondary index are very similar to the merge operation.

Spatial LSM index based on B+‑tree

Most of the works on LSM trees are optimized for single-dimensional data. Unlike sin-
gle-dimensional data, there is usually no clear definition of how to order multidimen-
sional spatial data. The most common approach is to project multidimensional data to 
single-dimensional data to be indexed by a B+-tree. The projection is made through lin-
earization. One of the most common linearization methods is the space-filling curve. 
The two most well-known space-filling curves are Z-order curve and Hilbert curve. The 
BuildIndexes function of Algorithm  1 presents the pseudocode of building a spatial 
index on B+-tree via space-filling curve. Both GeoMesa [25] and DataStax Cassandra 
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[26] support this type of spatial index using GeoHash [25, 27], which is based on Z-order 
curve. More details are discussed in "Related work".

A space-filling curve partitions space into cells of the same size and uses fixed-
length bit strings (usually 32/64-bit numbers) to represent each cell. A toy example of 
a Hilbert curve with 4 bits is shown in Fig. 5. For point-type data, the value of the cell 

Fig. 5 Example of Hilbert curve and spatial intersection query
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in which a point resides will be saved as the secondary key SK, and a B+-tree is built 
on these cell values. Spatial queries may be handled in two ways to obtain the cells 
to be scanned. The first method is to find the cell values for all corners of the query 
MBR (the light purple region) and scans all cells between the smallest cell (2) and 
the largest cell (13). This method utilizes sequential disk I/O but may waste lots of 
resources checking records not in the contained cells (e.g., 3–6 and 9–12). It is gener-
ally preferred when the difference between the two values is small. Another method is 
to identify the exact cells in which the query MBR covers (2, 7, 8, and 13), then scans 
every covered cell. This method minimizes the disk I/O, but more random I/Os are 
involved. It can be used if the minimum and maximum cell values are far apart or 
very few cells are covered. Both methods get the records whose SK fall into the query 
cells, but every record must be further checked using its spatial attribute. As shown 
in the function SpatialSearch of Algorithm  1, the secondary spatial index is first 
searched to get all the primary keys whose spatial keys match any of the space-filling 
curve values from the searching MBR. This process may be implemented as a range 
query or multiple point queries. Next, the spatial attribute of each unique primary 
key must be obtained from the primary index. Then, the spatial attribute will be veri-
fied with the searching MBR to determine if the record shall be returned.

Spatial index with linearized data on B+-tree can be very efficient due to the superior 
random and sequential read performance of B+-tree. It is also relatively easy for an exist-
ing database system to support spatial index with some extended framework (GeoMesa) 
Despite these advantages, these methods have some common drawbacks. The major 
issue is that this type of index requires some prior knowledge about the space, such 
as the minimum and maximum values of each dimension, and object distribution, to 
decide the number of cells to use. Storing cell values costs extra disk space and I/O dur-
ing index writes and reads. Spatial objects in some cells may be very dense, making scans 
in these cells relatively slow.

Spatial LSM index based on R‑tree

Spatially close objects may not have close cell values, as shown in Fig. 5. A natural way 
is to place nearby records into the same groups. R-tree [28] and R*-tree [29] are widely 
used as local indexes for spatial data, which partition records into disk blocks based on 
their spatial locations (in this paper, R-tree and R*-tree are used interchangeably). The 
R-tree has a similar implementation to B+-tree, except it partitions leaf nodes and cre-
ates internal nodes by MBRs. Spatial queries may need to traverse multiple paths to leaf 
nodes to find records. To bulk-write an R-tree, records are sorted by a comparator, then 
packed into multiple partitions as leaf nodes and create internal nodes accordingly in 
a bottom-up fashion. Common comparators used in R-tree include space-filling curve 
comparators (Hilbert curve or Z-order curve), and simple bitwise comparator (Algo-
rithm 2). Because only the relative order of two records is needed, space filling curves 
values are only computed during run-time, and do not need to be stored together with 
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the records, which saves disk space and reduces disk I/O. The simple comparator com-
pares two points by each dimension, which is essentially the Nearest-X algorithm [13, 
30]. Note that it is a generalized version of the comparator used for single-dimensional 
data.

In an LSM R-tree index, SK is the spatial location of every record, typically as an array 
of numbers. The same records are compared multiple times during flushes, merges, and 
queries. With a space-filling curve comparator, linearized values of records must be 
re-computed every time, potentially adding delays to those operations. In most cases, 
R-tree (or R*-tree) is the preferred option for spatial index [10, 11]; hence in this paper, 
the LSM R-tree designs is only focused on.

A spatial query first determines the list of operational components by checking each 
component’s MBR, represented by the minimum key (bottom left point) Kmin and the 
maximum key (top right point) Kmax , where K represents an array. Given two compo-
nents C : �Kmin,Kmax� and C ′ : �K′

min,K
′
max� and the number of dimensions D ≥ 1 , the 

two components are overlapping if and only if (1) is satisfied, or disjoint otherwise.

Then, a spatial search can scan all operational components and return the results 
directly, as shown in Algorithm  3. Depending on the actual query, the primary index 
may not be involved in the spatial search.

(1)∀d ∈ [1,D] : Kmin[d] ≤ K
′
max[d] ∧ K

′
min[d] ≤ Kmax[d].
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As described in "Stack-based LSM Tree", stack-based merge policies are often unaware 
of disk components’ contents like key boundaries, which merges are scheduled in the 
same way regardless of the type or dimensions of the data. Disk components have a high 
chance to have intersected MBRs with each other, making MBR based filtering at com-
ponent level less important for stack-based policies. Also, R-tree employs MBR-based 
filtering on the disk block level internally; only a small portion of disk components is 
read even if the component size is large. Although a spatial query usually needs to scan 
all disk components, the read amplification is not high, due to the low average number of 
disk blocks scanned per component. To the best of our knowledge, AsterixDB is the only 
system that uses stack-based LSM R-tree indexes.

Stack-based LSM R-tree indexes mostly rely on the local index of disk components 
for spatial queries, which has little room to improve in the policies themselves. How-
ever, it is very different for the Leveled LSM R-tree index. A Leveled LSM R-tree index 
may have thousands of disk components. A spatial query can potentially check all disk 
components in the worst case, which leads to very high read amplification and low local-
ity. Two key design decisions are (a) how to partition records into components during 
merges and (b) what comparator to use to order records inside a component to allow 
faster merges. They will be discussed in the next section in detail. To the best of our 
knowledge, no current system is using leveled LSM R-tree indexes, which is surprising 
given the popularity of leveled merge policies. All the discussed policies on AsterixDB 
are implemented for the experiments.

Partitioning in leveled LSM R‑tree

A partitioning algorithm is necessary to split records into different disk components, 
which affects the performance of write and read operations of a leveled LSM tree. It 
must be capable of distributing records into a fixed number of partitions such that the 
number of records in all partitions are roughly the same. This section discusses three 
partitioning algorithms, size, STR and R*-Grove, along with two comparators, the Hil-
bert curve comparator, and the simple comparator.
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Size partitioning Size partitioning is the default partitioning algorithm used in lev-
eled LSM-trees. It simply distributes sorted records into multiple disk components such 
that all disk components have roughly the same size. A priority queue takes streams of 
sorted records from each merging component as inputs, and outputs a stream of sorted 
records from all merging components, similar to the sort-merge join algorithm. Because 
records are already sorted in each component, storing them in memory for sorting is not 
needed. Size partitioning only fetches one disk block from each merging disk compo-
nent at a time, so the memory requirement is minimal. The order of the records depends 
on the comparator being used. By default, AsterixDB sorts spatial records by a Hilbert 
curve comparator for 2-D point data and Z-order curve comparator for the other types 
of spatial data. The two space filling curve based comparators cannot guarantee spatially 
disjoint disk components, as shown in Fig. 6b as the partitioning result from Fig. 6a. On 
the other hand, if size partitioning is coupled with the simple comparator, this combina-
tion can achieve a similar result as STR partitioning, which will be discussed in the next 
paragraph.

STR partitioning Sort-Tile-Recursive (STR) [13] was originally proposed to pack 
blocks for R-tree for point data. This partitioning algorithm is adopted in leveled LSM 
R-tree index. When disk components are merged, STR is applied to partition all merg-
ing records to multiple spatially disjoint groups and create a separate disk component 
for each group. That way, all disk components in one sorted run are disjoint, regard-
less of the comparator. For non-point data, STR is applied to the center points of spatial 
objects, but MBRs are computed from their actual MBRs. The comparator only affects 
the order of the records inside each component, but the components’ MBRs remain the 
same. There are two major drawbacks of STR partitioning. The first is that STR requires 
storing all merging records in memory for sorting, leading to much higher CPU and 
memory usage, otherwise, external sorting is needed which incurs much higher disk I/O 

Fig. 6 Examples of three partitioning algorithms from the same input. Points are uniformly distributed in 
each of the four input MBRs and are marked with dots in the three partitioned sub-figures
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cost. Thus, it is generally slower than size partitioning. The second is that because STR 
gives higher weights on more significant dimensions, it tends to create narrow but tall 
rectangles (as shown in Fig. 6c from the same input), which may make read queries less 
efficient as a read query may need to check more disk components although only a small 
portion of each disk component is actually needed. This may be even more severe for 
higher dimensional data [14, 31].

Partitioning R*-Grove [14, 31] partitioning is also ported, which aims to create square-
like and balanced partitions for analytic frameworks like Apache Hadoop and Spark, into 
AsterixDB for our experiments. R*-Grove partitions spatial records in three phases: a 
sampling phase which draws a random sample of the input records, a boundary compu-
tation phase which generates partition boundaries with desired level of load balance, and 
a final partitioning phase which puts every record into the corresponding partition. Like 
STR, comparator does not affect the partitioning but only affects the internal organiza-
tion of disk components. As shown in Fig. 6d (from the same input), R*-Grove tends to 
create more square-like MBRs so fewer disk components may be checked. However, it 
makes multiple passes to scan all records, and is computationally more expensive than 
STR, for which merges are usually slower.

Both STR and R*-Grove face an issue of high memory usage, which limits the total 
size of components to be merged. A possible solution is to make two passes on all merg-
ing disk components. The first pass samples a small number of records from all merg-
ing disk components, then STR or R*-Grove can be applied on the sampled records to 
obtain partition boundaries. The second pass scans all records and puts them into a 
corresponding partition whose MBR contains the record (or the center if it is not point 
type). This method only uses a small amount of memory, but significantly increases 
the number of disk I/Os during merge operations. The run time of placing n points 
into p partitions is summarized in Table 2. Size partitioning simply scans all points lin-
early regardless of the comparator. STR partitioning requires sorting the points by each 
dimension. For Hilbert curve comparator, sorting takes O(n log n) , thus the total run 
time is O(n log n)+O(n) = O(n log n) . For Simple comparator, there is no need to sort 
again, thus the total run time is just O(n) . The run time of R*-Grove can be found in [31].

Experimental evaluation
Datasets and workloads

Two geo-location datasets of exactly 100,000,000 2-D points were used in all experi-
ments. One is a real-world dataset randomly sampled from OpenStreetMap (OSM for 
short) [32, 33]; the other is a synthetic dataset which longitude and latitude values were 
uniform randomly generated. Points in the OSM dataset are highly clustered in urban 
areas all over the world, especially in the United States and western Europe (Fig.  7a). 
Points in the random dataset are uniformly distributed around the globe (Fig. 7b).

Table 2 Run time of spatial partitioning algorithms

Size STR R*‑Grove

Hilbert O(n) O(n log n) O(n log2 n)

Simple O(n) O(n) O(n log2 n)
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For each dataset, a workload with interleaved reads and writes is generated as follows: 

1 A Load phase of 50,000,000 records. Each record is associated with a unique ID 
in long type and a random string of 1000 bytes as a synthetic attribute (e.g., geo-
location description). Points are stored as two double type numbers. Every record is 
exactly one kilobyte long.

2 An Insert phase containing 500,000 records.
3 A Read phase containing 10,000 spatial intersection queries. The query rectangle 

center is a point randomly picked from all previously inserted points. The rectan-
gle size is determined by a random selectivity 10−σ , σ ∈ {3, 4, 5} , that the width and 
height are 360× 10−σ and 180× 10−σ , respectively.

The Load phase was executed once in the beginning, then the Insert phase and Read 
phase were interleaved for 100 times that 100,000,000 total records were inserted (lead-
ing to 100 GB primary index and 2.4 GB LSM R-tree index), and 1,000,000 queries were 
executed. This interleaved workload guarantees the same data size in the corresponding 
insert phase and read phase in all experiments for fair comparisons.

Read queries were generated in a way that every query can return at least one record. 
Other selectivity values with σ ∈ {1, 2} and σ ∈ [6, 10] are also tested. It is observed the 
same results for σ ∈ {1, 2} with σ = 3 , and σ ∈ [6, 10] with σ = 5 , hence only results for 
σ ∈ {3, 5} are reported ( σ = 4 and σ = 5 are very similar). To avoid access to the primary 
index, COUNT(*) function is used so only the LSM R-tree index would be scanned. 
AsterixDB provides several built-in spatial functions, only “spatial_intersect” operates 
on the LSM R-tree index. Many other types of spatial query are usually based on prun-
ing using MBR intersections, such as circle range, kNN and distance join, it is reasonable 
to focus on this type of rectangular intersection queries.

Experimental setup

Apache AsterixDB [34] is a full-function, open-source Big Data Management System 
(BDMS) on LSM storage. The primary index of a dataset is stored as LSM B+-tree, the 
spatial index is stored as LSM R-tree. All secondary indexes and the primary index share 
a global memory budget; thus, they are always flushed together. AsterixDB uses the 
eager strategy to maintain secondary indexes. Spatial records are ordered by a Hilbert 

Fig. 7 Heatmap of the two datasets, coordinates range from [−180◦ ,−90◦] to [180◦ , 90◦]
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curve comparator or a Simple comparator. MBR of a disk component is computed from 
all records when it is created from a flush or a merge.

All experiments were performed on 5 AWS m5.large instances. Each instance has 2 
vCPUs running on Intel Xeon Platinum 8175 M, 8 GB of memory, and 200 GB general 
purpose SSD (gp2). All 5 instances are located in the same zone “us-west-2b”, connec-
tions within instances only used private IP to minimize network latency. AsterixDB 
was configured to use a single node in each server. Other configurations were set to 
the defaults. The average size of the flushed disk components in LSM R-tree index was 
around 2 MB.

Merge policy configurations

The following merge policy configurations were applied to the LSM R-tree index:

• Binomial: k ∈ {4, 10}.
• Tiered: B ∈ {4, 10}.
• Concurrent: Default ( k = 30 , C = 3 , D = 10 , � = 1.2).
• Leveled: B0 = 2 , B = 10 , size, STR and R*-Grove partitioning.

Binomial policy’s performance does not change much when k > 20 . Setting a too small 
k will lead to merges at almost every flush. Thus k = 4 is chosen to test its performance 
with lower read amplification but higher write amplification, and k = 10 for higher read 
amplification but lower write amplification. The default size ratio (B) is 4 in Apache Cas-
sandra’s SizeTiered Compaction Strategy, and is 10 in RocksDB’s Universal Compaction. 
These two values are chosen for Tiered. With a smaller size ratio, merges are more fre-
quent, thus write amplification is higher, but read amplification is lower. On the other 
hand, a larger size ratio will lead to lower write amplification but higher read amplifica-
tion. For Concurrent, its default configuration is used, as suggested in [21]. The default 
size ratio B = 10 is used in LevelDB and RocksDB in our experiments, and it is a good 
comparison to Tiered for the same size ratio setting. The maximum number of files 
in level 0 ( B0 ) is reduced from 36 (default in RocksDB) to 2 to further reduce its read 
amplification.

Both Hilbert curve comparator and Simple comparator were paired with each configu-
ration. To avoid interference from the primary index, Binomial policy is set to use k = 8 
for the primary index in all runs. For runs of Leveled policy, a selection algorithm to pick 
a disk component that overlaps with the fewest disk components in the next level, aim-
ing at minimizing their write amplification, is used.

Write performance

Write amplification A merge policy with higher write amplification writes more data, 
which may reduce the write throughput, potentially slow down other operations as well. 
The write amplification of policies with different configurations for the two datasets 
are presented in Fig. 8 and Table 3. Write amplification of all stack-based policies are 
not affected by the dataset because the policies are all content-unaware. Comparators 
only affect the order of records within disk components, but not component sizes. The 
write amplification of a stack-based policy is the same for all its configurations, so they 
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are combined in the figure. Binomial with k = 10 , Tiered with B = 10 , and Concurrent 
had the lowest write amplification as they merge infrequently. Binomial with k = 4 and 
Tiered with B = 4 had slightly higher write amplification as they merged more eagerly, 
and Binomial must bound the number of disk components.

All Leveled policy runs had much higher write amplification than any stack-based 
policy. Write amplification for the random dataset is higher than the OSM dataset. For 
the random dataset, it has a higher chance of having more overlapping disk components 
involved in every merge. Runs using R*-Grove partitioning had the highest write ampli-
fication among all and are even more significant in the random dataset. Runs using size 
partitioning with Hilbert curve comparator had the second highest write amplification, 
as this setting failed to generate disjoint disk components. Runs using STR partition-
ing with either comparator had slightly lower write amplification because STR parti-
tioning guarantees disjoint disk components, so merge sizes were smaller on average. 
Runs using size partitioning with Simple comparator achieved the lowest among them 
because merging records were ordered by the longitude values; thus, they were parti-
tioned into disjoint groups, creating almost disjoint disk components.

The write amplification of runs using R*-Grove is much higher than the other runs 
of Leveled policy, especially in the random dataset. A key reason is that a partitioning 
algorithm that generates disjoint key ranges can only guarantee that the merged com-
ponents do not overlap with any other component in the level for single dimensional 
data, as shown in Fig.  9a, where component 1 from level i has overlapping key range 
with component 3 and 4 from level i + 1 (each rectangle represents the component’s key 
range in the whole key space). However, as shown in Fig. 9b, creating disjoint merged 
components may fail to guarantee disjoint components in the level. Having overlapping 
components in a level does not only increase the read amplification, but also increases 
the write amplification as the probability of merging with more components becomes 
higher. STR partitioning also has this issue, but it is not so obvious. MBRs created from 
STR partitioning tend to be tall and thin, which will look like a vertically stretched ver-
sion of Fig. 9a, in that there will be only a few overlapping components in every level. 

Fig. 8 Write amplification of compared policies with different configurations

Table 3 Overall write amplification of compared policies.

Binomial Tiered Concurrent Leveled

k = 4 k = 10 B = 4 B = 10 Default Hilbert, Size Simple, Size STR R*‑Grove

OpenStreet-
Map

9.55 6.05 9.64 4.62 6.58 23.00 16.90 19.38 23.68

Random 9.55 6.05 9.64 4.62 6.63 27.74 21.97 23.65 39.90
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But for R*-Grove, overlapping components can frequently occur, leading to much higher 
write amplification.

Write throughput The write throughput is further measured and listed in Fig. 10. All 
stack-based policies showed a very high write throughput. Binomial and Tiered runs had 
the highest write throughput. Concurrent has much lower write throughput though its 
write amplification is low. For runs of Leveled policy, write throughput of runs with Sim-
ple comparator was very close to Binomial and Tiered despite having high write amplifi-
cation, runs with Hilbert curve comparator still got the lowest throughput as expected. 
The write throughput of runs using R*-Grove partitioning were much lower than the 
others.

All indexes shared a global memory budget in AsterixDB; any secondary index was 
always flushed together with the primary index. The write throughput of an LSM sec-
ondary index can be dominated by the throughput of the primary index, as the primary 
index is much larger (2.4 GB vs 100 GB). For this reason, write throughput of Binomial 
and Tiered runs were slowed down. Write stalls or spikes are not observed in write 
throughput in the R-tree index either, which should be common in stack-based policies 
[35, 36].

Hilbert curve comparator is generally slower in computation than Simple compara-
tor as it needs multiple internal iterations to compare two values, significant overheads 
could be added to write throughput. To verify this hypothesis, a set of small experiments 

Fig. 9 Components’ key boundaries before and after a merge, where components 2, 3 and 5 are merged and 
replaced by 6, 7 and 8 (illustration purpose only, not from real data)

Fig. 10 Average write throughput (requests per second) for all policies with different configurations



Page 19 of 26Mao et al. Journal of Big Data           (2023) 10:51  

have been done, using the same source codes of both comparators plus a Z-order curve 
comparator from AsterixDB to sort arrays of 1,000,000 random points of 2, 3 and 4 
dimensions, respectively. Results in Fig. 11 showed that Simple comparator is about six 
times faster than the other two.

Read performance

The read performance is measured by the following two metrics: (a) average (mean) read 
amplification, i.e., the number of operational disk components of each spatial query, 
and (b) average (mean) read latency, i.e., the total time spent to scan all operational disk 
components. Latency here is different from query response time in that it measures the 
time accessing every operational disk component and excludes the time of query compi-
lation and network latency.

High selectivity (10−3)
A spatial query with higher selectivity covers a more substantial area, which returns 

more results on average. The average number of returned records is measured to 
be about 28,000 for the OSM dataset and 75 for the random dataset. The difference 
between these two numbers signified from the clustering of the OSM dataset, where a 
large selectivity query hit more points in highly clustered areas than unclustered areas in 
the random dataset.

The average read amplification and latency for the OSM dataset are shown in Fig. 12a. 
In general, the read amplification of a stack-based LSM index is the same as the total 
number of disk components, because all disk components must be scanned. For leveled 
LSM index, only 10 to 20 disk components were scanned, even though over 1000 disk 
components were available; MBR based filtering was very efficient. Two runs using size 
partitioning had the highest two read amplification. Looking into latency, all policies 
with Hilbert curve comparator had lower latency than those with Simple comparator, 
except for the runs using R*-Grove partitioning. With Hilbert curve comparator, stack-
based policies still had the lowest latency numbers, the latency of Leveled policy using 
size partitioning and R*-Grove partitioning were not bad. Surprisingly, Leveled policy 
using R*-Grove partitioning with Simple comparator achieved very competitive results 
to the faster five runs of the stack-based policies with Hilbert curve comparator, while 
most of the other Leveled policy runs were slower. Overall, Hilbert curve comparator 
would be preferred for large selectivity queries, read latency is almost linearly correlated 
to the read amplification; thus stack-based policies might be better, but Leveled policy 
using R*-Grove partitioning with Simple comparator is also a good option.

Fig. 11 Total time to sort arrays of 1,000,000 random points. AsterixDB’s Hilbert curve comparator only 
supports two dimensional points due to its slow computation for higher dimensions
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For the random dataset, read amplification was about the same as the OSM dataset 
for all stack-based policies, as shown in Fig.  12b. However, read amplification of Lev-
eled policy runs dropped to below 8 with significant improvements, meaning that MBR 
based filtering had been even more efficient for this type of dataset. Runs with Hilbert 
curve comparator still outperformed runs with Simple comparator for read latency, 
except for the runs using R*-Grove partitioning. Still, runs of Leveled policy ranked very 
well among them, especially the run using R*-Grove partitioning with Simple compara-
tor which ranked second, thanks to their lower read amplification. Latency numbers in 
the random dataset were 6 to 8 times shorter than the numbers in the OSM dataset. 
Here, reads tend to be slower in the highly clustered dataset for high selectivity queries.

Low selectivity ( 10−5)
Common spatial queries usually return less than 100 results, which cover a relatively 

small area. In our experiments, an average of 12 results is measured from the OSM data-
set and 1 from the random dataset. However, the number could be 0 most of the time for 
the random dataset if query rectangles were not generated from existing points.

Similar to high selectivity queries, write amplification of all the stack-based policies 
remained the same for both datasets, as almost all disk components were scanned, as 
shown in Fig. 13a, b. Except for one run of Leveled policy using size partitioning with 
Hilbert curve comparator, the other five runs of Leveled policy became very competi-
tive in both datasets, which even had lower read amplification than some stack-based 
policies. The two runs using STR partitioning, and the runs using size partitioning and 
R*-Grove partitioning with Simple comparator, had much better MBR based filtering for 
low selectivity queries.

Fig. 12 Average read amplification and latency for selectivity 10−3
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Because of the lower read amplification and fewer returned records, read latency num-
bers were all smaller than those in the high selectivity queries. Runs with the Hilbert 
curve comparator were slower than those with the Simple comparator. The slower com-
putation of the Hilbert curve comparator became a significant bottleneck for low selec-
tivity queries, while it showed superior efficiency for high selectivity queries. The three 
Leveled runs with Simple comparator were all in the top four among all. Queries could 
finally take advantage of their better MBR based filtering capabilities to provide much 
faster index access time. From comparing the two figures of read latency for the two 
datasets, it can be seen that the numbers are very close to the same policy with the same 
configuration. The impact of data clustering was not evident on read performance for 
small selectivity queries.

Discussion
Among all the compared policies, Binomial was the winner in almost all settings, show-
ing the best read amplification and latency numbers, while maintaining the highest write 
throughput and near-top write amplification. Concurrent was only second to Binomial 
in terms of read performance in most settings, but it had relatively low write through-
put, although its write amplification was low. Its multithreaded merge was a bottleneck 
in write throughput. There could be some optimizations to multi-threaded merges, but 
most need hardware or operating system support [7, 37]. Tiered had the lowest write 
amplification and very high write throughput, but the read performance was sacrificed. 
The Leveled policy had the highest write amplification, but writes could still be fast 
with proper configurations. In our experiments, the Leveled policy showed good read 
performance mostly in low selectivity queries, although the combination of R*-Grove 

Fig. 13 Average read amplification and latency for selectivity 10−5
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partitioning and Simple comparator achieved outstanding read performance at the cost 
of the lowest write performance. Therefore it may not be a good option for high selectiv-
ity queries in general. There could be cases where it may be better suited. Leveled archi-
tecture is a perfect fit for object stores (Amazon S3, Microsoft Azure, etc.) which tend to 
have many relatively small files (or so-called blobs). Compared to stack-based policies, it 
can manage records more efficiently via file (disk component) based filtering, rather than 
relying on local indexes.

In terms of policy configuration, Hilbert curve comparator performed better than 
Simple comparator in high selectivity queries but was worse in low selectivity queries 
due to its slow computation. If Leveled policy must be chosen, size partitioning is gen-
erally a good option for high selectivity queries, while STR partitioning and R*-Grove 
partitioning are still very competitive, especially in low selectivity queries. With a larger 
index size, STR and R*-Grove might be better options because they guarantee to cre-
ate disjoint disk components to have better MBR based filtering capability. However, the 
higher CPU and memory requirement during merges as well as the low write perfor-
mance of R*-Grove must be considered.

How LSM secondary indexes are maintained may have a major impact on the write 
and read performance of a secondary index. With the eager strategy, write throughput 
may be determined by the primary index, while with the lazy strategy, read latency may 
be dominated by the time to verify returned records against the primary index.

Limitations and future work This paper focuses on the write and read performance of 
R-tree based LSM spatial indexes. Based on the results from [11], comparisons against 
indexes based on B+-tree are not included, which may be a more common approach on 
existing LSM database systems. It may be worthwhile to revisit these designs on differ-
ent LSM architectures, since B+-tree usually has better write and read performance than 
R-tree for certain types of non-intersection spatial queries. The lack of optimizations on 
hardware and operating system limited the MBR based filtering efficiency for Leveled 
policy. Some better results would be expected for Leveled policy if some optimizations 
could be done, such as hardware support for MBR based filtering (e.g. FPGA based fil-
tering) to utilize STR or R*-Grove partitioning.

Related work
Supporting spatial index

Most LSM systems only support single-dimension indexes such as B+-tree. To sup-
port spatial index, they must rely on some linearization method to project multidi-
mensional data into a single dimension to be loaded in B+-tree. GeoMesa [25] is a 
spatial-temporal index that supports so-called Bigtable-style databases including 
Google Bigtable [5], Apache Accumulo [38], Apache HBase [4]. It uses a customized 
GeoHash [25, 27] implementation based on the Z-order curve to encode spatial and 
temporal data into bit strings. STEHIX [39] and Brahimet et  al. [26] took a similar 
approach but only limited to HBase and DataStax Cassandra, respectively. Kim et al. 
[10, 11] studied five LSM spatial indexes, four of them fall into this category: DHB-
tree, DHVB-tree, and SHB-tree all map point data with space-filling curves (Hilbert 
curve); SIF builds an inverted index (based on B+-tree) but the main idea is similar to 
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SHB-tree. Like SIF, a posting list based LSM inverted index design described in [24] 
can also be extended to support spatial index.

Another common approach is to build LSM spatial indexes on R-tree. One imple-
mentation is to use an external R-tree index to manage multiple LSM trees. R-HBase 
[40] and BGRP-tree [41] partition the data space into grid cells or regions and use an 
in-memory R-tree to index the partitions, although the local indexes are still built on 
B+-trees. Nanjappan implemented a separate R∗-tree index outside of Cassandra [42]. 
LevelGIS [43] uses a three-layer hierarchical structure of R-tree index on LevelDB to 
support spatial queries. Like AsterixDB [2], some choose to use R-tree as the inter-
nal index for each component in the LSM tree. LSM RUM-Tree [44] utilizes Update 
Memo on AsterixDB’s R-tree index to support update-intensive spatial workloads, 
which is orthogonal to our work. [45] described how multi-valued fields are indexed 
in AsterixDB, which could also be extended to improve the R-tree index performance 
as a future work. Many open-source projects add spatial index support to LevelDB, 
RocksDB, and some other LSM systems, most still use the first approach which is B+-
tree with linearized spatial data, only a few of them adopt the LSM R-tree approach. 
To the best of our knowledge, none of these projects have been deployed in prac-
tice. RocksDB used to provide a utility called SpatialDB, but it got abandoned and 
removed from GitHub since January 2019.

Some systems choose to use an LSM database only for storage and use some other 
structures for spatial queries. For example, DataStax stores geospatial data in Cassan-
dra, but builds geospatial indexes and handles geospatial queries via Solr [46]. Com-
pared to native LSM secondary spatial index, the key drawback of such systems is that 
insertions are slower as they need to be written to two or more systems.

All the above spatial index support techniques are summarized in Table 4.

Table 4 Summary of spatial index support in various systems

Linearized 
B+‑tree

Internal R‑tree Exteral R‑tree Inverted index Separate 
framework 
(Spark)

GeoMesa [25] �

STEHIX [39] �

Brahim et al. [26] �

DHB-tree, DHVB-tree, 
and SHB-tree [10, 11]

�

SIF [10, 11] �

Qader et al. [24] �

R-HBase [40] �

BGRP-tree [41] �

Nanjappan [42] �

LevelGIS [43] �

AsterixDB [2] �

LSM RUM-Tree [44] �

Galvizo [45] �

DataStax [46] �
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Spatial partitioning algorithms

Partitioning algorithms can highly affect the write and read performance of a leveled 
LSM R-tree index. Some R-tree packing algorithms can be directly used for parti-
tioning in merges. The combinations of size partitioning with Hilbert curve compara-
tor and Simple comparator have the same effect as Hilbert Sort [47] and Nearest-X 
[30], respectively, which are both outperformed by STR partitioning [13]. OMT [48] 
is a top-down R-tree bulk-loading algorithm which might be portable as well. Other 
partitioning algorithms include sampling-based methods like SpatialHadoop [49] and 
R*-Grove [14, 31], and quad-tree-based method like [50] for Hadoop. Most of these 
algorithms designed for R-tree bulk-loading or Hadoop can efficiently handle static 
data, where the data is written only once. However, they are usually not designed for 
dynamic data, where the data frequently changes in some write-heavy workloads. A 
better partitioning algorithm that takes both heavy writes and reads is much desired, 
that LSM spatial index can benefit a lot from it.

Conclusions
This paper compared and evaluated secondary spatial index performance of both 
stack-based and leveled LSM architectures with four representative merge policies, 
on a common platform (AsterixDB). The results from both the OpenStreetMap data-
set and the synthetic random dataset have shown that Binomial policy is probably 
the best candidate for LSM R-tree-based spatial index, although it is not specifically 
optimized for multidimensional spatial data. While having higher write amplification 
and generally lower write throughput, with proper configuration, Leveled policy can 
achieve close or even better read performance to some of the better stack-based poli-
cies. Although most stack-based policies do not benefit from MBR based filtering at 
the disk component level, MBR based leveled partitioning can provide much better 
filtering efficiency to improve spatial query performance in proper settings. Com-
pared to analytic frameworks, a key challenge of MBR based leveled partitioning in 
LSM tree is to maintain more disjoint square-like MBRs while keeping the write cost 
low. The selectivity of spatial queries should be considered when choosing a compara-
tor and partitioning algorithm for a Leveled policy.

Abbreviations
LSM  Log-structured merge
MBR  Minimum bounding rectangle
OSM  OpenStreetMap
SSTable  Sorted string table
STR  Sort-tile-recursive
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