
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Mao et al. Journal of Big Data (2023) 10:51
https://doi.org/10.1186/s40537-023-00734-3

Journal of Big Data

Comparison of LSM indexing techniques
for storing spatial data
Qizhong Mao1*†, Mohiuddin Abdul Qader1† and Vagelis Hristidis1

Abstract

In the pre-big data era, many traditional databases supported spatial queries via spatial
indexes. However, modern applications are seeing a rapid increase of the volume and
ingestion rate of spatial data. Log-structured Merge (LSM) tree is used by many big
data systems as their storage structure in order to support write-intensive large-volume
workloads, which are usually only optimized for single-dimensional data. Research has
studied how spatial indexes can be supported on LSM systems, but focused mainly on
the local index organization, that is, how data is organized inside a single LSM com-
ponent. This paper studies various aspects of LSM spatial indexing, including spatial
merge policies, which determine when and how spatial components are merged.
Three stack-based and one leveled merge policies have been studied, which have
been implemented on a common big data system Apache AsterixDB. The write and
read performance on various workloads is evaluated, and our findings and recom-
mendations are discussed. A key finding is that Leveled policies underperform other
stack-based merge policies for most types of spatial workloads.

Keywords: Spatial index, LSM, Merge policy, Stack-based, Leveled, R-tree, Partition

Introduction
Due to the increasing need of (mobile) applications such as navigation systems, location-
based review systems, and geo-tagged social media, the volume and ingestion rate of
spatial data are increasing rapidly. Database systems have been moving to log-structured
merge (LSM) tree [1] storage architectures to facilitate high write throughput. Such sys-
tems include Apache AsterixDB [2], Cassandra [3], and HBase [4], Google Bigtable [5],
and LevelDB [6], Facebook RocksDB [7], and ScyllaDB [8]. LSM systems provide supe-
rior write performance than many traditional relational databases, MySQL with InnoDB
for example [7]. However, most of these systems do not have native support of spatial
queries, which often rely on spatial indexes.

In most applications, a spatial index cannot live alone and must be created as a sec-
ondary index that is dependent on a primary index to query any non-spatial attrib-
utes. Most LSM systems do not have the direct support of the general secondary
index, as a result, they are unable to support spatial index. In AsterixDB, LSM-fica-
tion is a generic framework to convert a class of indexes to LSM secondary indexes
[9]. Using this framework, two options to index spatial data are available. The first

†Qizhong Mao and Mohiuddin
Abdul Qader contributed equally
to this work

*Correspondence:
qmao002@ucr.edu

1 Department of Computer
Science and Engineering,
University of California, Riverside,
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00734-3&domain=pdf

Page 2 of 26Mao et al. Journal of Big Data (2023) 10:51

option is a B+-tree-based solution that indexes single-dimensional data projected
from multidimensional spatial data through linearization. Note that this option also
applies to systems (e.g, LevelDB and RocksDB) that use Sorted-String-Table (SSTable)
and binary search methods to support range queries. The second option is a native
spatial index, for example, R-tree, as a local index. To the best of our knowledge,
AsterixDB is the only LSM storage engine with native support of LSM R-tree index;
all other LSM-based systems only support B+-tree index at most. Based on the results
from [10, 11], the R-tree-based solution is the general preferable option for LSM spa-
tial index in most scenarios, hence in this paper, LSM R-tree indexes are focused only.

In addition to the organization of the local index discussed above, which deter-
mines how data is organized in a single LSM component (file), another key design
choice for spatial LSM indexes is the merge policy, which determines when and how
components are merged. The two main merge paradigms considered are stack-based
and leveled. In stack-based policies, components are organized as a stack, where the
most recent components are higher in the stack. Leveled policies use (almost) fixed-
size components, with newer components on higher levels; lower levels have more
components per level. Stack-based LSM trees usually have better write performance
and good read performance. Leveled LSM tree is the most popular paradigm in the
industry with very good read performance, but higher write amplification in general
[12].

The typical query for spatial indexing is a region query, where the region is typically
expressed as a Minimum Bounding Rectangle (MBR). For each component, its MBR is
maintained, so it is easy to filter components based on the query MBR. This filtering
is generally not effective in stack-based policies, as most components have very large
MBRs, comparable to the whole space in many applications. On the other hand, this fil-
tering can be more effective for Leveled policy, because the components on the same
level are mostly disjoint in key ranges. In the case of R-tree indexing, this means that the
components at the same level have non-overlapping MBRs, or possibly limited overall,
depending on the partitioning algorithm employed.

To achieve minimal spatial overlap in Leveled policies, spatial partitioning algorithms,
specifically Sort-Tile-Recursive (STR) [13] and R*-Grove [14], are employed. There are
several subtle implementation decisions that significantly affect the merge performance.
It is found that a critical one is the choice of comparator, which compares two spatial
records, because different comparator performs differently in high and low selectiv-
ity queries; certain combinations of comparator and partitioning algorithm in Leveled
policy can effectively create disk components of disjoint MBRs, which significantly
improves filtering efficiency.

A key contribution of the paper is that several LSM spatial indexing algorithms are
implemented on a common database system, AsterixDB, and compared them for write
and read performance using two spatial workloads. A key conclusion is that stack-based
policies generally perform better with low write and read cost. Although Leveled policy
had very high write amplification, certain configurations could achieve comparable write

Page 3 of 26Mao et al. Journal of Big Data (2023) 10:51

throughput to stack-based policies. Its read performance was also very competitive in
low selectivity queries.

In summary, this work makes the following contributions:

1. How an LSM architecture can be extended to support secondary spatial indexes is
studied ("Spatial LSM index based on R-tree"). Several design decisions and architec-
tures are considered.

2. A number of optimized partitioning algorithms for Leveled LSM R-tree index are
examined, which minimize the overlap among MBRs while also minimizing the I/O
cost ("Partitioning in leveled LSM R-tree").

3. All compared LSM spatial indexing policies on AsterixDB are implemented, and the
source code is publicly available at [15].

4. All LSM spatial indexing algorithms using a real-world dataset and a synthetic data-
set are experimentally compared ("Experimental evaluation").

5. Our observations and recommendations are discussed, which challenge the current
popularity of Leveled policies ("Discussion").

Background
"LSM tree" discusses the fundamentals of an LSM tree and how data is maintained.
"LSM architectures and merge policies" discusses two LSM architectures, stack-based
and leveled, and several state-of-the-art merge policies compared and evaluated for each
architecture.

LSM tree

An LSM tree [1] generally consists of two layers, one layer in memory which contains
one active memory component (a.k.a MemTable), and one layer on disk where data is
organized into one or multiple sorted runs [16]. Every sorted run contains records
sequentially ordered by the indexed key. Depending on the LSM tree architecture (dis-
cussed in "LSM architectures and merge policies"), a sorted run can have one or mul-
tiple immutable disk components. Components are typically implemented using a tree
structure, such as B+-tree. A tree structure usually partitions records into blocks or
pages as nodes (some may group multiple blocks or pages into frames as nodes). This
partition is usually referred to as local partition within a physical file. On the other hand,
a sorted run may be a virtual file that is partitioned into multiple physical files, which
is referred to as global partition. Local partition is often bound with the data structure
used in physical files, where global partition is associated with the LSM tree architec-
ture. Therefore, in this paper, only the global partition is primarily focused on.

All records inserted or updated are batched into the memory component. When the
memory component reaches its capacity, it is scheduled to be flushed to disk, creating a
disk component, as shown in Fig. 1. A flush operation sorts the records in the memory
component PM , then bulk-writes the sorted records to a disk component P2 . A compara-
tor, which compares two keys, is used to sort records in the memory component. A key

Page 4 of 26Mao et al. Journal of Big Data (2023) 10:51

is inserted to a separate in-memory delete table PD when a record is deleted (e.g. 2). PD
is flushed together with the PM , adding anti-matter (a.k.a tomestone) records (e.g. -(2))
to P2.

Reads become slower as the number of disk components increases. To improve the
read performance, disk components are merged based on a merge policy (a.k.a. com-
paction strategy). A merge operation scans all records from all merging components
and creates a sorted stream using a priority queue and the same comparator, then bulk-
writes the unique records into new disk component(s), as illustrated in Fig. 2. Obsolete
(old version) records are discarded during a merge, leaving only the newest version. For
example, (3, X, 18) from P1 gets removed because P2 has a newer version (3, Z, 18). An
antimatter record will overwrite any old versions of the same record (e.g record with
key 2), but will be overwritten by a new version of the same valid record (from a later
insertion). Anti-matter records can be deleted when the oldest sorted run is involved
in a merge. Write amplification is a common measurement of the write cost in an LSM
system. A read query first checks the metadata of all components, and adds components
whose key range contains the searched key to an ordered list of operational components.

Fig. 1 LSM flush operation. Primary (double line) and secondary (single line) memory components are
flushed independently to the top of disk components of the corresponding index. Delete table is flushed
together with the corresponding memory component (PM and PD , SM and SD), creating antimatter (a.k.a
tombstone) records (marked with -) in the flushed component. Index keys are underlined. The primary index
P’s schema is (CarID, OwnerID, ManufactureYear). A secondary index S is built on OwnerID

Fig. 2 LSM merge operation. Primary index and secondary index are merged independently. Anti-matter
records (marked with -) can be completely deleted if the oldest disk component (e.g. P1 or S1) is involved in
the merge

Page 5 of 26Mao et al. Journal of Big Data (2023) 10:51

All operational components may contain records to answer the query, thus, the num-
ber of operational components is usually used to compute the read amplification, which
measures the read cost in the worst case.1

LSM architectures and merge policies

Stack‑based LSM tree

In a stack-based LSM tree, every single disk component is a sorted run (thus compo-
nent and sorted run are interchangeable), where disk components are ordered by the
time created from flushes or merges. Stack-based merge policies generally merge only
consecutive disk components and create only one single disk component per merge.

Most stack-based merge policies make merge decisions based on certain size ratio
conditions, where every single merge involves similar sized disk components. Such
merge policies are often referred to as tiering style. The term tiering came from the
SizeTiered policy in Cassandra (described later in this section), while the term stack-
based came from Bigtable [17, 18]. Tiering style merge policies are a subset of stack-
based merge policies. A key difference is that component sizes in tiering style merge
policies are non-decreasing with respect to their time of creation, such that older
components are usually no smaller than any newer components, while such restric-
tion does not hold for the general stack-based merge policies, where there is no rela-
tion between component sizes and freshness. Certain stack-based policies choose to
restrict the total number of disk components to a constant number which limits the
worst case read amplification. These policies are called bounded-depth policies [18].

In this research, the following three stack-based merge policies are selected for
evaluation:

• Binomial policy was originally proposed by Mathieu et al. [17], then formally
defined and evaluated in [12, 18]. The name Binomial came from the fact that it
uses a Binary Search Tree to make merge decisions. It is a bounded-depth pol-
icy that maintains an optimal write cost with an upper bound of worst case read
amplification by only one parameter k, which restricts the maximum number of
disk components. Compared to the other online merge policies, whose merge
schedules are based on heuristic information such as component sizes, Binomial
policy is an offline policy whose merge schedule is pre-determined only on the
number of flushes. It was originally designed for append-only workload, but can
be adjusted for workloads with updates or deletions as well.

• Tiered (a.k.a SizeTiered) policy is the default policy in Cassandra [19], and had
been adopted as Universal Compaction [20] in RocksDB. It groups disk compo-
nents into tiers. Every tier has B disk components. Whenever a tier has B disk
components, all the B disk components are merged into a new component of B
times larger into the top of the next tier. B is also called size ratio or fanout fac-
tor. The implementation of Tiered policy varies in different systems. For exam-

1 Some operational components may be skipped by filters such as Bloom filter, reducing the actual read amplification.

Page 6 of 26Mao et al. Journal of Big Data (2023) 10:51

ple, besides selecting similar sized components to merge, the Universal compac-
tion in RocksDB can also select components that have more overlapping keys to
reduce space amplification, or simply merge several components to enforce the
total number of components to the number specified by level0_file_num_compac-
tion_trigger [20], if the other two options cannot be performed. In this paper, the
Tiered policy is implemented in a similar way to Cassandra, which only selects
components based on size ratio, thus ignoring components’ contents.

• Concurrent policy was recently added to AsterixDB to replace Prefix policy as its
new default policy [21]. Unlike Prefix policy, which tends to merge similar sized
components and excludes components whose sizes are larger than a user defined
threshold, Concurrent policy is bounded-depth by a parameter k. The disk compo-
nents to be merged are determined by a minimum length C, a maximum length D
and a size ratio � . Starting from the newest disk component, the policy considers
any longest sequence with disk components {Di,Di−1, . . . ,D1} where C + 1 ≤ i ≤ D ,
and merges them into a single disk component if |Di| ≤ �

∑i−1
j=1 |Dj| , where |Dj| is the

size of the disk component Dj.

Leveled LSM tree

In a Leveled LSM tree [6, 7] every level is a sorted run which is partitioned into multi-
ple (typically) disjoint disk components of the same size [22]. The number of disk com-
ponents in level i ≥ 2 is B times more than the number in level i − 1 . There may also
be a special level 0 which contains B0 disk components as a buffer, which holds flushed
disk components as multiple sorted runs. When a level reaches its capacity (B0 or Bi), a
disk component is selected and merged with all overlapping disk components in the next
level, creating one or multiple new disk components in the next level. While the oldest
disk component in level 0 must be selected, any disk component in other levels can be
selected. A point query only needs to check all disk components in level 0, and at most 1
disk component in every level i ≥ 1 . A range query may just need to check a few compo-
nents in each level, reducing the total size to be checked.

Comparing different merge policies

The major differences between stack-based and leveled LSM trees in terms of merge
operations are illustrated in Fig. 3. All sorted runs (disk components/levels) are ordered
from newer to older in top-down direction, where blue and orange rectangles represent
input and output components of a merge, respectively. Three consecutive components
are merged into a single component in a stack-based LSM tree, where in a leveled LSM
tree, one component ([3, 6]) from one level (L1) is merged with the only overlapping
component ([2, 5]) in the next level (L2) and the two output components are placed in
the next level (L2).

To better illustrate the difference among the four compared merge policies, their
sorted run sizes after some number of flushes are listed in Table 1. Component sizes in
Tiered and Concurrent are always non-decreasing. For Binomial, it is possible that some

Page 7 of 26Mao et al. Journal of Big Data (2023) 10:51

newer sorted runs are larger. For example, after 40 flushes, the third sorted run has size
20 while the fourth sorted run has size 15. Also the number of sorted runs in Binomial
never exceeds k = 4.

Fig. 3 Examples of merges in stack-based and leveled LSM trees. Input and output components in a merge
are marked in blue and orange, respectively. Keys in a component are represented by the numbers inside the
rectangle

Table 1 Sorted run sizes of the four compared merge policies, where newer sorted runs are on the
left

Each number is the size of a sorted run with respect to the MemTable size. Tiered, Concurrent and Leveled always have
sorted runs in non-decreasing order. The first two sorted runs in Leveled policy are two disk components in level 0, the
other numbers are the number of disk components of size 1 in the corresponding levels. Default parameters for Concurrent:
k = 30,C = 3,D = 10, � = 1.2.

Merge policy 20 Flushes 40 Flushes 60 Flushes 80 Flushes 100 Flushes 120 Flushes

Binomial
(k = 4)

1, 4, 15 2, 3, 20, 15 10, 50 10, 20, 50 15, 35, 50 1, 3, 10, 106

Tiered (B = 4) 4, 16 4, 4, 16, 16 4, 4, 4, 16, 16,
16

16, 64 4, 16, 16, 64 4, 4, 16, 16, 16, 64

Concurrent
(default)

3, 17 1, 1, 3, 35 1, 59 3, 77 1, 1, 3, 95 1, 119

Leveled
(B0 = 2, B = 4)

1, 1, 4, 14 1, 1, 4, 16, 18 1, 1, 4, 16, 38 1, 1, 4, 16, 58 1, 1, 4, 16, 64,
14

1, 1, 4, 16, 64, 34

Fig. 4 Types of LSM-based spatial indexes

Page 8 of 26Mao et al. Journal of Big Data (2023) 10:51

LSM secondary spatial index
This section first covers how LSM secondary indexes are maintained ("LSM Second-
ary Index"), which affects the trade-off between write and read performance. Then
it discusses two approaches to index the spatial data, which are special type of sec-
ondary data, on LSM systems: a B+-tree-based solution is discussed in "Spatial LSM
Index based on B+-tree", an R-tree-based solution is discussed in "Spatial LSM Index
based on R-tree". How different merge policies affect the spatial index performance
and present a partitioning algorithm for the Leveled policy is then discussed. Fig. 4
presents all the spatial LSM indexing approaches discussed in this paper.

LSM secondary index

Before talking about the spatial index, how LSM secondary indexes are constructed and
maintained must be explained. An LSM secondary index has almost identical architec-
ture to the primary index, except it is sorted by a composite key 〈SK ,PK 〉 , where SK is
the secondary key, and PK is the primary key. Records are first ordered by SK then by PK
in disk components. When a record gets updated or deleted in the primary index, the
current composite key in a secondary index may become invalid as SK is no longer valid
for PK. During record insertion, an eager strategy uses the PK (2 and 3 in Fig. 1) to find
the old value of SK (Y for 2 and X for 3), and then inserts an antimatter record with the
old SK and PK (two entries in SD) to all secondary indexes, so any read on a secondary
index will only return valid records thus the primary index does not need to be checked.
A lazy strategy does not update secondary indexes during records insertion but needs an
extra step, querying the primary index, to verify the returned records. Writes are usually
slower in the eager strategy due to the checking on all secondary indexes but reads can
be faster. On the other hand, the lazy strategy provides faster writes, but reads are slower
due to the extra validation in the query time. Detailed discussion about these secondary
indexing strategies can be found in [9, 23, 24].

An LSM secondary index can have its own memory component budget, and flushes
and merges are triggered independently of the primary index. Or it can share a global
budget with the primary index. In this design, the primary index and all secondary
indexes are always flushed together, but they may use different merge policies. Merges
may not be triggered at the same time, although certain merge policies (CorrelatedPrefix
policy in AsterixDB) can enforce the merges for all indexes at the same time. Read que-
ries on an LSM secondary index are very similar to the merge operation.

Spatial LSM index based on B+‑tree

Most of the works on LSM trees are optimized for single-dimensional data. Unlike sin-
gle-dimensional data, there is usually no clear definition of how to order multidimen-
sional spatial data. The most common approach is to project multidimensional data to
single-dimensional data to be indexed by a B+-tree. The projection is made through lin-
earization. One of the most common linearization methods is the space-filling curve.
The two most well-known space-filling curves are Z-order curve and Hilbert curve. The
BuildIndexes function of Algorithm 1 presents the pseudocode of building a spatial
index on B+-tree via space-filling curve. Both GeoMesa [25] and DataStax Cassandra

Page 9 of 26Mao et al. Journal of Big Data (2023) 10:51

[26] support this type of spatial index using GeoHash [25, 27], which is based on Z-order
curve. More details are discussed in "Related work".

A space-filling curve partitions space into cells of the same size and uses fixed-
length bit strings (usually 32/64-bit numbers) to represent each cell. A toy example of
a Hilbert curve with 4 bits is shown in Fig. 5. For point-type data, the value of the cell

Fig. 5 Example of Hilbert curve and spatial intersection query

Page 10 of 26Mao et al. Journal of Big Data (2023) 10:51

in which a point resides will be saved as the secondary key SK, and a B+-tree is built
on these cell values. Spatial queries may be handled in two ways to obtain the cells
to be scanned. The first method is to find the cell values for all corners of the query
MBR (the light purple region) and scans all cells between the smallest cell (2) and
the largest cell (13). This method utilizes sequential disk I/O but may waste lots of
resources checking records not in the contained cells (e.g., 3–6 and 9–12). It is gener-
ally preferred when the difference between the two values is small. Another method is
to identify the exact cells in which the query MBR covers (2, 7, 8, and 13), then scans
every covered cell. This method minimizes the disk I/O, but more random I/Os are
involved. It can be used if the minimum and maximum cell values are far apart or
very few cells are covered. Both methods get the records whose SK fall into the query
cells, but every record must be further checked using its spatial attribute. As shown
in the function SpatialSearch of Algorithm 1, the secondary spatial index is first
searched to get all the primary keys whose spatial keys match any of the space-filling
curve values from the searching MBR. This process may be implemented as a range
query or multiple point queries. Next, the spatial attribute of each unique primary
key must be obtained from the primary index. Then, the spatial attribute will be veri-
fied with the searching MBR to determine if the record shall be returned.

Spatial index with linearized data on B+-tree can be very efficient due to the superior
random and sequential read performance of B+-tree. It is also relatively easy for an exist-
ing database system to support spatial index with some extended framework (GeoMesa)
Despite these advantages, these methods have some common drawbacks. The major
issue is that this type of index requires some prior knowledge about the space, such
as the minimum and maximum values of each dimension, and object distribution, to
decide the number of cells to use. Storing cell values costs extra disk space and I/O dur-
ing index writes and reads. Spatial objects in some cells may be very dense, making scans
in these cells relatively slow.

Spatial LSM index based on R‑tree

Spatially close objects may not have close cell values, as shown in Fig. 5. A natural way
is to place nearby records into the same groups. R-tree [28] and R*-tree [29] are widely
used as local indexes for spatial data, which partition records into disk blocks based on
their spatial locations (in this paper, R-tree and R*-tree are used interchangeably). The
R-tree has a similar implementation to B+-tree, except it partitions leaf nodes and cre-
ates internal nodes by MBRs. Spatial queries may need to traverse multiple paths to leaf
nodes to find records. To bulk-write an R-tree, records are sorted by a comparator, then
packed into multiple partitions as leaf nodes and create internal nodes accordingly in
a bottom-up fashion. Common comparators used in R-tree include space-filling curve
comparators (Hilbert curve or Z-order curve), and simple bitwise comparator (Algo-
rithm 2). Because only the relative order of two records is needed, space filling curves
values are only computed during run-time, and do not need to be stored together with

Page 11 of 26Mao et al. Journal of Big Data (2023) 10:51

the records, which saves disk space and reduces disk I/O. The simple comparator com-
pares two points by each dimension, which is essentially the Nearest-X algorithm [13,
30]. Note that it is a generalized version of the comparator used for single-dimensional
data.

In an LSM R-tree index, SK is the spatial location of every record, typically as an array
of numbers. The same records are compared multiple times during flushes, merges, and
queries. With a space-filling curve comparator, linearized values of records must be
re-computed every time, potentially adding delays to those operations. In most cases,
R-tree (or R*-tree) is the preferred option for spatial index [10, 11]; hence in this paper,
the LSM R-tree designs is only focused on.

A spatial query first determines the list of operational components by checking each
component’s MBR, represented by the minimum key (bottom left point) Kmin and the
maximum key (top right point) Kmax , where K represents an array. Given two compo-
nents C : �Kmin,Kmax� and C ′ : �K′

min,K
′
max� and the number of dimensions D ≥ 1 , the

two components are overlapping if and only if (1) is satisfied, or disjoint otherwise.

Then, a spatial search can scan all operational components and return the results
directly, as shown in Algorithm 3. Depending on the actual query, the primary index
may not be involved in the spatial search.

(1)∀d ∈ [1,D] : Kmin[d] ≤ K
′
max[d] ∧ K

′
min[d] ≤ Kmax[d].

Page 12 of 26Mao et al. Journal of Big Data (2023) 10:51

As described in "Stack-based LSM Tree", stack-based merge policies are often unaware
of disk components’ contents like key boundaries, which merges are scheduled in the
same way regardless of the type or dimensions of the data. Disk components have a high
chance to have intersected MBRs with each other, making MBR based filtering at com-
ponent level less important for stack-based policies. Also, R-tree employs MBR-based
filtering on the disk block level internally; only a small portion of disk components is
read even if the component size is large. Although a spatial query usually needs to scan
all disk components, the read amplification is not high, due to the low average number of
disk blocks scanned per component. To the best of our knowledge, AsterixDB is the only
system that uses stack-based LSM R-tree indexes.

Stack-based LSM R-tree indexes mostly rely on the local index of disk components
for spatial queries, which has little room to improve in the policies themselves. How-
ever, it is very different for the Leveled LSM R-tree index. A Leveled LSM R-tree index
may have thousands of disk components. A spatial query can potentially check all disk
components in the worst case, which leads to very high read amplification and low local-
ity. Two key design decisions are (a) how to partition records into components during
merges and (b) what comparator to use to order records inside a component to allow
faster merges. They will be discussed in the next section in detail. To the best of our
knowledge, no current system is using leveled LSM R-tree indexes, which is surprising
given the popularity of leveled merge policies. All the discussed policies on AsterixDB
are implemented for the experiments.

Partitioning in leveled LSM R‑tree

A partitioning algorithm is necessary to split records into different disk components,
which affects the performance of write and read operations of a leveled LSM tree. It
must be capable of distributing records into a fixed number of partitions such that the
number of records in all partitions are roughly the same. This section discusses three
partitioning algorithms, size, STR and R*-Grove, along with two comparators, the Hil-
bert curve comparator, and the simple comparator.

Page 13 of 26Mao et al. Journal of Big Data (2023) 10:51

Size partitioning Size partitioning is the default partitioning algorithm used in lev-
eled LSM-trees. It simply distributes sorted records into multiple disk components such
that all disk components have roughly the same size. A priority queue takes streams of
sorted records from each merging component as inputs, and outputs a stream of sorted
records from all merging components, similar to the sort-merge join algorithm. Because
records are already sorted in each component, storing them in memory for sorting is not
needed. Size partitioning only fetches one disk block from each merging disk compo-
nent at a time, so the memory requirement is minimal. The order of the records depends
on the comparator being used. By default, AsterixDB sorts spatial records by a Hilbert
curve comparator for 2-D point data and Z-order curve comparator for the other types
of spatial data. The two space filling curve based comparators cannot guarantee spatially
disjoint disk components, as shown in Fig. 6b as the partitioning result from Fig. 6a. On
the other hand, if size partitioning is coupled with the simple comparator, this combina-
tion can achieve a similar result as STR partitioning, which will be discussed in the next
paragraph.

STR partitioning Sort-Tile-Recursive (STR) [13] was originally proposed to pack
blocks for R-tree for point data. This partitioning algorithm is adopted in leveled LSM
R-tree index. When disk components are merged, STR is applied to partition all merg-
ing records to multiple spatially disjoint groups and create a separate disk component
for each group. That way, all disk components in one sorted run are disjoint, regard-
less of the comparator. For non-point data, STR is applied to the center points of spatial
objects, but MBRs are computed from their actual MBRs. The comparator only affects
the order of the records inside each component, but the components’ MBRs remain the
same. There are two major drawbacks of STR partitioning. The first is that STR requires
storing all merging records in memory for sorting, leading to much higher CPU and
memory usage, otherwise, external sorting is needed which incurs much higher disk I/O

Fig. 6 Examples of three partitioning algorithms from the same input. Points are uniformly distributed in
each of the four input MBRs and are marked with dots in the three partitioned sub-figures

Page 14 of 26Mao et al. Journal of Big Data (2023) 10:51

cost. Thus, it is generally slower than size partitioning. The second is that because STR
gives higher weights on more significant dimensions, it tends to create narrow but tall
rectangles (as shown in Fig. 6c from the same input), which may make read queries less
efficient as a read query may need to check more disk components although only a small
portion of each disk component is actually needed. This may be even more severe for
higher dimensional data [14, 31].

Partitioning R*-Grove [14, 31] partitioning is also ported, which aims to create square-
like and balanced partitions for analytic frameworks like Apache Hadoop and Spark, into
AsterixDB for our experiments. R*-Grove partitions spatial records in three phases: a
sampling phase which draws a random sample of the input records, a boundary compu-
tation phase which generates partition boundaries with desired level of load balance, and
a final partitioning phase which puts every record into the corresponding partition. Like
STR, comparator does not affect the partitioning but only affects the internal organiza-
tion of disk components. As shown in Fig. 6d (from the same input), R*-Grove tends to
create more square-like MBRs so fewer disk components may be checked. However, it
makes multiple passes to scan all records, and is computationally more expensive than
STR, for which merges are usually slower.

Both STR and R*-Grove face an issue of high memory usage, which limits the total
size of components to be merged. A possible solution is to make two passes on all merg-
ing disk components. The first pass samples a small number of records from all merg-
ing disk components, then STR or R*-Grove can be applied on the sampled records to
obtain partition boundaries. The second pass scans all records and puts them into a
corresponding partition whose MBR contains the record (or the center if it is not point
type). This method only uses a small amount of memory, but significantly increases
the number of disk I/Os during merge operations. The run time of placing n points
into p partitions is summarized in Table 2. Size partitioning simply scans all points lin-
early regardless of the comparator. STR partitioning requires sorting the points by each
dimension. For Hilbert curve comparator, sorting takes O(n log n) , thus the total run
time is O(n log n)+O(n) = O(n log n) . For Simple comparator, there is no need to sort
again, thus the total run time is just O(n) . The run time of R*-Grove can be found in [31].

Experimental evaluation
Datasets and workloads

Two geo-location datasets of exactly 100,000,000 2-D points were used in all experi-
ments. One is a real-world dataset randomly sampled from OpenStreetMap (OSM for
short) [32, 33]; the other is a synthetic dataset which longitude and latitude values were
uniform randomly generated. Points in the OSM dataset are highly clustered in urban
areas all over the world, especially in the United States and western Europe (Fig. 7a).
Points in the random dataset are uniformly distributed around the globe (Fig. 7b).

Table 2 Run time of spatial partitioning algorithms

Size STR R*‑Grove

Hilbert O(n) O(n log n) O(n log2 n)

Simple O(n) O(n) O(n log2 n)

Page 15 of 26Mao et al. Journal of Big Data (2023) 10:51

For each dataset, a workload with interleaved reads and writes is generated as follows:

1 A Load phase of 50,000,000 records. Each record is associated with a unique ID
in long type and a random string of 1000 bytes as a synthetic attribute (e.g., geo-
location description). Points are stored as two double type numbers. Every record is
exactly one kilobyte long.

2 An Insert phase containing 500,000 records.
3 A Read phase containing 10,000 spatial intersection queries. The query rectangle

center is a point randomly picked from all previously inserted points. The rectan-
gle size is determined by a random selectivity 10−σ , σ ∈ {3, 4, 5} , that the width and
height are 360× 10−σ and 180× 10−σ , respectively.

The Load phase was executed once in the beginning, then the Insert phase and Read
phase were interleaved for 100 times that 100,000,000 total records were inserted (lead-
ing to 100 GB primary index and 2.4 GB LSM R-tree index), and 1,000,000 queries were
executed. This interleaved workload guarantees the same data size in the corresponding
insert phase and read phase in all experiments for fair comparisons.

Read queries were generated in a way that every query can return at least one record.
Other selectivity values with σ ∈ {1, 2} and σ ∈ [6, 10] are also tested. It is observed the
same results for σ ∈ {1, 2} with σ = 3 , and σ ∈ [6, 10] with σ = 5 , hence only results for
σ ∈ {3, 5} are reported (σ = 4 and σ = 5 are very similar). To avoid access to the primary
index, COUNT(*) function is used so only the LSM R-tree index would be scanned.
AsterixDB provides several built-in spatial functions, only “spatial_intersect” operates
on the LSM R-tree index. Many other types of spatial query are usually based on prun-
ing using MBR intersections, such as circle range, kNN and distance join, it is reasonable
to focus on this type of rectangular intersection queries.

Experimental setup

Apache AsterixDB [34] is a full-function, open-source Big Data Management System
(BDMS) on LSM storage. The primary index of a dataset is stored as LSM B+-tree, the
spatial index is stored as LSM R-tree. All secondary indexes and the primary index share
a global memory budget; thus, they are always flushed together. AsterixDB uses the
eager strategy to maintain secondary indexes. Spatial records are ordered by a Hilbert

Fig. 7 Heatmap of the two datasets, coordinates range from [−180◦ ,−90◦] to [180◦ , 90◦]

Page 16 of 26Mao et al. Journal of Big Data (2023) 10:51

curve comparator or a Simple comparator. MBR of a disk component is computed from
all records when it is created from a flush or a merge.

All experiments were performed on 5 AWS m5.large instances. Each instance has 2
vCPUs running on Intel Xeon Platinum 8175 M, 8 GB of memory, and 200 GB general
purpose SSD (gp2). All 5 instances are located in the same zone “us-west-2b”, connec-
tions within instances only used private IP to minimize network latency. AsterixDB
was configured to use a single node in each server. Other configurations were set to
the defaults. The average size of the flushed disk components in LSM R-tree index was
around 2 MB.

Merge policy configurations

The following merge policy configurations were applied to the LSM R-tree index:

• Binomial: k ∈ {4, 10}.
• Tiered: B ∈ {4, 10}.
• Concurrent: Default (k = 30 , C = 3 , D = 10 , � = 1.2).
• Leveled: B0 = 2 , B = 10 , size, STR and R*-Grove partitioning.

Binomial policy’s performance does not change much when k > 20 . Setting a too small
k will lead to merges at almost every flush. Thus k = 4 is chosen to test its performance
with lower read amplification but higher write amplification, and k = 10 for higher read
amplification but lower write amplification. The default size ratio (B) is 4 in Apache Cas-
sandra’s SizeTiered Compaction Strategy, and is 10 in RocksDB’s Universal Compaction.
These two values are chosen for Tiered. With a smaller size ratio, merges are more fre-
quent, thus write amplification is higher, but read amplification is lower. On the other
hand, a larger size ratio will lead to lower write amplification but higher read amplifica-
tion. For Concurrent, its default configuration is used, as suggested in [21]. The default
size ratio B = 10 is used in LevelDB and RocksDB in our experiments, and it is a good
comparison to Tiered for the same size ratio setting. The maximum number of files
in level 0 (B0) is reduced from 36 (default in RocksDB) to 2 to further reduce its read
amplification.

Both Hilbert curve comparator and Simple comparator were paired with each configu-
ration. To avoid interference from the primary index, Binomial policy is set to use k = 8
for the primary index in all runs. For runs of Leveled policy, a selection algorithm to pick
a disk component that overlaps with the fewest disk components in the next level, aim-
ing at minimizing their write amplification, is used.

Write performance

Write amplification A merge policy with higher write amplification writes more data,
which may reduce the write throughput, potentially slow down other operations as well.
The write amplification of policies with different configurations for the two datasets
are presented in Fig. 8 and Table 3. Write amplification of all stack-based policies are
not affected by the dataset because the policies are all content-unaware. Comparators
only affect the order of records within disk components, but not component sizes. The
write amplification of a stack-based policy is the same for all its configurations, so they

Page 17 of 26Mao et al. Journal of Big Data (2023) 10:51

are combined in the figure. Binomial with k = 10 , Tiered with B = 10 , and Concurrent
had the lowest write amplification as they merge infrequently. Binomial with k = 4 and
Tiered with B = 4 had slightly higher write amplification as they merged more eagerly,
and Binomial must bound the number of disk components.

All Leveled policy runs had much higher write amplification than any stack-based
policy. Write amplification for the random dataset is higher than the OSM dataset. For
the random dataset, it has a higher chance of having more overlapping disk components
involved in every merge. Runs using R*-Grove partitioning had the highest write ampli-
fication among all and are even more significant in the random dataset. Runs using size
partitioning with Hilbert curve comparator had the second highest write amplification,
as this setting failed to generate disjoint disk components. Runs using STR partition-
ing with either comparator had slightly lower write amplification because STR parti-
tioning guarantees disjoint disk components, so merge sizes were smaller on average.
Runs using size partitioning with Simple comparator achieved the lowest among them
because merging records were ordered by the longitude values; thus, they were parti-
tioned into disjoint groups, creating almost disjoint disk components.

The write amplification of runs using R*-Grove is much higher than the other runs
of Leveled policy, especially in the random dataset. A key reason is that a partitioning
algorithm that generates disjoint key ranges can only guarantee that the merged com-
ponents do not overlap with any other component in the level for single dimensional
data, as shown in Fig. 9a, where component 1 from level i has overlapping key range
with component 3 and 4 from level i + 1 (each rectangle represents the component’s key
range in the whole key space). However, as shown in Fig. 9b, creating disjoint merged
components may fail to guarantee disjoint components in the level. Having overlapping
components in a level does not only increase the read amplification, but also increases
the write amplification as the probability of merging with more components becomes
higher. STR partitioning also has this issue, but it is not so obvious. MBRs created from
STR partitioning tend to be tall and thin, which will look like a vertically stretched ver-
sion of Fig. 9a, in that there will be only a few overlapping components in every level.

Fig. 8 Write amplification of compared policies with different configurations

Table 3 Overall write amplification of compared policies.

Binomial Tiered Concurrent Leveled

k = 4 k = 10 B = 4 B = 10 Default Hilbert, Size Simple, Size STR R*‑Grove

OpenStreet-
Map

9.55 6.05 9.64 4.62 6.58 23.00 16.90 19.38 23.68

Random 9.55 6.05 9.64 4.62 6.63 27.74 21.97 23.65 39.90

Page 18 of 26Mao et al. Journal of Big Data (2023) 10:51

But for R*-Grove, overlapping components can frequently occur, leading to much higher
write amplification.

Write throughput The write throughput is further measured and listed in Fig. 10. All
stack-based policies showed a very high write throughput. Binomial and Tiered runs had
the highest write throughput. Concurrent has much lower write throughput though its
write amplification is low. For runs of Leveled policy, write throughput of runs with Sim-
ple comparator was very close to Binomial and Tiered despite having high write amplifi-
cation, runs with Hilbert curve comparator still got the lowest throughput as expected.
The write throughput of runs using R*-Grove partitioning were much lower than the
others.

All indexes shared a global memory budget in AsterixDB; any secondary index was
always flushed together with the primary index. The write throughput of an LSM sec-
ondary index can be dominated by the throughput of the primary index, as the primary
index is much larger (2.4 GB vs 100 GB). For this reason, write throughput of Binomial
and Tiered runs were slowed down. Write stalls or spikes are not observed in write
throughput in the R-tree index either, which should be common in stack-based policies
[35, 36].

Hilbert curve comparator is generally slower in computation than Simple compara-
tor as it needs multiple internal iterations to compare two values, significant overheads
could be added to write throughput. To verify this hypothesis, a set of small experiments

Fig. 9 Components’ key boundaries before and after a merge, where components 2, 3 and 5 are merged and
replaced by 6, 7 and 8 (illustration purpose only, not from real data)

Fig. 10 Average write throughput (requests per second) for all policies with different configurations

Page 19 of 26Mao et al. Journal of Big Data (2023) 10:51

have been done, using the same source codes of both comparators plus a Z-order curve
comparator from AsterixDB to sort arrays of 1,000,000 random points of 2, 3 and 4
dimensions, respectively. Results in Fig. 11 showed that Simple comparator is about six
times faster than the other two.

Read performance

The read performance is measured by the following two metrics: (a) average (mean) read
amplification, i.e., the number of operational disk components of each spatial query,
and (b) average (mean) read latency, i.e., the total time spent to scan all operational disk
components. Latency here is different from query response time in that it measures the
time accessing every operational disk component and excludes the time of query compi-
lation and network latency.

High selectivity (10−3)
A spatial query with higher selectivity covers a more substantial area, which returns

more results on average. The average number of returned records is measured to
be about 28,000 for the OSM dataset and 75 for the random dataset. The difference
between these two numbers signified from the clustering of the OSM dataset, where a
large selectivity query hit more points in highly clustered areas than unclustered areas in
the random dataset.

The average read amplification and latency for the OSM dataset are shown in Fig. 12a.
In general, the read amplification of a stack-based LSM index is the same as the total
number of disk components, because all disk components must be scanned. For leveled
LSM index, only 10 to 20 disk components were scanned, even though over 1000 disk
components were available; MBR based filtering was very efficient. Two runs using size
partitioning had the highest two read amplification. Looking into latency, all policies
with Hilbert curve comparator had lower latency than those with Simple comparator,
except for the runs using R*-Grove partitioning. With Hilbert curve comparator, stack-
based policies still had the lowest latency numbers, the latency of Leveled policy using
size partitioning and R*-Grove partitioning were not bad. Surprisingly, Leveled policy
using R*-Grove partitioning with Simple comparator achieved very competitive results
to the faster five runs of the stack-based policies with Hilbert curve comparator, while
most of the other Leveled policy runs were slower. Overall, Hilbert curve comparator
would be preferred for large selectivity queries, read latency is almost linearly correlated
to the read amplification; thus stack-based policies might be better, but Leveled policy
using R*-Grove partitioning with Simple comparator is also a good option.

Fig. 11 Total time to sort arrays of 1,000,000 random points. AsterixDB’s Hilbert curve comparator only
supports two dimensional points due to its slow computation for higher dimensions

Page 20 of 26Mao et al. Journal of Big Data (2023) 10:51

For the random dataset, read amplification was about the same as the OSM dataset
for all stack-based policies, as shown in Fig. 12b. However, read amplification of Lev-
eled policy runs dropped to below 8 with significant improvements, meaning that MBR
based filtering had been even more efficient for this type of dataset. Runs with Hilbert
curve comparator still outperformed runs with Simple comparator for read latency,
except for the runs using R*-Grove partitioning. Still, runs of Leveled policy ranked very
well among them, especially the run using R*-Grove partitioning with Simple compara-
tor which ranked second, thanks to their lower read amplification. Latency numbers in
the random dataset were 6 to 8 times shorter than the numbers in the OSM dataset.
Here, reads tend to be slower in the highly clustered dataset for high selectivity queries.

Low selectivity (10−5)
Common spatial queries usually return less than 100 results, which cover a relatively

small area. In our experiments, an average of 12 results is measured from the OSM data-
set and 1 from the random dataset. However, the number could be 0 most of the time for
the random dataset if query rectangles were not generated from existing points.

Similar to high selectivity queries, write amplification of all the stack-based policies
remained the same for both datasets, as almost all disk components were scanned, as
shown in Fig. 13a, b. Except for one run of Leveled policy using size partitioning with
Hilbert curve comparator, the other five runs of Leveled policy became very competi-
tive in both datasets, which even had lower read amplification than some stack-based
policies. The two runs using STR partitioning, and the runs using size partitioning and
R*-Grove partitioning with Simple comparator, had much better MBR based filtering for
low selectivity queries.

Fig. 12 Average read amplification and latency for selectivity 10−3

Page 21 of 26Mao et al. Journal of Big Data (2023) 10:51

Because of the lower read amplification and fewer returned records, read latency num-
bers were all smaller than those in the high selectivity queries. Runs with the Hilbert
curve comparator were slower than those with the Simple comparator. The slower com-
putation of the Hilbert curve comparator became a significant bottleneck for low selec-
tivity queries, while it showed superior efficiency for high selectivity queries. The three
Leveled runs with Simple comparator were all in the top four among all. Queries could
finally take advantage of their better MBR based filtering capabilities to provide much
faster index access time. From comparing the two figures of read latency for the two
datasets, it can be seen that the numbers are very close to the same policy with the same
configuration. The impact of data clustering was not evident on read performance for
small selectivity queries.

Discussion
Among all the compared policies, Binomial was the winner in almost all settings, show-
ing the best read amplification and latency numbers, while maintaining the highest write
throughput and near-top write amplification. Concurrent was only second to Binomial
in terms of read performance in most settings, but it had relatively low write through-
put, although its write amplification was low. Its multithreaded merge was a bottleneck
in write throughput. There could be some optimizations to multi-threaded merges, but
most need hardware or operating system support [7, 37]. Tiered had the lowest write
amplification and very high write throughput, but the read performance was sacrificed.
The Leveled policy had the highest write amplification, but writes could still be fast
with proper configurations. In our experiments, the Leveled policy showed good read
performance mostly in low selectivity queries, although the combination of R*-Grove

Fig. 13 Average read amplification and latency for selectivity 10−5

Page 22 of 26Mao et al. Journal of Big Data (2023) 10:51

partitioning and Simple comparator achieved outstanding read performance at the cost
of the lowest write performance. Therefore it may not be a good option for high selectiv-
ity queries in general. There could be cases where it may be better suited. Leveled archi-
tecture is a perfect fit for object stores (Amazon S3, Microsoft Azure, etc.) which tend to
have many relatively small files (or so-called blobs). Compared to stack-based policies, it
can manage records more efficiently via file (disk component) based filtering, rather than
relying on local indexes.

In terms of policy configuration, Hilbert curve comparator performed better than
Simple comparator in high selectivity queries but was worse in low selectivity queries
due to its slow computation. If Leveled policy must be chosen, size partitioning is gen-
erally a good option for high selectivity queries, while STR partitioning and R*-Grove
partitioning are still very competitive, especially in low selectivity queries. With a larger
index size, STR and R*-Grove might be better options because they guarantee to cre-
ate disjoint disk components to have better MBR based filtering capability. However, the
higher CPU and memory requirement during merges as well as the low write perfor-
mance of R*-Grove must be considered.

How LSM secondary indexes are maintained may have a major impact on the write
and read performance of a secondary index. With the eager strategy, write throughput
may be determined by the primary index, while with the lazy strategy, read latency may
be dominated by the time to verify returned records against the primary index.

Limitations and future work This paper focuses on the write and read performance of
R-tree based LSM spatial indexes. Based on the results from [11], comparisons against
indexes based on B+-tree are not included, which may be a more common approach on
existing LSM database systems. It may be worthwhile to revisit these designs on differ-
ent LSM architectures, since B+-tree usually has better write and read performance than
R-tree for certain types of non-intersection spatial queries. The lack of optimizations on
hardware and operating system limited the MBR based filtering efficiency for Leveled
policy. Some better results would be expected for Leveled policy if some optimizations
could be done, such as hardware support for MBR based filtering (e.g. FPGA based fil-
tering) to utilize STR or R*-Grove partitioning.

Related work
Supporting spatial index

Most LSM systems only support single-dimension indexes such as B+-tree. To sup-
port spatial index, they must rely on some linearization method to project multidi-
mensional data into a single dimension to be loaded in B+-tree. GeoMesa [25] is a
spatial-temporal index that supports so-called Bigtable-style databases including
Google Bigtable [5], Apache Accumulo [38], Apache HBase [4]. It uses a customized
GeoHash [25, 27] implementation based on the Z-order curve to encode spatial and
temporal data into bit strings. STEHIX [39] and Brahimet et al. [26] took a similar
approach but only limited to HBase and DataStax Cassandra, respectively. Kim et al.
[10, 11] studied five LSM spatial indexes, four of them fall into this category: DHB-
tree, DHVB-tree, and SHB-tree all map point data with space-filling curves (Hilbert
curve); SIF builds an inverted index (based on B+-tree) but the main idea is similar to

Page 23 of 26Mao et al. Journal of Big Data (2023) 10:51

SHB-tree. Like SIF, a posting list based LSM inverted index design described in [24]
can also be extended to support spatial index.

Another common approach is to build LSM spatial indexes on R-tree. One imple-
mentation is to use an external R-tree index to manage multiple LSM trees. R-HBase
[40] and BGRP-tree [41] partition the data space into grid cells or regions and use an
in-memory R-tree to index the partitions, although the local indexes are still built on
B+-trees. Nanjappan implemented a separate R∗-tree index outside of Cassandra [42].
LevelGIS [43] uses a three-layer hierarchical structure of R-tree index on LevelDB to
support spatial queries. Like AsterixDB [2], some choose to use R-tree as the inter-
nal index for each component in the LSM tree. LSM RUM-Tree [44] utilizes Update
Memo on AsterixDB’s R-tree index to support update-intensive spatial workloads,
which is orthogonal to our work. [45] described how multi-valued fields are indexed
in AsterixDB, which could also be extended to improve the R-tree index performance
as a future work. Many open-source projects add spatial index support to LevelDB,
RocksDB, and some other LSM systems, most still use the first approach which is B+-
tree with linearized spatial data, only a few of them adopt the LSM R-tree approach.
To the best of our knowledge, none of these projects have been deployed in prac-
tice. RocksDB used to provide a utility called SpatialDB, but it got abandoned and
removed from GitHub since January 2019.

Some systems choose to use an LSM database only for storage and use some other
structures for spatial queries. For example, DataStax stores geospatial data in Cassan-
dra, but builds geospatial indexes and handles geospatial queries via Solr [46]. Com-
pared to native LSM secondary spatial index, the key drawback of such systems is that
insertions are slower as they need to be written to two or more systems.

All the above spatial index support techniques are summarized in Table 4.

Table 4 Summary of spatial index support in various systems

Linearized
B+‑tree

Internal R‑tree Exteral R‑tree Inverted index Separate
framework
(Spark)

GeoMesa [25] �

STEHIX [39] �

Brahim et al. [26] �

DHB-tree, DHVB-tree,
and SHB-tree [10, 11]

�

SIF [10, 11] �

Qader et al. [24] �

R-HBase [40] �

BGRP-tree [41] �

Nanjappan [42] �

LevelGIS [43] �

AsterixDB [2] �

LSM RUM-Tree [44] �

Galvizo [45] �

DataStax [46] �

Page 24 of 26Mao et al. Journal of Big Data (2023) 10:51

Spatial partitioning algorithms

Partitioning algorithms can highly affect the write and read performance of a leveled
LSM R-tree index. Some R-tree packing algorithms can be directly used for parti-
tioning in merges. The combinations of size partitioning with Hilbert curve compara-
tor and Simple comparator have the same effect as Hilbert Sort [47] and Nearest-X
[30], respectively, which are both outperformed by STR partitioning [13]. OMT [48]
is a top-down R-tree bulk-loading algorithm which might be portable as well. Other
partitioning algorithms include sampling-based methods like SpatialHadoop [49] and
R*-Grove [14, 31], and quad-tree-based method like [50] for Hadoop. Most of these
algorithms designed for R-tree bulk-loading or Hadoop can efficiently handle static
data, where the data is written only once. However, they are usually not designed for
dynamic data, where the data frequently changes in some write-heavy workloads. A
better partitioning algorithm that takes both heavy writes and reads is much desired,
that LSM spatial index can benefit a lot from it.

Conclusions
This paper compared and evaluated secondary spatial index performance of both
stack-based and leveled LSM architectures with four representative merge policies,
on a common platform (AsterixDB). The results from both the OpenStreetMap data-
set and the synthetic random dataset have shown that Binomial policy is probably
the best candidate for LSM R-tree-based spatial index, although it is not specifically
optimized for multidimensional spatial data. While having higher write amplification
and generally lower write throughput, with proper configuration, Leveled policy can
achieve close or even better read performance to some of the better stack-based poli-
cies. Although most stack-based policies do not benefit from MBR based filtering at
the disk component level, MBR based leveled partitioning can provide much better
filtering efficiency to improve spatial query performance in proper settings. Com-
pared to analytic frameworks, a key challenge of MBR based leveled partitioning in
LSM tree is to maintain more disjoint square-like MBRs while keeping the write cost
low. The selectivity of spatial queries should be considered when choosing a compara-
tor and partitioning algorithm for a Leveled policy.

Abbreviations
LSM Log-structured merge
MBR Minimum bounding rectangle
OSM OpenStreetMap
SSTable Sorted string table
STR Sort-tile-recursive

Acknowledgements
Not applicable.

Author contributions
QM led the implementation and the experiments. QM and MAQ worked on the algorithms and the related work. VH
came up with the problem definition and overall research direction. All authors contributed to the writing. All authors
read and approved the final manuscript.

Funding
This work was supported by NSF Grants IIS-1838222, IIS-1901379 and IIS-2227669.

Page 25 of 26Mao et al. Journal of Big Data (2023) 10:51

Availability of data and materials
The datasets generated and/or analyzed during the current study are available in the UCR STAR repository, https:// star. cs.
ucr. edu/ [33].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 22 March 2022 Accepted: 11 April 2023

References
 1. O’Neil P, Cheng E, Gawlick D, O’Neil E. The log-structured merge-tree (LSM-tree). Acta Inf. 1996;33(4):351–85. https://

doi. org/ 10. 1007/ s0023 60050 048.
 2. Alsubaiee S, Altowim Y, Altwaijry H, Behm A, Borkar V, Bu Y, Carey M, Cetindil I, Cheelangi M, Faraaz K. et al. AsterixDB:

A scalable, open source BDMS. arXiv preprint 2014;arXiv:1407.0454
 3. Lakshman A, Malik P. Cassandra: a decentralized structured storage system. SIGOPS Oper Syst Rev. 2010;44(2):35–40.

https:// doi. org/ 10. 1145/ 17739 12. 17739 22.
 4. George L. HBase: the definitive guide: random access to your planet-size data. Sebastopol, CA, USA: O’Reilly Media

Inc; 2011.
 5. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: a distrib-

uted storage system for structured data. ACM Trans Comput Syst. 2008;26(2):4–1426. https:// doi. org/ 10. 1145/ 13658
15. 13658 16.

 6. Dent A. Getting started with LevelDB. Birmingham, UK: Packt Publishing Ltd; 2013.
 7. Dong S, Callaghan M, Galanis L, Borthakur D, Savor T, Strum M. Optimizing space amplification in RocksDB. CIDR.

2017;3:3.
 8. ScyllaDB Inc. ScyllaDB 2021;https:// www. scyll adb. com/
 9. Alsubaiee S, Behm A, Borkar V, Heilbron Z, Kim Y, Carey MJ, Dreseler M, Li C. Storage management in AsterixDB. Proc

VLDB Endowment. 2014;7(10):841–52.
 10. Kim Y. Transactional and spatial query processing in the big data era. PhD thesis, University of California, Irvine 2016.
 11. Kim Y, Kim T, Carey MJ, Li C. A comparative study of log-structured merge-tree-based spatial indexes for big data. In:

2017 IEEE 33rd International Conference on Data Engineering (ICDE), 2017; pp. 147–150 . IEEE.
 12. Mao Q, Jacobs S, Amjad W, Hristidis V, Tsotras VJ, Young NE. Comparison and evaluation of state-of-the-art LSM

merge policies. VLDB J. 2021;30(3):361–78. https:// doi. org/ 10. 1007/ s00778- 020- 00638-1.
 13. Leutenegger ST, Lopez MA, Edgington J. STR: a simple and efficient algorithm for R-tree packing. In: Proceedings

13th International Conference on Data Engineering, 1997; pp. 497–506. IEEE.
 14. Vu T, Eldawy A. R-Grove: growing a family of R-trees in the big-data forest. In: Proceedings of the 26th ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information Systems, 2018; pp. 532–535.
 15. Mao Q. Spatial Index on AsterixDB 2020. https:// git. io/ JUkaj.
 16. Ahn JS, Qader MA, Kang WH, Nguyen H, Zhang G, Ben-Romdhane S. Jungle: towards dynamically adjustable key-

value store by combining LSM-tree and copy-on-write B+-tree. In: 11th USENIX Workshop on Hot Topics in Storage
and File Systems 2019.

 17. Mathieu C, Staelin C, Young NE, Yousefi A. Bigtable merge compaction. arXiv preprint 2014;.arXiv:1407.3008
abs/1407.3008.

 18. Mao Q, Jacobs S, Amjad W, Hristidis V, Tsotras VJ, Young NE. Experimental evaluation of bounded-depth LSM merge
policies. In: 2019 IEEE International Conference on Big Data (Big Data), 2019; pp. 523–532. IEEE.

 19. Cassandra: How is data maintained? 2019. https:// docs. datas tax. com/ en/ cassa ndra- oss/3. 0/ cassa ndra/ dml/ dmlHo
wData Maint ain. html.

 20. Facebook Inc. RocksDB Wiki: Universal Compaction 2020. https:// github. com/ faceb ook/ rocks db/ wiki/ Unive rsal-
Compa ction.

 21. Luo C. Merge Policies and Schedulers in AsterixDB 2019. https:// cwiki. apache. org/ confl uence/x/ iQ3jBw.
 22. Luo C, Carey MJ. LSM-based storage techniques: a survey. VLDB J. 2020;29(1):393–418.
 23. Luo C, Carey MJ. Efficient data ingestion and query processing for LSM-based storage systems. 2018; arXiv preprint

arXiv: 1808. 08896.
 24. Qader MA, Cheng S, Hristidis V. A comparative study of secondary indexing techniques in LSM-based NoSQL data-

bases. In: Proceedings of the 2018 International Conference on Management of Data, 2018; pp. 551–566.
 25. Hughes JN, Annex A, Eichelberger CN, Fox A, Hulbert A, Ronquest M. GeoMesa: a distributed architecture for

spatio-temporal fusion. In: Geospatial Informatics, Fusion, and Motion Video Analytics V, 2015;vol. 9473, p. 94730.
International Society for Optics and Photonics.

 26. Brahim MB, Drira W, Filali F, Hamdi N. Spatial data extension for Cassandra NoSQL database. J Big Data. 2016;3(1):11.
 27. Niemeyer G. GeoHash 2008. http:// geoha sh. org.

https://star.cs.ucr.edu/
https://star.cs.ucr.edu/
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://www.scylladb.com/
https://doi.org/10.1007/s00778-020-00638-1
https://git.io/JUkaj
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlHowDataMaintain.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlHowDataMaintain.html
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://cwiki.apache.org/confluence/x/iQ3jBw
http://arxiv.org/abs/1808.08896
http://geohash.org

Page 26 of 26Mao et al. Journal of Big Data (2023) 10:51

 28. Guttman A. r -trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD Inter-
national Conference on Management of Data. 1984; pp. 47–57.

 29. Beckmann N, Kriegel H-P, Schneider R, Seeger B. The R∗-tree: an efficient and robust access method for points and
rectangles. In: Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, 1990; pp.
322–331.

 30. Roussopoulos N, Leifker D. Direct spatial search on pictorial databases using packed R-trees. In: Proceedings of the
1985 ACM SIGMOD International Conference on Management of Data, 1985; pp. 17–31.

 31. Vu T, Eldawy A. R∗-Grove: Balanced spatial partitioning for large-scale datasets. 2020; arXiv preprint arXiv: 2007. 11651.
 32. Haklay M, Weber P. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 2008;7(4):12–8.
 33. Ghosh S, Vu T, Eskandari MA, Eldawy A. UCR-STAR: the UCR spatio-temporal active repository. SIGSPATIAL Special.

2019;11(2):34–40. https:// doi. org/ 10. 1145/ 33770 00. 33770 05.
 34. Apache Software Foundation: Apache AsterixDB 2020. https:// aster ixdb. apache. org.
 35. Luo C, Carey MJ. On performance stability in LSM-based storage systems. Proc VLDB Endow. 2019;13(4): 449–462 .

https:// doi. org/ 10. 14778/ 33727 16. 33727 19
 36. Yao T, Zhang Y, Wan J, Cui Q, Tang L, Jiang H, Xie C, He X. MatrixKV: Reducing write stalls and write amplification in

LSM-tree based KV stores with matrix container in NVM. In: 2020 USENIX Annual Technical Conference (USENIX ATC
20), 2020; pp. 17–31. USENIX Association, Online.

 37. Wang P, Sun G, Jiang S, Ouyang J, Lin S, Zhang C, Cong J. An efficient design and implementation of LSM-tree based
key-value store on open-channel SSD. In: Proceedings of the Ninth European Conference on Computer Systems,
2014; pp. 1–14.

 38. Kepner J, Arcand W, Bestor D, Bergeron B, Byun C, Gadepally V, Hubbell M, Michaleas P, Mullen J, Prout A. Achiev-
ing 100,000,000 database inserts per second using Accumulo and D4M. In: 2014 IEEE High Performance Extreme
Computing Conference (HPEC), 2014; pp. 1–6. IEEE, Waltham, MA, USA . IEEE.

 39. Chen X, Zhang C, Ge B, Xiao W. Spatio-temporal queries in HBase. In: 2015 IEEE International Conference on Big Data
(Big Data), 2015; pp. 1929–1937. IEEE.

 40. Huang S, Wang B, Zhu J, Wang G, Yu G. R-HBase: a multi-dimensional indexing framework for cloud computing
environment. In: 2014 IEEE International Conference on Data Mining Workshop, 2014; pp. 569–574. IEEE.

 41. Takasu A, An efficient distributed index for geospatial databases. In: Database and Expert Systems Applications,
2015; pp. 28–42 . Springer.

 42. Nanjappan A. R*-Tree index in Cassandra for Geospatial Processing 2019.
 43. Xu R, Liu Z, Hu H, Qian W, Zhou A. An efficient secondary index for spatial data based on LevelDB. In: International

Conference on Database Systems for Advanced Applications, 2020; pp. 750–754. Springer.
 44. Shin J, Wang J, Aref WG. The LSM RUM-Tree: a log structured merge R-Tree for update-intensive spatial workloads. In:

2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021. pp. 2285–2290. IEEE.
 45. Galvizo G. On indexing multi-valued fields in AsterixDB. Master’s thesis, University of California, Irvine 2021.
 46. DataStax: Geospatial queries for Point and LineString 2021; https:// docs. datas tax. com/ en/ dse/6. 0/ cql/ cql/ cql_

using/ search_ index/ queri esGeo Spati al. html
 47. Kamel I, Faloutsos C. On packing R-trees. In: Proceedings of the Second International Conference on Information

and Knowledge Management, 1993; pp. 490–499.
 48. Lee T, Lee S. OMT: Overlap minimizing top-down bulk loading algorithm for R-tree. In: CAISE Short Paper Proceed-

ings, 2003; vol. 74, pp. 69–72.
 49. Eldawy A, Mokbel MF. SpatialHadoop: A MapReduce framework for spatial data. In: 2015 IEEE 31st International

Conference on Data Engineering, 2015; pp. 1352–1363. IEEE.
 50. Whitman RT, Park MB, Ambrose SM, Hoel EG. Spatial indexing and analytics on Hadoop. In: Proceedings of the 22nd

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2014; pp. 73–82.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2007.11651
https://doi.org/10.1145/3377000.3377005
https://asterixdb.apache.org
https://doi.org/10.14778/3372716.3372719
https://docs.datastax.com/en/dse/6.0/cql/cql/cql_using/search_index/queriesGeoSpatial.html
https://docs.datastax.com/en/dse/6.0/cql/cql/cql_using/search_index/queriesGeoSpatial.html

	Comparison of LSM indexing techniques for storing spatial data
	Abstract
	Introduction
	Background
	LSM tree
	LSM architectures and merge policies
	Stack-based LSM tree
	Leveled LSM tree
	Comparing different merge policies

	LSM secondary spatial index
	LSM secondary index
	Spatial LSM index based on B+-tree
	Spatial LSM index based on R-tree
	Partitioning in leveled LSM R-tree

	Experimental evaluation
	Datasets and workloads
	Experimental setup
	Merge policy configurations
	Write performance
	Read performance

	Discussion
	Related work
	Supporting spatial index
	Spatial partitioning algorithms

	Conclusions
	Acknowledgements
	References

