
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Ataei and Staegemann Journal of Big Data (2023) 10:56
https://doi.org/10.1186/s40537-023-00733-4

Journal of Big Data

Application of microservices patterns to big
data systems
Pouya Ataei1* and Daniel Staegemann2

Abstract

The panorama of data is ever evolving, and big data has emerged to become one of
the most hyped terms in the industry. Today, users are the perpetual producers of data
that if gleaned and crunched, have the potential to reveal game-changing patterns.
This has introduced an important shift regarding the role of data in organizations and
many strive to harness to power of this new material. Howbeit, institutionalizing data is
not an easy task and requires the absorption of a great deal of complexity. According to
the literature, it is estimated that only 13% of organizations succeeded in delivering on
their data strategy. Among the root challenges, big data system development and data
architecture are prominent. To this end, this study aims to facilitate data architecture
and big data system development by applying well-established patterns of micros-
ervices architecture to big data systems. This objective is achieved by two systematic
literature reviews, and infusion of results through thematic synthesis. The result of this
work is a series of theories that explicates how microservices patterns could be useful
for big data systems. These theories are then validated through expert opinion gather-
ing with 7 experts from the industry. The findings emerged from this study indicates
that big data architectures can benefit from many principles and patterns of microser-
vices architecture.

Keywords: Big data, Microservices, Microservices patterns, Big data architecture, Data
architecture, Data engineering

Introduction
Today, we live in a world that produces data at an unprecedented rate. The attention
toward this large volume of data has been growing rapidly and many strive to harness
the advantages of this new resource. This has emerged a new era; the era of big data
(BD). The BD era emerged when the velocity, variety, and volume of data overwhelmed
existing system capability and capacity to effectively and efficiently process and store
data. BD analytics can be described as the practice of crunching large sets of heterog-
enous data to discover patterns and insights for business competitive advantage.

Academics and practitioners have considered means through which they can incorpo-
rate data-driven functions and explore patterns that were otherwise unknown. While the
opportunities exist with BD, there are many failed attempts. According to a New Van-
tage Partners report in 2022, only 26.5% of companies successfully became data-driven

*Correspondence:
pouya.ataei@aut.ac.nz

1 School of Engineering
Computer and Mathematical
Sciences, Auckland University
of Technology, Auckland, New
Zealand
2 Faculty of Computer Science,
Otto-von-Guericke University
Magdeburg, Magdeburg,
Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00733-4&domain=pdf

Page 2 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

[1]. Another survey by Databricks highlighted that only 13% of organizations succeeded
in delivering on their data strategy [2].

Therefore, there is an increasing need for more research on reducing the complex-
ity involved with BD projects. One area with good potential is data architecture. Data
architecture allows for a flexible and scalable BD system that can account for emerg-
ing requirements. One way to absorb the body of knowledge available on data architec-
ture, can be reference architectures (RAs). By presenting proven ways to solve common
implementation challenges on an architectural level, RAs support the development of
new systems by offering guidance and orientation.

Another concept that has the potential to help with the development of BD systems
is the use of microservices (MS) architecture [3]. MS architecture allows for division of
complex applications into small, independent, and highly scalable parts and, therefore,
increase maintainability and allows for a more flexible implementation [4]. Neverthe-
less, design and development of MS is sophisticated, since heterogenous services have to
interact with each other to achieve the overall goal of the system. One way to reduce that
complexity is the use of patterns. Comparable to RAs, they are proven artifacts on how
certain problems could be solved. In the realm of MS, there are numerous patters that
can be utilized, depending on the desired properties of the developed system. Despite
the potential of MS architectures to solve some of complexities of BD development, to
our knowledge, there is no study that properly bridges these two concepts.

To this end, this study aims to explore the application of MS patterns to BD systems,
in aspiration to solve some of the complexities of BD system development. For this
purpose, the result of two distinct systematic literature reviews (SLRs) are combined.
The first SLR is conducted as part of this study to collect all MS patterns in the body of
knowledge. The second SLR is done by [5] to find all BD reference architectures (RAs)
available in the body of knowledge and to point out architectural constructs and limi-
tations. Findings from these SLRs are collected, captured and combined through the-
matic synthesis. As a result, various design theories are generated and validated through
expert opinion gathering.

The contribution of this study, is thereby twofold: (1) it assembles an overview of rele-
vant MS patterns and (2) it creates a connection between BD systems and microservices
architecture to facilitate BD system development and data architecture.

Related work
To the best of our knowledge, there is no study in academia that has shared the same
goal as our study. Laigner et al. [6] applied an action research and reported on their
experience of replacing a legacy BD system with a MS based event-driven system. This
study is not a systematic review and aims to create contextualized theory in a controlled
environment. In another effort, Zhelev et al. [7] described why event-driven architec-
tures could be a good alternative to monolithic architectures. This study does not follow
any clear methodology, and seems to contribute only in terms of untested theory.

Staegemann et al. [8] examined the interplay between BD and MS by conducting a
bibliometric review. This study aims to provide a general picture of the topic, and does
not aim to explore MS patterns and their relationship to BD systems in detail. Further,
Shakir et al. [9] generally discussed how to build BD architectures using MS but didn’t

Page 3 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

have the same focus on MS patterns we strive for, and Freymann et al. [3] proposed a
MS based BD architecture that, however, also didn’t touch on the pattern aspect. While
the problem of BD system development has been approached through RAs that absorbs
some of the concepts from MS architectures as seen in Phi [10] and Neomycelia [11],
there is no study that aimed to apply MS patterns to BD systems through a systematic
methodology.

Methodology
Since the goal of this study is to map BD architectures and MS patterns, it is conse-
quently essential to get a comprehensive overview over both domains. For this purpose,
it was decided to conduct two systematic literature reviews (SLR), one for each domain.
Both SLRs are conducted following the guidelines presented in Kitchenham et al. [12] on
evidence-based software engineering and Page et al. [13] on Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA). The former was used because of
its clear instructions on critically appraising evidence for validity, impact and applicabil-
ity in software engineering and the latter was used because it is a comprehensive and
well-established methodology for increasing systematicity, transparency, and prevention
of bias. To synthesize our findings, thematic synthesis as proposed by Cruzes and Dyba
was applied [14].

First review

The first SLR, which focuses on MS patterns, is designed rigorously and is conducted
in the following 14 steps: (1) selecting data sources, (2) developing a search strategy, (3)
developing inclusion and exclusion criteria, (4) developing the quality framework, (5)
pooling literature based on the search strategy, (6) removing duplicates, (7) scanning
studies’ titles based on inclusion and exclusion criteria, (8) removing studies based on
publication types, (9) scanning studies abstract and title based on inclusion and exclu-
sion criteria, (10) assessing studies based on the quality framework (includes three
phases), (11) extracting data from the remaining papers, (12) coding the extracted data,
(13) creating themes out of codes, (14) presenting the results. These steps are not direct
mappings to the following sub sections. Some sub sections include several of these steps.

Selecting data sources

To assure the comprehensiveness of the review, a broad set of scientific search engines
and databases was queried. To increase the likelihood of finding all relevant contribu-
tions, it was decided to not discriminate between meta databases and publisher bound
registers. Thus, both types were utilized. To achieve this, ACM Digital Library, AISeL,
IEEE Xplore, JSTOR, Science Direct, Scopus, Springer Link, and Wiley were included
into the search process. For all of these, the initial keyword search was conducted on
June 19, 2022, and there was no limitation to the considered publishing date.

Developing a search strategy

Since there are differences in the filters of the included search engines, it was not pos-
sible to always use the exact same search terms and settings. Nevertheless, the con-
figurations for the search were kept as similar as possible. The exact keywords and

Page 4 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

search strategy used can be found at Table 1. These search terms are chosen because
patterns are exactly what was sought for, architectures can contain such patterns, and
design is often used as a synonym for architecture. Further, patterns can be seen as
building blocks, therefore, this term was also included.

Developing inclusion and exclusion criteria

Inspired by the PRISMA checklist [15], our inclusion and exclusion criteria are for-
mulated as following:

Inclusion Criteria: (1) Primary and secondary studies between Jan 1st, 2012 and
June 19th, 2022, (2) The focus of the study is on MS patterns, and MS architectural
constructs, (3) Scholarly publications such as conference proceedings and journal
papers.

Exclusion Criteria: (1) Studies that are not written in English, (2) Informal literature
surveys without any clearly defined research questions or research process, (3) Duplicate
reports of the same study (a conference and journal version of the same paper). In such
cases, the conference paper was removed. (4) Complete duplicates (not just updates)
were also removed. (5) Short papers (less than 6 pages not couting the references).

Table 1 Mapping of databases/registers and search terms

Database/Register Search term Records

ACM Digital Library (“The ACM Full-Text Col-
lection”, not “The ACM Guide to Computing
Literature

1) [Title: microservice*] AND [[Title: pattern*] OR
[Title: architecture*] OR [Title: design*] OR [Title:
building block*] OR [Title: best practice*]]
2) [Title: microservice*] AND [[Abstract: pattern*]
OR [Abstract: architecture*] OR [Abstract: design*]
OR [Abstract: building block*] OR [Abstract: best
practice*]]
3) [Title: microservice*] AND [[Keywords: pat-
tern*] OR [Keywords: architecture*] OR [Keywords:
design*] OR [Keywords: building block*] OR [Key-
words: best practice*]]

1) 91
2) 194
3) 65

AISeL Title: microservice OR microservices 10

IEEE Xplore “Document Title”: microservice* AND (“All Meta-
data”: pattern* OR “All Metadata”: architecture* OR
“All Metadata”: design* OR “All Metadata”: building
block* OR “All Metadata”: best practice*)

759

JSTOR Title: microservice Title: microservices 0

ScienceDirect 1) Title, abstract, keywords: pattern OR architecture
OR design OR (building block) OR (best practice)
Title: microservice OR microservices
2) Title, abstract, keywords: patterns OR architec-
tures OR designs OR (building blocks) OR (best
practices)
Title: microservice OR microservices

1) 79
2) 76

Scopus (TITLE-ABS-KEY (pattern* OR architecture* OR
design* OR (“building block”) OR (“building blocks”)
OR (“best practice”) OR (“best practices”)) AND TITLE
(microservice*))

1534

SpringerLink Title: microservice*
With at least one of the words: pattern* architec-
ture* design* “building block” “building blocks” “best
practice” “best practices

433

Wiley Title: microservice* 38

Page 5 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Developing the quality framework

The quality of the evidence collected as a result of this SLR has direct impact on the
quality of the findings, making quality assessment an important undertaking. To address
this, we developed a quality framework made up of seven aspects. These criteria are
informed by the guidelines of Kitchenham [12] on empirical research in software engi-
neering. These seven aspects are discussed in Table 2.

Pooling literature based on the search strategy

Overall, the keyword search yielded 3064 contributions. The total number of found pub-
lications per source as well as an overview of the further search process can be seen in
Fig. 1.

Evaluating papers based on the inclusion and exclusion criteria

In the initial phase, 1196 papers have been removed due to duplication and publication
type. The remaining 1868 papers were filtered by title to evaluate their relevance to the
concepts of MS patterns or architectural constructs related to MS. For this purpose, the
first two authors separately evaluated each entry. If both agreed, this verdict was hon-
ored. In case of disagreement, they discussed the title to come to a conclusion. In this
phase, the first author initially included 113 papers and the second author 146. Of those,
41 were present in both sets and 1650 were excluded by both. This equates to an agree-
ment rate of 90.5 percent (1691 of 1868 records) between the authors. After discuss-
ing the contributions with divergent evaluations, in total, 1699 of the 1868 papers were
excluded, leaving 169 items for the next round.

The same approach was followed for abstracts. As a result, the first author evaluated
40 papers positively, and the second one 28. Both agreed on the exclusion of 138. From
there on, the papers that were not written in English (despite the abstract being in Eng-
lish), were published before the year 2012, and had a length of less than six pages were
removed. 23 papers have been selected for the quality assessment against the quality
framework. The agreement rate among researchers for this phase equates to 88 percent.

Table 2 The quality framework

Quality gate Criterion Considered aspect Rating to pass

1 Minimum
quality
threshold

1) Does the study report empirical research or is it merely a ’les-
son learnt’ report based on expert opinion gathering?
2) The objectives and aims of the study are clearly communi-
cated, including the reasoning for why the study was under-
taken?
3) Does the study provide with adequate information regarding
the context in which the research was carried out?

5/6

2 Rigor 1) Is the research design appropriate to address the objectives
of the research?
2) Is there any data collection method used and is it appropri-
ate?

3/4

3 3.1 Credibility
3.2 Relevance

1) Does the study report findings in a clear and unbiased man-
ner?
2) Does the study provide value for practice or research?

3/4

Page 6 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Evaluating papers based on the quality framework

After having filtered out the pooled studies based on the inclusion and exclusion crite-
ria, we initiated a deeper probing, by running the remaining studies against the quality
framework. The filtering based on the quality criteria was divided into three differently
focused phases, with each of them requiring the passing of a quality gate as portrayed

Fig. 1 Overview of the search process

Page 7 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

in Table 2. In the first phase, the aim was to ensure that reports fulfill at least a desired
minimum level of comprehensiveness. For this purpose, studies were evaluated for their
content to see if they are actual research or just a mere report on some lessons or expert
opinions. In addition, we checked if objectives, justification, aim and context of the stud-
ies are clearly communicated.

Authors independently rated the three aspects for all 23 remaining papers, giving one
point respectively, if they deemed a criterion fulfilled and no point if they considered
that aspect lacking. Consequently, for each aspect, zero to two points were achievable
and for all aspects, six points were available per paper. For inclusion into the second
phase, at least five out of six points were demanded to assure a sufficient base quality.
This corresponds to having at least 75 percent of the points. In total, the authors agreed
on 51 of 69 evaluations, resulting in an agreement rate of 73,9 percent. The second phase
was focused on rigor.

In this phase, studies were judged based on their research design and the data collec-
tion methods. The general procedure with the first two authors independently evaluat-
ing the reports remained the same. For inclusion in the next phase, again, 75 percent
of the obtainable points were needed (this time three out of four). In total, the authors
agreed on 23 of 36 evaluations, resulting in an agreement rate of 63.9 percent. While this
value is rather low, this is likely caused by the narrow margins for some decisions.

Once more, the papers with the highest score (this time two) were discussed before
inclusion, to further counteract possible uncertainty in the individual evaluations. The
remaining 10 papers went through the third and final phase. Here, the credibility of the
reporting and the relevance of the findings were evaluated. The procedure was the same
as the previous phases. However, this time, all of the remaining papers passed. In this
last phase, the authors agreed on 14 of 20 evaluations, resulting in an agreement rate of
exactly 70 percent.

Forward/backward search

To further increase the comprehensiveness of the review process, following the recom-
mendation of Webster and Watson [16], the initial keyword search was amended with
a forward and backward search. Here, for the identified ten papers were examined by
which papers they are cited and which papers they cite. This was performed between
October 10, 2022 and October 20, 2022. While the backward search could simply be
based on the reference lists given in the papers, the forward search was less unequivocal,
because there are several sources with slightly varying information. To account for this,
two different ones, namely Google Scholar and ResearchGate were used.

However, both searches yielded no new results that sufficed the criteria applied in
the initial search. Instead, the 538 papers (combined for all papers and both sources,
not accounting for duplicates) found in the forward search comprised, inter alia, the-
sis works, preprints, studies that are not directly related to microservices, papers that
are too short and papers that did not meet the quality criteria. Regarding the back-
ward search, most of the utilized conference papers and journal articles with a focus on
microservices were already captured by the initial search, further highlighting its com-
prehensiveness. In total for the ten papers, and not accounting for duplicates, there were
16 new entries mentioning microservices in the title that were, however, ultimately not

Page 8 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Table 3 The final set of literature

ID Title Year Quality score Type Source Found in Refs.

S1 Architectural patterns
for microservices: a
systematic mapping
study

2018 11/14 C CLOSER 2018 -
Proceedings of the
8th International
Conference on Cloud
Computing and
Services Science

Scopus [17]

S2 Actual use of archi-
tectural patterns in
Microservices-Based
Open Source Projects

2018 12/14 C Proceedings of the
25th Asia-Pacific
Software Engineering
Conference (APSEC)

Scopus, IEEE Xplore [18]

S3 Supporting architec-
tural decision making
on data manage-
ment in microservice
architectures

2019 12/14 C Lecture Notes in
Computer Science
11681 Proceedings
of the Software
Architecture: 13th
European Confer-
ence, ECSA 2019

Scopus, SpringerLink [19]

S4 Using architectural
modifiability tactics
to examine evolution
qualities of Service-
and Microservice-
Based Systems: an
approach based on
principles and pat-
terns

2019 13/14 J Software-Intensive
Cyber-Physical
Systems

Scopus [20]

S5 Patterns Related to
Microservice Archi-
tecture: a Multivocal
Literature Review

2020 14/14 J Programming and
Computer Software

Scopus, SpringerLink [21]

S6 Data management in
microservices: state
of the practice, chal-
lenges, and research
directions

2021 12/14 J Proceedings of the
VLDB Endowment
2021

Scopus [22]

S7 Deployment and
communication
patterns in microser-
vice architectures: a
systematic literature
review

2021 14/14 J Journal of Systems
and Software

Scopus, ScienceDi-
rect

[23]

S8 Decision models for
selecting patterns
and strategies in
microservices systems
and their evaluation
by Practitioners

2022 13/14 C Proceedings of the
2022 IEEE/ACM 44th
International Confer-
ence on Software
Engineering: Software
Engineering in Prac-
tice (ICSE-SEIP)

IEEE Xplore [24]

S9 Designing Microser-
vice Systems Using
Patterns: An Empirical
Study on Quality
Trade-Offs

2022 13/14 C IEEE 19th Interna-
tional Conference on
Software Architecture
(ICSA)

IEEE Xplore [25]

S10 Taxonomical Classifi-
cation and Systematic
Review on Micros-
ervices

2022 13/14 J International Journal
of Engineering Trends
and Technology

Scopus [26]

Page 9 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

relevant for the focus of this work. Therefore, the final set still consists of the ten contri-
butions shown in Table 3.

All ten publications have been published in 2018 or later, with three of them being
published in 2022, which shows the timeliness of the topic. Eight of the ten papers were
found via Scopus, whereas the remaining two have been identified through IEEE Xplore.
The distribution between conference papers and journal articles is equal.

The found papers

To give an overview of the papers found in the literature review and, thereby, also pro-
vide context to the extracted knowledge, they are briefly described in the following:

S1: In [17], the authors conducted a systematic mapping study to identify MS archi-
tecture patterns, create a corresponding catalogue that gives an overview of
advantages and disadvantages, and, thereby, provide support for developers in
finding suitable solutions for their own needs. The initial search for literature
yielded 2754 unique papers that were filtered for suitability, resulting in a final set
of 42 contributions from conferences, workshops, journals, and grey literature.
Besides describing the patterns and outlining in which papers their use has been
described, the authors also highlighted the guiding principles of the MS approach
in general. Further, corresponding trends and open issues are discussed, amend-
ing the given comprehensive overview.

S2: The use of architectural patterns in open source projects that are based on
microservices is addressed in [18]. Similar to the previous one, this article also
presents a catalog of microservices architectural patterns based on literature.
Further, it relates them to quality attributes, compares them to patterns that
are found in service oriented architectures, and investigates which patterns are
used in MS-based open source projects. While the general review process seems
reasonable, it lacks a reporting of the number of papers assessed in each stage.
However, including repeated mentioning across papers, the final set of 16 papers
yielded 164 architectural patterns, with 52 stemming from academic papers and
112 from industrial ones. After further processing, those were reduced to 17 pat-
terns that were deemed the most relevant and discussed in more detail.

S3: A review that is focused on the data management in the context of microservices
is presented in [19]. For this purpose, instead of exploring the scientific body of
literature, the grey literature was targeted. This is due to the fact that much of
the corresponding knowledge on MS architectures can be found in experience
reports, blog entries, or system documentations. In total, 35 contributions from
practitioners were qualitatively explored analysing which patterns and practices
were used by them, and which factors influenced their architectural decisions.
Based on the findings, a model was proposed that formalizes the correspond-
ing decisions and thereby facilitates a more comprehensive understanding of the
domain.

S4: The modifiability of software and how it is influenced by the service-oriented
architecture (SOA) as well as microservices is examined in [20]. For this purpose,
the authors firstly compiled a list of fifteen architectural modifiability tactics and

Page 10 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

mapped those with eight service-oriented design principles and eight MS princi-
ples they extracted from selected publications. Subsequently, they presented the
results of the mapping and discussed the results. Further, they analysed the rela-
tions of 42 MS and 118 SOA patterns with the modifiability tactics. As with the
principles, the patterns were also obtained by consulting specific selected publi-
cations. The identified relations are presented and the overall findings discussed,
providing the reader with a rather comprehensive insight into the interplay of
architectural modifiability, microservices, and SOA.

S5: A review on the relationship between MS patterns, quality attributes, and metrics
is given in [21], which is an updated and extended version of the authors’ previous
work. To provide a comprehensive overview, both, scientific literature and grey
literature were considered. While initially 605 results were found through the
keyword search, the filtering reduced that number to 18. By backward snowball-
ing for the grey literature, this number was increased to 27 for the final set that
comprises 13 scientific papers and 14 from grey literature. In total, 54 patterns
were identified. However, some of them are strongly related to each other or even
redundant. The authors could link the identified patterns to six quality character-
istics. Further, they assigned the patterns to one of six groups based on the pro-
vided benefits and analysed how many papers from scientific literature and grey
literature are related to each group. Moreover, they also provided a comprehen-
sive qualitative discussion of the groups, the respective patterns and the develop-
ment over time.

S6: A second literature review on data management in a MS context is presented in
[22]. For this purpose, a systematic literature review was conducted, where 300
peer-reviewed papers were analysed, leading to a final selection of 10 articles the
authors deemed representative. Further, 9 MS based applications were analysed
that were chosen from ‘more than 20’ [22] open-source projects. Additionally, an
online survey with more than 120 participants was conducted. In doing so, the
authors found out that state-of-the-art database systems are often insufficient for
the needs of practitioners, which leads to them combining multiple heterogene-
ous systems to fulfil their tasks. This, in turn, reduces the importance of database
systems when dealing with microservices, since they often only provide data stor-
age functionalities, with the data management logic being shifted to the applica-
tion layer. Moreover, the data management logic and the common types of que-
ries as well as the major challenges regarding the data management are discussed.
Finally, the requirements for database management systems in the context of
microservices are highlighted and avenues for future research are outlined.

S7: MS related deployment and communication patterns were collected in [23]. This
was done by conducting a systematic literature review, in which initially 440 items
were reviewed, with 34 primary studies being selected as relevant and amended
by 4 additional contributions that were found by backward and forward snowball-
ing. Subsequently, the final set is comprehensively presented regarding multiple
quality metrics and the applied research methods. In the analysis part, the authors
extensively discuss the varying deployment approaches and communication pat-
terns for microservices. Further, they highlight the corresponding obstacles and

Page 11 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

issues, and promising directions for future research. The work is concluded by a
comprehensive overview of its key findings, which are also visualized in the form
of a taxonomy.

S8: The selection of patterns and strategies in MS systems is targeted in [24]. For
this purpose, the authors developed and evaluated four decision models that
use requirements, in this case desired quality attributes, as input and output
appropriate design elements. The models are also the main contribution of this
work. Each of the models is focused on one specific theme. These are application
decomposition, security, communication, and service discovery. As a foundation
for the creation of the models, they searched the existing scientific and grey lit-
erature. From an initial set of 2110 publications, they kept 39 scientific papers
and 23 grey literature items. Those contained 211 patterns and strategies for the
former and 174 for the latter. After duplicate removal, there were 7 patterns and
strategies left for application decomposition into microservices, 8 related to secu-
rity, 15 for microservices communication, and 6 for service discovery. Each of
them is briefly summarized and the advantages and disadvantages with respect to
the quality attributes is discussed.

S9: How the use of patterns for the development of MS systems affects the quality is
examined in [25]. Further, it is regarded, how and why patterns are adopted in MS
systems and how quality attributes in a MS context can be measured. However,
at first, the authors introduce and describe the seven quality attributes that are
used as foundation for the work. To gather new insights, the authors conducted
nine semi-structured face-to-face interviews with practitioners and MS experts.
They were questioned regarding the use of the 14 patterns from the “design and
implementation” category of the cloud design patterns catalogue [27] provided in
the Azure Architecture Center by Microsoft. These are described, the degree of
use by the interviewees is stated, and they are linked with the quality attributes.
Further, the advantages and disadvantages stated by the interviewees are com-
pared with those that were already present in the documentation of the patterns
catalogue.

S10: The list is concluded by a paper that focuses on a rather broad overview of the
MS domain [26]. For this purpose, a systematic literature review, following the
PRISMA guidelines [13] was conducted. Hereby, an initial collection of 4056
items was reduced to a final set of 49 papers. The primarily regarded topics are
the motivators for the conversion from a monolithic architecture to a MS archi-
tecture, which technologies and architectural patterns occur in modern sys-
tems and which challenges arise when using the MS architecture. Additionally,
future trends are discussed. Here, the increasing importance of cloud comput-
ing is highlighted. Other themes are the need to assure a low latency, due to the
inherent inter-service communication, as well as the required skill for the devel-
opment, which could be somewhat counteracted by the development of corre-
sponding tools.

Page 12 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Data synthesis

After selecting the quality papers, we embarked on the data synthesis process. For this
phase we follow the guidelines of thematic synthesis discussed by Cruzes et al. [14]. To
begin, we first extracted the following data from each paper: (1) findings, (2) research
motivation, (3) author, (4) title, (5) research objectives, (6) research method, (7) year. We
extracted these data through coding, using the software Nvivo (version 12). After that,
we created two codes: (1) patterns, and (2) quality attributes, and coded the findings
based on it. By the end of this process, various themes emerged.

Second review

The second SLR is conducted by [5] on available BD RAs in academia and industry. This
is a comprehensive study that covers various aspects of BD RAs such as limitations, and
common architectural blocks. Therefore, we have foregone to perform an analogous SLR
of our own because it would not have yielded new findings. This SLR helped us to deter-
mine the requirements that are relevant for BD systems. However, we do not further
explore this SLR in this paper, and instead only discuss the results of it. Yet, we recom-
mend to consult it for more details.

Findings
In this section, we present two integral elements: (1) BD requirements, (2) MS patterns.

Requirements specification

The results of our data synthesis emerged a few themes in regards to BD requirements.
In order to derive high level requirements for BD systems, we analyzed three sources:
(1) system and software requirements for all the RAs found as the result of the sec-
ond SLR, (2) BD general use cases published in ISO/IEC TR 20547-1:2020 [28], and 3)
BD use cases published in [29] and [30]. We created a new Nvivo project and coded
every requirement that was found. This resulted in 60 requirements. From there on, we
removed duplicate or similar requirements. This process yielded 39 system and software
requirements.

After finding these requirements, we sought for a rigorous approach to categorize and
represent these requirements. We also did not know what type of requirements would
be the most suitable to the goal of this study. To this end, we performed a lightweight lit-
erature review in the body of knowledge to realize three major elements: (1) the type of
requirements that we need, (2) an approach to categorizing the requirements, (3) pres-
entation of these requirements.

Types of requirements

System and software requirements come in different flavours and can range from a
formal (mathematical) specifications to a sketch on a napkin. There have been various
attempts to defining and classifying software and system requirements. For the pur-
poses of this study, we opted for a well-received approach discussed by Laplante [31].
In this approach, requirements are classified into three major types of (1) functional

Page 13 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

requirements, (2) non-functional requirements, and (3) domain requirements. Addi-
tionally, we explored the concept of architecturally significant requirements (ASRs) pre-
sented by Bass et al. [32].

Our objective is to define the high-level requirements of BD systems, thus we do not
fully explore ’non-functional’ and ’domain’ requirements. Majority of non-functional and
domain requirements are emerged from the particularities of an environment, such as a
banking sector or healthcare, and do not correlate to our study. Therefore, our primary
focus is on functional and ASRs. Based on this, we refined the pool of the requirements,
which resulted in elimination of 20 entries.

Categorizing requirements

After having filtered out the right type of requirements, we then sought for a rigorous
and relevant method to categorize the requirements. For this purpose, we followed the
well-established categorization method based on BD characteristics, that is the 5Vs.
These 5Vs are volume, velocity, variety, value and veracity [33, 34]. We took inspiration
from various studies such as Nadal et al. [35], and the requirements categories presented
in NIST BD Public Working Group [36].

The result of the second SLR presented 22 RAs from academia and industry. This study
helped us realize the spectrum of BD RAs, how they are designed and the general set of
requirements. By analyzing these studies and by evaluating the design and requirement
engineering required for BD RAs, we adjusted our initial categories of requirements and
added security and privacy to it.

Present requirements

After knowing the type and category of requirements, We looked for a rigorous
approach to present these requirements. There are numerous approaches used for soft-
ware and system requirement representation including informal, semiformal and formal
methods. For the purposes of this study, we opted for an informal method because it is
a well established method in the industry and academia [37]. Our approach follows the
guidelines explained in ISO/IEC/IEEE standard 29148 [38] for representing functional
requirements. We have also taken inspiration from the Software Engineering Body of
Knowledge [39]. However, our requirement representation is organized in terms of BD
characteristics. These requirements are described in following sub sections.

Volume Volume refers to addressing a multitude of data for the purposes of storage and
analysis. An architecture needs to be elastic enough to address volume demands at dif-
ferent rates. Storing and computing large volumes of data with attention to efficiency is
a complex process that requires distributed and parallel processing. Therefore, volume
requirements are as following:

Vol-1 System needs to support asynchronous, streaming, and batch processing to col-
lect data from centralized, distributed, and other sources

Vol-2 System needs to provide a scalable storage for massive data sets

Page 14 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Velocity Velocity refers to the rate at which data flows into system for different analyti-
cal requirements. Processing of data to expedite the decision-making process quickly on
one hand and handling the variety of data and storing them for batch processing, stream
processing or micro-batch processing on other hand bring considerable technical chal-
lenges. Therefore, velocity requirements are as following:

Vel-1 System needs to support slow, bursty, and high-throughput data transmission
between data sources

Vel-2 System needs to stream data to data consumers in a timely manner
Vel-3 System needs to be able to ingest multiple, continuous, time varying data

streams
Vel-4 System shall support fast search from streaming and processed data with high

accuracy and relevancy
Vel-5 System should be able to process data in real-time or near real-time manner

Variety Variety refers to addressing data in different formats such as structured, unstruc-
tured, and semi-structured. Different formats may require different processing tech-
niques, may have different storage requirements, and may be optimized in different
ways. Hence, an effective BD architecture can handle various data types and enable the
processing and transformation of them in an efficient manner. Therefore, the variety
requirements are as following:

Var-1 System needs to support data in various formats ranging from structured to
semi-structured and unstructured data

Var-2 System needs to support aggregation, standardization, and normalization of
data from disparate sources

Var-3 System shall support adaptations mechanisms for schema evolution
Var-4 System can provide mechanisms to automatically include new data sources

Value Value refers to addressing the process of knowledge extraction from large datasets.
Value is perhaps one of the most challenging aspects of BD architecture as it involves a
variety of cross-cutting concerns such as data quality, metadata and data interoperabil-
ity. Gleaning, crunching and extracting value from data requires an integrated approach
of storage and computing. Value requirements are as following:

Val-1 System needs to be able to handle compute-intensive analytical processing and
machine learning techniques

Val-2 System needs to support two types of analytical processing: batch and streaming
Val-3 System needs to support different output file formats for different purposes
Val-4 System needs to support streaming results to the consumers

Page 15 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Veracity Veracity refers to keeping a certain level of quality for data. Data veracity refers
to truthfulness and accuracy of data; in simpler terms, it is to ensure that data possess
qualities necessary for crunching and analysis. Veracity requirements are as following:

Ver-1 System needs to support data quality curation including classification, pre-pro-
cessing, format, reduction, and transformation

Ver-2 System needs to support data provenance including data life cycle manage-
ment and long-term preservation

Security and privacy Security and privacy should be some of the top concerns for the
design of any effective BD system. An effective architecture should be secure, adopting
the best security practices (principles of least privilege) and in the meantime respect
regional and global privacy rules. The security and privacy requirements are as following:

SaP-1 System needs to protect and retain privacy and security of sensitive data
SaP-2 System needs to have access control, and multi-level, policy-driven authenti-

cation on protected data and processing nodes

Table 4 Microservices categorization

Category Pattern

Data Management 1. Database per Service
2. Shared Database
3. Event Sourcing
4. Command and Query Responsibil-
ity Segregation

Platform and Infrastructure 1. Multiple Service Instances per Host
2. External Configuration Store
3. Sidecar
4. Static Content Hosting
5. Computer Resource Consolidation

Communicational, Transactional, Logical 1. API Gateway
2. Anti-corruption Layer
3. Self Registration
4. Service Discovery
5. Competing Consumers
6. Pipes and Filters
7. Priority Queue
8. Ambassador
9. Gateway Aggregate
10. Gateway Offloading
11. Aggregator
12. Backend for Frontend
13. API Composition
14. Saga Transaction Management
15. Gateway Routing
16. Leader Election

Fault Tolerance 1. Circuit Breaker
2. Bulkhead Pattern

Observability 1. Log Aggregation Pattern

Page 16 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Microservices patterns

As a result of conducted SLR, our data synthesis yielded 28 MS patterns. These pat-
terns are classified based on their function and the problem they solve. Our catego-
ries are inspired by the works of Richardson [4] and can be seen in Table 4. While we
elaborate the patterns adopted for BD requirements in detail, the aim of our study is
not to explain each MS pattern. These patterns can be found in [40]. Nevertheless, we
explain the patterns we utilized in this study. These 10 patterns are as following:

 (1) API Gateway
 (2) Gateway Offloading
 (3) External Configuration Store
 (4) Competing Consumers
 (5) Circuit Breaker
 (6) Log Aggregation
 (7) Command and Query Responsibility Segregation (CQRS)
 (8) Anti-Corruption Layer
 (9) Backend for Frontend (BFF)
 (10) Pipes and Filters

For the purposes of this study, we utilize Fowler’s definition [41] of patterns as ‘an idea
that has been useful in one practical context and will probably be useful in others’.

Several formats are used in the literature to describe patterns. While there is no
single format that is widely accepted, there is a broad agreement on what elements
should a pattern description include. In this study we use the pattern description
template taken from Buschmann et al.’s work [42].

This pattern description language has several elements that do not relate directly to
our study. For instance, we do not aim to provide a code example for each pattern, as
that is not in-line with our study. Therefore we omitted the headings ‘forces’, ‘varia-
tion’, ‘examples’, ‘resulting context’, ‘related patterns’, ‘known uses’, and ‘example appli-
cation’. Each pattern is discussed in the following subsections in the order of context,
problem, and solution. The starting paragraph of each pattern is the context, followed
by the ‘problem’ sub section that aims to illuminate on challenges through interroga-
tives, followed by the ‘solution’ sub section that discuses a better approach through
the corresponding pattern.

API gateway

Context: Suppose that a company runs a multi-region software as a service (SaaS)
practice management system for veterinarians, and is using microservices
for different aspects of the system such as financial, medical, client and ani-
mal related ones. Different frontend applications need different data to dis-
play for various parts of the application. The animal micro-frontend needs
the animal data, and financial micro-frontend needs data from several back-
ends such as animal, financial, and client.

Page 17 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Problem: How does the financial micro-frontend retrieve the data it needs from vari-
ous backends? Should it make a separate REST request to different APIs
and then combine the data to represent what is required? How does this
approach evolve? If the financial micro service changes, how does it affect
the data composition? How does the financial micro-frontend get the new
endpoint? How does the financial micro-frontend authenticate with the
financial micro service? Should the configs be hard-coded and changed
every now and then? If the financial micro service changes implementation
of a certain function, would it break production?

Solution: The solution to these problems is to have one gateway that resolves dif-
ferent data necessary for various micro-frontends. The API gateway can
act as a single entry for all clients, handling version changes, reducing the
network requests, and addressing cross-cutting concerns. In addition, API
gateway can help with load balancing. The gateway can either proxy/route
requests to appropriate services or it can fan out a request to multiple ser-
vices. Underlying this approach the communication pattern is streamlined
and micro-frontends are only required to know about the gateway. An
overview of this pattern can be found at Fig. 2.

Gateway offloading

Context: Using the same SaaS practice management system example, one can imag-
ine that different microservices have common features and these features
require maintenance, configuration and management. The features could
be token validation, feature flag management, SSL certificate management,
encryption or environment variable management.

Problem: How does one go about handling these shared features? Should each team
write their own feature for their own services? If a feature is updated, should
each team then update their own implementation? How do we ensure that
these features conform to the same interface and standards? If a new feature
is added, should we communicate with three different teams to update their
implementation? What happens if an implementation of one team does not
respect the specification?

Fig. 2 API gateway pattern

Page 18 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Solution: Common features and cross-cutting concerns can be offloaded into a gate-
way. This includes but is not limited to: SSL termination, certificate man-
agement, feature flag management, environment variables management,
secret management, monitoring, logging configurations, throttling, and
protocol translation. This approach simplifies the development of services,
and improves the maintainability of the system. In addition, features that
require special skills (privacy and security) can be developed by experts
and propagated to teams, eliminating the risk that non-expert developers
may introduce. This pattern also introduces more consistency, and stand-
ardised interfaces, which helps with communication, agility and productiv-
ity of development teams. This pattern is portrayed in Fig. 3.

External configuration store

Context: Software applications are usually deployed to various environments for dif-
ferent purposes. This is part of the continuous integration, continous deliv-
ery (CI/CD) approach that creates pipelines to capture bugs and issues. For
instance, there are testing, integration, pre-production, and production envi-
ronments. Each environment is tailored for a different purpose. In a devel-
opment environment, several feature flags may be deactivated, some infra-
structure may have been configured to reduce costs, and end to end tests
may run. Therefore, an application needs to keep a list of configuration for
internal and third-party infrastructure it needs. In addition, various classes
of services require radically different configurations to meet their ends.
These configurations could be a buffer size setup on stream processing ser-
vices or it could be the timeout time set on batch processing services.

Problem: Should each application have its configuration written separately? As the
number of applications grows, how does one scale and maintain this? If a
configuration should be uploaded for a class of similar services, should each
service update its configuration separately? How can configurations be

Fig. 3 Gateway offloading pattern

Page 19 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

shared across several applications?
Solution: Store all application configurations in an external store. This can include

package versions, database credentials, network locations and APIs. On
startup, an application can request for the corresponding configuration
from the external configuration store. This pattern is portrayed in Fig. 4.

Competing consumers

Context: An enterprise application, specially a data-intensive one is expected to
handle a large number of requests. Handling these requests synchronously
would be challenging. A common approach is for applications to send these
requests through a messaging system to another application that handles
them asynchronously. This ensures that one blocking service is not going
to have a ripple effect on the system. Requests loads vary at different times.
During peak hours there might be many requests coming from various
sources. In addition, the processing required for different requests varies,
and while some may be quite cheap, others might be compute intensive.

Problem: Should only one consumer instance be responsible for incoming requests?
What happens if that consumer instance does not have the computing
resources available? What happens if that consumer instance fails?

Solution: A message queue system can be used to load balance requests to differ-
ent consuming services based on their availability. In this case, a group of
consumer applications will be created, which allows for timely processing
of incoming requests during peak time. This can be achieved either by a
push model (message queue pushing to available consumer nodes), or a
pull model (consumer nodes pull requests based on their state and process
it).

 This increases the elasticity, availability and reliability of the system. The

Fig. 4 External configuration store pattern

Page 20 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

queue can act as a buffer between the producer and consumer instance, and
help with minimizing the impact of consumer service’s unavailability. The
message can also be enhanced with fault tolerant mechanisms in case of
node failures. Furthermore, scalability is improved as new data consumers
can be dynamically added. For instance, in AWS, auto scaling groups can be
set for EC2 instances. This pattern is presented in Fig. 5.

Circuit breaker

Context: Suppose a company is using a microservices architecture. There are vari-
ous services that communicate with each other to process requests. If one
service synchronously calls another service through a REST API, there is
a chance that the other service may not be available or is exhibiting a high
latency. As the number of services grow, there will be an increased require-
ment for communication between services. Therefore, the failure of one ser-
vice can introduce a bottleneck to the whole system.

Problem: How does one handle the failing service? How should the failed service be
handled to avoid a ripple effect?

Solution: An architect can employ the circuit breaker pattern. The circuit breaker
pattern prevents services from repeatedly calling the failing service. This
allows for the system to operate in spite of a failing node, which helps
with saving CPU cycles, improving availability, improving reliability and
decreasing the chance of faulty data. In addition, circuit breaker signals the
fault resolution, which allows system to get back to its default state.

 In a common scenario, circuit breaker acts as a proxy between the source and
destination services, and monitors the destination service. If the number of
failing requests reaches a certain threshold, the circuit breaker trips, block-
ing subsequent requests to the destination. The circuit breaker then probes
the failing service to identify its health. Once the service becomes healthy
again, the circuit breaker allows requests to be passed to the destination.

 Circuit breaker can be implemented on frontend, backend, or as a standalone
service. This pattern is usually implemented as a state machine that mim-
ics the functionality of an electrical circuit breaker. This is often designed in
three states:

Fig. 5 Competing consumers pattern

Page 21 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

(1) Closed: the default state, where the circuit breaker listens on the number of incom-
ing requests

(2) Open: if the number of failing requests reaches a certain threshold, the circuit
breaker trips, immediately returning an exception

(3) Half-open: a limited number of requests are passed, if these requests are passed,
it is assumed that the service is healthy, and the circuit breaker switches to closed
state. If any requests fail, the circuit breaker assumes the fault is still present, so it
reverts back to open state

This pattern is displayed in Fig. 6.

Log aggregation

Context: Microservices architectures often comprise a large set of services, each hav-
ing its own domain and responsibility. A request usually spans multiple ser-
vices and in the process something might go wrong, and bugs may occur.
Each system writes logs in a standardized format about errors, warning and
access requests.

Problem: How to understand the root cause of an issue if it is spanning across multiple
services? Should one read the logs of one service, and then the logs of the
other and the next to try to make sense of the problem?

Fig. 6 Circuit breaker pattern

Fig. 7 Log aggregation pattern

Page 22 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Solution: A centralized logging service can be implemented that retrieves logs from
different services and composes them together. The developers can then
search and analyze these logs to make sense of the root cause. This elimi-
nates the tedious task of going to each service, extracting logs and aggre-
gating them manually. This pattern is portrayed in Fig. 7.

Command and query responsibility segregation (CQRS)

Context: Suppose that a team is working on a data heavy service. This service needs to
scale and crunch a lot of data. Following the traditional approach, often the
same data model is used to query and update the database. Underlying this
approach, the read and write workloads both go to the same datastore.

Problem: How should the team optimize for read workloads? How should the team
optimize for the write workloads? Can the team optimize for both read and
write workloads? How does the team handle the missmatch between the
read and write representations of the data? How does the team ensure a cer-
tain performance objective is met on read workloads?

Solution: Implement CQRS pattern to separate read and write workloads, using
commands to update the data and queries to read the data. This is usually
achieved through a message queue asynchronously. Having the command
and query separated simplifies modeling, development, and maintenance
of data stores. In addition, the system will be able to support multiple
denormalized views that are optimized for a specific workload.

 CQRS is commonly implemented in two distinct data stores. This allows for
the read database to optimize for read queries. For instance, it can store a
materialized view of the data, and avoid expensive joints or complex ORM
mappings. The read database can be a different type of data store. One might
choose to use a graph database such as Neo4J for relationship heavy data-
sets, or a NoSQL database such as MongoDB for highly dynamic data. On
the other hand, CQRS can potentially increase complexity, introduce code-
duplication and increase latency. An overview of this pattern can be found at
Fig. 8.

Fig. 8 Command and query responsibility segregation pattern

Page 23 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Anti‑corruption layer

Context: Most services rely on some other services for data or functionality. Each
service has its own domain model. Some of these services can be external
services, some of these services can be internal legacy services, and some of
them can be bleeding edge services. For these services to interoperate, there
is a need for a standard interface, protocol, data model or APIs.

Problem: How does one maintain access between legacy internal systems and bleeding
edge internal systems? How does one enable interoperability between legacy
internal services and external services? Should the bleeding edge service be
modified to account for legacy service’s interface or API? Should the inter-
nal services support the API requirements of external services even if they
are sub-optimal? Should the semantics of legacy and external services be
imposed to the bleeding edge service? Should services be corrupted by the
requirements of other services?

Solution: Define an anti-corruption layer that translates semantics between differ-
ent services’ domains. This enables services to be unaffected by external
entities, avoiding compromises on interface, design and the technologi-
cal approach. The anti-corruption layer can be a module, a class inside the
application or it can be an independent service. This pattern is displayed in
Fig. 9.

Backend for frontend

Context: In a large scale system, a backend service needs to provide the necessary
APIs for various clients. A client can be the user’s browser, a mobile phone,
or an IoT device. As the number of clients grows, the traffic grows, and new
requirements emerge. As a result, the backend service needs to account for
higher level of abstraction to serve the requirements of different clients.

Problem: Should the backend service account for various clients? If the backend ser-
vice tries to account for all clients, how hard will it be to maintain this ser-
vice? Can a general-purpose highly abstract backend service be scaled and

Fig. 9 Anti-corruption layer pattern

Page 24 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

maintained easily? If the web development team has a conflicting require-
ment with the mobile development team, how does the backend service
account for that? How does the backend service provide optimized data for
each client? How can the backend service be optimized for various clients?

Solution: A dedicated backend that accounts for a specific client (frontend) can be
created. This introduces opportunities for optimizing performance of each
backend to best match the needs of the frontend, without worrying much
about introducing side-effects to other frontends. In addition, the back-
end will be smaller, better abstracted, less complex, and therefore easier
to maintain and scale. Furthermore, this enables horizontal teams to work
without side-effects and conflicting requirements. This pattern is depicted
in Fig. 10.

Pipes and filters

Context: A large scale application is usually required to do numerous processes with
varying complexity. For instance, a complex business logic may require sev-
eral transformations to be done on the data. These transformations can be
sophisticated and require many lines of code to be written.

Problem: Should all these processes be performed in one monolithic module? How
flexible is that approach? In light of emerging requirements how can one
maintain and scale the monolithic module? Is that the right level of abstrac-
tion? Does this approach provide with much opportunity to optimize or
reuse parts of the module?

Solution: Different processes can be broken down into their own components (fil-
ters), each taking a single responsibility. This provides clean and modular
components that can be extended and modified with ease. This pattern
is ubiquitous in Unix like operating system; for example it is common

Fig. 10 Backend for frontend pattern

Page 25 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

for system engineers to pipe the result of the command ‘ls’ (list) into the
command ‘grep’ (global search for regular expression) or command ‘sed’
(stream editor). By standardizing the interface for data input and output,
these filters can be easily combined to create a more powerful whole. Com-
position then becomes natural, and the maintainability increases. This pat-
tern is portrated at Fig. 11.

Application of microservices design patterns to big data systems
In this section, we combine our findings from both SLRs, and present new theories on
application of MS design patterns for BD systems. The patterns gleaned are established
theories that are derived from actual problems in MS systems in practice, thus we do not
aim to re-validate them in this study.

The main contribution of our work is to propose new theories and try to apply some
of the well-known software engineering patterns to the realm of data engineering and in
specific, BD. Based on this, we map BD system requirements against a pattern and pro-
vide reasoning on why such pattern might work for BD systems. We support our argu-
ments by the means of modeling. We use Archimate [43] as recommend in ISO/IEC/
IEEE 42010 [44].

We posit that a pattern alone would not be significantly useful to a data engineer-
ing or a data architect, and propose that a collection of patterns in relation to current
defacto standard of BD architectures is a better means of communication. To achieve
this, we portray patterns selected for each requirement in a reference architecture. We
then justify the components and describe how patterns could address the requirement.
These descriptions are presented as sub sections, each describing one characteristic of
BD systems.

Volume

To address the volume requirements of BD, and in specific for Vol-1 and Vol-2 we sug-
gest the following patterns to be effective:

(1) Gateway offloading
(2) API gateway
(3) External Configuration Store

API gateway and gateway offloading

In a typical flow of data engineering, data goes from ingestion, to storage, to transfor-
mation and finally to serving. However there are various challenges to achieve this pro-
cess. One challenge is the realization of various data sources as described in Vol-1. Data
comes in various formats from structured to semi-structured to unstructured, and BD

Fig. 11 Pipes and filters pattern

Page 26 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

systems need to handle different data through different interfaces. There is also stream-
ing data that needs to be handled separately with different architectural constructs
and data types. So some of the key engineering considerations for the ingestion pro-
cess is that; (1) is the BD system ingesting data reliably? How frequently should data be
ingested? In what volume the data typically arrive?

Given the challenges and particularities of data types, different nodes may be spawned
to handle the volume of data as witnessed in BD RAs studied by Ataei et al. [45]. Another
popular approach is the segregation of concerns by separating batch and streaming pro-
cessing nodes. Given the requirement of horizontal scaling for BD systems, it is safe to
assume that there is usually more than one node associated to ingesting data. This can
be problematic as different nodes will need to account for security, privacy and regional
policies, in addition to the encapsulated data processing functionality.

This means that each node needs to reimplement the same interface for the aforemen-
tioned cross-cutting concerns, which makes scalability and maintainability a daunting
task. This also introduces unnecessary repetition of codes and can result in non-con-
forming interfaces. To solve this problem, we explore the concept of gateway offloading
pattern. By offloading cross-cutting concerns that are shared across nodes to a single
architectural construct, not only will we achieve a separation of concerns and a good
level of usability, but we increase security and performance, by processing and filtering
incoming data through a well specified ingress controller.

Moreover, if data producers directly communicate with the processing nodes, they will
have to update the endpoint address every now and on. This issue is exacerbated when
the data producer tries to communicate to a service that is down. Given that lifecycle of
a service in a typical distributed cloud environment is not deterministic and many con-
tainer orchestration systems constantly recycle services to proactively address this issue,
reliability and maintainability of the BD system can be compromised. In addition, if all
nodes are available externally on several ports, security management can be a daunting
task. To solve these issues, the API gateway pattern can be utilized. This pattern provides
a single entry for data producers to communicate to internal services. The gateway can
then either route incoming requests to responsible services, or it can serve as a proxy.

Fig. 12 Microservices patterns for BD volume requirements

Page 27 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

This layer helps decoupling data producers from the internal services, allowing for bet-
ter maintainability and scalability of the BD system. In addition, the gateway can increase
the system reliability and availability by doing a constant health check on services, and
distribute traffic based on liveliness probes. There is also an array of other benefits such
as having a weighted distribution, and creating a special cache mechanism through spe-
cific HTTP headers. This also means that if the gateway is down, service nodes will not
introduce a bad state into the overall system. We have portrayed a simplistic representa-
tion of this pattern in Fig 12.

External configuration store

As discussed earlier, BD systems are made up of various nodes in order to achieve hori-
zontal scalability. While these systems are logically separated to their own service, they
will have to communicate with each other in order to achieve the goal of the system.
Thus, each one of them will require a set of runtime environmental configuration.

These configurations could be database network locations, feature flags, and third
party credentials. Moreover, different stages of the data engineering may have different
environments for different purposes, for instance, privacy engineers may require a com-
pletely different environment to achieve their requirements. Therefore, the challenge is
the management of these configurations as the system scales, and enabling services to
run in different environments without modification. To address this problem, we pro-
pose the external configuration store pattern.

By externalizing all nodes configurations to another service, each node can request its
configuration from an external store on boot up. This can be achieved in Docker files
through the CMD command, or could be written in Terraform codes for a Kubernetes
pod. This pattern solves the challenges of handling large numbers of nodes in BD sys-
tems and provide a scalable solution for handling configurations. This pattern is por-
trayed in Fig 12.

Velocity

Velocity is perhaps one of the most challenging aspects of BD systems, which if not
addressed well, can result in a series of issues from system availability to massive losses
and customer churn. To address some of the challenges associated with the velocity
aspect of BD systems, we recommend the following patterns for the requirements Vel-1,
Vel-2, Vel-3, and Vel-5:

(1) Competing consumers
(2) Circuit breaker
(3) Log aggregation

Competing consumers

BD does not imply only ‘big’ or a lot of data, it also implies the rate at which data can be
ingested, stored and analyzed to produce insights. According to a recent MIT report in
collaboration with Databricks, one of the main challenges of BD ‘low-achievers’ is the
‘slow processing of large amounts of data’ [2]. If the business desires to go data driven, it

Page 28 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

should be able to have an acceptable time-to-insight, as critical business decisions can-
not wait for data engineering pipelines.

Achieving this in such a distributed setup as BD systems with so many moving parts,
is a challenging task, but there are MS patterns that can be tailored to help with some
of these challenges. Given the very contrived scenario of a BD system described in the
previous section, at the very core, data needs to be ingested quickly, stored in a timely
manner, micro-batch, batch, or stream processed, and lastly served to the consumers. So
what happens if one node goes down or becomes unavailable? In a traditional Hadoop
setup, if Mesos is utilized as the scheduler, the node will be restarted and will go through
a lifecycle.

This means during this period of time, the node is unavailable, and any workload for
stream processing has to wait, failing to achieve requirements Vel-2, Vel-3 and Vel-5.
This issue is exacerbated if the system is designed and architected underlying monolithic
pipeline architecture with point-to-point communications. One way to solve some of
these issues is to introduce an event driven communication as portrayed in the works
of Ataei et al. [11], and try to increase fault tolerance and availability through competing
consumers, circuit breaker, and log aggregation.

Underlying the event-driven approach, we can assume that nodes are sending each
other events as a means of communication. This implies that node A can send an event
to node B in a ‘dispatch and forget’ fashion on a certain topic. However this pattern
introduces the same problem as the point-to-point REST communication style; if node B
is down, then this will have a ripple effect on the whole system. To address this challenge,
we can adopt the competing consumer pattern. Adopting this pattern means instead of
one node listening on the topic, there will be a few nodes.

This can change the nature of the communication to asynchronous mode, and allow
for better fault tolerance, because if one node is down, the other nodes can listen to the
event and handle it. In other terms, because now there are a few consumers listening
on the events being dispatched on a certain topic, there is a competition of consumers,
therefore the name ‘competing consumers’. For instance, three stream processing con-
sumer nodes can be spawned to listen on data streaming events being dispatched from
the the up-stream. This pattern will help alleviate challenges in regards to Vel-2, Vel-3
and Vel-5.

Circuit breaker

On the other hand, given the large number of nodes one can assume for any BD system,
one can employ the circuit breaker pattern to signal the service unavailability. Circuit
breakers can protect the overall integrity of data and processes by tripping and closing
the incoming request to the service. This communicates effectively to the rest of the sys-
tem that the node is unavailable, allowing engineers to handle such incidents gracefully.
This pattern, mixed with competing consumers pattern can increase the overall avail-
ability and reliability of the system, and this is achieved by providing an event-driven
asynchronous fault tolerance communication mechanisms among BD services. This
allows system to be able to be resilient and responsive to bursty, high-throughput data as
well as small, batch oriented data, addressing requirements Vel-1, Vel-4, and Vel-5.

Page 29 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Log aggregator

Given that BD systems are comprising of many services, log aggregation can be imple-
mented to shed light on these services and their audit trail. Traditional single node log-
ging does not work very well in distributed environments, as engineers are required to
understand the whole flow of data from one end to another. To address this issue, log
aggregation can be implemented, which usually comes with a unified interface that ser-
vices communicates to and log their processes from. This interface then, does the neces-
sary processes on the logs, and finally store the logs.

In addition, reliability engineers can configure alerts to be triggered underlying cer-
tain metrics. This increases teams’ agility to proactively resolve issues, which in turn
increases reliability and availability, and thereby addresses the velocity requirement of
BD systems. While this design pattern does not directly affect any system requirements,
it indirectly affects all of them. A simplistic presentation of this pattern is portrayed in
Fig 13.

Variety

Variety, being another important aspect of BD, implies the range of different data types
and the challenges of handling the data. As BD systems grow, newer data structures
emerge, and an effective BD system must be elastic enough to handle various data types.
To address some of the challenges of this endeavour, we recommend the following pat-
terns to address requirements Var-1, Var-3, Var-4:

(1) API gateway
(2) Gateway offloading

API gateway and gateway offloading

We have previously discussed the benefits of API Gateway and Gateway Offloading,
however in this section we aim to relate it more to BD system requirements Var-1, Var-3,
and Var-4. Data engineers need to keep an open line of communication to data produc-
ers on changes that could break the data pipelines and analytics. Suppose that developer

Fig. 13 Design patterns for velocity requirements

Page 30 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

A changes a field in a schema of an object that may break a data pipeline or introduce a
privacy threat. How can data engineers handle this scenario effectively?

To address this problem, API Gateway and Gateway Offloading can be used. API Gate-
way and Gateway Offloading could be good patterns to offload some of the light-weight
processes that may be associated to the data structure or the type of data. For instance,
a light weight metadata check or data scrubbing can be achieved in the gateway. How-
ever, gateways themselves should not be taking a lot of responsibility and become a bot-
tleneck to the system. Therefore, as the number of nodes increases and requirements
emerge, one might chose to opt for ‘Backend for Frontend’ pattern. We do not do any
modeling for this section, as the high-level overview of API Gateway pattern is por-
trayed in Fig. 12.

Value

Value is the nucleus of any BD endeavour. In fact, all components of the system pursue
the goal of realizing a value, that is the insight derived from the data. Howbeit, realizing
these insights requires absorption of a great deal of complexity. To address some of these
challenges, we propose the following patterns to address the requirements Val-1, Val-3,
and Val-4:

(1) CQRS
(2) Anti-corruption layer

Command and Query Responsibility Segregation

Suppose that there are various applications that would like to query data in different
ways and with different frequencies (Val-3, Val-4). Different consumers such as busi-
ness analysts and machine learning engineers have very different demands, and would
therefore, create different workloads for the BD systems. As the consumers grow, the
application has to handle more object mappings and mutations to meet the consumers’
demands. This may result in complex validation logics, transformations, and serializa-
tion that can be write-heavy on the data storage. As a result, the serving layer can end up
with an overly complex logic that does too much.

Read and write workloads are really different, and this is something a data engineer
should consider from the initial data modeling, to data storage, retrieval and potential
serialization. And while the system may be more tolerant on the write side, it may have
a requirement to provide reads in a timely manner (checking a fraudulent credit card).
Representations of data for reading and writing are frequently mismatched and require a
specialized technique and modeling. For instance a snowflake schema may be expensive
for writes, but cheap for reads.

To address some of these challenges, we suggest the use of CQRS pattern. This pattern
separates the read from writes, using commands to update the data, and query to read
data. This implies that the read and write databases can be physically segregated and
consistency can be achieved through an event. To keep databases in sync, the write data-
base can publish an event whenever an update occurs, and the read database can listen
to it and update its values. This allows for elastic scaling of the read nodes and increased

Page 31 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

query performance. This also allows for a read optimized data modeling tailored specifi-
cally for data consumers. Therefore, this pattern can potentially address the requirement
Val-1, and Val-3.

Anti‑corruption layer

Another pattern that comes useful when handling large number of data consumers is the
anti-corruption layer. Given that the number of consumers and producers can grow and
data can be created and requested in different formats with different characteristics, the
ingestion and serving layer may be coupled to foreign domains and try to account for an
abstraction that aims to encapsulate all the logic in regards to all the external services
(data consumers). As the system grows, this abstraction layer becomes harder to main-
tain, and its maintainability becomes more difficult.

One approach to solve this issue is anti-corruption layer. Anti-corruption layer is a
node that can be placed between the serving layer and data consumers or data producer,
isolating different systems and translating between domains. This eliminates all the com-
plexity and coupling that could have been otherwise introduced to the ingestion layer
or the serving layer. This also allows for nodes to follow the ‘single responsibility’ pat-
tern. Anti-corruption layer can define strong interfaces and quickly serve new demands
without affecting much of the serving node’s abstraction. In other terms, it avoids cor-
ruption that may happen among systems. This pattern can help with requirements Val-3
and Val-4. We have portrayed this pattern and CQRS in Fig. 14.

Veracity

Next to value, veracity is an integral component of any effective BD system. Veracity
in general is about how truthful and reliable data is, and how signals can be separated
from the noises. Data should conform with the expectations from the business, thus data
quality should be engineered across the data lifecycle. According to Eryurek et al. [46],
data quality can be defined by three main characteristics (1) accuracy, (2) completeness,
and (3) timeliness. Each of these characteristics posits a certain level of challenge to the
architecture and engineering of BD systems. Hence, we propose the following patterns
for addressing requirements Ver-1, and Ver-4:

Fig. 14 Design patterns for value requirement

Page 32 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

1. Pipes and filters
2. Circuit breaker

Pipes and filters

Suppose that there is a data processing node that is responsible for performing a vari-
ety of data transformation and other processes with different level of complexities. As
requirements emerge, newer approaches of processing may be required, and soon this
node will turn into a big monolithic unit that aims to achieve too much. Furthermore,
this node is likely to reduce the opportunities of optimization, refactoring, testing and
reusing. In addition, as the business requirements emerge, the nature of some of these
tasks may be different. Some processes may require a different metadata strategy that
requires more computing resources, while others might not require such expensive
resources. This is not elastic and can produce unwanted idle times.

One approach to this problem could be the pipes and filters pattern. By implementing
pipes and filters, processing required for each stream can be separated into its own node
(filter) that performs a single task. This is a well-established approach in unix-like oper-
ating systems. Following this approach allows for standardization of the format of the
data and processing required for each step. This can help avoiding code duplication and
results in easier removal, replacement, augmentation and customization of data process-
ing pipelines, addressing the requirements Ver-1 and Ver-4. This pattern is basically por-
trayed in all of our models.

Circuit breaker

In an inherently distributed environment like BD, calls to different services may fail due
to various issues such as timeouts, transient faults or services being unavailable. While
these faults may be transient, this can have a ripple effect on other services in the sys-
tem, causing a cascading failure across several nodes. This affects system availability and
reliability and can cause major losses to the business.

One solution to this problem can be the circuit breaker pattern. Circuit breaker is a
pattern that prevents an application from repeatedly trying to access a service that is
not available. This improves the fault tolerance among services and signals the service
unavailability. The requesting application can decide accordingly on how to handle the
situation. In other terms, circuit breakers are like proxies for operations that might fail.
This proxy is usually implemented as a state machine having the states close, open, and
half-open. Having this proxy in place provides stability to the overall BD system, when
the service of interest is recovering from an incident. This can indirectly help with Ver-4.
We have portrayed this pattern in Fig. 13.

Security and privacy

Security and privacy should be on top of mind for any BD system development, as these
two aspects play an important role in the overall data strategy and architecture of the
company. At the intersection of data evolution, regional policies, and company poli-
cies, there is a great deal of complexity. To this end, we propose the following pattern to
address requirements SaP-1 and SaP-2:

Page 33 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

1. Backend for Frontend (BFF)

Backend for frontend

API gateway has been discussed in several sections in this study, however, in this section
we are interested to see how it can improve security and privacy of BD systems. In terms
of privacy, given the increasing load of data producers, and how they should be directed
to the right processing node, how does one comply with regional policies such as GDPR
or PCI? How do we ensure, for example, that data is anonymized and identifiable prop-
erties are omitted? One approach is to do this right in the API gateway. However as data
consumers grow and more data gets in, maintaining the privacy rules and applying them
correctly to the dataset in the API gateway becomes more difficult. In addition, this can
result in a bloated API gateway with many responsibilities, that can be a potential bot-
tleneck to the system.

One approach to this problem can be the BFF pattern. By creating backends (services)
for frontends (data producers), we can logically segregate API gateways for data that
requires different level of privacy and security. This logical separation can include other
factors such as quality of services (QoS), key accounts, and even the nature of the API
(GraphQL or RPC). Implementing this pattern means that instead of trying to account
for all privacy related concerns in one node (API gateway), we separate the concerns
to a number of nodes that are each responsible for a specific requirement. This means,
instead of creating a coupled, loosely abstracted implementation of privacy mechanisms,
the system can benefit from hiding sensitive or unnecessary data in a logically separated
node. This is also a great opportunity for data mutation, schema validation, and poten-
tially protocol change.

On the other hand, from the security point of view, and in specific in relation to
authorization and authentication, this pattern provides with a considerable advantage.
BFF can be implemented to achieve token isolation, cookie termination, and a security
gate before requests can reach to upstream servers. Other security procedures such as
sanitization, data masking, tokenization, and obfuscation can be done in this layer as
well. As these BFF servers are logically isolated for specific requirements, maintainability
and scalability is increased. This addresses the requirements SaP-1 and SaP-2. We have
modeled this pattern in Fig. 15.

Fig. 15 Design patterns for security and privacy requirements

Page 34 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Validation
After the generation of the design theories, we sought for a suitable model of validation.
This involved a thorough research in some of the well-established methods for validation
such as single-case mechanism experiment, technical action research and focus groups
[47]. For the purposes of this study we chose export opinion, following the guidelines of
Kallio et al. [48].

Research methodology for gathering expert opinion

Our research methodology for gathering expert opinion is made up of four phases: (1)
identifying the rationale for gathering expert opinion, (2) formulating the preliminary
expert opinion gathering guide, (3) pilot testing the guide, (4) presenting the results.

Expert opinion is suitable for our study, because our conceptual framework is made up
of architectural constructs that can benefit from in-depth probing and analysis. As we
examine an uncharted territory with a lot of potential, we posit that these expert opin-
ions can post useful leads. These leads can be pursued to further improve the theories of
this study.

We’ve formulated our expert opinion guide based on our research objective to achieve
the richest possible data. Our guide is flexible, to increase our opportunity to explore
new ideas, and allow for participant-orientation. Nevertheless, we formulated some
close-ended questions which are good starters, and also help us with some statistics.

Our questions are categorized into main themes and follow-up questions, with main
themes being progressive and logical, as recommended by Kallio et al. [48]. We pilot
tested our expert opinion guide using internal testing, which involved an evaluation of
the preliminary expert opinion guide with the members of the research team. We aimed
to assume the role of the expert and gain insight into the limitations of our guide.

This approach helped us capture some issues with the questions, and remove some
questions that may be deemed eccentric. Follow-up questions were utilized to direct
the dialogue towards the subject of our study, and make things easier for candidates
to understand. Some of these follow-up questions were improvised, as we did not aim
to rigidly control the flow. After this, to ensure the rigour and relevance of the expert
opinion guide, we’ve conducted a pilot test. This step was necessary to make informed
adjustments to the guide, and to improve quality of data collection. Our guide is avail-
able at Appendix 9.

Sampling strategy

After having our expert opinion guide designed, we used purposive sampling [49] to
select experts. We chose purposive sampling because it allowed us to collect rich infor-
mation by expert sampling. In addition, this approach enabled us to ensure representa-
tiveness and removed the need for a sampling frame. We also attempted ‘heterogeneity
sampling’ by approaching candidates from various industries.

We reached out to colleagues, our connections on ResearchGate and Linkedin,
and tried to look for experts with the titles ’data engineer’, ’data architect’, ’senior data
engineer’, ’solution architect’, ’lead architect’, and ’big data architect’. We also included

Page 35 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

founders of big data companies, or academics who have been working on BD systems.
We collected opinions of 7 experts from various industries over a period of 3 months.
An overview of these experts is portrayed in Table 5.

Data synthesis

Expert opinions are collected through the software Zoom. We saved all of the record-
ings, and then downloaded the automatically generated transcripts. Transcripts for
each opinion collection session has been added to Nvivo and then codes are created.
We created a code for each BD characteristics discussed in section "Requirements speci-
fication". Additionally, we added a code named ’comments/suggestions’. After having
analyzed all the transcripts, we added a new code named ’limitations’. This last code dis-
cussed how some of patterns of microservices may not be relevant at all, or some of the
patterns we proposed may introduce challenges.

After the initial coding process, through axial coding, we created higher level codes.
These higher level codes were subsequently connected to create themes.

Results

From the results of the export opinion collection, we gathered a lot of insights and
probed deep into our architectural constructs. Every session involved an analysis of
the design patterns with one question from the expert trying to understand the prob-
lem space and the solution proposed. Our experts had at least 8 years of experience.
While some had more experience with BD and AI, some others were well-versed in MS
architecture. We first asked experts about their depth of understanding with MS and BD,
and then asked them if patterns discussed for each characteristic makes sense. We asked
every expert if they can think of a pattern that we failed to consider. While we designed
the opinion gathering process to be only an hour, the sessions has always exceeded this
time. We present the results in sub-section each associated to the corresponding BD
characteristic.

Volume

For volume, we went through the theories elaborated in section "Volume". This was
accompanied by the model created, and sometimes even live modeling to help with
understanding. All of the experts took the idea of API gateway and gateway offloading

Table 5 Participants Demographics

Expert Role Years of
experience

Industry

i1 Lead Development Architect 18 Healthcare Diagnostic Substances

i2 Software Architect 8 Human Resources Services

i3 Associate Professor and Co-
founder of a Big Data company

15 Consulting

i4 Senior Data Engineer 20 Software (Practice Management Software)

i5 Big Data Architect 8 Insurance and Finance

i6 Director 40 Consulting

i7 Solution Architect 9 Telecommunications

Page 36 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

naturally, while we had to explore the ’external configuration store’ a bit deeper. We
used the idea of Kubernetes ingress to help with elaboration of API gateway. We used
AWS load balancer example, and discussed the challenges of maintaining certificates
and authentication. For the externalized configuration pattern we had to go a bit deeper
and talk about a scenario in a which the developer of the batch processing node or the
stream processing node, may need to account for the development, trial and produc-
tion workloads that have different DNS requirements, and configurations. We discussed
how environment variables may vary, have trial environments may not need as much
resources as the production, how ingress may vary, how recursive DNS resolution would
be different, and how buffers, and Infrastructure may vary.

After explaining a scenario, experts agreed that this pattern can help with some of the
challenges of data engineering. One expert mentioned that this can even be utilized for spe-
cial privacy requirements. That is, different nodes may have different configuration based
on the privacy policies needed. In addition, there’s been discussion in regards to regional
privacy and security requirements and how configuration can help derive them. Some
experts discussed that this is a general pattern that any system can utilize to its benefit.

API Gateway and Gateway offloading patterns are often practiced in the industry. Nevertheless, the externalized
configuration store is not as well understood.

In one session, an expert discussed how the description of these patterns and the imple-
mentations varied in his professional experience in different companies. He added
that most developers tend to have a shallow understanding of why certain pattern is
adopted, and thus the implementation usually varies. In addition, the expert stated that
once a pattern is implemented, then the challenge is to keep the pattern comply with
its intended responsibility. In his experience, many of the patterns such as API gateway
suddenly turn into an overarching solution that aims to solve many problems. Thus, pat-
terns may firmly establish the problem domain and the solution initially to demarcate
boundaries.

The description of a pattern is one thing, the implementation is another.

Another expert discussed how they are taking extensive measures to embark on a fully
event-driven process, and how a lot of things that we theorize and modeled may sound
easy to do, but daunting to implement. The expert explained how they are planning to
store data in their AWS S3 initially and then having a Lambda function trigger to start
the ETL process. The expert then explained how they need to obtain different configura-
tions from different data providers, and how that can affect the data prepared for data
consumers. Furthermore, he added how externalized configuration pattern could be
implemented with DynamoDB and Lambda functions.

One of the experts from insurance and finance sector mentioned that scaling the gate-
way and corresponding nodes may not be as easy as it seems. He mentioned that dur-
ing normal days there are hardly any claims, and while there’s a special event, the storm
comes. The expert mentioned that scaling forecast is usually based on historical data.
Further, he mentioned that even the delay in auto-scaling groups in AWS can be prob-
lematic for them.

Page 37 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Interviewee i5 from insurance and finance sector mentioned that scaling the gateway
and corresponding nodes may not be as easy as it seems. He mentioned that during nor-
mal days there are hardly any claims, and when there is a special event, the storm comes.
The interviewee mentioned that scaling forecasts are usually based on historical data.
Further, he mentioned that even the delay in auto-scaling groups in AWS can be prob-
lematic for them.

The same expert from the insurance sector discussed how centralizing configuration
may sound like a good idea. Howbeit, he added that this approach makes him slightly
nervous, because every service is unique in its own, and may require a specific configu-
ration. He added, that as configurations increase, the externalized configuration node
can be bloated, taking so much responsibilities. He added that at times, his team had
to reconfigure a service at the fly to prevent customer churn, and with this pattern he
finds everything more complicated. At last, he added that in a multi-region operating
companies, a centralized configuration store can really help with standardization and
maintenance.

Centralization of configuration can initially start effective, but as the number of nodes and configurations
increases, this component itself can become challenging to maintain.

Interviewee i6 has affirmed us that gateway offloading and API gateways are pretty
common patterns, and he has witnessed it in several major banks. The same candidate
metioned that ‘external configuration store’ pattern is sometimes referred to as ‘declara-
tive configuration management’. The candidate then continued to explain how this pat-
tern can be witnessed in Kubernetes clusters through metadata objects, kube-system,
and Etcd.

Velocity

For Velocity, we first started by exploring an event-driven data engineering archi-
tecture, and then justified the idea of competing consumers. We then explored
how competing consumers can fail, and how circuit breaker pattern can help.
Finally we explored the idea of logging and how tail logging and distributed trac-
ing can be achieved through it. An expert challenged the idea of competing con-
sumer and stated that a leader election may be a better choice for a distributed setup
as such. The expert also mentioned that circuit breakers could be implemented in
the competing consumer nodes, but he could see the value of separating it to its
own service. Of particular argument was the fact that circuit breaker’s implementa-
tion may not be that complicated and a dedicated service for it can increase costs.

The circuit breaker helps with increasing fault tolerance, but it does so by increasing costs.

In another session, expert asked about the amalgamation technique for the logs,
and discussed how dimensionality of the logs can be challenging. We took both feed-
backs of ’leader election’ and ’more in-detailed logging approach’ into consideration.
We researched deeper into leader election, logging approaches, and distributed trac-
ing. We found leader election a bit hard to justify, as it introduces a single point of fail-
ure, can potentially introduce faulty data as there’s only one point of trust, and partial

Page 38 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

deployments are really hard to apply. We found that benefits of ’leader election’ pattern
to be outweighed by the complexity it introduces. In regards to logging, we found vari-
ous approaches to distributed tracing and log merging, however these were mostly in-
detailed micro approaches, which is not in the scope of our study.

In a separate session, the expert discussed how circuit breakers may need to do load
balancing as well. We then discussed how circuit breakers could be implemented in data
processing nodes themselves, or in a side car. The expert then explained how they’ve cre-
ated a system that resembles to the log aggregator pattern. The expert elaborated how
the system has a graphical interface that captures errors from various ETL jobs.

An expert from the insurance sector discussed how log aggregator might be a good
pattern, but it’s not always great to add so many technologies to the stack. Then he
added that each system may have a different logging library and interface and aggre-
gating them may need an effective methodology. The expert described that log-
ging is better be approached through several layers of abstraction. He described
how it would be useful to have some easy to understand metrics on the surface
level. He added there should not be a need for technical skills to read these met-
rics. Nevertheless, there should be detailed logs abstracted for more technical users.

One of the important aspects of log aggregation is capturing the right log and presenting it effectively.

Moreover, it was mentioned that only important pieces of information should be col-
lected and presented, as most web servers such as Nginx create so many logs. In an
another expert, the candidate brought to light the challenges of time-synchronization
in log aggregator pattern. The candidate, who had a background in financial sector, dis-
cussed how handling logs from a large amount of services can introduce a challenge of
its own. He continued to describe how critical these logs can be during sensitive stream
processing tasks, and how data can easily get into petabytes in the banks.

The candidate recommended to design services in a manner that promotes
self-awareness. This is to prevent them from breaking silently, which makes
debugging and issue resolution take much longer. He added that this ‘aware-
ness’ can be complementary to the log aggregator, as services can reflect and
dispatch an event in regards to the root cause of the failure. In addition, the
candidate discussed the benefits of dynamically defining the level of logging.

Services should be ‘self-aware’, capable of reflecting on the issue with right error handling mechanisms.

He illustrated how dynamically setting the level of logging has been really helpful in
his personal experience. The candidate then elaborated further on low-level technical
details of implemeting OpenTelemtry [50] for different cases and with different levels of
logging.

An expert from the telecommunication domain depicted the fact that signaling una-
vailability through a circuit breaker would not suffice. The candidate continued discuss-
ing that even when services are down, data should still be stored to be processed later.
The candidate discussed that services to processes the data may fail, and you may even
signal the data producers. But that does not mean that data producers will stop send-
ing you data! He continued discussing how data coming from the producers may be

Page 39 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

perceived as one transaction, and how sometimes there’s no way to stop the data from
getting into the system.

Therefore, he suggested that during the failure, the incoming data should be stored
somewhere to be processed later. In his experience, without this, things would become
really challenging and there might even be a data loss. The candidate believes that
data producers are hardly controlled by the data engineering pipelines and there-
fore, data architects should adopt the approach of ‘zero expectation from data
producers’. He then continued discussing how his team has been handling these situ-
ations in Kafka, and how partitions have helped with consistency through offsets.

Signaling unavailability of a service does not always mean that data is not sent into the system. Therefore, it is a
good practice to store incoming data in case of service unavailability.

Variety

For variety, we discussed common data types that need support, and how system may
use parquet, JSON, or how unstructured data can introduce challenges. By this point,
experts had a better grasp of our models and the gateway patterns, thus there wasn’t
much questions. An expert suggested the ‘API composition’ pattern and suggested that
we may have various services that handle different data types, but the composition of
these data may be necessary. The expert suggested that ‘API composition’ can occur at
the egress level.

One expert provided details on how painful it has been for his team to onboard new
data producers and how that dramatically slowed the project deadline. The expert added
that data received from data producers hardly have the standards necessary, as these
data are generated by third-party software that they have no control over. He explained
how different versions of the same software create different schema and how this can
sometimes break the data engineering pipelines. Then, the expert suggested off-loading
more compute intensive checks to gateways. We discussed how that could result in a
bloated architectural construct and both parties decided that BFF pattern is probably a
better suit.

Data quality cannot be ensured from data producers. One should proactively realize and address this issue.

Another expert from insurance sector discussed how the rate of change is very slow and
most things are standard in insurance and finance sectors. For instance, he stated that if
Avro is being used as the data format, the industry will be using the same format for the
next 5 years. Additionally, the expert explained breaking that changes, specially schema
changes are usually avoided. He added that in German insurance companies, almost
everything is standard, and introducing any change would require large scale communi-
cation with all insurance companies which is an extensive measure.

One of the participants who had an experience with firmware development (i6),
depicted the challenges of working with Eletronic Data Interchange (EDI) formats. In
his experience, the data format has hardly changed despite the recent technological
advancements, and that had introduced significant challenges to his team.

Page 40 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Variety may not be necessarily a challenge for all industries.

He then explained how gateway offloading could be useful to isolate this data format
only to a group of specialized engineers. This meant that newer, less interested engi-
neers could be working on different nodes concurrently without having to worry about
introducing side effects to the pipelines. He mentioned that at times, there were very few
people available who were well-aware of EDI. He explained how at the very least with
the gateways, the data could be stored in a storage for later processing through special
headers.

Value

For value, we discussed CQRS and anti-corruption layer. We first began by exploring the
challenges of having to optimize for read and write loads. We discussed how it could be
essential for the business to provide read queries in a timely manner, and how trying to
model for both read and write queries may not be efficient. For instance, we explored
snowflake schemas against star schemas, discussed a typical data analysis flow and pro-
vided challenges.

An expert discussed how this pattern can be helpful in companies that have
adopted domain-driven design, and how each bounded context can decide how
the data should be modeled. Some experts shared the same idea that CQRS should
only be applied when the needs arise and not proactively. This is due to the fact
that implementing and getting CQRS right comes with complexity, and can dra-
matically increase cost. An expert suggested that CQRS is perhaps unnecessary in
many cases and should be utilized only in special cases. The expert also suggested
that a reporting database should suffice, and discussed other optimization strat-
egies that could be applied to optimize for read and write without needing to imple-
ment CQRS. One example is using different access techniques for reads and writes.

CQRS increases complexity and cost. This pattern is better implemented in light of business requirements and
not proactively.

These expert opinions shed some lights on how complex implementing CQRS can be,
and we deduced that this pattern can introduce challenges and should be adopted when
the benefits outweigh the challenges. We also received questions about event sourcing
and if that could be applied, as CQRS is usually implemented with event sourcing. How-
ever, we do not think that event sourcing can scale to account for big data systems, and
the challenges of maintaining event logs can introduce risk to modifiability and perfor-
mance of the overall system.

An expert discussed how they have implemented something similar to CQRS with
Elasticsearch. Another expert mentioned how a lot of things are going on in their MySQL
databases, and how during write-heavy times, database is locked and unresponsive. He
added how waiting for database to become available has been a pain point, and how
their services have timed out on this. The expert explained how the stochastic nature of
database locks, made it hard for them to predict and tackle this issue. This expert found
the idea behind CQRS relevant and effective in solving some of their problems.

Page 41 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Another expert discussed how they have successfully deployed CQRS into production
and how it’s been really effective for them. For instance, the expert discussed that Avro
data format has been utilized for the write data store and how without this approach
the cost of operation and infrastructure would have been doubled. He added that only
a part of complexity is associated to bringing data to the platform and storing it in the
write database. He discussed that different data consumers have different use cases, and
not everyone would appreciate Parquet data format. He stated that some consumers are
more interested in row-based data formats and need more aggregation.

Along the same lines, the expert depicted the fact that human side of things
is just as complicated as the technical side. For instance, he gave us several exam-
ples in which the data consumer did not know what’s really the most optimized
format for his/her workload. This is due to the fact that some consumers are
not technical stakeholders, and need to be accounted for. The expert contin-
ued describing how his team has to sometimes go to the data consumer directly
and understand the usage patterns or algorithms run on the data. From there
on, his team then would decide the best data format. Nevertheless, as stake-
holders change and requirements emerge, there might be a need for doing
this several times, which introduces constant challenge to data engineers.

Data consumers’ requirements are not always clear. Data engineering pipelines should be flexible enough to
account for emerging requirements.

Another interesting fact we learnt was that in the financial and insurance sectors, it is
not that unlikely for people to press a button on Friday and come back to get their data
on Monday. He added that there are various Fortran and legacy Java applications that are
widely used in practice and are really un-optimized.

In another session, the expert discussed the known issues for not applying CQRS
to big data systems. The main argument was around the management of overall data
volume and the stress that CQRS can introduce to storage media. The expert dis-
cussed how CQRS is challenging even in non data-intensive systems, and how BD can
exacerbate the challenge. In addition, as discussed by the expert, the network and OS
overheads introduced by CQRS and microservices in general may not perform well in
BD systems. This issues is discussed in [51].

A candidate from the telecommunication domain (i7) discussed his concerns for
CQRS and specifically how two data storages seems really expensive to him. He added
that CQRS can stress the data engineering process in terms of storage and backup,
because now instead of one database, you have to account for two. He related this
to his company and mentioned that a request for such facility can get denied by the
accounting department, because it is hard to justify. The candidate believed that this
pattern is only useful for fully data-driven large-scale companies that have got sig-
nificant resources available to then. From his prism, the cost outweights the ben-
efit, and many small to medium sized businesses would not be able to afford this.

Microservices and CQRS pattern increase network and OS overheads. Therefore, architectural tradeoffs should
be analyzed before incorporating microservices patterns into big data systems.

Furthermore, we explained the anti-corruption layer. We discussed how the consumer

Page 42 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

needs can emerge, and how coupling it all to the read service can affect the system modi-
fiability negatively. This pattern was well-perceived by experts, however there were con-
cerns about the anti-corruption layer itself getting bloated and introducing ’corruption’!
However a system architect can tackle this by introducing several anti-corruption layers,
or egress nodes that are each responsible for a class of data consumers.

An expert raised the concern that defining the scope of anti-corruption layer may
be a challenge. In his experience, data scientists need ‘all the data’ available in the
company, and that’s been a challenge for his team in the past. He continued discuss-
ing that this pattern can be useful not only from decoupling perspective but from
a security and governance point of view. We failed to realize this in our research.

Anti-corruption layer does not only help with abstraction, but it has other positive side-effects such as
increased governance and security.

The expert discussed that at times his team has been asked to provide with a lot of data,
and providing it could have cause major security issues. He added that defining these
anti-corruption layers with clearly defined contracts between the consumers and the big
data system’s canonical data can be an effective measure to govern what should be pro-
vided, and is a great opportunity to eliminate security risks.

For security and privacy, we started the discussion by exploring how different com-
panies and regions may have different requirements, and how consuming data from
data producers might be affected. We then discussed how having a single gateway
to encompass all that logic can be daunting to scale. We then introduced the BFF
pattern and elaborated that how each class of data consumers can be associated to a
specific BFF. This pattern was well-received. An expert pointed out a potential of the
access token pattern to be applied to the BFF. The expert elaborated that how having
BFFs can help with cloud design and potential usage of private networks to increase
security.

An expert discussed how data engineers are usually not well educated on security
matters in his professional experience. He added how expensive it is to train engi-
neers to a good level on security and privacy and even after that the company may
not be able to retain them. The expert explained how IT giant companies like Google
have the resources necessary to constantly account for emerging privacy and secu-
rity requirements, while small to medium sized businesses are struggling. Finally he
stated that following privacy and security standards is really costly for companies.

During a different session, the participant elaborated on how challenging it would
be to have several ingresses into the system, and how BFF pattern may provide some
stress on security and platform teams. While he admitted that performance and
maintainability may be increase, he found challenges of controlling what comes into
the system significant.

The expert added that going BFF requires substantial resources and may not be ideal
for every company. From his perspective, BFF was only an unnecessary complexity,
stating that his life is gonna be hard if he brought something like this into production.

Many data engineering pipelines benefit from pipes and filters pattern.

Page 43 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Moreover, an expert discussed how encryption should be taken more seriously in BD
world. He admitted that in his experience, most BD architects and data engineers were
not in favour of data encryption. This was due to performance issues associated to
encryption of large amount of data. The expert then further elaborated on issues that
may arise if data is not encrypted. From his perspective, in today’s world there is really
no borders with data connectivity and one has to make sure that data is safe. He added
that if the architecture depends on the perimeters, you need to make sure these perime-
ters are concretly defined, he then stated that ‘there are no concretly defined perimeters’!

Filters provide an opportunity for introducing data quality metrics.

In his view, having access to data storage should not mean having access to data. He
suggested hardware encryption to solve some of the performance challenges. The same
expert pointed out the challenges of GDPR and privacy. He suggested that ’deleting data’
is as important as storing it, and one should proactively look for opportunities to delete
sensitive data.

Security and privacy

For security and privacy, we started the discussion by exploring how different compa-
nies and regions may have different requirements, and how consuming data from data
producers might be affected. We then discussed how having a single gateway to encom-
pass all that logic can be daunting to scale. We then introduced the BFF pattern and
elaborated on how each class of data consumers can be associated to a specific BFF. This
pattern was well-received. Interviewee i1 pointed out a potential of the access token pat-
tern to be applied to the BFF. The interviewee elaborated how having BFFs can help with
cloud design and potential usage of private networks to increase security.

Interviewee i4 discussed how data engineers are usually not well educated on security
matters in his professional experience. He added how expensive it is to train engineers
to a good level on security and privacy and even after that the company may not be able
to retain them. The interviewee explained how IT giant companies like Google have the
resources necessary to constantly account for emerging privacy and security require-
ments, while small to medium sized businesses are struggling. Finally, he stated that fol-
lowing privacy and security standards is really costly for companies.

In another interview, the participant (i5) elaborated on how challenging it would be to
have several ingresses into the system, and how BFF pattern may provide some stress on
security and platform teams. While he admitted that performance and maintainability
may increase, he perceived the challenge of controlling what comes into the system as
significant.

An expert discussed how pipe and filters have been the key for them in production,
and how it helped them scale and avoid data corruption. He added that without adopt-
ing such pattern, if something broke in a large transformation, you’d never know what
went wrong, and you might be forced to rerun a process that takes 5h to complete.

While BFF can be useful in increasing maintainability and scalability of the BD systems, it comes with increased
complexity and cost.

Page 44 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Furthermore, the expert depicted how data quality is becoming more and more impor-
tant for his team and company. This is due to the fact that the expert works in the insur-
ance sector, and data is used in deciding some of the claims.

The expert admitted that sometimes in the past, many years ago, they had to make dif-
ficult decisions because data did not posses the qualities necessary. Moreover, he added
that separating transformation into their own service (filters), creates an opportunity
for introducing data quality metrics for each transformation, which can be used later to
probe what has gone wrong and the team can recover from a corrupted data.

In another session, the participant discussed how circuit breaker should be tied to the
end of the data processing and not only to the beginning of it. He elaborated that the
server might be healthy when the transformation starts, but that might not be the case
when it’s about to end, therefore corrupting the data. Further, he added that this can
introduce unnecessary reprocessing.

Other feedbacks, closing thoughts

An examination of the feedback obtained from industry experts has revealed three prin-
cipal types of patterns:

(1) Patterns that are widely accepted and are already used in practice
(2) Patterns that are applicable, but depending on the context may not be practiced
(3) Patterns that are controversial, and may not suit all projects

An overview of these patterns is portrayed in Table 6.
One of the most experienced interviewees (i1) suggested us to further break down our

processing requirements into domains and then utilize gateway aggregation patterns
and CQRS to do ‘data as a service’. This idea was driven by data mesh and data fabrics.

Gateway aggregation and CQRS patterns can be utilized to achieve ‘data as a service’.

One of the most experienced expert suggested us to further break down our processing
requirements into domains and then utilize gateway aggregate patterns to do ’data as a
service’. This idea was driven by data mesh and data fabrics. All of our experts found the
study interesting, and were eager to know more after the opinion collection session.

Another feedback was the idea of having an egress that encapsulate the anti-corrup-
tion layer and adds some more into it as well. The pattern ’backend for frontend’ was well
received, and our event driven thinking seemed to be very well accepted by the experts.
By the result of this expert assessment we realized that we have missed an architectural

Table 6 Categories of patterns

In practice Applicable Controversial

1. API gateway
2. Gateway offloading
3. Pipes and filters
4. Log Aggregation

1. External configuration store
2. Competing Consumers
3. Circuit Breaker
4. Anti-Corruption Layer

1. CQRS
2. BFF

Page 45 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

construct while discussing velocity requirements, which was the message queue. These
expert opinions increased our confidence in our results and reasoning and have shed
some lights on possible new patterns that we could employ.

We have received a lot of good insights into how else we could model and approach
this problem. Some of our experts connected some of the patterns discussed to their
own context of practice and helped us realized further improvements. Some patterns
like CQRS were challenged more, while some other like pipes and filters have been taken
naturally.

Discussion
The results of this study have provided us with two major findings; (1) the progress in
the data engineering space seems to be uneven in comparison to software engineering,
(2) MS patterns have a great potential for solving some of the BD system development
challenges. While data engineering has adopted a few practices from software engineer-
ing like DataOps, we posit that more software engineering well-established practices can
be absorbed.

Futhermore, majority of the studies that we have analyzed to understand BD systems
seem to revolve around crunching and transforming data without much attention to
data lifecycle management. This is bold when it comes to addressing major cross-cutting
concerns of successful data engineering practice such as security, data quality, Data-
Ops, data architecture, data interoperability, data versioning and testing. In fact, while
we found a lot of mature approaches in MS and event driven architectures, we could
not find many well-established patterns in the data engineering space. Based on this, we
think that data architecture remains a significant challenge and requires more attention
from both academia and industry.

The future work from here can be focused on applicability of type 2 patterns discussed
in Table 6, and challenging different aspects of type 3 patterns. Moreover, future work
can be focused on other categories of patterns that BD systems can benefit from. These
can be event-driven patterns, reactive pattern or general intra-module software engi-
neering patterns.

Conclusion
With all the undeniable benefits of BD, the success rate of BD projects is still rare. One of
the core challenges of adopting BD lies in data architecture and data engineering. While
software engineers have adopted many well-established methods and technologies, data
engineering and BD architectures do not seem to benefit a lot from these advancements.

The aim of this study was to explore the relationship and application of MS archi-
tecture to BD systems through two distinct SLRs. The results derived from these SLRs
presented us with interesting insights on the potential of MS patterns for BD systems.
Given the distributed nature of BD systems, MS architectures seems to be a natural fit
to solve a myriad of problems that come with decentralization. Even though we created
many design theories, modeled patterns against systems, and validated our theories, we
believe that our results could be further validated by an empirical study. We, therefore,

Page 46 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

posit that there is a need for more attention in the area of MS and event-driven architec-
tures in relation to BD systems from both academia and industry.

Appendix
Expert opinion guide

Introduction

Thanks for your participation. We are collecting your opinion to validate our theories in
regards to application of microservices patterns to big data systems. There are no right
or wrong answers, and we are really interested in your opinion and experiences. This
process should take approximately one hour depending on the flow of our dialogues.

All your responses will be confidential, and the results of this expert opinion gathering
will be presented without mentioning your name. You may decline to answer any ques-
tion or stop the process at any time and for any reason. Should you wish to not answer
any of the questions, you may decline the question or stop the process at any time. Are
there any questions in regards to what I have just explained ?

Note to the reader/researcher: Please not that this guide aims to only encompass the
main themes being discussed with the expert and as such does not include the prompts
that may have emerged in the process. Some general prompts and close-ended questions
are included.

Establishing rapport

Before we begin, it would be nice if you could introduce yourself and tell me a bit
about your background and your area of interest.

Candidates background

(1) Could you please tell me your job title?
(2) Could you please tell me how many years of professional experience have you got in

software engineering or data engineering?

Familiarity with big data systems

(1) Could you please tell how many years of experience have you got related to data
engineering or big data?

(2) Could you please elaborate on your experience/s with big data systems (or any
related systems)?

Familiarity with microservices

1 Could you please tell how many years of experience have you got related to microser-
vices architecture?

Page 47 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

2 Could you please elaborate on your experience/s with microservices architecture (or
any related systems)?

Microservices patterns for big data systems

(1) How do you find the mapping of the patterns to the mentioned characteristics? (
asked for each characteristic after explaining the theories)

(2) Overall, do you think the concepts discussed could be helpful to practitioners or
academics?

(3) Do you see any limitations with our study?
(4) Have we missed any pattern for any problem?

Closing thoughts

(1) Are there any further comments/suggestions/improvements that you have got for
our study?

Acknowledgements
Not applicable.

Author contributions
PA has designed the initial research methodology, chose the title and the aim of the paper, and conducted the research
with help of DS. PA has taken part in all parts of the paper, and has done the expert opinion collection. DS has con-
tributed to all parts of the research, in specific, the systematic literature review section. DS has written majority of the
research methodology section, provided with PRISMA flowcharts, and many reviews. DS helped with focus and direction
of the research. DS has also taken part in finding big data experts. Both authors read and approved the final manuscript.

Authors’ information
Pouya Ataei received two bachelor’s degree in software engineering from Asia Pacific University, Kuala Lumpure, Malay-
sia and Staffordshire University, Stoke-On-Trent, The United Kingdom and a master’s degree in software engineering from
Staffordshire University, is a current Ph.D. student at Auckland University of Technology, Auckland, New Zealand, working
on decentralized and distributed big data architectures. He has been an active researcher in the domain of big data
within the past 5 years, having created the Nexus methodology for big data system development, and NeoMycelia, a
decentralized software reference architecture for big data systems. His area of interest is in distributed system, in specific
event-driven microservices, reactive systems, software architecture, and data engineering.
Daniel Staegemann studied computer science at Technical University Berlin (TUB). He received the master’s degree in
2017. He is currently pursuing the Ph.D. degree with the Otto-von-Guericke University Magdeburg (OVGU), where he has
been employed as a scientific researcher since 2018. In this time, he published over 50 research papers, many of these
in prestigious outlets such as the Americas Conference on Information Systems (AMCIS), the Pacific Asia Conference
on Information Systems (PACIS), the International Conference on Design Science Research in Information Systems and
Technology (DESRIST), the International Conference on Business Information Systems (BIS), the Hawaii International
Conference on System Sciences (HICSS), and IEEE Access. Besides being an author and speaker at conferences as well as
a mini-track and workshop chair, he also regularly acts as a reviewer. His research interest is mainly focused on big data
and the corresponding quality assurance, but also encompasses all other related topics.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Page 48 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

Competing interests
The authors declare that they have no competing interests.

Received: 3 December 2022 Accepted: 11 April 2023

References
 1. Davenport TH, Bean R. Davenport TH, Bean R, editors. Big data and AI executive survey 2021. NewVantage Partners;

2022. https:// www. newva ntage. com/ thoug htlea dersh ip.
 2. MIT Technology Review Insights. (2021). AI and the future of work: Adopt or be left behind. Retrieved from https://

www. datab ricks. com/ resou rces/ white paper/ mit- techn ology- review- insig hts- report.
 3. Freymann A, Maier F, Schaefer K, Böhnel T. Tackling the six fundamental challenges of big data in research projects

by utilizing a scalable and modular architecture. In: IoTBDS; 2020. p. 249–256.
 4. Richardson C. Richardson C, editor. A pattern language for microservices. https://microservices.io; 2022. https://

micro servi ces. io/ patte rns/ index. html.
 5. Ataei P, Litchfield A. The state of big data reference architectures: a systematic literature review. IEEE Access. 2022;10.
 6. Laigner R, Kalinowski M, Diniz P, Barros L, Cassino C, Lemos M, et al. From a monolithic big data system to a micros-

ervices event-driven architecture. In: 2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE; 2020. p. 213–220.

 7. Zhelev S, Rozeva A. Using microservices and event driven architecture for big data stream processing. In: AIP Confer-
ence Proceedings. vol. 2172. AIP Publishing LLC; 2019. p. 090010.

 8. Staegemann D, Volk M, Shakir A, Lautenschläger E, Turowski K. Examining the interplay between big data and
microservices-a bibliometric review. Complex Syst Inf Model Q. 2021;27(27):87–118.

 9. Shakir A, Staegemann D, Volk M, Jamous N, Turowski K. Towards a concept for building a big data architecture with
microservices. In: Business information systems; 2021. p. 83–94.

 10. Maamouri A, Sfaxi L, Robbana R. Phi: A Generic Microservices-Based Big Data Architecture. In: European, Mediter-
ranean, and Middle Eastern Conference on Information Systems. Springer; 2021. p. 3–16.

 11. Ataei P, Litchfield A, NeoMycelia: a software reference architecture for big data systems. In: 2021 28th Asia-Pacific
software engineering conference (APSEC). IEEE;2021:452–62.

 12. Kitchenham BA, Dyba T, Jorgensen M. Evidence-based software engineering. In: Proceedings of the 26th interna-
tional conference on software engineering. IEEE Comput. Soc; 2004. p. 273–281.

 13. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration:
updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372: n160.

 14. Cruzes DS, Recommended Dyba T, Steps for thematic synthesis in software engineering. In: 2011 International
symposium on empirical software engineering and measurement. IEEE; 2011:275–84.

 15. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-
ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.

 16. Webster J, Watson RT. Analyzing the past to prepare for the future: Writing a literature review. MIS quarterly. 2002;p.
xiii–xxiii.

 17. Taibi D, Lenarduzzi V, Pahl C. Architectural patterns for microservices: a systematic mapping study. In: Proceedings of
the 8th international conference on cloud computing and services science. SCITEPRESS - Science and Technology
Publications; 2018. p. 221–232.

 18. Marquez G, Astudillo H. Actual use of architectural patterns in microservices-based open source projects. In: 2018
25th Asia-Pacific software engineering conference (APSEC). IEEE; 2018:31–40.

 19. Ntentos E, Zdun U, Plakidas K, Schall D, Li F, Meixner S. Supporting architectural decision making on data manage-
ment in microservice architectures. In: Bures T, Duchien L, Inverardi P, editors. Software Architecture. vol. 11681 of
Lecture Notes in Computer Science. Cham: Springer International Publishing; 2019. p. 20–36.

 20. Bogner J, Wagner S, Zimmermann A. Using architectural modifiability tactics to examine evolution qualities of Ser-
vice- and Microservice-Based Systems: an approach based on principles and patterns. SICS Softw Intensive Cyber
Phys Syst. 2019;34(2–3):141–9.

 21. Valdivia JA, Lora-González A, Limón X, Cortes-Verdin K, Ocharán-Hernández JO. Patterns related to microservice
architecture: a multivocal literature review. Programm Comput Softw. 2020;46(8):594–608.

 22. Laigner R, Zhou Y, Salles MAV, Liu Y, Kalinowski M. Data management in microservices: state of the practice, chal-
lenges, and research directions. Proc VLDB Endow. 2021;14(13):3348–61.

 23. Aksakalli IK, Çelik T, Can AB, Tekinerdogan B. Deployment and communication patterns in microservice architec-
tures: a systematic literature review. J Syst Softw. 2021;180: 111014.

 24. Waseem M, Liang P, Ahmad A, Shahin M, Khan AA, Marquez G. Decision models for selecting patterns and strategies
in microservices systems and their evaluation by practitioners. In: 2022 IEEE/ACM 44th international conference on
software engineering: software engineering in practice (ICSE-SEIP). IEEE; 2022. p. 135–144.

 25. Vale G, Correia FF, Guerra EM, de Oliveira Rosa T, Fritzsch J, Bogner J. Designing microservice systems using patterns:
an empirical study on quality trade-offs. In: 2022 IEEE 19th international conference on software architecture (ICSA).
IEEE; 2022. p. 69–79.

 26. Weerasinghe S, Perera I. Taxonomical classification and systematic review on microservices. Int J Eng Trends Technol.
2022;70(3):222–33.

 27. Microsoft. Microsoft, editor. Design and implementation patterns. Microsoft; 2022. Available from: https:// learn.
micro soft. com/ en- us/ azure/ archi tectu re/ patte rns/ categ ory/ design- imple menta tion.

 28. ISO/IEC. (2020). Information technology — Big data reference architecture — Part 1: Framework and application
process. ISO/IEC TR 20547-1:2020.

https://www.newvantage.com/thoughtleadership
https://www.databricks.com/resources/whitepaper/mit-technology-review-insights-report
https://www.databricks.com/resources/whitepaper/mit-technology-review-insights-report
https://microservices.io/patterns/index.html
https://microservices.io/patterns/index.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/category/design-implementation
https://learn.microsoft.com/en-us/azure/architecture/patterns/category/design-implementation

Page 49 of 49Ataei and Staegemann Journal of Big Data (2023) 10:56

 29. Fox G, Chang W. Big data use cases and requirements. In: 1st Big Data Interoperability Framework Workshop: Build-
ing Robust Big Data Ecosystem ISO/IEC JTC. vol. 1; 2014. p. 18–21.

 30. Gölzer P, Cato P, Amberg M. Data processing requirements of industry 4.0-use cases for big data applications. Euro-
pean Conference on Information Systems. 2015.

 31. Laplante PA. Requirements engineering for software and systems. Boca Raton: Auerbach Publications; 2017.
 32. Len Bass RK Dr Paul Clements. Software architecture in practice (SEI series in software engineering) 4th Edition.

Addison-Wesley Professional; 4th edition; 2021.
 33. Bughin J. Big data, Big bang? J big Data. 2016;3(1):2.
 34. Rad BB, Ataei P. The big data ecosystem and its environs. Int J Comput Sci Netw Secur. 2017;17(3):38.
 35. Nadal S, Herrero V, Romero O, Abelló A, Franch X, Vansummeren S, et al. A software reference architecture for

semantic-aware Big Data systems. Inf Softw Technol. 2017;90:75–92.
 36. Chang WL, Grady N. Chang WL, Grady N, editors. NIST Big Data Interoperability Framework: Volume 1, Definitions.

NIST Big Data Public Working Group Definitions and Taxonomies Subgroup; 2019. https:// doi. org/ 10. 6028/ NIST. SP.
1500- 1r2.

 37. Kassab M, Neill C, Laplante P. State of practice in requirements engineering: contemporary data. Innov Syst Softw
Eng. 2014;10(4):235–41.

 38. ISO/IEC/IEEE. (2018). Systems and software engineering — Life cycle processes — Requirements engineering. ISO/
IEC/IEEE 29148:2018.

 39. Abran A, Moore JW, Bourque P, Dupuis R, Tripp L. Software engineering body of knowledge. Angela Burgess: IEEE
Computer Society; 2004. p. 25.

 40. Richardson C. Microservices patterns: with examples in Java. New York: Simon and Schuster; 2018.
 41. Fowler M. Analysis patterns: reusable object models. Boston: Addison-Wesley Professional; 1997.
 42. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-oriented software architecture: a system of pat-

terns, vol. 1. Hoboken: Wiley; 2008.
 43. Lankhorst M. A Language for enterprise modelling. In: Enterprise Architecture at Work. Springer; 2013. p. 75–114.
 44. Chaabane M, Bouassida I, Jmaiel M. System of systems software architecture description using the ISO/IEC/IEEE

42010 standard. In: Proceedings of the symposium on applied computing; 2017. p. 1793–1798.
 45. Ataei, P. & Litchfield, A.T. (2020). Big data reference architectures, a systematic literature review.
 46. Eryurek E, Gilad U, Lakshmanan V, Kibunguchy-Grant A, Ashdown J. Data Governance: The Definitive Guide. Sebas-

topol: OŔeilly Media Inc; 2021.
 47. Wieringa RJ. Design science methodology for information systems and software engineering. Berlin: Springer; 2014.
 48. Kallio H, Pietilä AM, Johnson M, Kangasniemi M. Systematic methodological review: developing a framework for a

qualitative semi-structured interview guide. J Adv Nurs. 2016;72(12):2954–65.
 49. Baltes S, Ralph P. Sampling in software engineering research: a critical review and guidelines. Empir Softw Eng.

2022;27(4):1–31.
 50. Chakraborty M, Kundan AP. Architecture of a modern monitoring system. In: Monitoring cloud-native applications.

Springer; 2021. p. 55–96.
 51. Sriraman A, Wenisch TF, µ suite: a benchmark suite for microservices. In: 2018 IEEE international symposium on

workload characterization (IISWC). IEEE;2018:1–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.6028/NIST.SP.1500-1r2
https://doi.org/10.6028/NIST.SP.1500-1r2

	Application of microservices patterns to big data systems
	Abstract
	Introduction
	Related work
	Methodology
	First review
	Selecting data sources
	Developing a search strategy
	Developing inclusion and exclusion criteria
	Developing the quality framework
	Pooling literature based on the search strategy
	Evaluating papers based on the inclusion and exclusion criteria
	Evaluating papers based on the quality framework
	Forwardbackward search
	The found papers
	Data synthesis

	Second review

	Findings
	Requirements specification
	Types of requirements
	Categorizing requirements
	Present requirements

	Microservices patterns
	API gateway
	Gateway offloading
	External configuration store
	Competing consumers
	Circuit breaker
	Log aggregation
	Command and query responsibility segregation (CQRS)
	Anti-corruption layer
	Backend for frontend
	Pipes and filters

	Application of microservices design patterns to big data systems
	Volume
	API gateway and gateway offloading
	External configuration store

	Velocity
	Competing consumers
	Circuit breaker
	Log aggregator

	Variety
	API gateway and gateway offloading

	Value
	Command and Query Responsibility Segregation
	Anti-corruption layer

	Veracity
	Pipes and filters
	Circuit breaker

	Security and privacy
	Backend for frontend

	Validation
	Research methodology for gathering expert opinion
	Sampling strategy
	Data synthesis
	Results
	Volume
	Velocity
	Variety
	Value
	Security and privacy
	Other feedbacks, closing thoughts

	Discussion
	Conclusion
	Appendix
	Expert opinion guide
	Introduction
	Establishing rapport
	Candidates background
	Familiarity with big data systems
	Familiarity with microservices
	Microservices patterns for big data systems
	Closing thoughts

	Acknowledgements
	References

