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Abstract 

Data scarcity is a major challenge when training deep learning (DL) models. DL 
demands a large amount of data to achieve exceptional performance. Unfortunately, 
many applications have small or inadequate data to train DL frameworks. Usually, 
manual labeling is needed to provide labeled data, which typically involves human 
annotators with a vast background of knowledge. This annotation process is costly, 
time‑consuming, and error‑prone. Usually, every DL framework is fed by a significant 
amount of labeled data to automatically learn representations. Ultimately, a larger 
amount of data would generate a better DL model and its performance is also applica‑
tion dependent. This issue is the main barrier for many applications dismissing the use 
of DL. Having sufficient data is the first step toward any successful and trustworthy DL 
application. This paper presents a holistic survey on state‑of‑the‑art techniques to deal 
with training DL models to overcome three challenges including small, imbalanced 
datasets, and lack of generalization. This survey starts by listing the learning techniques. 
Next, the types of DL architectures are introduced. After that, state‑of‑the‑art solu‑
tions to address the issue of lack of training data are listed, such as Transfer Learning 
(TL), Self‑Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model 
Architecture (MA), Physics‑Informed Neural Network (PINN), and Deep Synthetic Minor‑
ity Oversampling Technique (DeepSMOTE). Then, these solutions were followed by 
some related tips about data acquisition needed prior to training purposes, as well as 
recommendations for ensuring the trustworthiness of the training dataset. The survey 
ends with a list of applications that suffer from data scarcity, several alternatives are 
proposed in order to generate more data in each application including Electromag‑
netic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorol‑
ogy, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and 
Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a 
comprehensive overview on strategies to tackle data scarcity in DL.
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Introduction
Deep learning (DL) is a subset of Machine learning (ML) which offers great flexibil-
ity and learning power by representing the world as concepts with nested hierarchy, 
whereby these concepts are defined in simpler terms and more abstract representa-
tion reflective of less abstract ones [1–6]. Specifically, categories are learnt incre-
mentally by DL with its hidden-layer architecture. Low-, medium-, and high-level 
categories refer to letters, words, and sentences, respectively. In an instance involving 
face recognition, dark or light regions should be determined first prior to identifying 
geometric primitives such as lines and shapes. Every node signifies an aspect of the 
entire network, whereby full image representation is provided when collated together. 
Every node has a weight to reflect the strength of its link with the output. Subse-
quently, the weights are adjusted as the model is developed. The popularity and major 
benefit of DL refer to being powered by massive amounts of data. More opportunities 
exist for DL innovation due to the emergence of Big Data [7]. Andrew Ng, one of the 
leaders of the Google Brain Project and China’s Baidu chief scientist, asserted that 
“The analogy to DL is: rocket engine is DL models, while fuel is massive data needed 
to feed the algorithms.”

Opposite to the conventional ML algorithms, DL demands high-end data, both 
graphical processing units (GPUs) and Tensor Processing Units (TPU) are integral 
for achieving high performance [8]. The hand-crafted features extracted by ML tools 
must be determined by domain experts in order to lower data intricacy and to ensure 
visible patterns that enable learning algorithms to perform. However, DL algorithms 
learn data features automatically, thus hard core feature extraction can be avoided 
with less effort for domain experts. While DL addresses an issue end-to-end, ML 
breaks down the problem statement into several parts and the outcomes are amal-
gamated at the end stage. For instance, DL tools such as YOLO (a.k.a You Only Look 
Once) detect multiple objects in an input image in one run and a composite output 
is generated considering class name and location [9, 10], also with the same scenario 
for image classification [11, 12]. In the field of ML, approaches such as Support Vec-
tor Machines (SVMs) detect objects by several steps: (a) extracting features e.g. his-
togram of oriented gradients (HOG), (b) training classifier using extracted features, 
and (c) detecting objects in the image with the classifier. The performance of both 
algorithms relies on the selected features which could be not the right ones to be dis-
criminated between classes [1]. In particular, DL is a good approach to eliminate the 
long process of ML algorithms and follow a more automated manner. Figure 1 shows 
the difference between both DL and ML approaches.

Large training data (e.g., ImageNet dataset) ensures a suitable performance of DL, 
while inadequate training data yields poor outcomes [1, 13–15]. Meanwhile, the 
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ability of DL to manage intricate data has an inherent benefit due to its more elab-
orated design. Extracting sufficient complex patterns from data demands a copious 
amount of data to give meaningful output, For instance, the convolutional neural net-
works (CNNs) [16–18] is a clear example of the latter.

The challenge of data scarcity in training DL models presents a significant obstacle 
for many applications, leading to the dismissal of the use of DL. To achieve reliable and 
accurate outcomes in DL, it is essential to initiate the training process with a significant 
and varied dataset. Utilizing a large dataset helps to enhance the model’s ability to learn 
and identify patterns, while diversity in the dataset ensures that the model can general-
ize to new and unseen instances. This initial step plays a pivotal role in ensuring that 
the model produces reliable results and can be trusted for real-world applications. As a 
result, researchers and practitioners have been working to develop state-of-the-art tech-
niques to overcome the data scarcity issue in DL. This has motivated us to provide an 
overview of the latest techniques for addressing the data scarcity issue, including Trans-
fer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks 
(GANs), Model Architecture (MA), Physics-Informed Neural Networks (PINN), and 
Deep Synthetic Minority Oversampling Technique (DeepSMOTE). To achieve reliable 
and accurate outcomes in DL, it is essential to initiate the training process with a sig-
nificant and varied dataset. Utilizing a large dataset helps to enhance the model’s ability 
to learn and identify patterns, while diversity in the dataset ensures that the model can 
generalize to new and unseen instances. This initial step plays a pivotal role in ensuring 
that the model produces reliable results and can be trusted for real-world applications.

This paper presents a comprehensive survey of these techniques, which can be used to 
address three main challenges in training DL models, namely small datasets, imbalanced 
datasets, and lack of generalization. To this end, we have formulated seven main ques-
tions that are addressed in this review.

• What are the various types of learning techniques utilized in DL, and how do they 
differ in their effectiveness in addressing the challenges of data scarcity?

• What are various DL architectures?

Fig. 1 The difference between DL and traditional ML
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• What are the most effective solutions to address the issue of data scarcity in DL, 
and how do these solutions perform in comparison to traditional data augmenta-
tion techniques, such as transfer learning and generative models, in various appli-
cations such as image classification, natural language processing, and speech rec-
ognition?

• How can the use of the listed solutions to address limited training data in DL be 
applied to various sub-applications, and what are the challenges and potential 
solutions for collecting new data in these areas?

• What are the most effective pre-training and testing tips for utilizing datasets in 
DL, and how do they impact the accuracy and efficiency of DL models?

• What are the best practices and guidelines for reporting datasets used in DL, 
and how can they improve the reproducibility, transparency, and reliability of DL 
research?

• How can trustworthy training datasets be defined, identified, and evaluated for 
use in DL, and what are the implications of using such datasets on the accuracy, 
fairness, and ethical considerations of DL models?

This review is aimed at presenting the most significant aspects of training data and 
how it is related to achieving high-quality outcomes when using DL. Specifically, 
optimal performance of DL requires a large amount of data [1] but many real-world 
applications suffer from insufficient training data. Therefore, our contributions are as 
follows:

• To the best of our knowledge, this is the first comprehensive review that studies 
the importance and the main aspects of training data for DL.

• Learning techniques and DL architectures are explained in detail.
• Several approaches dealing with data scarcity are accordingly introduced includ-

ing Transfer Learning (TL), Self-supervised learning (SSL), Generative Adversarial 
Networks (GANs), and model architecture. Furthermore, alternatives that help to 
deal with the lack of training data are reviewed, including the concepts of a Phys-
ics Informed Neural Network (PINN) and DeepSMOTE.

• It is provided several tips about the data before training the DL models. These tips 
help to achieve a full understanding of what the researchers need to know before 
progressing to any further training stage.

• It provides a list of typical applications in which DL has been less explored regard-
ing how to deal with scarcity data. An analysis about why those applications did 
not carry out a suitable study of data for training is also given. Typical applications 
include electromagnetic imaging, civil structural health monitoring, meteorology, 
medical imaging, wireless communications, fluid mechanics, microelectrome-
chanical systems, and cybersecurity. Moreover, different alternatives are provided 
in order to tackle with the scarcity data issue in a more suitable manner.

• This review offers suggestions regarding how to properly report the dataset when 
using DL.

• Finally, the key requirements for a trustworthy training dataset for DL have been 
discussed.
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The rest of the paper is structured as follows: “Survey methodology” section describes 
the survey methodology, followed by “Types of learning” section which presents the 
state-of-the-art learning techniques. DL architectures are introduced in “Deep learning 
architectures” section, while “Lack of training data: issues and solutions” section details 
the current approaches to dealing with data scarcity. “Pre-training and testing tips of 
using dataset” section provides pre-training and testing tips for specific datasets. “Appli-
cations” section introduces DL applications that are less utilized due to the lack of train-
ing data. “Tips for reporting the dataset” section focuses on the usage of new designs for 
reporting datasets when using DL. Trustworthy requirements for training data in DL 
are listed in “Trustworthy training datasets” section. “Discussion” section presents the 
discussion with future open lines, and finally, “Conclusion” section concludes the paper.

Survey methodology
We have reviewed the significant research papers in the field, published during 2019–
2022, mainly from the years 2021 and 2022. Our comprehensive search was mainly con-
ducted in the six reputed publishers including IEEE, Elsevier, Nature, ACM, Wiley, and 
Springer. Some papers have been chosen from ArXiv. We have reviewed more than 630 
papers on the topics of the review. There are 227 papers that were published in 2022–
2023, 205 papers were published in 2021, 39 papers were published in 2020, and 45 
papers were published in 2019. These statistics show that this review focused on recent 
publications on the topic. The selected papers have been categorized into five groups 
(1) learning techniques, (2) list and explain DL architectures, (3) tips and trustworthy 
requirements about the training datasets, (4) solutions to lack of training data, (5) lastly, 
applications. The categorization aims to help readers efficiently navigate the complex 
landscape of DL research and applications by grouping related papers together based on 
their primary focus. Additionally, by emphasizing the issue of data scarcity across sev-
eral categories, readers can gain a better understanding of the challenges and potential 
solutions associated with this problem in DL.

We have used the following search queries which were chosen by experts in the field 
for search criteria in this review paper which are (“Deep Learning”), (“Data scarcity”), 
(“Convolutional Neural Network”), (“Deep Learning” AND “Architectures”), (“Deep 
Learning”) AND (“learning techniques”), (“Deep Learning” AND “detection” OR “clas-
sification” OR “segmentation” OR “Localization”), (“Deep Learning” AND “lack of 
training data”), (“Deep Learning” AND “Transfer Learning”), (“Deep Learning” AND 
“Generative Adversarial Networks”), (“Generative Adversarial Networks”), (“Generative 
Adversarial Networks types”), (“Generative Adversarial Networks applications”), (“Deep 
Learning” AND “small dataset”), (“Deep Learning” AND “Electromagnetic Imaging”), 
(“Deep Learning” AND “Civil Structural Health Monitoring”), (“Deep Learning” AND 
“Meteorology”), (“Deep Learning” AND “Civil Structural Health Monitoring”),(“Deep 
Learning” AND “Wireless Communications”), (“Deep Learning” AND “Fluid Mechan-
ics”), (“Physics-Informed Neural Network”), (“Deep Learning” AND “vulnerabilities”), 
(“Industrial Automation” AND “Transfer Learning”), (“Medical Imaging” AND “Transfer 
Learning”), (“Deep Learning” AND “Cybersecurity”), (“Wireless Communication” AND 
“Transfer Learning”), (“Plant Diseases” AND “Transfer Learning”), (“Natural Language 
Processing” AND “Transfer Learning”), (“Machinery Fault” AND “Transfer Learning”), 
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(“Software Defect” AND “Transfer Learning”), (“Activity Recognition” AND “Transfer 
Learning”), (“Object Detection ” AND “Transfer Learning”), (“Internet of Things” AND 
“Transfer Learning”), (“Trustworthy data” AND “Deep Learning”). Figure 2 depicts our 
search structure of the review paper.

Types of learning
This section presents various learning types which will help the readers to know what 
type suits their task. Figure 3 illustrates 14 learning types commonly deployed by artifi-
cial intelligence (AI) specialists.

Learning problems

1. Supervised learning

 A model is applied for learning representation between target variable and input 
instances [19, 20]. Problems in this learning type are called systems, in which the 
training data are comprised of instances of input vectors and target vectors. The 
two problem types are classification and regression [21–23]. Classification denotes a 
supervised problem of learning that predicts a class label, whereas regression refers 
to a problem of supervised learning that predicts numerical labels [24]. Variables in 
regression and classification problems can be one or more, while any data format 
may serve as input (e.g., categorical or numerical data) [24]. A handwriting digit 

Fig. 2 Search framework
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dataset called MNIST with its digit images as input (pixel data) is an instance of a 
classification problem [25]. In fact, several ML algorithms are called ‘supervised ML 
algorithms’ as they address supervised DL problems, e.g., SVMs and decision trees 
[26, 27]. Supervised is linked with the algorithm, mainly because the latter learns via 
predictions using input data, so that the model can yield useful output [28]. Some 
techniques suit only classification (logistic regression) or regression (linear regres-
sion), whereas some suit both problem types with slight alteration [artificial neural 
network (ANN)] [29–33].

2. Unsupervised learning
 This type of learning detects a number of challenges related to the usage of the data 

relationship model, which eliminates or explains data relationships. When com-
pared with supervised learning, unsupervised learning only uses input data without 
any target or output variable [34, 35]. Hence, this learning type has no instructor for 
model correction. The two types of unsupervised learning are clustering and den-
sity estimation. In clustering, data is sought for classes [34–36]; while data distribu-
tion is summarised in density estimation [37, 38]. In clustering, the k in K-Means 
denotes the cluster centre in the dataset [36, 39]. The density NN refers to Kernel 
Density Estimation that applies small groups with closely linked data in order to esti-
mate new points dissemination in problem space [37, 38]. Both density estimation 
and clustering can be deployed to learn trends in information. Other unsupervised 
approaches are visualization (to plot/graph outcomes) and projection (lower data 
dimensionality) [39]. Visualization aids one to reckon vast data quantity using inter-
active and standardized visuals in certain contexts [40, 41]. The data have a narrative 
style with linkages, patterns, and trends [42]. On the other hand, projection demands 
lower-dimensional data representation development [43]. When compared to princi-

Fig. 3 Learning types
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pal component analysis, the projection method offers better computation by reduc-
ing dimensionality as the former cannot manage many dimensions [43–46].

3. Reinforcement learning
 This learning type is a group of challenges in which users must learn to utilize feed-

back to take action in a specific context [47–49]. Despite its similarity with super-
vised learning, reinforcement learning has delayed feedback and the noisy system as 
it seeks challenging responses and models to associate causality [50, 51]. Instances of 
reinforcement learning algorithms are temporal difference, deep reinforcement, and 
Q learning [52–54].

Hybrid learning problems

1. Semi-supervised learning

 This learning type uses many unlabelled and a few classified instances while training 
data [55, 56]. It is meant to efficiently apply all data, not just limited to labeled data as 
executed in supervised learning [57, 58]. It can also mimic the clustering and density 
estimation methods of unsupervised learning to use unlabelled data [59, 60]. After 
identifying patterns or groups, techniques from supervised learning are used to mark 
unlabelled data or add labels to those unlabelled in order to arrive at precise predic-
tions [61–63]. The method is used for image, audio (automated speech recognition), 
and text [(natural language processing (NLP)] data, which are unviable in supervised 
learning [64–67].

2. Self-supervised learning
 In this technique, only unclassified data are applied to develop pretext learning 

assignment (e.g., image rotation, context prediction, etc.), whereby the target may be 
computed unsupervised [68–71]. An example of this learning type refers to autoen-
coders; an NN that develops compact input sample representation [72, 73]. This is 
done based on a model that has a decoder and an encoder segregated by a bottleneck 
to reflect the internal compact input [74]. An autoencoder model learns by giving 
input (input and target output) and generating input by encoding it to compact rep-
resentation and later decoding it to its original [75]. After training, the decoder is 
discarded and the encoder is deployed to yield the desired compressed input repre-
sentations. In the past, autoencoders were applied to minimize learning of features 
or dimensionality [76, 77]. This learning type can be described via GANs; commonly 
used to provide synthetic images based on unclassified data from the target [78–80].

3. Multi-instance learning
 This learning type uses labeled data that may or may not contain the class example, 

but the individual members of the collection are unmarked [81–84].

Statistical inference

Inference signifies the very process of making a conclusion or decision. Model develop-
ing and prediction making are both inferences in DL [85]. Some inference approaches 
that describe how DL algorithms solve learning problems are deductive, transudative, 
inductive, and inference learning. Deduction is making predictions using the formula, 
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while induction is a model analysis using specific examples, and transudative is assump-
tions that are made based on specific instances [86, 87]. 

1. Inductive learning

 This learning type needs evidence to evaluate outcomes. The algorithm learns from 
prior precedents via inductive learning, where rules (model) are taught (data) [88, 
89]. When adapted to the DL model, this induction method becomes a generaliza-
tion of definite instances that serve as training data to develop a hypothesis or model 
presumed to contain unknown fresh data later [90, 91].

2. Deductive inference
 In this approach, concrete outcomes are assessed using general concepts. The deduc-

tion is the complete opposite of induction [92]. While induction moves from specific 
to general, deduction progresses from general to specific [92]. The bottom-up rea-
soning in induction employs evidence for results, whereas the top-down reasoning 
in deduction fulfills all aspects prior to giving outcomes [93]. When the deductive 
approach is applied in DL, predictions are made by algorithms before induction is 
used to suit a model with a training dataset [94].

3. Transductive learning
 It is used to describe the prediction process from domain to specific in statistical 

learning theory [95]. It learns concrete instances and not universal rules as in induc-
tion [96]. A new inference definition is given when the model estimates a functional 
value [97]. The inference principle emerges when the best results are derived from 
limited knowledge [95, 98]. The k-nearest neighbor algorithm is used in transductive 
algorithm for prediction, but not modeling of training data [99, 100].

Learning techniques

1. Multi-task learning

 Generalization is enhanced in this method through the combination of details from 
many activities (parameters experience soft restraints) [101, 102]. This method is via-
ble to resolve a problem when many classified input data for an activity are shared 
with an activity with few classified data [103, 104]. This approach incorporates input 
patterns for various supervised learning concerns or outputs [105]. Here, every out-
put is predicted using varied model parts, thus enabling the model core for general-
izing similar inputs for every activity [106, 107].

 The study was done by [108] who presents a common framework for evaluating 
multi-task learning methods for 2D/3D city modeling using fixed-wing Unmanned 
Aerial Vehicle (UAV) images [109, 110]. Single-task learning may perform well, but 
as the number of tasks increases, the benefits of knowledge transfer become limited. 
Multi-task learning improves generalization by utilizing domain-specific information 
from related tasks, and it has emerged as a solution to knowledge transfer issues. 
The study highlights the importance of automated multi-task data analysis for scene 
understanding in urban management applications, such as infrastructure develop-
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ment, traffic monitoring, smart 3D cities, and change detection, which require pre-
cise urban models based on the semantic, instance, and panoptic annotation, as well 
as monocular depth estimation.

2. Active learning
 When learning occurs, a human operator may pose questions to address the problem 

[111–113]. Similar to supervised learning, active learning may yield similar or bet-
ter outcomes than passive supervised learning despite data efficiency [114, 115]. In 
this technique, the main principle denotes enabling the DL algorithm to select data 
for learning in order to gain accurate prediction despite fewer training labels [114]. 
When the question is raised, unclassified examples are labeled by the human annota-
tor [112, 116]. This method is crucial when labeling/gathering new data is costly and 
the availability of few data [117]. The very process of active learning enhances model 
efficacy while lowering samples [118].

3. Online learning
 While DL is performed offline [119, 120], online learning demands streaming data to 

update predictions as new data enter instead of waiting until the end that might not 
even happen [121]. Data are modified in a rapid manner during online learning [119]. 
This method is good for applications with incremental changes and limitless access 
to knowledge [119]. While avoiding inconsistency, online learning dictates model 
performance based on vast available knowledge [119]. Stochastic or online gradient 
descent that suits ANN is an online learning model [119] that lowers generalization 
error during online training, in which mini lots or instances are derived from dataset 
[119, 122].

4. Transfer learning
 In this learning type, a problem is learned by a model to be applied as a reference 

for other tasks [123–125]. This method is viable if the process is close to the pri-
mary problem and the related task demands plenty of data [23, 126]. Dissimilar from 
multi-task learning which seeks the performance of all tasks concurrently from a 
model, tasks in TL are learned sequentially. In image classification, for example, a 
huge set of images is learned with a prediction model (e.g., ANN), whereas training 
is a simpler process as it involves a specific dataset and the initial step uses model 
weights [127–129]. Features learned by the model on a bigger mission (e.g., retriev-
ing lines and patterns) aid other tasks. More details about this technique are in the 
latter section.

5. Ensemble learning
 In this technique, two modes should fit the same information and later coordinate 

predictions from each other [130–133]. Contrary to a single model, this method exe-
cutes better with several models [134]. Importance is given to developing models in 
groups and discarding unfit predictions [135]. Apart from its distinct prediction abil-
ity, ensemble learning reduces vulnerability in stochastic learning computations. For 
example, stacking (stacked speculation), ANN, weighted normal, and Bootstrap are 
some group learning computation approaches (Bagging) [136, 137].

6. Federated learning
 Federated learning is a distributed DL-based approach that allows institutions or 

hospitals to train a DL model on their data without sharing it. This is particularly 
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useful in cases where data sharing is often restricted by privacy and regulatory con-
cerns. The approach allows each institution or hospital to train a model locally and 
then share the learned model parameters with a central server. The central server 
then aggregates the model parameters from all institutions to create a global model. 
This process is repeated until the global model converges [138]. Federated learning 
can aid to overcome the challenge of data scarcity by combining data from multi-
ple institutions to train the model. This improves the performance of the model and 
increases its generalizability [139].

Deep learning architectures
After figuring out what type of learning suits the target task. Now, this section presents 
what architectures fit the target task.

Since the past two decades, DL models have been enhanced to address more types of 
problems via NNs [140, 141]. The DL uses geographies and calculations for a vast range 
of problems [142, 143]. The DL has garnered more attention to date due to accelerated 
execution with GPU and NN deep layers [141]. This paper compares the varied archi-
tectures of DL models [1, 144, 145]. A DL is, generally, composed of these: input layers; 
Convolutional and fully connected layers; sequence layers; activation layers; normaliza-
tion, dropout, and cropping layers; pooling and non-pooling layers; combination layers; 
object detection layers; GAN layers; and output layers [1, 33, 145–152]. The hidden layer 
is important in a network, mainly because nodes enable the modeling of intricate data. 
The actual node values are hidden in the training dataset and one only has access to 
output and input. One hidden layer should exist in NN and the ideal number of hidden 
units could be lower than the number of inputs. Two hidden units are adequate for lim-
ited data, while several hidden units can be used for plenty of training data [153–155].

Deep neural network (DNN)

Two layers in this MA enable non-linear intricacies. Both regression and classification 
approaches are viable; this MA offers great accuracy [156]. The drawbacks are; a difficult 
training method as the error may be re-transmitted to a past layer to become low and 
late model learning behavior [157, 158].

Convolutional neural network (CNN)

This MA is the most popular one and the reason that DL is the trend nowadays. The 2D 
data are suitable for this MA. It has a convolutional filter to transform 2D to 3D that 
enables fast learning and good performance (Fig.  4). However, many labeled data are 
needed for classification tasks such as image, video, and voice classification applications 
[83, 159–162]. The drawbacks of CNN are intense human interference, local minima, 
and slow convergence rate. The great success achieved by ImageNet models led CNNs to 
improve their efficacy in several domains [71, 163–167].

Recurrent neural network (RNN)

Reckoning sequences is an ability of RNN with neurons weights distributed across all meas-
ures. Apart from the multiple variants, e.g., long/short-term memory (LSTM), Bidirectional 
LSTM (B-LSTM), Multi-Dimensional LSTM (MD-LSTM), and Hierarchical Deep LSTM 
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(HD-LSTM) [168–172], RNN offers great accuracy for speech and character recognition, 
as well as other NLP issues. Although time conditions can be modeled via RNN [173], this 
approach has more setbacks in terms of gradient vanishing due to huge dataset require-
ment [174, 175].

Deep autoencoder network (DAN)

Applicable in unsupervised learning, this MA extracts features and minimizes dimen-
sionality. The number of inputs is equal to that of output [176, 177] and the MA dis-
misses classified data. Many autoencoders, e.g., denoising, sparse, and conventional 
autoencoders, are required to ensure robustness [178–181]. Despite the pre-training 
step, training may be vanished [182]. The autoencoder [183, 184] has an encoder and a 
decoder defined as � and � , respectively, as expressed in Eq. (1).

Deep belief network (DBN)

The DBN is a graphical portrayal that is fundamentally generative; creating of all poten-
tial qualities for the current situation. It denotes the combination of likelihood and meas-
urements with AI and NN [185, 186]. The DBN has several layers with values, where the 
layers have a relationship but not qualities. The main aim is to help the deep network to 
characterize data into categories. The shortcoming of this MA is costly training due to 
the initialization process [187, 188].

Deep Boltzmann machine (DBM)

This three-layer generative MA is similar to deep belief network (DBN) [189], except 
that it permits bidirectional linkages at bottom layers. Its extended energy function of 
RBM, is given in Eq. (2).
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Fig. 4 CNN architecture
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Unidirectional links in DBM have hidden layers. The precise inference is gained when 
the ambiguous result is integrated with top-down output [190, 191]. Optimizing param-
eters is hard for large datasets.

Deep conventional‑extreme learning machine (DC‑ELM)

This MA possesses ELM fast preparation and CNN strength. It applies pooling layers 
and many substitute convolution to process crucial input features [192, 193]. The ELM 
classifier enhances the prediction via rapid learning [194, 195]. This MA deploys sto-
chastic pooling at the final hidden layer to lower function dimensionality; thus saving 
computational resource and time [196].

Deep stacking networks (DSN)

The DSN MA is also called deep convex network [197]. The DSN differs from conven-
tional DL systems because the former is a collection of individual networks with hidden 
layers despite having DNN. This MA addresses an issue faced by DL—preparation [198]. 
Preparing is a complex process in DL design as it is viewed as a solitary issue, but the 
development of individual preparation in DSN [199].

Long short‑term memory/gated recurrent unit networks (LSTM/GRU)

Initiated by Reiter and Schimdhuber in 1997, GRU has gained popularity as RNN engi-
neering only recently for varied usages [200]. As a candidate of being a memory cell, 
LSTM was removed from the typical neuron neural model list [201, 202]. With short/
long-term memory cell that becomes a part of data sources, one may determine larger 
aspects and not be bound to the final procurement [203]. The LSTM, in 2014, was 
enhanced using GRU that has two entryways; reset entryway and update doorway, to 
eliminate LSTM yield entrance [202]. The GRU is applied like LSTM, but with less loads, 
simpler methods, and more rapid performance [204, 205]. Reset entryway denotes inte-
grating new task with past cell substance, whereas update entryway shows past cell sub-
stance measure for keeping up [202]. The RNN is portrayed by GRU by setting 1 and 0 
for reset entryway and update doorway, respectively.

Graph convolutional network (GCN)

The GCN is used for semi-supervised learning on graphical data based on CNN effi-
cient variant [206–209]. The selection of convolutional MA stems from the localized 
first-order approximation of spectral graph convolutions. The model scales linearly in 
the number of graphs edges and learns hidden layer representations that encode nodes 
features and graph structure [210–212].

Lack of training data: issues and solutions
The DL models require massive data volume to display exceptional performance [1], as 
portrayed in Fig.  5. This is because inadequate training data hinders the use of DL in 
multiple applications. There are two main scenarios that a dataset that can be considered 
small. The first exists when performance is low and the models have not been sufficiently 
trained using large datasets. The second scenario applies when the model is performing 
well on classification or prediction using data that was included in the training set but 
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does not perform as well when classifying data that it was not trained on. In this case, 
the model experiences overfitting.

This section presents the most popular solutions to address the lack of training data 
to overcome three challenges including small datasets, imbalanced datasets, and lack of 
generalization.

Transfer learning (TL)

The TL is used when elements of a pre-trained model are re-applied in a new DL model 
[23, 124, 213]. The concept of TL is portrayed in Fig. 6. Generalized knowledge may be 
shared if two models execute the same tasks. This reduces the amount of labeled data 
and resources needed to train new models.

Fig. 5 The importance of large training data for DL models

Fig. 6 General concept of TL
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The use of DL algorithms is vast for executing intricate tasks involving multiple appli-
cations, including enhancing network efficiency, attaining better return on investment 
by upscaling marketing campaigns and improving speech recognition approaches. As 
such, the role of TL is crucial for continuous model advancement [214–218]. The super-
vised DL has been vastly applied to train models using classified data. However, this 
time-consuming and resource-intensive approach needs an expert to label the dataset 
correctly. Hence, as TL resolves these problems, it has become an imminent method in 
the DL field. The following sections describe the details of TL.

• What is transfer learning?

 When applied in DL, TL denotes the reuse of existing models to address a new prob-
lem. Far from being a typical DL algorithm, TL recycles knowledge from prior train-
ing to execute model training. In relation to past trained activity; selected features are 
classified into certain file types in the new task. High-level generalization is needed 
for the initially trained model, so new data can be adapted [128, 129, 219]. Training 
does not begin from scratch for each new task in TL. Classifying massive datasets is 
time-consuming, especially when DL algorithm is applied. Thus, a DL model train-
ing using TL with a classified dataset at hand can be used for the same task involving 
unclassified data. For example:

Riding a motorcycle ⇒ Driving a motorcar.
Playing a classic guitar ⇒ Playing the bass guitar.
Learning mathematics and ML ⇒ Learning DL.

• What is transfer learning used for?
 The use of TL in the DL model is to train the system for solving new tasks with mas-

sive resources. Certain related fractions from a present DL model are used to address 
a new, but similar problem. Generalization is integral in TL; only knowledge transfer 
is viable for another model in other settings. As models with TL have more general-
ity and are not linked rigidly to any training data. These models may be applied for 
varying datasets and scenarios [220]. Let’s take image categorization as an example: 
Identifying and categorizing images can be done using DL. With TL, the model may 
be used to detect other specific objects within the context of images only. Resources 
are saved as the primary aspects are retained, such as determining object edge in 
images. This knowledge transfer dismisses model re-training to obtain a similar out-
put. Hence, TL is mostly applied for the following:

– Saves resources and time as training DL models need not begin from scratch to 
do the same task.

– Overcome inadequate data issues for training purposes as TL permits the use of 
the pre-trained model.

• How does transfer learning work?
 When TL is used in DL, fractions of the pre-trained DL model are used for the new, 

yet the same problem or certain new elements are incorporated into the model to 
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address a specific task. Model parts relevant to the new tasks are determined and 
retained by the programmer. If the process of detecting objects is the task in a new 
model, a re-trained model for that very similar task may be applied [221, 222]. Train-
ing is given to supervised DL models to execute certain tasks from classified data. 
Upon feeding input and desired output data to the algorithm, only then the model 
can reckon the pattern and learn trends regarding the new dataset. Such a model 
yields accurate output within a similar setting, but the model accuracy may be 
affected if the setting changes beyond the training dataset. This issue is addressed 
using the TL approach by transferring the related knowledge from an existing model 
to a new model with the same task. Transfer of general model aspects is crucial for 
task completion so that the desired output is identified. Tasks can be performed opti-
mally in a new setting when additional layers of definite knowledge are included in 
the new model [223–225].

• Benefits of transfer learning for DL
 Notably, TL offers many advantages for DL models in training new models [23, 127]. 

The TL facilitates model training using unclassified data, as the pre-trained model is 
used. Some of the benefits are:

– Dismissing huge set of classified training data for new model
– Enhancing the efficiency of developing and deploying the DL for multiple models
– Leveraging algorithms to resolve new problems and offering generality when 

solving a deep problem
– Simulation is used for model training rather than using actual data

 The details of the benefits are: 

1. Saving on training data

 A massive amount of data is needed to train the DL algorithm accurately. Classi-
fied training data consumes much time, expertise, and effort for creation. In TL, 
pre-trained models are deployed and this minimizes the amount of data needed 
for new DL models. This means that training in TL approach uses existing clas-
sified data, which are later deployed for similar but unclassified data.

2. Efficient training of multiple models
 Proper training of DL models to execute intricate tasks can be time-consum-

ing. However, integration with TL dismisses starting from scratch when a simi-
lar model is needed; signifying that the time, effort, and resources spent on DL 
algorithm training can be used for other varied models. The reuse of similar 
aspects and knowledge transfer from a prior model ensures an efficient training 
process.

3. Leverage knowledge to solve new challenges
 As a popular model, supervised DL offers high accuracy after receiving adequate 

training to perform tasks with classified training data. As the performance may 
degrade when data deviate, TL is used to apply existing models for the execu-
tion of a similar task, instead of developing a whole new model. The blended 



Page 17 of 82Alzubaidi et al. Journal of Big Data           (2023) 10:46  

approach may be employed with TL as varied other models can be used in seek-
ing of the solution to a problem. Knowledge sharing among models yields a 
powerful model that generates accurate output. Such an approach permits an 
iterative way of developing a functional model.

4. Simulated training to prepare for real-world tasks
 For simulated training, TL is an imminent aspect of the DL model because digi-

tal simulations saves both time and cost especially when models are trained to 
resolve real-world problems. As simulations reflect reality, these models can be 
adequately trained to detect the desired objects in the simulation. Reinforce-
ment of DL models can be effectively executed using simulations, whereby these 
models can be trained in any desired setting or condition. For instance, the 
implementation of the self-driving system in cars establishes simulation as an 
integral step. As initial training in the real world may not yield expected results, 
simulations are more viable before the knowledge is transferred to reality.

• Transfer learning strategies
 Various TL techniques can be employed based on data availability, domain applica-

tion, and specific tasks [226, 227] (Fig. 7).
 The following describes TL techniques categorized based on conventional DL algo-

rithms: 

1. Inductive TL: target and source domains are similar, but differ in the task. The 
inductive bias of the source domain is applied by the algorithms to enhance 

Fig. 7 Transfer learning strategies
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the target task. Regardless of un- or classified data, the two categories of this 
approach are self-taught and multitask learning types [228].

2. Unsupervised TL: similar to inductive TL, its focuses on unsupervised tasks in 
the target domain. The tasks differ despite similar target and source domains. 
Classified data are absent in both domains [229].

3. Transudative TL: both target and source tasks are the same, but the domains 
differ. The source domain has many labeled data, but none in the target. The 
method is based on feature space or marginal probability [230].

 The listed transfer classifications denote three TL settings. The following 
approaches explain the transfer that revolves around the three TL categories: 

1. Instance transfer: an ideal idea is knowledge reuse from the source domain to 
the target task. Although the source domain cannot be directly reused, certain 
fractions may be reapplied with the target data to enhance output [231].

2. Feature-representation transfer: error rates and domain divergence are mini-
mized in this method by using good data representations from source to target 
domains. Based on the presence of classified data, un- or supervised techniques 
can be deployed for this type of transfer [232].

3. Parameter transfer: in this transfer type, the models have similar parameters 
of prior hyper-parameter dissemination. Dissimilar from multitask learning 
(source & target tasks learned concurrently); extra weight-age is applied in TL 
for target domain loss to enhance performance [233].

4. Relational-knowledge transfer: in this transfer type, dependent data with identi-
cal distribution is managed. This transfer is applicable for a data point related to 
another one, e.g., social network data [234].

• Types of deep transfer learning
 At times, it is difficult to distinguish TL from multitask learning and domain adapta-

tion mainly because these methods attempt to resolve similar problems. Therefore, 
TL is reflective of a general concept that is applied to solve a task via task domain 
knowledge application. 

1. Domain adaptation

 In this domain, the marginal probability between target and source domains 
differs, e.g., P(Xs)  = P(Xt)) . The integral shift in data dissemination of target 
and source domains needs alterations in learning transfer. For example, the cor-
pus of movie reviews labeled negative or positive differs from that of product 
reviews—the classifier to train movie reviews will sense variation when classify-
ing item reviews. Therefore, domain adaptation suits the TL approach in these 
examples [235–239].

2. Domain confusion
 Besides highlighting the efficacy of feature-representation transfer, DL layers 

that capture feature sets can enhance transfer across domains and determine 
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imminent domain-invariant aspects. It is crucial to ensure that both domain 
representations are near- or similar to enable effective learning. In order to do 
so, some pre-processing steps are required, as elaborated by Sun et al. in their 
paper [240], as well as Ganin et  al. in [241]. Essentially, an additional goal is 
added to the source domain to ascertain similarity, thus causing domain confu-
sion.

3. Multitask learning
 In multitask learning, a number of tasks are learned concurrently without vari-

ance in source and target and one gains all data about the tasks at once. This 
differs from DL because one is clueless about the target task. Hence, multitask 
learning differs slightly from TL [242, 243].

4. Zero-shot learning
 An extreme DL variant, zero-shot learning uses unclassified data for learning 

to make modifications at the training phase to exploit extra data so that hidden 
data can be comprehensible. In a book entitled Deep Learning, Goodfellow and 
co-authors discussed zero-shot learning based on three variables: conventional 
input and output variables (x & y, respectively), as well as a random variable that 
denotes the task (T). This model is trained to master conditional probability dis-
tribution; P(y|x, T). This learning type is suitable for machine translation, where 
the label is absent in the target language [244–246].

5. One-shot learning
 As DL models need plenty of training data to learn weights, Deep Neural Net-

works (DNNs) are unsuitable. For example, a child exposed to an apple would 
be able to identify a variety of apples—but this is not the case for DL and ML 
approaches. A variant of TL, one-shot learning yields output with one training 
instance; thus suitable for actual settings with the absence of classified data for 
many scenarios (classification task) and for conditions that require the addition 
of new classes. In an article by Fei-Fei et al. [247], the term ‘one-shot learning’ 
was coined to describe a Bayesian framework variation that represents learn-
ing for the classification of objects. Since its emergence, this approach has been 
enhanced and applied in DL models [248].

6. Few-shot learning
 This type involves training models to recognize new objects or classes with 

only a few examples, typically ranging from 1 to 10 examples per class. In other 
words, the goal of few-shot learning is to enable machines to learn quickly and 
efficiently with limited data. on the other hand, one-shot learning is a specific 
case of few-shot learning where the model is trained on only one instance per 
class. One-shot learning is considered a more challenging task than few-shot 
learning because the model must generalize well from a single instance, whereas 
few-shot learning allows for a small number of examples to be used for train-
ing. The challenges of interpreting multimodal time-series data from drone 
and quadruped robot platforms for remote sensing and photogrammetry have 
been discussed [249, 250], due to the expensive and time-consuming nature of 
data annotation in the training stage. The authors proposed a few-shot learning 
architecture based on a squeeze-and-attention structure that is computationally 
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low-cost and accurate enough to meet certainty measures. The proposed archi-
tecture was tested on three datasets with multiple modalities and achieved com-
petitive results. This study demonstrated the importance of developing robust 
algorithms for target detection in remote sensing applications, using limited 
training data.

• Transfer learning approaches
 The two TL methods are feature-extraction and fine-tuning [251–253]. 

1. Feature-extraction

 Here, a well-trained CNN model is deployed to extract features for the target 
domain from a massive dataset, such as ImageNet. All completely connected 
layers in CNN models are discarded and all convolution layers are frozen. The 
latter layers are the feature extractor that adapts to new task. The extracted fea-
tures are fed to the classifier form supervised ML or completely connected lay-
ers. lastly, only a new classifier is used to train, instead of the whole network, for 
the training process [254, 255].

2. Fine-tuning
 This method is similar to feature extraction, except that the convolution layers of 

well-trained CNN are not frozen but their weights are updated during the train-
ing phase. Thus, the weight of convolution layers is initialized with CNN’s pre-
trained weights when the classifier layers are initialized with random weights. 
Here, the whole system undergoes training [164, 256].

• Research problem in transfer learning for medical imaging
 One of the solutions to address the lack of training data is employing the pre-trained 

models of ImageNet for the target task. For some applications, this type of TL from 
ImageNet has significantly improved the results compared with training from scratch 
[257, 258]. However, for some other applications such as medical imaging applica-
tions, this type of TL from ImageNet does not help to address the issue of lack of 
training data. This is due to the mismatch in learned features between the natural 
image, e.g., ImageNet (color images), and medical images (gray-scale images such as 
MRI, CT, and X-ray) (see Fig. 8) [213, 259].

 These models of ImageNet were designed to classify 1000 classes. However, medical 
images are ranging between 2 and 10 classes. Therefore, it results in the use of deeply 
heavy models.

 It has been proven that different domain of TL (such as ImageNet) does not sig-
nificantly affect performance on medical imaging tasks, with lightweight models 
trained from scratch performing nearly as well as standard ImageNet models [260]. 
To end that, Alzubaidi, et al. proposed two different types of novel TL which effec-
tively showed excellent results in several medical applications [23, 124]. One of the 
solutions was based on training the DL model on a big number of unlabelled images 
of a specific task then the model will be trained on a small, labeled dataset for that 
same task. This approach guarantees that the model will learn the relevant features 
and reduce the effort of the labeling process. It will offer the chance to use a shallow 
model with the desired input size. By using the same approach, several published 
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articles have improved the effectiveness of these solutions for medical images and 
other domains [22, 123, 164, 261–265].

 Another solution was proposed by Azizi et al. [70] to improve the learned features of 
DL models by training them on a large number of unlabelled images of a specific task 
then the models will be trained on a small, labeled dataset for that same task.

 Figure  9 demonstrates the comparison of two models trained for the detection of 
shoulder abnormalities from our ongoing work. The first column is the original 
images with a red circle which is the region of interest marked by an expert. The 

Fig. 8 Comparison between TL from ImageNet to nature images and medical images

Fig. 9 Comparison between two different TL
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second column is a model trained after TL from ImageNet while the third one is a 
model trained after TL from the same domain TL of the target dataset. As shown in 
the first row, both models correctly predicted the image based on their confidence 
values. However, the heatmap reveals that the first model is biased and inaccurate, 
failing to detect the region of interest indicated by the red circle. In contrast, the sec-
ond model accurately identified the region of interest with a high confidence value. 
The second row illustrates that the first model missed the classification, while the 
second one correctly classified the sample. This example highlights the importance of 
the source of TL, as even a model with correct confidence values may not be trusted.

• Instances of transfer learning for deep learning
 The TL has been applied in many areas within the DL field and real world appli-

cations, e.g., enhancing computer vision and NLP. The following describes some 
instances of TL used in DL. 

1. Transfer learning in NLP

 The capability of a system to analyze and comprehend human language (text/
audio files) is NLP—to enhance human-system interaction. In fact, NLP is cru-
cial for daily activities, including language contextualization tools, voice assis-
tants, translations, speech recognition, and automated captions. Many DL mod-
els with NLP can be enhanced with TL, such as adding pre-trained layers that 
identify vocabulary or dialect and concurrent model training to identify lan-
guage aspects. The method of TL can be used for model adaption across mul-
tiple languages. Models trained and refined in one language may be adapted for 
other similar languages. With vast English digitized resources, the models may 
be trained using a massive dataset before transferring the aspects to another lan-
guage [266–272].

2. Transfer learning in computer vision
 The capability of a system to make meaning from visual formats (images/vid-

eos) is known as computer vision. A massive volume of images is trained for DL 
models to reckon and group the images. Here, TL recycles elements of the com-
puter vision algorithm for application in the new model. The accurate models 
generated via TL from training with massive data can be applied effectively for 
smaller image sets or even more general aspects (e.g., detecting object edges). 
Essentially, a specific model layer that detects objects/shapes can be trained. 
While refining and optimizing the model parameters, the TL sets the model 
functionality [273–275].

3. Transfer learning in neural network
 The ANN is a crucial element in DL for simulating and replicating human brain 

functions. Notably, NN training usurps plenty of resources due to model intri-
cacy. In fact, TL is crucial to minimize the use of resources and ascertain an effi-
cient process. The development of new models includes the transfer of features 
or knowledge across networks. The use of knowledge in varied settings is a vital 
aspect of network building. Essentially, TL is typically limited to general tasks or 
processes that stay relevant in an assortment of scenarios [214, 215, 276].
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4. Transfer learning for Audio/Speech
 The DL model, similar to computer vision and NLP, can be applied to audio 

data. Models called Automatic Speech Recognition (ASR) formulated for the 
English language are broadly applied to enhance the performance of speech rec-
ognition in other languages. Another instance of TL application refers to auto-
mated speaker identification [177, 277, 278].

  There are more domains that used TL to address the issue of lack of training 
data as listed in Table 1.

 
• The future of transfer learning
 Widespread access to more powerful models formulated by conglomerates and 

related organizations dictate the future of DL models. It is crucial that the DL 
is adaptable and accessible to organizational demands and goals to revolution-
ize processes and businesses. However, only a handful of organizations possess the 
resources and expertise to train models and classify data. One challenge faced by 
supervised DL is obtaining a massive amount of classified data. Classifying count-
less data is labor-intensive and access to most data appears prohibitive to developing 
powerful models. With access to many classified data and resources, organizations 
can effectively develop algorithms. However, when used in other organizations, the 
model performance may differ due to environmental and training change impacts. 
Even the most accurate models would results in performance degradation in a dif-
ferent setting—a hindrance to DL when shifting to mainstream application. Immi-
nently, TL has a significant function in resolving the said barrier. By integrating TL, 
the DL models can turn more powerful due to their ability to carry out specific tasks 
and settings. Hence, TL is denoted as an imminent driver for distributing DL models 
across new fields and areas.

Self‑supervised learning

Self-supervised learning (SSL) is a technique of training DL models using large amounts 
of unannotated data and a small amount of annotated data, or using a pretext task to 
generate labels for the data. It is often used to pre-train models on large datasets and 
then fine-tune them on a smaller dataset with a different task in mind. SSL can be a 
useful solution for data scarcity, as it allows models to learn useful features from large 

Table 1 Some examples of TL from the literature

Field Literature

Industrial automation [128, 234, 279–285]

Medical imaging [22, 23, 123, 124, 
213, 256, 286–290]

Wireless communications [291–297]

Plant diseases [262, 298–303]

Machinery fault [304–310]

Software defect [311–315]

Activity recognition [316–324]

Object detection [126, 325–331]

Internet of Things [332–338]
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amounts of unannotated data, which can then be fine-tuned on a smaller dataset for the 
target task [68–71].

One of the main benefits of SSL is that it allows models to learn useful features from 
large amounts of unannotated data, which can be useful in situations where annotated 
data is scarce or expensive to obtain. It can also be used to learn more robust and gener-
alizable features, as the model is exposed to a larger variety of data during training [339, 
340].

There are several types of SSL, including:

• Pretext tasks: these are tasks that are designed to generate labels for the data, which 
can then be utilized to train a DL model. Examples of pretext tasks include predict-
ing the rotation of an image, predicting the next frame in a video, and predicting the 
mask for an image.

 One example of using a pretext task for SSL is the work done by Doersch et al. [341]. 
The authors trained a CNN to predict the relative location of randomly selected 
patches within an image. The CNN learned useful features from the images that 
could then be utilized for other tasks.

• Autoencoders: these are neural networks that are trained to reconstruct their input 
data. They are often utilized as a way to learn useful features from the data, which 
can then be utilized for other tasks.

 An example of using autoencoders for SSL is the work done by Masci et  al. [342] 
where the authors trained a stacked autoencoder to learn features from images of 
faces. The learned features were then used to train a classifier to recognize the identi-
ties of the faces.

• Generative models: these models are trained to generate new data that is similar to 
the training data. Examples include Variational Autoencoders (VAEs) and Genera-
tive Adversarial Networks (GANs) which will be explained in the next section.

 An example of using generative models for SSL is the work done by Goodfellow et al. 
[343]. They trained a GAN to generate synthetic images that were similar to a data-
set of real images. The generated images were used to train a classifier to recognize 
objects in real images.

• Contrastive learning: this SSL technique involves training a model to distinguish 
between different types of data. The model is then fine-tuned on a downstream task 
using the learned features.

 An example of using contrastive learning for SSL is the work done by He et al. [344] 
where they trained a CNN to distinguish between different types of images and used 
the learned features to train a classifier on a downstream task.

• Self-supervised multitask learning: this technique is based on training a single model 
on multiple tasks simultaneously, using a combination of supervised and unsuper-
vised learning. The model learns to solve multiple tasks using the shared features 
learned from the unsupervised tasks.

 An example of using self-supervised multitask learning is the work done by Caruana 
et  al. [345]. The authors trained a single neural network to perform multiple tasks 
simultaneously, using both supervised and unsupervised learning. The network 
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learned to solve the tasks using the shared features learned from the unsupervised 
tasks.

Generative adversarial networks (GANs)

The GANs are regarded as a type of DL network that yields data with similar features 
as the input real data. Via GANs, representations are learned without intricate train-
ing datasets, as learning denotes regaining proportional signals based on a paired-
network competitive process. Representations that GANs learn can be applied in, 
for example, image synthesis, classification, and super-resolution; style transfer; and 
editing of semantic image [346, 347]. The GANs overcome insufficient training data. 
Goodfellow et  al. [348] initiated the adversarial method for learning GAN models. 
The GAN is a game denoting min-max, two-person, and zero-sum (the loss of one 
player is an advantage of another). The GAN consists of the generator (G) and dis-
criminator (D). The G deceives another player by faking sample dissemination, while 
D distinguishes real from fake samples. A sample is more likely to be real if the proba-
bility value is higher (0 = fake sample, 0.5 = optimal solution). Upon nearing an opti-
mal solution, D would not be able to distinguish real from fake samples [349–352]. 
Figure 10 illustrates the general GAN architecture.

1. Generator (G): a network that yields images using random noise Z, G(z). Gauss-
ian noise is typically selected as the input—a random point in latent space. Iterative 
updates are made to parameters of G and D while GAN training.

2. Discriminator (D): this network ascertains if an image is a real or fake distribution. 
Upon receiving input image X, it generates output D(x); signifying X is probably not 
fake. Output = 1 denotes the distribution of the real image, while D = 0 signifies oth-
erwise.

• Variants of GAN

 Enhancements made to GAN architecture (Fig. 11) are explained in the following:

Fig. 10 The general GAN architecture
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 1. Fully connected GANs

 The initial GAN MA had full NN connections for D and G [348]. This MA was 
applied for the detection of simple images, e.g., the Toronto Face dataset (TFD), 
MNIST, and CIFAR10 (natural images).

2. Conditional GANs (CGAN)
 Upon extension, D and G networks are conditioned on additional data (y) to 

overcome reliance on random variables in the original model [353]. y denotes 
auxiliary data from other modalities or class labels. Conditional data are used 
by feeding y into G and D networks as an extra input layer (see Fig. 12). In the G 
network, prior input noise pz(z) and y are integrated in joint hidden representa-
tion, while the adversarial training framework permits considerable flexibility in 
the composition of this hidden representation [353]. In the D network, both x 
and y are presented as inputs to a D function.

3. Laplacian pyramid of adversarial network (LAPGAN)
 Using a cascade of convolutional networks with the LAPGAN model, Denton 

et  al. [354] introduced image generation in a coarse to fine manner. Hence, a 
multiscale structure of natural images could be exploited to build GAN models 
by taking a certain level of image structure based on LAPGAN. Built from the 
Gaussian pyramid, the Laplacian pyramid uses these functions: downsampling 
d(.) and upsampling u(.). Let G(I) = [I0; I1; . . . ; IK ] be Gaussian pyramid, where 

Fig. 11 Variants of GAN
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I0 =  I while Ik denotes repeated k of d(.) to I. Laplacian pyramid’s coefficient hk 
(level k) signifies the variance among adjacent levels within the Gaussian pyra-
mid, in which unsampling has a smaller value with u(.) (Eq. 3). 

 Coefficients of Laplacian pyramid [h1; . . . ; hk ] is reconstructed via backward 
recurrence, as in Eq. (4): 

 Convolutional generative models, which are needed to train LAPGAN, capture 
coefficients hk distribution for varied Laplacian pyramid levels. These generative 
models, during reconstruction, yield hk . Hence, the modification that takes place 
in Eq. (4) is expressed in Eq. (5): 

 Training image I is used to constructing the Laplacian pyramid. The stochastic 
choice is made at every level for coefficient hk construction via Gk generation or 
via the standard procedure. The CGAN model is used by LAPGAN by incor-
porating low = pass image ık to both G and D. The LAPGAN performance was 
assessed using three datasets: LSUN, CIFAR10, and STL10. The assessment was 
conducted through the comparisons of human sample examination, log-likeli-
hood, and generated image sample quality.

4. Deep convolutional GAN (DCGAN)
 A new class of CNN was initiated by Radford et al. [355] called DCGANs that 

can resolve the following architectural issues noted in CNN MA:

(3)hk = Lk(I) = Gk(I)− u(Gk+1(I)) = Ik − u(Ik+1)

(4)Ik = u(Ik+1 + hk)

(5)Īk = u(( ¯Ik−1)+ h̄k) = u( ¯Ik−1)+ Gk(zk ,u( ¯Ik−1))

Fig. 12 Conditional GAN’s architecture
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– Hidden layers that are completely connected are discarded, while pooling lay-
ers are substituted with fractional- and stridden convolutions on G and D, 
respectively.

– Batch normalization is applied for both G and D models.
– ReLU and LeakyReLU activation is used in G (except the final layer) and D 

layers, respectively.

 The G in DCGAN used in LSUN sample scene modeling is portrayed in 
Fig. 13. Its performance was compared with that of SVHN, LSUN, CIFAR10, 
and Imagnet 1K datasets. First, DCGAN was used as a feature extractor to 
determine the quality of unsupervised representation learning, followed by 
the determination of accuracy performance by fitting a linear model above the 
features. Notably, G displayed the ability to disregard some elements of the 
scene, e.g., furniture and windows. Good outcomes were noted when vector 
arithmetic was executed on face samples.

5. Adversarial autoencoders (AAE)
 The AAE, which was proposed by Makhzani et al. [356], refers to a probabilistic 

autoencoder that applies GAN to carry out variational inference. This is done 
by matching arbitrary prior dissemination with aggregated posterior of hidden 
code vector in autoencoder. The autoencoder in AAE undergoes training with 
two aims—criteria for conventional reconstruction error and adversarial train-
ing. Next, conversion of the data distribution to the prior one is learned by the 
encoder at post-training. The decoder, on the other hand, learns the deep gen-
erative model that portrays that prior to data distribution (Fig.  14). The MA 
of AAE is given below: Where x and z are the input and latent code vectors of 
autoencoder. p(z), q(z|x), and p(x|z) reflect imposed prior, encoding, and decod-
ing distributions, respectively. Next, pd(x) and p(x) signify data and model dis-
tributions, respectively. The aggregated posterior distribution of q(z) on hidden 

Fig. 13 DCGAN’s architecture
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code vector of the autoencoder is defined as q(z|x) (autoencoder encoding func-
tion), as expressed in Eq. (6): 

 Regularisation of autoencoder in AAE is performed by matching arbitrary prior 
p(z) with aggregated posterior q(z). The adversarial G network serves as an 
encoder for autoencoder q(z|x)). Both autoencoder and adversarial networks are 
jointly trained with gradient descent in reconstruction and regularisation stages. 
Both the encoder and decoder are updated by the autoencoder in the recon-
struction stage to minimize input glitches. The D is updated by an adversarial 
network in the regularisation stage to distinguish true samples from fake ones, 
and followed by a generative model update to confuse D. During the adver-
sarial training, AAE includes labels as well to offer a better distribution shape 
for hidden code. Single-hot vector, which is included in discriminative network 
input to link distribution mode with the label, is a switch that chooses a decision 
boundary based on a class label for a discriminative network. The vector has an 
extra class related to unclassified data. This extra class functions when unclassi-
fied data are found so that the decision boundary can be chosen for full Gauss-
ian distribution.

6. Generative recurrent adversarial networks (GRAN)
 The GRAN, introduced by Im et al. [357], has recurrent computation, produced 

from unrolled optimization based on gradient, which incrementally develops 
images for visual canvas (see Fig. 15). Current canvas images are extracted from 
a convolutional network encoder. The decoder is fed with generated and refer-
ence image codes to decide on canvas updates. Functions f and g are GRAN 
decoder and encoder, respectively. The G in GRAN has a recurrent feedback 
loop, which receives noise samples sequence from z ∼ p(z) prior distribution, 
to draw results for varied time steps; C1 ; C2; . . . ;CT Sample z from prior distri-

(6)q(z) =

∫

x
q(z|x)pd(x)dx

Fig. 14 AAE’s architecture



Page 30 of 82Alzubaidi et al. Journal of Big Data           (2023) 10:46 

bution is moved to function f(.) at time step (t) with hidden state hc,t , where hc,t 
is the current encoded status of past Ct − 1 drawing. Ct denotes that drawn at 
time t on canvas with function f(.) output. Function g(.) mimics function f(.) in 
inverse. Gathering samples at every time step produces the last sample drawn 
on canvas, C. Function f(.) is the decoder that accepts noise sample z and past 
hidden state input hc,t , while function g(.) is the encoder that offers output Ct−1 
hidden representation for time step t. Dissimilar to the rest, GRAN begins with 
the decoder.

7. Bidirectional GAN (BiGAN)
 The BiGAN (see Fig.  16) was proposed by Donahue et  al. [358] to learn data 

distribution inverse mapping and semantics, in which the learned feature rep-
resentations are re-projected into latent space. Referring to Fig. 9, apart from G 
deriving from GAN, BiGAN has an encoder E that maps data x to latent repre-
sentation z. The BiGAN D discriminates not only in data space [x versus G(z)] 
but jointly in data and latent spaces [tuples (x;E(x)) versus (G(z); z)], where the 
latent component is encoder output E(x) or G input z. Based on GAN targets, 
BiGAN encoder E can learn to invert G.

• GAN applications
 The GAN yields real-like samples with arbitrary latent vector z, thus dismissing the 

identification of the real distribution of data. Thus, GAN has been used in many 
academic and engineering fields. This section presents the applications of GANs in 
terms of generating new data to enhance training set [359–361]. 

1. Generation of high-quality images

Fig. 15 GRAN’s architecture
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 Recent studies on GAN have enhanced both the usability and quality of image 
production abilities, such as the LAPGAN model [354] discussed Before. Sev-
eral publications have addressed the issue of lack of training data using GANs 
[350, 362–364].

 The Self-Attention GAN (SAGAN) was initiated by Zhang et al. [365] to ena-
ble long-range, attention-driven reliance modeling that produces images. This 
is dissimilar from convolutional GAN, which yields details with high resolution 
for spatially local points within feature maps with low resolution. The SAGAN, 
which adds cues-generating details from all feature areas, yields excellent out-
comes that lowered Frechet Inception Distance (FID) to 18.65 from 27.62 and 
hiked Inception Score (IS) to 52.52 from 36.8 for the ImageNet dataset.

 The BigGans was introduced by Brock et  al. [366] to yield diverse and high-
resolution samples from intricate datasets (ImageNet) by using the largest scale 
to train GAN. Orthogonal regularisation was used for G to make a ‘truncation 
trick’ that enables the control of trade-off between sample variety and fidelity by 
minimizing G input variance. Further alteration enabled the model to synthesize 
class-conditional images. The model, upon being trained using ImageNet (reso-
lution: 128 × 128), scored 166.5 and 7.4 for IS and FID, respectively; which was 
better than the model described above.

 A G network for GAN was initiated in light of style transfer [367, 368]. The 
model displayed several noteworthy outcomes: enabled scale-specific and intui-
tive synthesis control, automatic learning, stochastic difference noted in the 
produced images (e.g., hair & freckles), and unsupervised segregation of attrib-
uted with high level (identity & pose if trained using human faces). Meanwhile, 
Huang et  al. [369] introduced GANs that operated on intermediate represen-
tations and not images with low resolution. This model is similar to LAPGAN 
with extended CGAN as D and G networks could accept extra labeled data 
as input—a popular method to date that enhances image quality. In another 

Fig. 16 BiGAN’s architecture
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instance, Reed et al. [370] applied GAN for image synthesis from texts (reverse 
captioning). To describe, a trained GAN may produce images that match cer-
tain descriptions, such as that of the following text: white with some black on its 
head and wings and a long orange beak. Along with texts, image location can be 
conditioned using a Generative Adversarial What-Where Network (GAWWN) 
that incrementally builds big images with the support of an interactive interface 
and bounding box supplied by user [371]. As for CGAN, besides synthesizing 
new samples with certain features, it permits users to create tools to edit images 
[372].

 For maximizing one/many neurons activation in a segregated classifier network, 
Nguyen et al. [373] introduced a novel approach that performs new image syn-
thesis via gradient ascent in the latent space of the G network. The extension of 
this method incorporated extra prior on latent code, which enhanced sample 
diversity and quality—yielding high-quality images (resolution: 227 × 227) for all 
ImageNet data [374]. Additionally, Plug and Play Generative Networks (PPGNs) 
were introduced possessing (1) G network that draws multiple image types and 
(2) a substitutable condition network that informs what G should draw. As a 
result, the images were conditioned on the caption (C = image captioning net-
work) and class (C = ImageNet/MIT Places classification network).

 Next, the GAN model was used by Salimans et al. [375] to execute training with 
novel features based on two aspects: semi-supervised learning and the produc-
tion of visually-realistic human images. This model yielded accurate outputs 
using semi-supervised classification on SVHN, MNIST, and CIFAR10. Based on 
the Turing test, the produced images were verified of having high quality. While 
the CIFAR10 samples displayed a 21.3% human error rate, those of MNIST were 
near-similar to real data.

 Wasserstein GAN (WGAN) was used by Huang et al. [376] for density recon-
struction in dynamic topography. Wasserstein GAN was proposed by Arjovsky 
et al. [377] to enable stable training but ended up failing to converge and pro-
ducing poor samples. These issues, according to Gulrajani et al. [378], were due 
to clipping weight to apply the Lipschitz constraint on the critic. Alternative 
clipping weights were, thus, used to penalize the norm of critic gradient based 
on input. This resulted in better training for multiple GAN MAs with nearly nil 
hyperparameter tuning, inclusive of language models with continuous G and 
101-layer ResNets, as well as high-quality yields on LSUN and CIFAR10. Based 
on what was discussed above, we believe GAN is an effective solution to gener-
ate more data to address both lack of data and imbalanced data [359–361, 379, 
380].

2. Image inpainting
 Missing parts reconstruction in images, or image inpainting, makes the recon-

structed areas undetectable. Hence, damaged areas are restored and undesired 
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objects are discarded in images. GANs have been applied to address this issue 
[381–384].

 The recent DL approaches have the ability to solve missing parts in images via 
the image inpainting technique, thus yielding perfect image textures and struc-
tures. Inferring arbitrary huge missing image parts via image semantics is called 
‘semantic inpainting’ [385, 386]. The demand for high-level context prediction 
poses more difficulty in this method when compared to image completion or 
past inpainting methods that eliminate whole objects and address inauthentic 
data corruption.

 A method based on a deep generative model was initiated by Yu et  al. [387] 
to apply surrounding image characteristics and synthesize image structures 
for better prediction. This CNN feed-forward model process varied-sizes and 
multi-hole images at random areas during the testing phase. Experimental work 
involving natural images (Places 2 & ImageNet), textures (DTD), and face sam-
ples (CelebA & HQ) revealed that the introduced model yielded higher-quality 
inpainting outcomes. Another study introduced an inpainting system in the DL 
model to complete images using inputs and free-form masks [388]. Using gated 
convolutions, the system learned millions of unlabelled images to address vanilla 
convolution problems (generalized partial convolution & input pixels being 
valid) by offering a mechanism to learn dynamic features for channels across all 
layers at each spatial region.

 A GAN loss model (SN-Patch GAN) using D with normalized spectral on 
patches of dense images [388] is rapid, non-intricate, and offers stable training. 
The extended version and automatic image inpainting revealed more flexible 
and higher-quality yields. Using edge G and followed by an image completion 
system, Nazeri et al. [389] built a model with a double-stage adversary. Missing 
region edges in images are hallucinated by edge G, and these edges are filled via 
the image completion system as a priori. The model was assessed using Paris 
Street View, CelebA, and Places2 datasets.

 A new semantic image inpainting model was proposed by Yeh et al. [390] based 
on GAN MA, whereby semantic inpainting was viewed as an issue of image gen-
eration. Their adversarial model [391, 392] had been trained to seek encoding 
of corrupted image ‘closest’ to the target image in latent space. Next, the image 
is reconstructed using G via encoding. ‘Closest’ is the loss of weighted context 
in the corrupted image and unrealistic images penalized via prior loss. In com-
parison to CE, this approach dismisses masks for training and can be applied 
for randomly-structured missing areas at the inference phase. This technique 
was assessed with CUB-Birds [393], CelebA [394], and SVHN [395] datasets 
with varied missing areas. The method gave more realistic images than other 
approaches.

3. Super-resolution
 Upscaling images or videos require super-resolution, as it upgrades low-reso-

lution images to high resolution by incorporating realistic image details at the 
training phase [396–398]. For instance, a new training approach was initiated by 
Karras et al. [399] to progressively grow G and D; begin at low resolution, and 
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new layers are increasingly included to model fine details during training. This 
approach offer better speed and stability while training, thus generating high-
quality images using CelebA.

 The extension of prior models, the SRGAN approach [400], is embedded with 
an adversarial loss element that constrains images to stay on the manifold of 
natural images. Imminently, the G in SRGAN holds low-resolution images and 
infers natural realistic images with a four-time scaling factor. Adversarial loss, 
dissimilar from other GAN models, is an aspect of the larger loss function that 
incorporates permanent loss from a pre-trained classifier, as well as regularisa-
tion loss that yields images that are spatially coherent. The entire solution is con-
strained by adversarial loss to manifold natural images, thus generating better 
solutions. Access to curated training data is a hindrance to DL model customiza-
tion. Nonetheless, SRGAN customizes specific domains in a straightaway man-
ner because new training image pairs are constructed easily by down-sampling 
high-resolution image corpus. Essentially, the image domain in the training set 
dictates the yield of GAN with realistic details.

 To improve SRGAN visual quality, Wang et al. [401] assessed the following three 
elements: perpetual loss, network architecture, and adversarial loss—the initia-
tion of Enhance SRGAN (ESRGAN). The fundamental network building unit is 
composed of Residual-in-Residual Dense Block (RRDB) in the absence of batch 
normalization. The very idea derived from relativistic GAN, which enables D to 
predict, rather than absolute value, but corresponding realness. To gain stronger 
supervision for texture recovery and brightness consistency, the perpetual loss 
was enhanced with features prior to activation. The ESRGAN gave higher vis-
ual quality with more natural and realistic texture than SRGAN—champion in 
PIRM2018-SR Challenge (region 3; the best perceptual index).

 As many techniques end up yielding low-quality and low-resolution images in 
real scenarios, Bulat et  al. [402] introduced a two-stage process: (1) High-to-
Low GAN is trained to learn down-sampling and degrading images with high-
resolution, and (2) the network output is applied to train Low-to-High GAN in 
order to generate images with super-resolution.

4. Video prediction and generation
 An issue in computer vision is comprehending scene dynamics and object 

motion. A model is needed for scene transformation in video generation (pre-
diction of the future) and recognition (grouping of actions). Building this model 
is, however, not easy due to motion in scenes and objects [403, 404]. A GAN 
for the video was proposed by Vondrick et al. [405] to untangle the scene fore-
ground from the background via spatiotemporal convolutional architecture. In 
predicting the future of static images, the proposed model could produce a 1-s 
short video at a complete frame rate, which is better than a simple baseline. Fur-
ther assessment revealed that the model could learn features to reckon actions 
at minimum supervision—scene dynamics are viable for representation learn-
ing. Several works were proposed for same purpose using GANs [404, 406, 407]

 The Motion and Content decomposed GAN (MoCoGAN) was introduced by 
Tulyakov et al. [408] to yield videos. Videos are made by generating a sequence 
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of random vectors [with content (fixed) & motion (stochastic) parts)] to that 
of video frames. Using video and image Ds, a new adversarial learning mech-
anism was devised to learn content and motion decomposition unsupervised. 
The model efficacy was verified empirically via quantitative and qualitative 
approaches. This approach has been improved in different ways [360, 404, 407].

5. Anime character generation
 Apart from requiring experts for routine tasks, animation production and game 

development are costly. Anime characters can be colorized and auto-generated 
using GAN [409–413]. These G and D have multiple ReLU with skip connec-
tions, convolutional layers, and batch normalization. The CartoonGAN, a solu-
tion that transforms real-world photos into cartoons was initiated by Chen et al. 
[414] for computer graphics and computer vision applications. The easy training 
phase involves cartoon images and unpaired photos. The two losses for cartoon 
styling are (1) semantic content loss (sparse regularisation for high-level feature 
maps of VGG network to cope with photo-cartoon style variation) and (2) edge-
promoting adversarial loss (preserves clear edges). To automatically generate 
anime characters, Jin et al. [411] combined GAN training methods and a clean 
dataset to yield realistic facial images. The SRResNet was modified to a G model 
(see Fig. 17) that applies 3 subpixel CNN (to upscale the feature map) and has 16 
Res-Blocks. The architecture of D displayed in Fig. 17 has 10 Res-Blocks. Due to 
correlations in mini-batch that lead to unwanted gradient norm calculation, lay-
ers of batch normalization were discarded from D. Additional completely con-
nected layers were added to the final convolution layer as the classifier of the 
attribute. Weights initialized from Gaussian distribution had 0:02 and 0 stand-
ard deviation and mean values. Figure 18 portrays an anime character generated 
by GAN.

6. Image-to-image translation

Fig. 17 The architecture of Anime G & D
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 The translation of input to output images can be performed using CGAN—a 
recurring theme in computer vision, computer graphics, and image processing. 
This pix2pix model resolves these image-related issues [415–417]. Additionally, 
a loss function may be devised using the pix2pix model in order to train input-
to-output image mapping. It yields exceptional outcomes for varied computer 
vision problems that demanded black-white image colorization, semantic seg-
mentation, attaining maps from aerial photos, and segregated machines [415].

 The model was extended to produce CycleGAN [418] by embedding cycle con-
sistency loss that preserves the original image after translation and reverse trans-
lation cycle. As paired images are eliminated from the training phase, the data 
preparation process becomes simpler and is open to other multiple approaches. 
The artistic style transfer [419], for example, gives a natural image with Monet 
or Picasso style by training using natural images and unpaired paintings. Novel 
samples that match the training set can be achieved by GAN, along with style 
transfer (modifies image visual style), domain adaptation (the generality of new 
domains with unclassified data in the target domain), and the latest, TL (import 
of existing knowledge to simplify learning) approaches [420]. Nonetheless, the 
general analogy synthesis issue is untapped. Hence, Taigman et al. [420] over-
came this problem by separating labeled samples from domains T and S, as well 
as by incorporating a multivariate function (f ) for mapping; G : S → T  such 
that f (x) ∼ f (G(x)) . The DNNs of a certain structure were applied, where G 
denotes learning (g) and input (f ) functions composition. The compound loss 
that integrates multiple terms was deployed as well. The proposed technique can 
visual domains (face images and digits) and generate realistic new images from 
unseen samples, while concurrently retaining identities.

 A generative network was segregated into two by Chen et al. [421] so that each 
looks into a subtask alone. The attention network estimated spatial attention 
maps of images, while the transformation network translated objects. The atten-
tion map produced in the initial step is sparse to enable more attention placed 
on the target object and should remain constant regardless of transfiguration. 

Fig. 18 Anime samples generated by GANs
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More instructions are given while learning the attention network due to image 
segmentation. The outcomes revealed the importance of assessing attention 
during the transfiguration, whereby the algorithm introduced can learn precise 
attention to enhance the quality of the produced images.

 In the Multimodal Unsupervised Image-to-image Translation (MUNIT) model 
introduced by Huang et  al. [422], image representation is decomposed into a 
content mode (domain-invariant) and style code (detects domain-specific attrib-
utes). The translation of an image to another domain involves the recombination 
of content code with random style code deriving from the target domain. Upon 
comparing the proposed model with other current models, the latter displayed 
more benefits.

 The Exemplar Guided and Semantically Consistent Image-to-image Transla-
tion (EGSC-IT) network introduced by Ma et al. [423] can be applied to perform 
the translation process on samples in the target domain. An image consists of 
a shared content aspect (shared across domains) and a style aspect (specific to 
the domain). The Adaptive Instance Normalisation applies the shared content 
aspect to enable style information transfer from the target domain to the source 
domain. The concept of the feature was deployed to hinder semantic inconsist-
ency while translation (due to variations of the large inner and cross-domain) 
and to offer a coarse semantic guide in the absence of a semantic label. The 
Single GAN was introduced by Yu et al. [424] to execute multi-domain image-
to-image translation with single G. In order to ascertain A domain code was 
deployed to integrate multiple optimization goals and to control varied genera-
tive activities. The results for unclassified data revealed superior performance by 
the proposed model when translating between the two domains. CycleGAN has 
been used in several applications such as medical imaging and plant diseases to 
address the issue of imbalanced datasets [425–428]. Figure 19 shows an example 
of CycleGAN with CT images.

7. Text-to-image translation
 One of the impressive applications of GANs is text-to-image translation [430–

433]. Using GAN, Fedus et al. [434] enhanced sample quality by explicitly train-
ing G to yield high-quality samples that displayed successful image production. 
The actor-critic CGAN can complete missing text conditioned on the context. 

Fig. 19 An example of medical image translation [429]
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Evidently, this gave more realistic un- and conditional text samples quantita-
tively and qualitatively, in comparison to maximum likelihood trained model.

 With the benefits of automatic synthesis of realistic images from text, Denton 
et al. [354] applied the Laplacian pyramid with adversarial G and D to synthesize 
images at many resolutions. Images with high resolution that can condition on 
class labels were produced with control. Using a standard convolutional decoder, 
Radford et al. [355] built a stable and effective MA by including batch normali-
zation to attain exceptional image synthesis outcomes.

 The GAWWN was used by Reed et  al. [370] to synthesize images from text 
descriptions (reverse captioning). Besides conditioning on image location [371], 
the model supports an interactive interface that increasingly builds up big 
images with textual descriptions and bounding boxes supplied by the user. As 
for CGANs, it synthesizes new samples with certain features and enables the 
development of tools to intuitively edit images, such as hairstyle editing or giv-
ing a younger look in images [435]. Figure 20 shows an example of text-to-image 
translation.

8. Face aging
 Progression and regression of face age (or face rejuvenation and aging) render 

face images regardless of aging effect, while simultaneously preserving personal-
ized face features (i.e., personality) [437–440]. A conditional AAE (CAAE) was 
initiated by Zhang et al. [441] to learn face manifold. The control of age attrib-
ute assures flexibility to gain regression and progression concurrently. Some 
advantages of CAAE are: (1) gains age regression and progression to produce 
realistic face images, (2) dismissal of paired samples while training and labeled 
face while testing—ascertaining model generality and flexibility, (3) disentan-
gled personality and age in latent vector space preserve personality and hinder 
ghosting artifacts, as well as (4) robust against occlusion, pose, and expression 
variations as CAAE imposes D on the encoder and G. The D on the encoder and 
G offer smooth transition in latent space and realistic face images, respectively. 
Thus, CAAE yields images with higher quality than AAE. The CAAE had been 
assessed with CACD [442] and Morph [443] datasets.

 A synthetic aging method was initiated by Antipov et al. [444] for human faces 
using Age CGAN (Age-cGAN), comprising of dual steps: (1) input face recon-

Fig. 20 An example of text‑to‑image translation [436]
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struction that demands optimization problem resolution to seek optimal latent 
approximation, (2) and face aging executed via simple conditions change at G 
input. This approach introduces ‘Identity-Preserving’ latent vector optimiza-
tion that preserves the original identity during the reconstruction phase, besides 
modifying other facial features. Figure 21 shows an example of face age.

9. Image blending
 Mixing of two images is called ‘image blending’, where the output image is com-

bined with input images pixel values and GANs showed an excellent perfor-
mance [445].

 The dense image matching method was initiated by Gracias et al. [446] to enable 
copy and paste of only the related pixels. Significant variances between source 
images dismiss the model usage. One way is by making a smooth transition to 
hide artifacts in composited images.

 The Gaussian–Poisson GAN (GP-GAN), which was introduced by Wu et  al. 
[447], combines the strengths of GANs and approaches based on a classical 
gradient—The initial study that assessed GAN ability in high-resolution image 
blending task. The Gaussian–Poisson Equation was developed to address the 
high-resolution image blending issue—a joint optimization constrained by color 
and gradient data. Color data are obtained from Blending GAN, which was 
introduced to learn the mapping between well-blended and composited images; 
while gradient data are generated from gradient filters. Apart from producing 
realistic and high-resolution images, the proposed model generated less unde-
sired artifacts and bleeding. The experimental outcomes verified the superior 
performance of the proposed model over other models using Transient Attrib-
utes dataset.

Model architecture

There are some solutions that help to deal with small datasets related to MA. These 
solutions can help when it is impossible to collect or generate more training data. 

1. Model complexity

Fig. 21 An example of face age [444]
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 Reducing model complexity DL due to limited datasets can help avoid overfitting 
and improve generalization to new, unseen data. This can be achieved by reducing 
the number of layers or nodes in the model, adopting simpler activation functions, 
or regularisation techniques. While reducing model complexity can mitigate the risk 
of overfitting, it may also limit the model’s capacity to represent complex relation-
ships in the data, resulting in underfitting and lower accuracy. Furthermore, reducing 
model complexity may limit the model’s ability to learn from high-dimensional data, 
which can lead to poorer performance in tasks such as medical images or speech 
recognition. Therefore, it is crucial to carefully balance the trade-offs between model 
complexity and model performance on both the training and test data [448–451].

 Brigato et  al. [452] performed a wide variety of experiments with varied DL MAs 
on datasets of limited size. Model intricacy should not be undermined when only a 
few samples are available in a class. Opposed to the literature, the authors revealed 
that certain current models may be improved in several configurations by using 
models with low intricacy. Non-intricate CNNs can perform better than the current 
MAs without augmentation of data and with inadequate training data. They added 
recognition performance may be improved by massive margins with standard data 
augmentation. This signifies the importance of devising complex data augmentation 
and generation models in case of limited data. Lastly, they reported that dropout—a 
broadly applied regularisation method—maintains its role despite data scarcity. Their 
findings were empirically validated with sub-sampled CIFAR10, Fashion-MNIST, 
and SVHN benchmarks.

2. Loss functions
 Loss functions are an essential component of DL models, as they are used to meas-

ure the difference between predicted and actual values. In the case of data scarcity, 
selecting an appropriate loss function becomes critical as the model needs to be 
trained with limited data samples. Therefore, it is essential to analyze and evaluate 
different loss functions that can help address the data scarcity problem. Some of the 
commonly used ones are:

• Mean Squared Error (MSE) is a popular loss function used in DL for regression 
problems. It measures the average squared difference between predicted and 
actual values [453].

• Mean Absolute Error (MAE) measures the average absolute difference between 
predicted and actual values [454]. This function is also known for regression 
problems.

• Cross-Entropy Loss is known for use of multi-class classification problems. It 
measures the dissimilarity between the predicted probability distribution and 
the actual probability distribution of the target variable [455]. It is commonly 
used in tasks such as image classification and natural language processing.

• Hinge Loss is commonly used for binary classification problems where is com-
monly used in support vector machines (SVMs). It encourages correct classifi-
cation by penalizing incorrect predictions linearly [456].
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• Focal Loss is well-known for imbalanced classification problems. It is designed 
to give more weight to hard-to-classify examples, reducing the impact of easy-
to-classify examples and improving performance on the minority class. It is com-
monly used in object detection and segmentation tasks [457].

• Triplet Loss is used for learning representations in siamese networks or other sim-
ilar architectures. It measures the distance between anchor, positive, and negative 
samples [458].

• Contrastive Loss is used to learn the similarity between two inputs, and it penal-
izes the model for dissimilar inputs and rewards the model for similar inputs 
[459].

• Sparsemax Loss is a probabilistic activation function that can be used in classifica-
tion tasks [460]. It encourages the model to assign low probabilities to irrelevant 
classes.

• Kullback–Leibler (KL) Divergence Loss is used for measuring the difference 
between two probability distributions [453]. It is often used in generative models, 
such as Variational Autoencoders (VAEs).

• Huber Loss is used in regression tasks and provides a combination of Mean Abso-
lute Error (MAE) and Mean Squared Error (MSE) loss functions [461].

• Quantile Loss is known for quantile regression problems. It measures the differ-
ence between the predicted quantile and the actual value at that quantile, with a 
different loss function for each quantile. It is commonly used in financial forecast-
ing and risk analysis [462].

• Center Loss is used for face recognition tasks and minimizes the distance between 
the features extracted by the DL model and their corresponding class centers 
[463].

• Wing Loss is designed to be robust to outliers by penalizing large errors less than 
Mean Squared Error (MSE) Loss [464]. It is commonly used in tasks such as facial 
landmark detection and human pose estimation.

• Cosine Loss is used to optimize the cosine similarity between two feature vectors 
in a high-dimensional space. It is commonly used in tasks such as face recognition 
and image retrieval [465].

  In evaluating the performance of loss functions on the data scarcity problem, we 
can consider metrics such as accuracy, precision, recall, F1 score, and area under 
the curve (AUC). These metrics provide a comprehensive evaluation of the per-
formance of the model in addressing the data scarcity problem. By comparing the 
performance of different loss functions on these metrics, we can determine which 
loss function is most effective in improving the model’s performance when train-
ing data is limited.

 In terms of processing time, different loss functions have different computa-
tional requirements. For instance, mean squared error and mean absolute error 
are computationally less expensive than cross-entropy and hinge loss. However, 
this difference in computational cost may be insignificant in practice, especially 
with the use of modern GPUs that can handle complex computations with ease. 



Page 42 of 82Alzubaidi et al. Journal of Big Data           (2023) 10:46 

There are several challenges associated with selecting and using loss functions 
in deep learning. It can be challenging to choose the right loss function for a 
specific problem, especially when the data is scarce. Different loss functions 
have different strengths and weaknesses, and the wrong choice can lead to sub-
optimal results, some of which are:

• Imbalanced datasets mean one class has significantly fewer samples than the 
others. It can be challenging to find a loss function that balances the trade-off 
between correctly identifying the minority class while not misclassifying the 
majority class too often.

• Noisy data can be a challenge when selecting an appropriate loss function. 
Noisy data can cause the model to learn incorrect patterns, leading to poor per-
formance.

• Overfitting is an issue when some loss functions are prone to it, especially when 
the model is too complex or when the data is scarce. Overfitting occurs when 
the model learns to fit the training data too well, resulting in poor performance 
on the test data.

• Optimization challenges can appear in some loss functions that can be difficult 
to optimize. This can lead to slow convergence or getting stuck in local minima.

• Model interpretability can be an issue when some loss functions are more dif-
ficult to interpret than others which making it harder to understand why the 
model makes certain predictions.

  In summary, selecting an appropriate loss function is critical in addressing the 
data scarcity problem in DL. Evaluating the performance of different loss func-
tions using relevant metrics provides a comprehensive understanding of their 
effectiveness in improving model performance. While some loss functions may 
require more computational resources than others, this difference may be insig-
nificant in practice, given the availability of modern computing infrastructure.

3. Ensemble classifiers
 Ensemble classifiers are a powerful technique for addressing the problem of limited 

training datasets in DL. By combining the predictions of multiple models trained 
on different subsets of data or with different algorithms, ensemble classifiers can 
improve the overall accuracy, robustness, and generalisability of the model. Addi-
tionally, ensemble classifiers can help to reduce the risk of overfitting and identify 
and correct biases that may exist in any single model, making them a valuable tool 
for improving the reliability and accuracy of DL models in situations where training 
data is limited [14, 466, 467].

 Olson et al. [153] depicted that DNNs can generalize well on small, noisy datasets 
despite memorizing the training data. To explain this behavior, the authors devel-
oped a novel perspective on NNs by viewing them through the lens of ensemble clas-
sifiers. When training NNs, it is important to choose an architecture that allows ade-
quate capacity to fit the training data, and later, re-scale with regularisation [468]. On 
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the contrary, the random forest holds that training data can perfectly fit very deep 
decision trees, and then, rely on randomization and averaging for variance reduc-
tion. This notion can be applied to DNN. Instead of each layer presenting an ever-
increasing hierarchy of features, it is plausible that the final layers offer an ensemble 
mechanism. Finally, they reported that small datasets and relatively small network 
sizes have computational advantages, which allow for rapid experimentation. Some 
recent studies explained NN generalization as intractable on networks with millions 
of parameters: Schatten norms, for instance, require computing full SVD [469]. In 
the study context, such calculations are trivial. Thus, future studies should discern 
a mechanism for decorrelation, as well as assess the link between decorrelation and 
generalization.

Physics‑informed neural network (PINN)

Physics-Informed Neural Network (PINN) is another DL technique that can cope with 
problems with insufficient data or even without labeled data [470–473]. Apart from 
using pure data, PINNs can also integrate physics laws to train neural networks for 
unknown systems [474]. We note that the physics laws can be equations that are derived 
from conservation principles or empirical models that are summarized by calibrations 
of observations. Such as the Navier–Stokes equations for fluid mechanics [475], the 
Schrödinger equation for first principle calculation [476], and the Black–Scholes equa-
tion for financial evolution [477], to name but a few. For specific problems, these well-
studied physics laws can effectively reveal the underlying relationships between variables 
of unknown systems from a higher point of view [1].

It is worth noting that, PINN can be considered as an extension of traditional DNNs 
from the loss function regard. Compared to traditional DNNs, PINNs tailored loss terms 
from the physics laws, as shown in Fig. 22. In this manner, the final loss function can be a 
combination of the loss terms from data and physics laws, respectively.

Up to now, physics-informed loss functions can be mainly categorized into two 
types: the collocation physics-informed loss function [473, 478, 479] and the varia-
tional physics-informed loss function [480, 481]. The collocation type loss functions 
directly enforce equations into training processes, aiming at minimizing the residuals 
calculated from physics equations to be close to zero [482]. The variational type loss 

Fig. 22 An illustration of a PINN structure. x and y are respectively the input and output of the neural 
network. The loss function of a PINN can contain two parts, namely the data‑driven loss term and the physics 
law loss term. The output of the neural network can be directly compared to the ground truth data, which 
results in the data‑driven loss term. In addition, the output of the neural network can be also substituted into 
the physics laws in terms of governing equations, which contributes to the physics law loss term
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functions guide the training by finding the stationary point of functionals [479]. Using 
the variational type loss requires professional knowledge and a comprehensive under-
standing of the training data. It is more complex from the implementation regard 
than using the collocation type loss, but it is computationally more efficient [481].

PINNs have been widely used in problems where only insufficient data are available 
and the unknown systems are governed by known physics laws in terms of equations 
[479, 483–486]. As aforementioned, the physics laws are effective for specific prob-
lems. However, these prior pieces of knowledge in terms of the physics laws for the 
unknown systems are normally ignored in traditional neural network applications. 
PINNs provide a novel way to train neural networks through those physics laws. The 
physics laws provide information representative of the unknown systems as the data 
does. With the help of the physics laws, PINNs can perform well with insufficient data 
or even without labelled data [474]. The PINN is initially proposed by Raissi et  al. 
[470] for solving Partial Differential Equations (PDEs) through neural networks. With 
the underlying physics, PINNs have been demonstrated to be more effective than 
traditional ML algorithms with respect to insufficient data or even without labelled 
data [470]. Later, PINNs have been applied in various fields, including computational 
mechanics [479, 484, 485, 487, 488], medical [484] and geophysics [489], etc. Great 
efforts have been made to further investigate and improve the performance of PINNs. 
Stefano [490] thoroughly studied the performance and accuracy of PINNs towards 
linear problems. Different optimizers, including Adam and L-BFGS, are also com-
pared to provide some guidance for optimizer selections. Yang et  al. [491] and Zhu 
et al. [492] proposed a way to quantify the uncertainty of PINNs. Wang et al. [493] 
investigate PINNs from the training process. Numerical cases were used to under-
stand how the loss function evolve in PINNs. Meanwhile, various training techniques, 
such as adaptive learning [494] and Neural Tangent Kernel (NTK) [495], have been 
incorporated into PINNs to alleviate the scale differences of the loss terms. Further-
more, different types of neural networks have been applied to replace the Feedfor-
ward Neural Network (FNN) [496–498].

Deep synthetic minority oversampling technique (DeepSMOTE)

Recently, Dablain et al. [499] proposed a new method, DeepSMOTE, to generate syn-
thetic images to address the issue of imbalanced data. DeepSMOTE leverages the 
properties of the successful SMOTE algorithm. It consists of three main components: 
(a) an encoder/decoder framework; (b) SMOTE-based oversampling; and (c) a dedi-
cated loss function that is improved with a penalty term. DeepSMOTE has some sig-
nificant advantages over other methods because, unlike GAN, there is no need for a 
discriminator during training. Furthermore, it generates high-quality artificial images 
compared with other methods as shown in Fig. 23. The performance of DeepSMOTE 
was validated on five benchmark datasets and it outperformed other methods.

DSMOTE has been shown to be effective in improving classification performance 
on imbalanced datasets compared to traditional SMOTE and other oversampling 
techniques. However, it should be noted that DMSOTE may require more computa-
tional resources compared to traditional SMOTE due to the use of DL models.
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We believe that DeepSMOTE is one of the most effective solutions to address the 
lack of training data. Currently, it has been used for image generation and we believe 
it can be extended to work on other data modalities such as graphs and text data.

Pre‑training and testing tips of using dataset
Some tips on training datasets are listed in this section. Prior to model training and 
evaluation, it is crucial to set project aims, type of data, anticipated setbacks, and pro-
gress within the research area. Dismissing these may result in invalid outcomes and 
unreliable models for publication. 

 1. Understanding data

 Data for training should be derived from reliable sources, gathered via a reliable method, 
and have high quality. For example, data from the Internet must be assessed for reli-
ability and any note made by the author about data setbacks. Dataset applied in mul-
tiple papers neither guarantees its quality nor reliability because any dataset could 
hold drawbacks [502]. The process called ‘garbage-in, garbage-out’ refers to model 
training using bad data that yields a bad model. Data may be assessed using explora-
tory data analysis to check for inconsistency or missing values [503]. Essentially, this 
step should be taken prior to model training.

 2. Literature review
 Reviewing past studies is crucial to get a glimpse of the progress within the research area 

and aspects left untapped. Although it could be disappointing to discover that one’s 
research interest has already been explored by other researchers; the research scope 
may be broadened, limitations addressed, and serve as justification for the current 
research endeavors. Besides, through a literature review, one may identify a new 
opportunity to build on a partially solved problem. Therefore, reviewing the litera-
ture is imminent to ascertain if one is on par with the current research arena and add 
meaningful knowledge to the subject area.

 3. Avoid analyzing all data
 Overanalyzing a dataset may yield insights and patterns that could deviate from the mod-

eling goal. Checking the dataset is an important step, but making presumptions 
should be hindered. This is because a dataset is meant to be fed into a training model 
and not tested. Therefore, one should not analyze the dataset during the exploratory 
analysis phase to avoid making presumptions that could limit model generality. In 

Fig. 23 Comparison of DeepSMOTE to other methods [499]. a Original images. b Balancing GAN [500]. c 
Generative adversarial minority oversampling [501]. d DeepSMOTE
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fact, one reason that contributes to DL failure is data leakage from a test set into the 
training set [504].

 4. Data sufficiency
 A model should be trained with adequate data to ensure model generalizability. Data suf-

ficiency is dictated by the signal-to-noise ratio; a weak signal requires more data 
while a strong signal indicates adequate data. The issue of insufficient data may be 
addressed by using existing data via cross-validation (CV) and data augmentation 
methods such as rotation, flipping, zooming, and cropping to boost small datasets 
[505, 506]. In particular, data augmentation is useful when overcoming data suffi-
ciency issues or ‘class imbalance’—less samples in certain classes [507]. Besides, 
limited data denotes limited DL model complexity as many parameters (e.g., DNN) 
may overfit small datasets easily. Thus, data sufficiency must be ensured at the initial 
stage.

 This review focuses on the most popular solutions to address the issue of lack of training 
data which are TL, GANs, MA, PINN, and DeepSMOTE. This review will help to 
generate more data and handle small and imbalanced datasets.

 5. Domain experts
 A domain expert facilitates in identifying viable problems to resolve, selecting the aptest 

dataset and DL model, as well as aiding to publish to the most appropriate audi-
ence. Dismissing opinions given by domain experts could lead to two scenarios: 
unsolved problems and problem-solving in an inapt manner. An instance of the sec-
ond scenario is the use of an opaque DL model for solving a problem that requires 
comprehension of how the model arrives at the result (for making financial/medical 
decisions) [508]. At the start of a project, a domain expert makes data more compre-
hensible and highlights predictive features. A successful project can be published in 
esteemed journals within the domain, thus, benefiting the target audience.

 6. Preventing test data from leaking into training process
 It is crucial to use data that contributes to model generalizability. When data gets leaked 

into model selection, configuration, or training; the data would fail to ascertain the 
reliability and affect the generalizability of the DL model. Some ways that cause data 
leaks are using the entire dataset during variable scaling and data preparation, select-
ing features prior to data partitioning, and applying the same dataset to assess multi-
ple models’ generality. To hinder data leakage, data partition should be performed at 
the initial stage, and use of test set only be once to assure generality of a single model 
at the final phase [509].

 7. Validation set
 When training more than one model, it is imminent not to apply the testing dataset. This 

is because another validation set must be deployed for performance assessment. This 
may consist of samples that are indirectly applied for training, but to guide training. 
Testing set, when used as a training set, no longer can measure generality in an inde-
pendent manner—the model would eventually overfit the testing set [510, 511]. One 
advantage of employing a validation set is one may halt the training process earlier 
when validation scores begin decreasing—an indication that the model overfits the 
training dataset.

 8. Suitable test set
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 The DL model generality is measured using a test set. Model performance on a training 
set is useless because a complex model can easily learn a training set yet offer nil 
generality. The test dataset must not overlap the training set but must represent the 
broader population. For instance, when a medical image dataset gathered from nor-
mal people is used as training and testing sets, the latter set will fail to classify abnor-
mal patients and; thus dismissed as a representative. The same scenario is projected 
when the same equipment is applied to gather both testing and training sets. In this 
case, generalizability cannot be attained by the model.

 9. Multiple model evaluation
 While DL model is unstable, a slight change in the training data can affect the perfor-

mance. As a single model assessment may overestimate or underestimate the real 
model potential, multiple assessments are imminent. This can be done by executing 
model training a few times with varied training data subsets. One popular method 
is cross-validation; fivefold cross-validation is training repeated 5 times with data 
partitions [512, 513]. Stratification is carried out when the data classes are small so 
that each class can be represented adequately in every fold. It is crucial to keep indi-
vidual, standard deviation, and mean scores for statistical comparisons [514].

 10. Accuracy and imbalance dataset
 Metrics should be carefully used to assess the DL model. Classification model that uses 

the accuracy metric (fraction of samples correctly identified by model), for example, 
may be misled with the imbalanced dataset. Let’s say 92% and 8% denote two classes. 
An accuracy of 92% would be the output of a binary classifier, which indicates mean-
ingless knowledge. Hence, approaches insensitive to class size imbalance is sought 
for this case, such as Matthews Correlation Coefficient (MCC) and Cohen’s kappa 
coefficient (k) [515].

Applications
This section lists some applications that DL is less explored due to limited training data. 
This opens doors to scholars to use the listed solutions to limited training data in DL. 
With each application, we focused on four major points which are (1) what is it? (2) diffi-
culties in collecting new data (3) suggestions to address the lack of training data (4) sub-
applications that can be investigated with each application. These points were provided 
by experts from the area of each application.

Electromagnetic imaging (EMI)

The technology of EMI, also known as microwave imaging, is applicable in a broad range 
of functionalities, particularly in the medical field, e.g., breast cancer detection [516], 
diagnosis of stroke [517], intracranial bleeding detection [518], and traumatic brain 
damage [519]. Since identifying the location and size of any bleeding or tumor instantly 
is crucial for effective treatment management, an accurate and rapid method is immi-
nent. Computer tomography (CT) and magnetic resonance imaging (MRI) are not 
always available, costly, heavy, and massive in size. Moreover, they can neither be used 
frequently for monitoring nor in onsite diagnosis for emergency cases. The cutting-edge 
technology of EMI may complement or even replace other imaging approaches, as EMI 
employs compact EM sensors (antennas) arranged around the body’s area of interest to 
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measure transmission and reflection coefficients. These coefficients can be processed 
using many techniques, such as tomography and confocal methods [520], to facilitate a 
range of tasks, which are imaging-based detection, localization, and classification tasks. 
Tomographic techniques are time-consuming when computing numerous unknowns 
with massive problems (i.e. several dozens of measurements and tens of thousands of 
unknown image pixels). Forward and inverse solvers require high-precision electromag-
netic simulation instruments and costly hardware to solve the ill-posed tomography 
method. Methods based on the radar are ineffective for cases related to heterogene-
ous tissues and lesions [521], thus failing to classify types of pathologies (but possible in 
tomography based on dielectric contrast) [522]. The DL field can address certain draw-
backs. The DL approaches yield quick outcomes, thus superior to conventional meth-
ods. The DNN—an ML algorithm—is effective to resolve intricate and highly non-linear 
tasks. The DNNs have revolutionized the ML approaches by providing superhuman 
performance in mostly computer vision applications [1]. As the amount of training data 
should be in massive volume, which is a challenge in the EMI area, simulation is a via-
ble solution for data training despite its high computing power [523, 524]. It is believed 
that GANs (e.g., TimeGAN [525]) are a solution to EMI applications as they are getting 
popular in several applications, such as knee imaging system [526], liver detection [527] 
and others [528]. Another solution is domain adaptation—a TL subfield—where a model 
trained on one task is applied as the starting point or adapted/transferred to another 
task with fewer data.

Civil structural health monitoring

The use of DL algorithms in Structural Health Monitoring (SHM) is gaining popularity 
due to their high ability in detecting civil engineering structural defects [529, 530]. How-
ever, civil engineering applications are escalating in a rapid manner due to the emer-
gence of Big Data and the Internet of Things (IoT). The DL is effective in a number of 
analyses, including classification, clustering, and regression of structural damages across 
tunnels, bridges, dams, and buildings [1]. Visual inspections are most often deployed to 
examine the status and health of structural systems. Despite the significance of this tech-
nique in the SHM area, there are several setbacks that affect the damage extent and type 
after long- and short-term mishaps. With advancements in high-performance comput-
ing technologies and affordable sensors, SHM is becoming more effective and feasible. 
Many studies have assessed vibration-based damage identification in this particular seg-
ment. Numerous methods and algorithms have been developed to solve issues related to 
structures with varied intricacies [531]. Damage identification approaches based on data 
can be used to execute pattern recognition, where NNs are used for their fault tolerance 
capability and adaptive learning. However, NNs are costly and demand massive training 
data. This setback has been addressed by replacing DL tools for feature extraction and 
classification in damage detection issues with raw and processed signals without hand-
designed features [532]. At the core of recent DL with big data, CNNs can learn from 
massive datasets. The CNNs can be deployed for classification of electrocardiogram 
signals [533] and medical imaging such as MRI or CT [22, 253]; but they are still new 
in SHM [534, 535] due to lack of training data. Other successful applications of CNNs 
in SHM include damage detection of steel frames [536], pavement and concrete crack 
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detection [537], and overall system condition assessment [538]. Thus, integration of DL 
with CNN models in damage identification tasks can effectively address SHM issues. 
The response data applied for SHM purposes are mostly recorded in the time domain, 
while others used transformed data from time to frequency or time-frequency domain 
to detect damaged structures [539]. The main challenge in SHM with DL is data avail-
ability. To address that, TL is an exceptional solution as proven in [540], which revealed 
the efficacy of TL application in SHM using varied sensors for similar structural systems. 
Another solution is GANs and deep-SMOTE to generate more data for training [541].

Meteorology applications

The implementation of AI has been successful in DL models for robotics, image and 
speech recognition, meteorological applications, and strategic games [542]. Some evi-
denced better weather forecasts by embedding DL and big data mining into weather 
prediction framework [543, 544]. The question is: can DL methods fully substitute the 
present data assimilation systems and numerical weather models? The integration of 
the advanced DL model with weather and climate science is bound to progress rapidly 
and be adopted in advanced computer systems. However, benchmark datasets includ-
ing automatic weather stations (AWS), radar, meteorological balloons, and satellites 
with baseline scores and models are absent in meteorological DL, which should ease 
DL usage in experimenting with varied approaches and resolving meteorological issues. 
Despite the vast meteorological data accessible from weather research institutions, cor-
rect use of these data demands knowledge on data formats and the system of the Earth. 
Hence, these tools may be advanced by integrating DL models [542]. One should care-
fully weigh in the requirements and objectives of weather forecasting when substituting 
costly numerical weather prediction (NWP) computation with DL models. Crucial cri-
teria for weather forecasting are mere conceptions based on numerical models and are 
inapplicable to DL. Consistency of forecast outcomes is often undermined by numerical 
modelers despite being part of the criteria in the NWP system. Since weather forecasting 
may be explained as a Big Data issue to map observations of the Earth system in order to 
substitute the whole NWP framework, which includes output processing, data assimila-
tion, and numerical modeling. However, the weather forecasting issue is more suitably 
addressed using DL models than the classical numerical modeling of NWP [544, 545]. 
Physical barriers in NN design need to be considered when applying DL for weather 
forecasting. Some variables of the NWP may function as regulators in DNN latent space. 
Therefore, end-to-end DL-based weather forecasting may generate better outcomes for 
specific demands by exploiting small-scale patterns in the data, which is non-viable in 
the NWP system. The evolution of DL in replacing most of or the entire NWP system 
is still early to tell at this present moment. One of the advantages that can help DL in 
meteorology applications is the availability of unlabelled data. We believe same-domain 
TL can make huge advancements as it is based on the use of unlabelled data with small 
labeled data [23].

Medical imaging applications

One setback in the area of medical image analyses is inadequate data to train the DL 
model. As manual labeling is needed to assess medical images, human annotators from 



Page 50 of 82Alzubaidi et al. Journal of Big Data           (2023) 10:46 

the varied background are involved. However, this annotation step is costly, time-con-
suming, and could have glitches. Large training datasets of DL models are important to 
achieve generalization in all applications, especially in medical imaging applications [15, 
546–550]. This section lists some medical image areas that face the issue of insufficient 
training data with possible solutions. 

1. Diabetic foot ulcer

 A diabetic complication, DFU, is a serious disease that may lead to the removal of 
one’s foot [551]. Most often, DFU is found at one’s heel experiencing skin color 
changes, dry cracks, skin temperature variance, leg pain, and edema. The worsening 
condition of DFU may cost one’s life and its treatment is costly. Detecting and diag-
nosing areas of ischemia and infections are imminent when predicting amputation 
risks of DFU [552]. Ischemia stems from chronic diabetes as it adversely affects blood 
circulation. In fact, ischemia can be detected from palpation of blood flow pulses in 
one’s foot [553], while DFU infection worsens due to poor foot reperfusion [554]. 
Essentially, DFU detection is challenging due to the following reasons: (a) changes 
in DFU appearance (size, location, & shape), (b) inter- and intra-class differences, 
as well as (c) the condition of lighting. Although medical investigations pertaining 
to the physical body, blood vessels in the leg, bacteriology, and blood tests are vast; 
the information fails to reach the public [553, 555]. To the best of our knowledge, the 
two public DFU datasets [551, 556] appears to be small to train DL models. One of 
the effective solutions is TL, as implemented by Alzubaidi et al. [23, 124, 256]. Nota-
bly, GANs can be a good solution in this area, which is worth investigating.

2. Sickle cell anemia
 The function of red blood cells (RBCs) is imminent in the gassy exchange of the 

external setting and the living tissue. Haemoglobin refers to the RBC protein that 
transports oxygen to the entire body [164], which also directs all life after 6 weeks of 
age. Haemoglobin is composed of two alpha and beta chains each [557]. A child may 
be diagnosed with sickle cell anemia if both parents contribute abnormal hemoglobin 
gene as healthy hemoglobin (HbA) gets substituted with sickle hemoglobin (HbS) 
[558]. One would have sickle cell traits when half of HbA is replaced with HbS. The 
lifespan of healthy RBC and sickle cell is 120 days and 10–20 days, respectively. Com-
bining a deoxygenated molecule with hemoglobin S denotes hemoglobin polymeri-
zation, which makes an RBC to resemble the sickle shape. Categorizing the clinical 
state of a patient is executed via cell morphology [559]. Accurate counting and cell 
segmenting are crucial in biomedicine as these are intricate processes in cells [560]. 
An automated detection system is affected by overlapping cells, while precise classifi-
cation reflects clear-cut segregation among cells [560]. Medical image segmentation 
and categorization are complicated by varied intensity, signal strength, and noise of 
lesion cells [558, 559]. Features that aid the two said processes are region, elliptic-
ity, shape, cell texture, size, circulation, form factors, and elongation [559]. There is a 
single public dataset on erythrocytesIDB [561] to the best of the author’s knowledge. 
The dataset has 626 images—inadequate to train the DL model. Lack of training data 
is the major issue of employing DL for this task. One of the solutions is TL [164]. It 
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is worth investigating GANs and deep SMOTE in this area. Focusing on shallow DL 
models can be another way to address the issue.

3. Shoulder implant manufacturer
 The process of replacing a damaged socket joint and ball in the shoulder with a 

prosthesis made of metal and polyethylene elements is known as Total Shoulder 
Arthroplasty (TSA) [562]. Intervention is needed if the prosthesis gets damaged. 
The treatment process may be delayed if information about the prosthesis manufac-
turer and model are to no avail. However, certain systems facilitated by AI can clas-
sify the sought information for speedy treatment. Thus, some papers proposed a DL 
model that uses X-ray images to categorize shoulder implants [562–564]. However, 
the small dataset was used for training which shows there is a lack of training data. 
Clearly, public datasets in this field are in scarcity which could lead to overfitting. 
Therefore, TL may exert great performance in this area since there is a huge amount 
of X-ray images available for the similar TL domain.

Wireless communications

It is crucial to convey information in a wireless medium from one point to another rap-
idly, reliably, and securely. The wireless communication field involves designing wave-
forms (e.g., long-term evolution (LTE) and fifth generation (5G) mobile communications 
systems), modeling channels (e.g., multipath fading), managing interference (e.g., jam-
ming) and traffic (e.g., network congestion) impacts, compensating for radio hardware 
defects (e.g., RF front end non-linearity), constructing communication chains (i.e., trans-
mitter & receiver), recovering distorted symbols and bits (e.g., forward error correction), 
as well as supporting wireless security (e.g., jammer detection). Both the design and 
deployment of traditional communication systems rely on strong probabilistic analytic 
models and assumptions [565]. Nevertheless, theories related to communication dis-
play drawbacks in terms of managing optimization intricacy and using limited spectrum 
resources for upcoming wireless usages (e.g., augmented & virtual reality, spectrum 
sharing, IoT, & multimedia). New generations of wireless systems, which are empowered 
by cognitive radio, possess the capability to learn from spectrum data and optimize their 
spectrum usage for better performance. These smart communication systems depend on 
many estimation, detection, and categorization tasks to enhance situational awareness. 
To realize these tasks, DL offers automated and powerful communication systems for 
adapting to spectrum dynamics and learning from spectrum [565, 566]. The combina-
tion of interference impacts, waveforms, traffic, and channel; along with structural intri-
cacies, in wireless communication tends to change rapidly over time. As data of wireless 
communication are massive at high rates (e.g., GB/s for 5G), they are exposed to secu-
rity threats and harsh interference due to the wireless setting. Conventional modeling 
and ML methods often fail to explain the linkage between communication design and 
intricate spectrum data; whereas DL taps into the reliability, speed, data rate, and secu-
rity needs of wireless communication systems. An instance of this scenario is signal cat-
egorization, in which received signals must be classified [567] using waveform features 
where transmitter modulation adds information to carrier signal via properties variation 
(e.g., phase, amplitude, or frequency). The signal categorization is imminent in dynamic 
spectrum access (DSA). Signals of the primary user (e.g., television broadcast system) 
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with a license for frequency operation are detected by the secondary user (transmitter) 
and later avoid interference (no similar transmission time with frequency). End-to-end 
communication systems based on DL are deployed for single antenna [568], multiple 
antennas [569, 570], and multiuser system [571] to enhance conventional approach per-
formances by optimizing both receiver and transmitter as autoencoder, rather than iso-
lated optimization. An autoencoder (a DNN) is composed of an encoder (learns data 
representation) and a decoder (develops input data from encoded data) [1]. Here, joint 
coding and modulation at the transmitter correspond to the encoder, while demodula-
tion and decoding happen at the receiver in conjunction with the decoder. Joint opti-
mization of receiver and transmitter can discard interference due to the presence of 
numerous transmitters. However, the following two obstacles must be addressed when 
applying the DL model:

1. DL needs massive data to train intricate DNN structures. This is not offered via 
spectrum sensing, mainly because a wireless user spending much time on spectrum 
sensing might have insufficient time for another task, e.g., data packet transmission. 
Hence, inadequate data samples are to avail when training DNN. To increase training 
data gathered in spectrum sensing, training data augmentation is required.

2. Data spectra change over time due to constantly changing transmission patterns, 
traffic impacts, underlying channels, and interference. Thus, training data gathered 
for an event could be unsuitable for another event. Another instance is a change of 
channel, whereby nodes of a wireless move indoors from outdoors in multiple direc-
tions—with the expectation of varying conditions of the channel. Training or testing 
data gathered in spectrum sensing from one domain to another (e.g., low to high 
mobility) can be changed using domain adaptation.

 Notably, GAN is an excellent method to yield synthetic data samples using a small 
amount of real data within a short learning span, apart from augmenting training 
with synthetic data samples for cyber, computer vision, and text applications [351, 
572]. External impacts of waveform features, traffic, channel patterns, and interfer-
ence are captured by GAN in wireless communication [573]. Augmentation of train-
ing data is executed using GAN for channel measurement in spectrum sensing [574], 
modulation classification [575], jamming [576], and call data records for 5G network 
[577]. Since the use of GAN for wireless applications in domain adaptation remains 
untapped, it is crucial to investigate GANs in this area. TL has shown a great per-
formance in this area [291–297]. Therefore, it is worth investigating TL for different 
applications of Wireless Communications.

Fluid mechanics

Fluid mechanics is a discipline that investigates behaviors of the fluid phenomenon 
[578]. Traditionally, the study of fluid mechanics starts from dealing with large vol-
umes of data [579], including experimental data and numerical results. Therefore, the 
combination of DL techniques with fluid mechanics has been naturally considered a 
promising topic [580]. Great efforts have been made to incorporate DL techniques 
into fluid mechanics applications [581, 582]. However, unlike computer vision and 
speech recognition fields, a completed, well-labeled database for fluid mechanics is 
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currently hard to obtain [579]. Although the experiments of fluid mechanics have 
been significantly boosted by advanced equipment, most of the equipment is cur-
rently confined to small domains and laboratory settings [583]. Besides, even with 
state-of-art equipment, some field variables inside fluids are still difficult or even 
impossible to be measured [583]. Furthermore, novel fluids with unique material 
properties keep emerging, which makes it harder to include all the fluid data in a 
completed database. Hence, lacking data greatly hinders the applications of DL tech-
niques for fluid mechanics. PINNs have changed the challenging situation of DL for 
fluid mechanics in terms of the lack of training data. It is worth highlighting that 
fluid mechanics problems are conventionally solved by using governing equations. 
The governing equations can effectively describe the fluid phenomenon and have 
been well-studied. In this manner, PINNs can be a proper DL technique for fluid 
mechanics applications. This is because the governing equations can be regarded as 
remedies for lacking data to train neural networks. The insufficient information rep-
resentative due to lacking data is flourished by the governing equations. Currently, 
many PINN-based frameworks have been proposed to deal with the forward fluid 
mechanics’ problem [494, 584, 585]. Direct fluid mechanics problems are the most 
common fluid mechanics problem. In this kind of problem, only the initial state 
of the fluids and corresponding boundary conditions data are given, and research-
ers want to have a clear insight into the fluids along with the whole spatiotempo-
ral coordinate. Therefore, through PINNs, the initial states of fluids and boundary 
conditions are satisfied by the given data, while the evolution of fluids is studied 
through the governing equations. The effectiveness of PINN-based frameworks for 
forwarding fluid mechanics problems has been demonstrated and favorable results 
have been obtained [494, 584, 585]. PINNs also received great attention for inverse 
fluid mechanics applications, which aim to extract information about studied fluids 
through spatiotemporal observations. Based on PINNs, Raissi et al. [583] introduced 
the framework of Hidden Fluid Mechanics (HFM), as shown in Fig. 24. The Navier–
Stokes equations, the well-known governing equations in fluid mechanics, are 
embedded into PINNs. Through the HFM framework, information on fluid flows in 
terms of the velocity and pressure fields can be extracted from experimental images. 
It has paved a novel avenue to deal with inverse hydrodynamics problems and study 
fluid flow characteristics that may be otherwise complicated or even impossible to 
be measured. Later, the same framework was applied for predicting the pressure 
field within arterials with the help of the Magnetic Resonance Imaging (MRI) results 
[484]. The MRI provides randomly measured scatter points with noise. By integrat-
ing the governing equations and the noisy data, PINNs provide a reliable way for 
monitoring the conditions inside aspire, which can greatly benefit surgical planning. 
Another interesting application of PINNs for fluid mechanics problems is to study 
the fluid fields around an espresso cup with insufficient data [586], as shown in 
Fig. 25. In the application, only the measured temperature and density images from 
Tomographic background-oriented Schlieren (Tomo-BOS) are used to further study 
the corresponding velocity and pressure fields upon an espresso coffee. 3D velocity 
and pressure fields have been successfully visualized, as shown in Fig. 25c.
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Microelectromechanical systems (MEMS)

Microelectromechanical systems (MEMS) technology is the process that involves and 
creates micro-size devices. This technology merges the electrical and mechanical com-
ponents through an electrical circuit on a semiconductor chip. Different microfabrica-
tion techniques are used to fabricate MEMS devices of different sizes that range from 
sub-micron level to millimeter level, which is integrative for a wide range of systems and 
applications. These micro-size devices are employed for sensing and controlling, result-
ing in an electrical response typically on the macro scale. MEMS is recognized as one of 
the most promising technologies in the industry and for research purposes [587–590]. In 
addition to micromachining technology, recent commercial MEMS sensors have made 
far-reaching changes in the industry and in consumer products using silicon-based 
microelectronics. To a large extent, MEMS technology/devices have positively affected 
our lives [591, 592]. These devices are used widely in medical applications and imaging, 
in biosensing applications to detect biological elements, in Infrared radiation sensors 
to detect thermal images, and in all kinds of actuators and sensors. Figure 26 shows an 
SEM micrograph of a fabricated MEMS sensor.

Researchers have widely investigated and developed MEMS devices in different fields. 
In microfluidics, Pandey et al. used Graphene with interdigitated electrodes to achieve 
high mobility and biocompatibility with the reagents and pathogens for the detection 
of certain food bacteria called E. coli 0157:H7 with a detection limit [594]. In energy 

Fig. 24 Arbitrary training domain in the wake of a cylinder. A The domain where the training data for 
concentration and reference data for the velocity and pressure are generated by using direct numerical 
simulation. B Training data on concentration c(t, x, y) in an arbitrary domain in the shape of a flower located 
in the wake of the cylinder. The solid black square corresponds to a very refined point cloud of data, whereas 
the solid black star corresponds to a low‑resolution point cloud. C A physics‑uninformed neural network 
(left) takes the input variables t, x, and y and outputs c, u, v, and p. By applying automatic differentiation on 
the output variables, we encode the transport and NS equations in the physics‑informed neural networks 
ei, i = 1,..., 4 (right). D Velocity and pressure fields regressed by means of HFM. E Reference velocity and 
pressure fields obtained by cutting out the arbitrary domain in A, are used for testing the performance of 
HFM. F Relative L2 errors are estimated for various spatiotemporal resolutions of observations for c. On the 
top line, we list the spatial resolution for each case, and on the line below, we list the corresponding temporal 
resolution over 2.5 vortex shedding cycles (Adopted from [583])
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harvesting, Nguyen et al. invented a MEMS electrostatic energy harvester with nonlin-
ear springs to enhance the frequency response bandwidth [595]. Their device could gen-
erate a power of 85 nW at 560 Hz with a peak amplitude of 0.14 g and a bias voltage 

Fig. 25 An example of using a PINN‑based framework to study the fluid domain upon a cup of hot espresso 
coffee. Only the temperature and density images are used as the training data, which is traditionally 
considered to be insufficient to predict the corresponding velocity and pressure fields. a The training data 
in terms of the 3D temperature and density images are captured by the Tomo‑BOS system; b an example 
of the 3D captured temperature image from a; c the captured images are fed to a PINN to predict the 
corresponding 3D velocity and pressure fields (Adopted from [474])

Fig. 26 A surface micromachined resonator device that can be used as microsensor and microactuator [593]
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of 28.4 V. MEMS devices was also researched in thermal imaging to build small ther-
mal sensors called microbolometers. Murphy et al. made a significant improvement in 
the development of 640× 512 uncooled thermal arrays with a unit cell size of 17× 17 
µm2 . The fabricated detector showed an absorption peak of 80% in the spectral band 
of 8 to 14 µ and a TCR of 2.4%/K [596]. Machine learning has utilized MEMS devices. 
Jain et al. developed a machine learning model to control and evaluate the eating habits 
of human beings using a six-point calibrated wearable MEMS trial-axial accelerometer 
[597]. Hao et al. investigated a machine-learning algorithm to assess helmet wearing by 
a human subject [598]. The helmets were built using available MEMS sensors for data-
driven labor safety. Guo et al. investigated the use of machine learning in accelerating the 
MEMS design process with a proposed design using pixelated binary 2D. They used cir-
cular disk resonators as examples for a demonstration of identifying variational modes 
and measuring the disk resonators’ corresponding frequencies [599].

The data that are usually obtained in the design and testing of MEMS devices are dif-
ferent, depending on the type of sensor. In microfluidic design and testing, we collect 
impedance values and different frequencies. Different concentrations of viruses/proteins 
could be tested with MEMS microfluidic devices to understand the behavior of those 
pathogens. Few researchers have investigated the employment of DL in the MEMS mod-
eling and testing process due to the difficulties of collecting a sufficiently large amount 
of data to train DL models. Collecting this amount of data requires special types of 
equipment and models to be involved in the testing. Furthermore, many MEMS sensors 
need to be fabricated and used as some of these sensors are used only once when testing 
certain types of viruses/proteins, a process that is time-consuming and labor-intensive. 
However, the rapid development of DL models will expedite the testing process and the 
time taken to test the concentrations of different pathogens. DL models will add strate-
gies and a powerful tool in the characterization and evaluation of the MEMS processes. 
We believe that some of the solutions to the lack of training data described above (such 
as GANs DeepSMOTE [499]) would definitely help in increasing the amount of data. By 
achieving that, we expect to see a greater application of DL to MEMS.

Cybersecurity: vulnerabilities

In recent years, DL has enjoyed profound success in a range of interesting applications 
such as natural language processing, computer vision and speech recognition [1]. In 
addition to better computing resources, this has been mainly due to the availability of 
large numbers of training datasets available to these applications. However, in cyberse-
curity research, the lack of large and high-quality datasets is still a significant problem 
that makes it hard for DL to address cybersecurity issues such as software vulnerabili-
ties. In this section, we discuss the challenges and requirements of datasets regarding 
software vulnerabilities, a particular subset of cybersecurity problems found in com-
puter software. Software security is a relevantly new area and using DL to improve soft-
ware security has blossomed in recent years [600, 601]. There are some important issues 
to be resolved to obtain useful datasets for detecting real-world vulnerabilities.
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Software security datasets are extracted from source code, therefore they largely 
depend on the programming languages (such as C/C++, C#, Java, Python, and PHP) 
used to develop the software. While there are a large set of open-source projects that can 
be used as DL datasets, most of them are insufficient in training software vulnerabilities 
models. To train robust models, generated datasets must possess essential elements for 
the targeted applications [602–604]. Here, we focus on common dataset issues related to 
software vulnerability detection, as well as some possible future research directions:

• Vulnerability types: software security, especially the vulnerabilities found in software 
implementation, is a challenging problem because there are numerous types of secu-
rity vulnerabilities reported and discovered every year according to the Common 
Weakness Enumeration (CWE) [605] and Common Vulnerabilities and Exposures 
(CVE) [606] databases. Most existing efforts focus on a binary classification to detect 
only a particular type of vulnerability. A model that is trained on, for example, buffer 
overflows (CWE121 and CWE122), will not be able to detect other types of vulner-
abilities such as SQL injections (CWE89 [607]). Therefore, it is desirable to develop 
a more robust multiple classification-based approaches that can be trained from a 
dataset with multiple types of vulnerabilities. Vulnerability types in the dataset are 
essential to detect various vulnerabilities and each dataset should mention how many 
CWEs or CVEs exist. For instance, there is one CWE in [608], 609 CVEs in [609] and 
911 CWEs in [610].

• Dataset size: The performance of a DL model depends largely on the size of the 
training datasets. More training datasets provide a larger number of samples that 
the model can use to learn. It is a well-known problem that there is only a small set 
of labeled data currently available to train a vulnerability detection model [611]. As 
a result, the limited number of existing datasets for software security are typically 
handcrafted test programs that are small and imprecisely labeled. In the future, it 
will be useful to explore techniques to automatically generate large datasets by either 
labeling real-world software that exhibits security vulnerabilities or synthesizing 
datasets to fully recap the vulnerability patterns in real-world programs. In gen-
eral, the test results for large datasets will be more accurate. For instance, there are 
1,274,366 samples in [612] but only 871 samples in [613]

• Label vulnerabilities: supervised learning is one of the most common DL 
approaches that has been used in software vulnerability detection. It can perform 
well with datasets that are properly labeled before the model’s training. Unfor-
tunately, most software security datasets are either unlabelled or imprecisely 
labeled. These imprecisely labeled datasets can lead to low performance and unre-
liable vulnerability detection models. Handcrafting labels is not only tedious and 
labor-intensive but also inconsistent. Many vulnerabilities are not localized and 
can be caused by multiple parts of the program. It is very challenging to iden-
tify the root cause of a vulnerability and manually label it in a consistent way that 
does not confuse machine learners. For instance, it is necessary to ensure that the 
labeling of all vulnerabilities of the same type follows the same rule. Therefore, to 



Page 58 of 82Alzubaidi et al. Journal of Big Data           (2023) 10:46 

overcome this problem, researchers can consider building tools to aid the labeling 
process so that a large set of labeled data can be generated automatically from 
existing reported vulnerable software. Some datasets are labeled for each CWE 
or CVE (e.g., SARD [614]), but others are labeled as binary detections only, as 
vulnerable or not vulnerable (e.g., OSS [615]). Researchers often want ready-made 
labeled datasets for training due to the cost and expertise associated with manual 
labeling. This leads to fewer available datasets, the lack of which contributes to the 
problem referred to above.

• Synthesise datasets: while there are many software vulnerabilities reported each 
year (e.g., in CWE or CVE), they may not be sufficient to train reliable detection 
models. This may be attributed to the fact that, despite the large number of dif-
ferent types of vulnerabilities, there are limited cases of each vulnerability type. 
More generally, compared with the size of the software, vulnerabilities are rare 
and often outliers that do not conform to the usual software behaviors. Synthetic 
datasets are widely used in software vulnerability detection to artificially increase 
the number of samples that contain vulnerabilities. For example, the Juliet project 
[614] generated synthetic datasets based on a few predefined patterns. However, 
synthetic datasets often cannot reflect the structure of real-world vulnerabilities, 
therefore, cannot represent the diverse behaviors observed in real-world pro-
grams [616]. It is better to train the model on a mixed source code dataset (real 
and synthetic) that is rarely available. For example, Java (1772 real samples [615]) 
and (28,881 synthetic samples [614]), PHP (2942 real samples [617]), SQL (6,586 
real samples [608]). Some datasets have several programming languages such as 
Python and C/C++ (8027 real samples [618]) and Java, C/C++, C#, and PHP 
(177,184 synthetic and real samples [610]). Several datasets are available for C/
C++ in [602]. Despite that, there exist only a small number of samples to general-
ize DL models. In the future, more sophisticated program synthesis techniques 
could be explored to increase the quality and versatility of the samples in generat-
ing large synthetic datasets.

• Generalisation: when the DL model trains on an old dataset, it may not detect the 
latest vulnerabilities. A new dataset with added new vulnerabilities increases the 
accuracy of test results. Each dataset has several Common Weakness Enumera-
tions (CWE) [605] or Common Vulnerabilities and Exposures (CVE) [606], with 
further vulnerabilities being detected daily. When the model is trained using some 
CVE or CWE datasets, the model cannot detect others, so the dataset should be 
diverse and updated with new vulnerabilities.

• Transfer learning (TL): as TL defined previously, the learned model can then be 
reused in other DL tasks to improve their performance [23, 124]. This approach 
can help reduce the time and resources needed to train a DL model for different 
tasks and problems. This is desirable in software vulnerability detection because 
researchers can reuse vulnerability detection models across various software pro-
jects [611]. Unfortunately, vulnerabilities found in software implementations are 
typically language-specific and domain-specific (some may be even application-
specific). Models trained on security vulnerabilities could be vastly different in dif-
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ferent programming languages and application domains. Therefore, it is hard to 
generalize and reuse learned models, making it challenging to transfer the knowl-
edge of learning. Currently, it is possible to use a separate detection model for 
each language and vulnerability type. In the future, we intend to investigate a gen-
eralized vulnerability detection model that is robust and efficient in detecting vul-
nerabilities across different software projects [611].

The traditional solutions to create a dataset require expertise, money, and time. On the 
other hand, the over-sampling technique can solve a minority of some classes. The syn-
thetic Minority Over-sampling Technique Nitesh (SMOTE) [619] is one oversampling 
approach that can be used to create (synthetic) samples instead of replacing (duplicate) 
them. It can create new synthetic samples by using k minority class nearest neighbors, 
where k is the amount of oversampling required. The author in [620] used SMOTE to 
resample the training samples from 65,970 to 96,952 samples. DeepSMOTE [499], which 
was published in 2022 and upgraded SMOTE, may be more useful and creative for this 
purpose.

The prediction of DL depends on the training phase because it is the most significant 
phase. Therefore, a high-quality dataset is necessary to train robust DL models. A per-
fect dataset would include the following features to train useful models for software 
security: a variety of vulnerabilities, a large size of samples, properly labeled vulnerabili-
ties, easily synthesized and generalisation, a large source code size, and capable of being 
used for TL

Tips for reporting the dataset
This section presents the top tips for reporting the dataset using DL. These tips have 
been derived from the literature and the author’s experience in the field [621–623].

To report a dataset used in DL, it is necessary to clearly explain:

• whether the dataset used is public or private. If it is public, the source of the dataset 
must be cited, including articles and links. If it is private, the collection process must 
be described.

• the criteria for selecting the dataset/s and whether the dataset/s tests/test the 
hypothesis.

• the details of the dataset/s including the type of data, number, and names of classes, 
size of samples, number of all samples, number of each class, and resolution. Figures 
are important to show samples of the dataset with the label of each class.

• whether the dataset used is real or simulated. In the case of simulated data, the simu-
lation process must be explained.

• the labeling process of the dataset (private dataset) and whether the process was 
achieved by an expert or in an automated way.

• the pre-processing stage and the data features that were manipulated.
• changes to data after each step in situations where multi-pre-processing procedures 

were applied.
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• the data augmentation techniques (if used) with figures showing a sample of each 
technique used.

• the ratios of training, validation, and testing sets. The rationale for choosing these 
ratios and ensuring these sets were unbiased regarding data characteristics must also 
be described.

• comparisons with other methods. The same dataset with the same ratios of valida-
tion and testing sets must be used to ensure the comparison with other methods is 
valid.

• the description of the dataset when it is uploaded to one of the public repositories.

Trustworthy training datasets
It is critical to ensure that the data used to train a DL model is free from bias, accu-
rate, high-quality, and privacy-preserving is essential for building trust in the model. 
Poor-quality data can lead to biased or unreliable models [624, 625].

There are several requirements that a dataset should meet in order to be trustwor-
thy for DL:

• Quality of data: the data in the dataset should be accurate and relevant to the 
problem at hand.

• Annotation quality: the annotations should be accurate and consistent if the anno-
tation is needed.

• Diversity: the dataset should be diverse and include a wide range of samples to 
ensure that the model learns to generalize to new scenarios.

• Size: the size of the dataset can be a factor in its trustworthiness. A larger dataset 
can assist the model in learning more robust and generalizable features, but it is 
critical to make sure the data is high quality and diverse.

• Source: the source of the data is important, as it should be from a trustworthy 
organization or individual.

• Preprocessing: the data should be cleaned and preprocessed appropriately in order 
to be usable for training a DL model.

• Balance: if the dataset is used for classification tasks, it should be balanced, mean-
ing that it should include a roughly equal number of examples for each class. 
Imbalanced datasets can lead to DL models that are biased toward the more com-
mon classes.

• Bias-free: bias in the data can lead to DL models that make biased decisions and 
do not generalize well to new situations. It is important to ensure that the data 
used to train a DL model is diverse and representative of the population the model 
will be used on, in order to avoid bias and improve model performance.



Page 61 of 82Alzubaidi et al. Journal of Big Data           (2023) 10:46  

Discussion
This section is dedicated to offering a succinct and subjective reflection on the 
research process carried out in this broad overview, as well as introducing possible 
improvements to the limitations analyzed in previous sections.

In our humble opinion, the results of this study have provided relevant insights into 
those State-of-the-art techniques dealing with DL model training aimed to overcome 
three major challenges: small and imbalanced data sets and lack of generalization. 
Specifically, our study demonstrates its originality and novelty due, as far as we know, 
to its uniqueness in dealing with definitions, challenges, solutions, tips, and applica-
tions that addressed the problem of DL model training scarcity.

In the previous sections, the benefits and limitations of each of the recent strategies 
proposed in the revised methods of the State-of-the-art have already been addressed 
in sufficient detail. However, despite the proven benefits, the reported results of this 
research must be interpreted with caution due to their inherent limitations, demon-
strating that there is still room for improvement. Thus, we propose the following set 
of 13 alternatives as future works in order to improve these shortcomings:

• Numerous TL approaches should be considered to train the DL model using unclas-
sified image datasets, followed by knowledge transfer for training the DL model by 
using a reduced set of classified images for the same task.

• Powerful and effective models can be generated to improve NN performance more 
comprehensively once RL and other models are combined with TL.

• The increasing interest in using GAN stems from its ability to learn highly non-linear 
and deep mappings from latent space to data space and vice versa, as well as its abil-
ity to apply unclassified image data close to deep representation learning. Many algo-
rithms and theories can be formulated by adopting the GAN framework, which is 
suitable for new applications with deep networks.

• As indicated in previous sections, different loss functions have been introduced to 
help in training small data sets. We are convinced that it is worth investigating the 
loss functions to overcome the weakness of the previous approaches.

• It is important to carefully curate and build a high-quality training dataset when 
developing DL models. A reliable and trustworthy training data set can greatly 
improve the performance of a model and help prevent overfitting.

• As DL models become more complex in structure, it becomes more difficult for 
people to understand how they arrive at their decisions. Improving explainability is 
essential to build trust in these models and ensure that they make fair and unbiased 
decisions [625].

• It is critical to ensure that DL models are robust/reliable and able to perform well 
with new data. It will require improving the quality and diversity of the data utilized 
to train them, as well as developing techniques to identify and address potential 
issues with the models.

• Fairness in DL remains an open challenge and requires careful consideration of the 
data used to train the models, as well as both the potential biases present in that data 
and the development of techniques to overcome biases in the models [626].



Page 62 of 82Alzubaidi et al. Journal of Big Data           (2023) 10:46 

• Meta-learning and customized RL can be optimized for multiple applications [627]. 
meta-learning has the potential to significantly enhance the capabilities of DL mod-
els, particularly in scenarios where training data is scarce, making it a promising area 
of research in DL.

• Knowledge distillation is another technique to address the issue of data scarcity 
which is worth more investigation. It involves training a smaller model to mimic the 
behavior of a larger model [628].

• Information fusion involves combining information from multiple sources or modal-
ities to make more accurate predictions or decisions in the context of DL. It can help 
overcome the limitations of individual data sources and improve model performance 
when training data is limited [629].

• Federated learning is a DL technique that allows groups or organizations to collec-
tively train and improve a shared global DL model [138]. However, the introduc-
tion of data fusion technology has brought new challenges for federated learning, 
such as the fusion of heterogeneous and multi-source data. As the variety and vol-
ume of data increase, it is essential to improve the use of data and models in feder-
ated learning. By eliminating redundant data and merging multiple data sources, 
it is possible to gain new and valuable information. In the future, issues such as 
maintaining user privacy, creating universal models, and ensuring the stability of 
data fusion results need to be addressed to facilitate the effective use of data in 
federated learning across multiple domains.

• Finally, it is expected to see more pre-trained models in different areas similar to 
the ImageNet model, such as medical imaging [630]. That would be a great oppor-
tunity in terms of the generalization of DL models.

Conclusion
Data scarcity is a significant challenge for deep learning (DL) models due to it requires 
a substantial amount of labeled data to achieve a successful performance. However, 
manual labeling is a costly, time-consuming, and error-prone process that may not be 
feasible for many applications. Furthermore, the corresponding lack of data is the pri-
mary barrier for many applications that prevent the use of DL. This work has carried 
out a holistic survey of the State-of-the-art of those techniques aimed to overcome 
the challenges from small and imbalanced datasets and the lack of generalization in 
DL. Specifically, our contribution highlights the pros and cons of multiple approaches 
recently proposed in the field, e.g. Transfer Learning, Self-Supervised Learning, Gen-
erative Adversarial Networks, Model Architecture, Physics-Informed Neural Net-
works, and Deep Synthetic Minority Oversampling, among many others. Moreover, 
in this work many applications have been reviewed that suffer from data scarcity and 
introduced their specific alternatives to generate more data. Additionally, trustwor-
thiness in DL has been analyzed. Finally, this comprehensive overview of strategies 
tackling data scarcity will become an essential resource for researchers and practi-
tioners really interested in improving the performance of their DL models.
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