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Abstract 

Rumor posts have received substantial attention with the rapid development of online 
and social media platforms. The automatic detection of rumor from posts has emerged 
as a major concern for the general public, the government, and social media platforms. 
Most existing methods focus on the linguistic and semantic aspects of posts content, 
while ignoring knowledge entities and concepts hidden within the article which facili-
tate rumor detection. To address these limitations, in this paper, we propose a novel 
end-to-end attention and graph-based neural network model (KAGN), which incor-
porates external knowledge from the knowledge graphs to detect rumor. Specifically, 
given the post’s sparse and ambiguous semantics, we identify entity mentions in the 
post’s content and link them to entities and concepts in the knowledge graphs, which 
serve as complementary semantic information for the post text. To effectively inject 
external knowledge into textual representations, we develop a knowledge-aware 
attention mechanism to fuse local knowledge. Additionally, we construct a graph 
consisting of posts texts, entities, and concepts, which is fed to graph convolutional 
networks to explore long-range knowledge through graph structure. Our proposed 
model can therefore detect rumor by combining semantic-level and knowledge-level 
representations of posts. Extensive experiments on four publicly available real-world 
datasets show that KAGN outperforms or is comparable to other state-of-the-art meth-
ods, and also validate the effectiveness of knowledge.

Keywords: Knowledge graphs, Attention, Graph convolutional networks, Social 
media, Rumor detection

Introduction
Social media websites have also fostered a variety of rumor, many of which contain mis-
represented or even forged content in order to mislead readers and spread quickly. For 
example, over the last 2  years, social media networks in various countries have been 
inundated with various rumor about COVID-19. Therefore, in order to maintain social 
harmony it is highly crucial to detect rumor on these platforms and also regulate them 
to ensure that the users receive genuine information. The traditional automatic rumor 
detection methods were based on various hand-crafted linguistic (feature engineer-
ing) and semantic features for differentiating between posts documents [1, 2]. With the 
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advent of big data and deep learning, we have seen a shift toward deep-level features. 
Various deep neural models such as CNN [3], Bi-LSTM [4] and the graph based method 
[5]are proposed and greatly improve the detection performances.

Even though existing deep neural networks approaches have been successfully used to 
capture high-level syntax and semantic feature representations of posts content, these 
approaches do not take into account the external knowledge that is commonly used 
to judge the authenticity of posts. Generally, posts contents contain many mentions of 
entities which condense information. A named entity is an individual such as a person, 
organization, location, or event. A mention is a piece of text that refers to an entity. A 
named entity could possibly denote different entity mentions because a named entity 
may have multiple textual forms, such as its aliases, abbreviations and alternate spell-
ings. [6]

As seen in Fig. 1, a post contains the following ambiguous entity mentions: “Big Apple”, 
“Trump”, “White House”, “Trump Tower”, and “NYC”. When reading the text, one real-
izes that “Trump” is a person, “Big Apple”, “White House”, “Trump Tower” and “NYC” 
are geographical locations, and that “Trump” and “Donald Trump" refer to the same 
person, “Trump” and “Trump” are references to the entity “Donald Trump”. The terms 
“Big Apple” and “NYC” refer to the same entity “New York City”. These knowledge-level-
based judgments and connections help determine the believability of posts. However, 
the entities and concepts linked with mentions cannot be recognized and comprehended 
immediately from the content of the posts. As a result, the incorporation of exter-
nal knowledge is critical for detecting rumor. A knowledge graph is a multi-relational 
graph, consisting of nodes representing entities and edges representing relationships of 
various types. On the one hand, the introduction of the knowledge graphs can ensure 
that each mention in the posts corresponds to the appropriate entity in the knowledge 
graphs, eliminating the noise caused by ambiguous entity mentions. In addition, knowl-
edge graphs can provide connection information between entities and concepts, which 
facilitates learning knowledge that is not explicitly stated in the posts text but relevant 
for rumor detection.

Compared to paragraphs or documents, posts made by users on social platforms 
do not have sufficient contextual information and suffer from limited word count and 
incomplete semantics, which leads to semantic ambiguity in posts and poses a signifi-
cant challenge for short text classification. To resolve this issue, we extract the set of 
entities and the set of entity-related concepts from the knowledge base(KBs) to enrich 
the semantics of the text, but some improper entities and concepts are easily introduced 
due to the ambiguity of entities or the noise in KBs. We therefore propose to use an 

Fig. 1 An illustration for entity linking. Entity mentions detected from text are in boldface; By entity linking 
and disambiguation, the entity mentions are mapped to correct entities which are underlined
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attention mechanism to inject knowledge into the text in a hierarchical manner, i.e. 
injecting conceptual knowledge into entities first, and then entities into the text, as a way 
to filter useful knowledge.

Most of the current work does not consider the implicit connections between knowl-
edge, which may be useful for classification. Therefore, we consider the use of graph 
structures to establish long-range semantic relations between knowledge, ie. Knowledge 
share within a sentence on the one hand, and between different posts in the corpus on 
the other.

Specifically, we propose a Knowledge-Powered Attention and Graph Neural Networks 
(KAGN) for rumor detection by combining the textual information and knowledge con-
cepts into a unified deep model. To fully utilize external knowledge, we first identify 
entity mentions in the post contents and then obtain corresponding entities via external 
knowledge graphs such as Wikidata [7], Probase [8], Freebase [9], and YAGO [10]. Then, 
as supplementary information, we extract the concepts of each entity. (2)To facilitate the 
fusion of knowledge, we perform feature extraction from both local and global perspec-
tives. From the local perspective, we calculated the weight distribution of each concept 
to the same entity using the attention mechanism to consider the granularity of concepts 
and the relative importance of concepts. Furthermore, taking into account the different 
contribution of each entities to the posts text, we designed the attention mechanism to 
determine the semantic similarity between the text and entities. Taking a global view, 
we built a heterogeneous graph with nodes representing posts, entities, and concepts, 
and used graph convolutional neural networks to focus on long-range interconnected-
ness knowledge. (3)Finally, post text representations incorporating entity and knowledge 
concepts are fed into fully connected layers to predict the authenticity of posts.

The major contributions of this paper are summarized as follows:

• We propose a novel end-to-end unified deep model called KAGN incorporating enti-
ties and concepts information derived from knowledge graphs for detecting rumor.

• KAGN utilizes attention mechanisms to hierarchically and effectively inject exter-
nal entity and conceptual knowledge into the text, and employs graph convolutional 
networks to mine long-range semantic connections within and between texts, jointly 
modeling text and knowledge information from both local and global perspectives.

• We conduct extensive experiments on four standard datasets for rumor detection. 
The results show that KAGN outperforms or is comparable to the state-of-art meth-
ods, and the ablation study has demonstrated that KAGN is effective in rumor detec-
tion analysis.

Related works

In this section, we briefly review the work related to the proposed model. We mainly 
focus on the following topics: rumor detection, knowledge graphs, attention mecha-
nism, graph neural network.
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Rumor detection

Social‑based rumor detection

Social environment for posts contains an abundance of information, such as the interac-
tion patterns of the users, the dissemination patterns, and the credibility of the posts. 
Ma et al. [11] propose a kernel-based method to capture high-order patterns of micro-
blog posts diffusion with propagation trees, which provide valuable clues on how a post 
is diffused and developed over time.Liu et al. [12]modeled the propagation path as mul-
tivariate time series, and applied both recurrent and convolutional networks to capture 
the variations of user characteristics along the propagation path. Wu et al. [13] proposed 
a random walk graph kernel to model the propagation trees of messages to improve 
rumor detection. Sitaula et al. [14]analyzed the history of association between authors 
and rumor, as well as the number of authors of posts to detect rumor on the internet.

Content‑based rumor detection

A large number of researchers have looked for important clues to distinguish rumor 
from credible posts through semantic, style and knowledge graphs of posts content. Var-
ious deep models, such as the architecture of LSTM [15], graph convolutional network 
[16], gated GNN [17], generative adversarial network (GAN) [18], deep convolutional 
neural network [19], event adversarial network [20], and hybrid convolutional neural 
network [21] are used to extract potential textual and visual features of posts content. 
Approaches based on knowledge graphs have also been investigated for rumor detec-
tion. [22] propose a Knowledge-driven Multimodal Graph Convolutional Network 
(KMGCN) to jointly model the semantic representations of textual information, knowl-
edge concepts and visual information for fake news detection. The authors of [23] intro-
duced a KGs(Knowledge Base) for factchecking claims by collecting data from popular 
fact-checking websites and exploring additional information from DBpedia. Further-
more, researchers have proposed interpretable methods for detecting rumor using KGs 
[24].

Knowledge graphs

Google officially released the Knowledge Graphs in 2012 [25]. A knowledge graph is a 
large-scale semantic network that generates new knowledge by acquiring information 
and integrating it into a knowledge base and then reasoning about it, which contains a 
large amount of entities, attributes, and semantic information between entities. Knowl-
edge graphs have been widely used in risk control anti-fraud, credit auditing, accurate 
advertising delivery, search engines, personalized recommendation systems and ques-
tion and answer systems [26–28]. Knowledge graphs generally use triples to record and 
store entity relationships, and the hidden attributes of entities and their relationships 
with other entities can be mined through knowledge graphs embedding learning, and 
the knowledge graphs triples are represented as low-dimensional vectors [29].

A named entity is an individual, such as a person’s name, a place name, or an organiza-
tion’s name. An entity mention is a name string that appears in the text to refer to the 
entity. To extract named entities from text, two main tasks are involved: named entity 
recognition tries to find every fragment of text that mentions a named entity. Named 
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entity linking is divided into candidate entity generation, which is based on retrieving 
the knowledge base to get all the eponymous entities to form a candidate entity set, and 
candidate entity disambiguation, which is a method to find the target entity from the 
candidate entity set that matches the current context.

Attention mechanism

Bahdanau et  al. [30] first used an attention mechanism in a machine translation task, 
which was mainly based on the Encoder-Decoder framework, where the attention 
mechanism weighted the source sentence features to focus on those that were important 
for the current translation and ignored those that were not. Yang et  al. [31] proposed 
a hierarchical attention mechanism, which introduced an attention mechanism at the 
word level to get important sentence features and introducing an attention mechanism 
to get important document features at the sentence level to achieve document classifica-
tion. The Transformer model proposed by Google Vaswani et  al. [32] is an automatic 
translation model, which proposes a self-attention mechanism approach, which is one 
of the representative approaches in the development of attention mechanism. Wu et al. 
[33] combine word embeddings with contextual embeddings of words captured using 
a self-attentive mechanism, and then capture semantic features by convolutional neu-
ral networks for text classification. Liu et al. [34] proposed to use an attention mecha-
nism to assign different weights to the information output from the hidden layer of the 
bidirectional LSTM to obtain local features and global semantics of phrases to improve 
the classification accuracy. Ma et  al. [35] proposed a Global–Local Mutual Attention 
(GLMA) model for the text classification problem, which introduces a mutual attention 
mechanism for mutual learning between local semantic features and global long-term 
dependencies. Guo et  al. [36] proposed a multi-scale self-attentive mechanism model 
where the selfattentive mechanism is introduced into the multi-scale structure to extract 
different scale features of the text. In addition, the multi-head self-attention mechanism 
in Transformer idea is also combined with multi-scale to let each head extract different 
scale information of the text.

Graph neural networks

Yao et al. [37] were the first to apply graph convolution to text classification tasks, and 
proposed the TextGCN model to construct a corpus-level graph for the entire dataset 
using words and text as nodes, and to learn both word representation and text repre-
sentation using standard graph convolutional networks. Liu et al. [38] proposed a tensor 
graph neural network model for coordinating and integrating multi-graph heterogene-
ous information, constructing a text graph tensor to describe semantic, syntactic, and 
sequential contextual information, and then performing intra-graph and inter-graph 
propagation on the text graph tensor. Hu et  al. [39] introduced a two-layer attention 
structure in a heterogeneous graph neural network to obtain key in-formation at dif-
ferent granularity levels and reduce the influence of noisy information. Zhang et al. [40] 
proposed TextING to construct a text-level edge weight matrix and use Gated Graph 
Neural Network (GGNN) to update the word node representation in the message pass-
ing phase. Giannis et al.[41] proposed MPAD, which introduces a text node in the con-
struction of the text-level graph and establishes a connection with all words to obtain 
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global statistics, and puts the word representation through a self-attention mechanism 
to obtain a temporary text representation in the read-out phase, and performs a join 
operation with the updated representation of the text node in the graph as the final text 
representation for classification.

The proposed method

In this section, we mainly introduce the proposed Knowledge-Powered Attention and 
Graph Neural Networks (KAGN) in detail. We first describe the problem definition, and 
then, we introduce the overall framework of KAGN. The details of the proposed model 
are shown in the following sections. The symbols appeared in this paper and their mean-
ing is interpreted in Table 1.

Task definition

A rumor detection task can be defined as a binary classification problem, which aims 
to classify a post in social media as rumor or not. The goal of our model is to identify 
whether a post is fake or not at the post-level. Let P = {w1, . . . ,wn} is a post which con-
sists of a sequence of words. For every post P , where one or several words may be asso-
ciated with an entity ei in the knowledge graphs. In addition, each entity ei are linked to 
many concepts in the knowledge graphs. The concepts of the entity ei is defined as “entity 
context” ce (ei) . Formally, given a rumor post P = {wi} as well as the relevant entities 
EP = {ei} and entity concepts CE = {ce(ei)} . We need to learn a model f

(
y|P,EP,CE;�

)
 

where y is class label and � represents all parameters of the model.

Table 1 Summary of the main notations

Notation Explanation

D The training news samples

P A piece of news composed of a sequence of words

EP The relevant entities of P

CE The entity-related concepts of EP

p The representation of P

EP′(q′) The representation of entities

CE ′
(
r′
)

The representation of entity-related concepts

ei An entity in knowledge base

cei Set of all concepts for an entity

e′i Embedded representation of an entity

ce′i Embedded representation of a concepts set

cj A concept of ce(ei)

q̃ Entity representation incorporating conceptual knowledge

p̃ Textual representation of news incorporating entity and 
concept knowledge

p̂ Textual representation of news obtained by gating mechanism

G The post-entity-concept graph

EN The unique entities nodes sets of graph G

eni A uniquely numbered entity node

CN The unique concepts nodes sets of graph G

cni A uniquely numbered concept node
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Overall framework

Our model KAGN is a knowledge-enhanced deep neural network to model the 
semantic-level representations in a unified framework. We provide a brief overview of 
our model before detailing it. Figure 2 shows the framework of KAGN, which mainly 
consists of the following components:

Posts texts encoder. The module encodes the short rumor posts texts by Word2Vec 
and CNN to produce text representation.

Knowledge distillation module. The module retrieves conceptual information rel-
evant to the posts from KGs. The background knowledge distilled from a real word 
knowledge graphs can complement the semantics representation of short texts of 
rumor posts. Furthermore, the conceptual information extracted from entities can 
provide additional evidence to enhance rumor detection.

Knowledge encoder. The knowledge encoder is made up of two parts: knowledge 
attention encoder and knowledge graphs encoder. To discover local and longdis-
tance knowledge semantics information, two methods are used. To begin, the knowl-
edge attention encoder employs self and cross attention mechanisms to obtain the 
joint representations of entities and concepts. Following that, knowledge graphs 
encoder models the posts’ texts, entities, and concepts as directed graphs based on 

Fig. 2 The overall framework of KAGN. (1)Post texts encoder uses Word2Vec and CNN to get the posts 
texts representation. (2)Knowledge distillation module extract entities and concepts sets of posts contents 
from knowledge graphs. (3)Knowledge attention encoder employs Bi-LSTM, self-attention and multi-head 
attention to obtain the representations of entities and concepts, which are then fused with posts texts 
representation using a gate control mechanism (4)Knowledge graphs encoder creates a graph of posts texts, 
entities, concepts to learn the global knowledge using GCN. (5)The results of (1), (3) and (4) are concatenated 
and passed to a fully connected softmax layer whose output is the probability distribution over all the 
categories
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the knowledge graphs. A graph convolutional network is used to obtain the local and 
global semantic-level features for each post based on the constructed graph. To aggre-
gate the nodes of the graph and obtain the representation vector of each post, we use 
two GCN layers and a global mean pooling. Finally, we fuse the knowledge informa-
tion by concatenating the outputs of the two approaches.

Classification module. This component combines the representations of the texts 
encoder and the knowledge encoder to perform the final downstream rumor classifica-
tion learning. We use an output layer to acquire the probability of each class label.

Posts texts encoder

The posts texts encoder aims to generate the text representation of posts. To model sen-
tences, RNN [42], CNN [43], and hybrid models have been widely used. To learn the 
semantics of posts, we use CNN-based models as the basic component of the model in 
this work.

Given a piece of post P = {w1,w2, · · · ,wL} of length L , each word wi is projected into 
a continuous word embedding w′

i from a word embedding matrix M ∈ R
v×d where v is 

the vocabulary size and d is the embedding dimension. Then, we obtain the post vectors 
P′ = {w′

1,w
′
2, · · · ,w

′
L} ∈ R

d×L , where w′
i ∈ R

d×1 is the embedding of the i-th word in the 
post. A convolutional kernel k ∈ R

d×h is applied on the word embedding matrix P′ to 
obtain a feature map. Specifically, a feature ei generated from a sub-matrix w′

i:i+h−1 by

where h(h ≤ n) is the receptive filed size of convolutional kernel, f (·) is non-linear trans-
formation function, ∗ is the convolution operator. After applying the convolutional filter 
to every possible position in P , a feature map is obtained,

Next, we apply a max-over-time pooling operation over the feature map e to obtain

In this manner, one feature is extracted from one filter. Convolutional kernel with 
varying receptive filed can extract sentence features from different angles, so the CNN 
layer uses three d/3(out channel of Conv1d) kernels with different kernel size (3, 4 and 
5) respectively. Finally, we concatenate all kinds of filters’ outputs to form p ∈ Rd as the 
final representation of the post P.

Knowledge distillation

Background knowledge derived from a real-word knowledge graphs can be used to sup-
plement the semantic representation of short post texts. Furthermore, the conceptual 
information extracted from entities can be used to provide additional evidence to aid 
in the detection of rumor. This module’s specific goal is to retrieve relevant knowledge 
from knowledge graphs.

We hope to find a concept set CE relevant to a given post text. The knowledge distillation 
process consists of two steps in Fig. 3. Given the short text content of posts, many entity 

(1)ei = f
(
k ∗ w′

i:i+h−1

)

(2)e = [e1, e2, . . . , eL−h+1] ∈ R
(d/3)×(L−h+1)

(3)ê = max(e) ∈ R
d/3
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linking methods, such as EDEL [44], Rel-Norm [45], can be used to connect ambiguous 
entity mentions in a text to the correct entities e in the knowledge graphs. Then, for each 
identified entity e ∈ EP . We obtain its conceptual information by conceptualization from 
an existing knowledge graphs, such as Wikidata [7], Probase [8]. For example, as shown 
in Fig. 3, by entity linking and disambiguation, we obtain the entity set EP = { New York 
City, Donald Trump, White House(1600 Pennsylvania Avenue), Trump Tower(Manhattan) 
} . The entities in the EP are then conceptualized in order to construct concept sets, such as 
ce(New York City) = (large city, place, metropolitan area), ce(Donald Trump) = ( politician, 
republican presidential candidate, millionaire resident), which are acquired from external 
knowledge graphs. Given a piece of post P , we can distill knowledge from the knowledge 
graphs and obtain a set of concepts CE = {ce(e1), ce(e2), . . . , c(en)} for all entities.

Knowledge attention encoder
Knowledge encoder

Prior knowledge obtained from external knowledge base provides richer information and 
reduces ambiguity caused by entity mentions in posts. Given a piece of post, entities and 
entity-related concepts in the post can help to improve performance of rumor detection. 
The extracted entities sequence EP and entity concepts sequence CE are embedded by 
Word2Vec [46], given a post P , we obtain the entities embedding and concepts embedding

where d is the embedding dimension. The entity embedding e′i and concept embedding 
ce′i are calculated as follows. Note that an entity or a concept can typically involve a 
phrase consisting of multiple tokens, rather than a single word. Therefore, we employ a 
sequential bidirectional LSTM model to calculate the phraselevel representation of an 
entity or a concept from its word embedding. For example, given a concept cj of 
ce(ei) =

{
c1, · · · cj , · · · cm

}
 (m denotes the index of concept phrase for entity ei ), the con-

cept representation at the phrase-level is denoted as cj , and the word-level is {
c
(1)
j , · · · , c

(L)
j

}
 (L denotes the padded word length of the concept phrase cj ). We first 

obtain the word-level embedding 
{
c
′(1)
1 , · · · , c

′(L)
1 ; c

′(1)
1 , · · · , c

′(L)
1 ; c

′(1)
1 , · · · , c

′(1)
1

}
 of ce (ei) 

(4)q′ = EP′ =
{
e′1, e

′
2, · · · , e

′
n

}
,EP′ ∈ Rn×d

(5)r′ = CE′ =
{
ce′(e1), ce

′(e2), · · · , ce
′(en)

}
=

{
ce′1, ce

′
2, · · · , ce

′
n

}
,CE′ ∈ Rn×m×d

Fig. 3 An illustration for entity conceptualization. Conceptual knowledge extracted from a knowledge base 
for each entity are shown via a dashed arrow line and oval
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via Word2Vec. Then, for the phrase-level embedding, we use a sequential LSTM model 
and max-pooling to calculate ce′(ei) = ce′i ∈ Rm×d from its word-level representation,

similarly, we get e′i ∈ R1×d.

Knowledge‑aware attention

To effectively integrate external knowledge after obtaining the embedding of entities 
q′ and entity-related concepts r′ , we design multi-head attention and cross-attention 
networks to distinguish the relative importance of knowledge. An entity has multiple 
different concepts in a post text, in order to select the proper concepts of an entity 
according to the context, we propose Concept to Entity(C-E) attention to measure the 
importance of each concept with respect to the entity. We apply multi-head attention 
to build the connection between entities and concepts. The formula of multi-head 
attention is as follows:

where queries, keys and values are packed together into matrices Q,K  and V , dk is the 
dimension of queries and keys, H is the number of heads. Specifically,

We treat the entities representation q′ as queries to attend to the concepts repre-
sentation r′ in order to compute attention scores, which might capture dependencies 
between entities and concepts. q̃ denotes a new entity representation that incorpo-
rates conceptual knowledge. C-E attention has a similar effect to feature selection. 
It is a soft feature selection that gives a higher weight to a critical concept and a low 
weight (near zero) to a trivial concept. To account for the relative importance of enti-
ties, we propose the Entity to Post (E-P) attention metric, which measures each enti-
ty’s contribution to the post text. We define E-P attention for each entity as follows.

In E-P attention, we apply cross attention to build the connection between post and 
entity. f (·) is a non-linear activation function such as hyperbolic tangent transforma-
tion and softmax is used to normalize attention weight of each entity. W1 ∈ R

2d×h 
is a weight matrix and W2 ∈ R

h×1 is a weight vector. β denotes the weight score of 
attention from entity towards the post. A larger βi means that the i-th entity is more 

(6)ce′i = Concat
(
Maxpool

(
LSTM

{
c
′(1)
j , · · · , c

′(L)
j

}))
, j = 1 . . .m

(7)
Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

MultiHeadAttention(Q,K ,V ) = Concat(Attn1, · · · , AttnH )

(8)

Q = WQq
′,K = WKr

′,V = WV r
′

α = softmax

(
QKT

√
dk

)
, q̃ = αV

(9)
β = softmax

(
WT

2 f (W1concat[p; q̃])
)

p̃ = βq̃
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related to the post. The score is applied to aggregate the entities’s representation to 
form a new post representation p̃.

In order to form a joint representation, a learnable gating function is employed to 
combine original post representation and the new one. Formally,

where σ(·) = 1
1+exp(·) is sigmoid activation function, W3 ∈ R

2h×1 is learnable parameters 
of the fusion gate, ⊙ denotes element-wise multiplication. α is a gating vector to trade-off 
information from the two sources and its elements are in[0,1]. p̂ is the final textual rep-
resentation of the post that incorporates entity and concept knowledge.

Knowledge graphs encoder

This section presents our proposed knowledge graphs encoding scheme. We first detail 
how a text-graph is constructed from the posts texts, entities and concepts, and then 
present the graph convolutional encoder for obtaining knowledge structure in-forma-
tion that encode the textual information.

Text‑graph construction

To better exploit global and long range knowledge semantic relationships in the posts 
texts, we build a heterogeneous post-entity-concept graph G = {V ,E} , where V  repre-
sents the nodes including posts-texts nodes D = {P1, . . . ,Pn} , unique entities nodes sets 
EN = {en1, . . . , enz} and unique concepts nodes sets CN = {cn1, . . . , cnb} , and E denotes 
the edges. As shown in Fig.  2, the connection between concepts and entities is undi-
rected, allowing for higher-level knowledge sharing and flow, whereas the connection 
between entities and posts is directed, i.e., from entities to posts, to reduce interference 
between rumor posts and non-rumor posts. There are two types of typical relations: 
(1)local relation, e.g.,concept → entity → post ← entity, which was capable of learning 
local knowledge; and (2)long-range relation, e.g., concept → entity → concept → entity 
→ post, which has the ability to perceive knowledge from a distance. To encode these 
two types of relations into the node representation, the graph nodes can aggregate both 
local and global longrange semantic relationships among posts texts, entities and con-
cepts from graph structure. Specifically, for each post p ∈ D we first select $K$ entities 
with the highest possibility values with the entity link tool as entity nodes, the entities of 
all posts are de-duplicated to obtained unique entities nodes sets EN = {en1, . . . , enz} , 
and then we build edges between the EN  and the post texts set D . To incorporate global 
semantics among post texts and concept, we further build edges between entities set 
and its semantic concepts set. In this work, for every entity, we select the top $M$ con-
cepts with the highest probability score based on the Microsoft Concept Tagging Model 
[47], the concepts of all entities are de-duplicated to obtained unique concepts nodes 
sets CN = {cn1, . . . , cnb} . Figure 2 shows the text-entity-concept graph G = {V ,E} con-
structed from the text (Fig. 3).

(10)α = σ
(
W3concat

(
p; p̃

))

(11)p̂ = p⊙ α + p̃⊙ (1− α)
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Graph convolutional encoder

After constructing the text-entity-concept graph, GCN which is effective in capturing 
high-order neighborhood information, is applied to learn the representations of posts 
texts that aggregate high-order semantic information. Note that we employ the distrib-
uted Word2Vec representation to obtain the embeddings of posts texts, entities and 
concepts nodes, which denoted as D′ =

{
p′
1
, . . . , p′n

}
∈ R

n×s×d ,EN ′ =
{
en′

1
, . . . , en′z

}

∈ R
z×s×d ,CN ′ =

{
cn′

1
, . . . , cn′

b

}
∈ R

b×s×d , and then initialize them by bidirectional 
LSTM(BiLSTM) [48] network to get semantic vector representation X as initial nodes 
feature matrix of graph. In this way, the input embeddings of the nodes are in the same 
semantic space, thus we can directly apply GCN on the graph.

where n, z and b represent the number of posts, entities and concepts respectively, 
s denotes the padded word length of posts, entities and concepts, d is the embedding 
dimension.

Formally, we consider the text-entity-concept G = {V ,E},where V  and E represent 
the set of nodes (including post texts, entities and concepts) and edges respectively. 
We introduce an adjacency matrix A of G and its degree matrix D , where Dii =

∑
j Aij 

the diagonal elements of A are set to 1 with self-loops. Each node is associated with a 
d-dimensional feature vector and we use a feature matrix X ∈ R(n+z+b)×2d to represent 
the initial features of all vertices, where the ith row corresponds to the feature vector 
of the ith node. Based on the adjacency matrix A and the degree matrix D , each GCN 
layer input feature matrix X (l) ∈ R(n+z+b)×2d(l) (the input feature matrix of first layer is 
X (0) ∈ R(n+z+b)×2d(0) ) and output a higher order feature matrix X (l+1) ∈ R(n+z+b)×2d(l+1) 
for vertices as follows:

where W ∈ R2d(l)×2d(l) is a weight matrix that can be learned during training, I is the 
identify matrix and σ is a non-linear activation function, e.g. a ReLUσ(x) = max(0, x) 
After going through a 2-layer GCN, we get the embeddings g with respect to the post 
nodes which aggregate semantics from their neighbors in the graph.

End‑to‑end model training

After the above procedures, the post text encoder’ output p , knowledge attention encod-
er’s output p̂ and knowledge graphs encoder’s output g are concatenated as final features 
z for classification. Then, z is fed into a fully connected layer followed by a softmax func-
tion to project the final representation into the target space of classes probability:

(12)

D̃
′ = BiLSTM

{
p′1, . . . , p

′
n

}
∈ R

n×s×2d

ẼN
′ = BiLSTM

{
en′1, . . . , en

′
z

}
∈ R

z×s×2d

C̃N
′
= BiLSTM

{
cn′1, . . . , cn

′
b

}
∈ R

b×s×2d

X = Maxpool

{
Concat

(
D̃

′; ẼN
′

; C̃N
′
)}

(13)Z(l+1) = σ

(
D− 1

2 (I + A)D− 1
2X (l)W

)



Page 13 of 27Cui and Shang  Journal of Big Data           (2023) 10:45  

It is trained to minimize the cross entropy loss function:

where D denotes the overall training corpus, ci refers to the ground truth label for posts 
i,Pi denotes the probability of the predicted label, � denote the parameters of KAGN, 
and � is the coefficient of L2 regularizer.

Experimental
Datasets

We evaluate the proposed model on four real-world data collections: Twitter15, Twit-
ter16, PHEME and Politifact [10, 49–51] which were originally collected from the most 
popular social media website. Each sample in Twitter 15 and Twitter 16 datasets is 
annotated with one of four more finer-grained classes, i.e., non-rumor, false rumor, true 
rumor, and unverified rumor. Note that the label "true rumor" denotes a post that tells 
people that a certain post is fake. Each sample in the PHEME and Politifact datasets is 
labeled as one of two categories, i.e., rumor or non-rumor. For each data set, a graph is 
constructed from source tweets, entities, and related concepts. The details of these four 
datasets are reported in Table 2." #" denotes "the number of". The four datasets are avail-
able to the public online12.3

Implementation details

In the process of knowledge extraction, we utilize entity linking tools TagMe [52] to 
disambiguate entity mentions in posts contents and link them to corresponding enti-
ties in the knowledge graphs Wikidata [7]. In the procedure of entity concepts extrac-
tion, we retrieve the entities in Microsoft Concept Graph [8] only consider the isA 
relation. For all models, adam optimizer [53] is adopted for learning, with a learn-
ing rate of 0.003 gradually decreased during the process of training, and the dropout 

(14)P = softmax(W oz + bo)

(15)J = −
∑

i∈D

cilogPi +
�

2
� � �22

Table 2 Statistics of the datasets

Statistic Twitter15 Twitter16 PHEME PolitiFact

# Source tweets 1490 818 2742 815

# Non-rumor 374 205 – –

# False rumor 370 205 1886 443

# Unverified rumor 374 203 – –

# True rumor 372 205 856 372

# Users 276663 173487 – –

# Posts 331612 204820 – –

1 www. dropb ox. com/s/ 7ewzd rbelp mrnxu/ rumde tect2 017. zip? dl=0
2 https:// www. zubia ga. org/ datas ets/
3 https:// github. com/ KaiDM ML/ FakeN ewsNet

http://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0
https://www.zubiaga.org/datasets/
https://github.com/KaiDMML/FakeNewsNet
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rate is set to 0.5. The batch size is set to 16. The training epochs are set to 50. The 
word embedding are initialized with the 300 dimensional word vectors, which are 
trained on domain specific review corpora by Skip-gram algorithm [46]. If a word 
is unknown, we will randomly initialize its embedding. We also use 300 dimension 
entity embedding and concept embedding which is initialized by 300 dimensional 
word vectors. All word embedding, entity embedding and concept embedding are 
trainable and fine-tuned in the training stage, since we hope to learn task-oriented 
representation. We use 1DCNN with filters of width [2, 3, 4] of size 300 for a total of 
100.The number of attention heads h is set to 8. The GCN encoder is set to 2 layers. 
The evaluation metric is accuracy, precision, recall and F1 score which is widely used 
in text classification tasks [54]. We conduct fivefold cross-validation and hold out 10% 
instances as the validation data set to tune the hyper parameters, and the remaining 
datasets is split into training and testing sets in the ratio of 3 to 1.

Baselines

The experiments on the two datasets use the baselines listed as follows:

• DTC [55]: A decision tree classifier using various handcrafted features extracted 
by feature engineering to detect rumor.

• RFC [56]: A random forest classifier that selects temporal, structural, and linguis-
tic characteristics.

• SVM-TS [57]: A linear SVM classifier that utilizes the variation of social context 
features during the rumor propagation over time.

• PTK [10]: A tree-based kernel approach using SVM classifier to evaluate the simi-
larities between propagation tree structures of rumor and non rumor.

• GRU [48]: A RNN-based model was utilized to learn variation features of contex-
tual information about relevant rumor over time.

• BU-RvNN and TD-RvNN: [58]: A RvNN models based on bottom-up and top-
down tree structures to capture propagation structural and textural semantics.

• PPC [12]: A recursive and convolutional classifier to model the local and global 
variation of user features along the propagation path.

• Bi-GCN [59]:A bi-directional GCN model to explore propagation and dispersion 
characteristics of rumor from both top-down and bottom-up propagation path.

• CNN [60]: CNN learns rumor representations using a convolution network by 
structuring relevant posts as a fixed-length sequence.

• B-TransE [61]: The B-TransE method incorporates both positive and negative sin-
gle models to identify fake news based on news content and knowledge graphs.

• KCNN [62]: The KCNN learns semantic-level and knowledge-level representa-
tions of news by combining knowledge entities and common sense in news mate-
rial.

In addition to the above baselines, we design several variants to demonstrate the 
effectiveness of each component in our model. We will introduce these variants in the 
results and analysis section.
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Results and analysis
Comparison of different models

The hyperparameters of all variables in the experiment were determined by valida-
tion set. We evaluated these variants by a fivefold cross-validation. Table  3, 4, 5, 6 
show the experimental results of our proposed KAGN and all compared baselines 

Table 3 Results of comparison with different models on twitter15 datasets

NR non-rumor, FR false rumor, TR true rumor, UR unverified rumor

Method Acc NR FR TR UR
F_1 F_1 F_1 F_1

DTC 0.454 0.733 0.355 0.317 0.415

RFC 0.565 0.81 0.422 0.401 0.543

SVM-TS 0.544 0.796 0.472 0.404 0.483

PTK 0.75 0.804 0.698 0.765 0.733

GRU 0.646 0.792 0.574 0.608 0.592

BU-RvNN 0.708 0.695 0.728 0.759 0.653

TD-RvNN 0.723 0.682 0.758 0.821 0.654

PPC 0.842 0.811 0.875 0.818 0.79

Bi-GCN 0.886 0.891 0.86 0.93 0.864

KAGN 0.892 0.868 0.883 0.894 0.927

Table 4 Results of comparison with different models on twitter16 datasets

Method Acc NR FR TR UR
F_1 F_1 F_1 F_1

DTC 0.465 0.643 0.393 0.419 0.403

RFC 0.585 0.752 0.415 0.547 0.563

SVM-TS 0.574 0.755 0.42 0.571 0.526

PTK 0.732 0.74 0.709 0.836 0.686

GRU 0.633 0.772 0.489 0.686 0.593

BU-RvNN 0.718 0.723 0.712 0.779 0.659

TD-RvNN 0.737 0.662 0.743 0.835 0.708

PPC 0.863 0.82 0.898 0.843 0.837

Bi-GCN 0.88 0.847 0.869 0.937 0.865

KAGN 0.901 0.864 0.881 0.946 0.908

Table 5 Results of comparison with different models on PHEME datasets

Method Acc Precision Recall F‑1

SVM-TS 0.640 0.639 0.621 0.640

DTC 0.691 0.648 0.654 0.650

RFC 0.713 0.660 0.609 0.614

CNN 0.701 0.741 0.707 0.690

GRU 0.737 0.700 0.690 0.692

B-TransE 0.720 0.683 0.606 0.607

KCNN 0.727 0.683 0.642 0.649

KAGN 0.865 0.840 0.829 0.834
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approaches on four datasets, respectively. From the Tables, we can draw the following 
observations:

It is evident that the performance of models based on hand-crafted features using 
traditional machine learning methods (i.e., DTC, RFC, SVM-TS, and PTK) seems to 
be unsatisfactory, probably because these methods lack generalization due to the dif-
ficulty in capturing useful features. While SVM-TS and PTK are better than DTC and 
RFC on Twitter15 and Twitter16 datasets, because they employ propagation struc-
tures or social context features, they remain clearly inferior to those not relying on 
feature engineering. However, SVM-TS achieves lower results on PHEME and Politi-
fact. This is probably because SVM-TS is limited to deal with long sentences in the 
datasets.

We observe that deep learning methods (e.g. PPC, RvNN, Bi-GCN, CNN and GRU) 
outperform those traditional machine learning methods that employ handcrafted fea-
tures on four datasets which suggests the superiority of feature extraction of deep 
neural networks. It appears that deep learning methods are capable of learning the 
underlying deep features of rumor. On Twitter15 and Twitter16, Bi-GCN achieves 
optimal performance using the structure learning capability of graph convolutional 
networks due to the consideration of the deep propagation and wide scattering fea-
tures of rumor. Furthermore, methods that use both news content and external 
knowledge consistently outperform methods that merely utilize news content on 
PHEME and Politifact, such as KCNN > B-TransE > GRU, CNN, RFC, DTC, and SVM. 
This shows that models can successfully incorporate external knowledge and improve 
detection performance significantly.

Moreover, as shown in Tables 3, 4, 5, 6, our proposed KAGN method has achieved 
the best performance compared with all other baselines on four datasets. Specifically, 
our proposed model achieves performance improvement by 0.6% on Twitterr15, 2.1% 
on Twitterr16, 13.8% on PHEME, and 9.6% on Politifact. This demonstrates that our 
proposed framework can effectively capture the global semantic relations of the text 
contents in rumor, which is helpful for rumor detection. Three factors explain the 
superior performance of KAGN. (1) KAGN uses the concept of knowledge to enrich 
the semantic information of post text with the help of KGs. (2) Our model is able 
to focus on more important entity and concept knowledge and effectively fuse them 
into texts representation due to the attention mechanism. (3) Graph convolutional 

Table 6 Results of comparison with different models on Politifact datasets

Method Acc Precision Recall F_1

SVM-TS 0.669 0.746 0.683 0.647

DTC 0.749 0.748 0.745 0.745

RFC 0.741 0.747 0.736 0.736

CNN 0.701 0.741 0.707 0.690

GRU 0.711 0.708 0.705 0.704

B-TransE 0.769 0.774 0.766 0.764

KCNN 0.783 0.785 0.782 0.780

KAGN 0.879 0.877 0.878 0.875
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network can capture the intrinsic dependencies among implicit knowledge to obtain 
more semantic representations.

Comparison among KAGN variants

In order to determine the relative importance and validity of attention mechanism and 
GCN module of KAGN, we designed the following variants of KAGN and performed a 
series of ablation studies on different parts of the model. The experimental results are 
shown in Table 7.

• PTE: Only using posts text encoder (PTE) to extract text features from posts for 
rumor detection.

• PTE + KAE: Removing knowledge graphs encoder (KGE) of KAGN for rumor detec-
tion.

• PTE + KGE: Removing knowledge attention encoder (KAE) of KAGN for rumor 
detection.

• KAGN: consists of PTE, KAE and KGE for rumor detection.

From the Table 7 and Fig. 4, we can have the following observations: according to the 
results of four datasets, the variants that are equipped with external knowledge informa-
tion (KAGN, KGE and KAE) perform significantly better than the non-knowledge vari-
ant (PTE). In this case, it appears that entities and concepts extracted from the external 
knowledge base play an important role in the detection of rumor.

• When we compare the performance of PTE + KAE with that of KAGN, we can 
see that removing the KGE module reduces the variant’s performance by 2.87%, 
2.63%, 0.52% and 1.18%, respectively, on the four datasets. Despite the fact that 
the introduction of KGE does not result in a significant increase in performance, 

Table 7 Results of comparison among different variants of KAGN on twitter datasets

Dataset Variant Accuracy Precision Recall F1

Twitter15 PTE 0.8036 0.8053 0.8036 0.8037

PTE + KGE 0.8406 0.8486 0.8408 0.8417

PTE + KAE 0.8636 0.8690 0.8628 0.8642

KAGN 0.8923 0.8947 0.8905 0.8956

Twitter16 PTE 0.8295 0.8364 0.8296 0.8315

PTE + KGE 0.8672 0.8734 0.8676 0.8650

PTE + KAE 0.8750 0.8749 0.8742 0.8744

KAGN 0.9013 0.9034 0.9062 0.8976

PHEME PTE 0.8125 0.8056 0.8125 0.8052

PTE + KGE 0.8281 0.8228 0.8281 0.8208

PTE + KAE 0.8594 0.8594 0.8594 0.8594

KAGN 0.8646 0.8402 0.8293 0.8344

Politifact PTE 0.8203 0.8203 0.8210 0.8202

PTE + KGE 0.8438 0.8434 0.8434 0.8438

PTE + KAE 0.8672 0.8683 0.8672 0.8673

KAGN 0.8790 0.8768 0.8780 0.8751
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it can provide long-range implicit semantic relationships information between 
knowledge, which will be beneficial to our model.

• Comparing the performance of the PTE + KGE variant to that of the KAGN 
variant reveals that removing the KAE module degrades performance across all 
datasets, with an accuracy loss of 5.17%, 3.41%, 3.65% and 3.52% on four data-
sets, respectively. We can see that the PTE + KAE model equipped with explicit 
knowledge information consistently outperforms the PTE + KGE model integrat-
ing implicit knowledge, but that both modules provide important complementary 
information for rumor detection when combined.

In addition, we further investigate the effectiveness and significance of entity and 
concept knowledge in KAGN. The variants of KAGN are as follows:

• KGE: is a graph convolutional encoder that considers both entity and concept 
knowledge.

• KGE/E: is a variant of KGE without considering entity knowledge.
• KGE/C: is a variant of KGE without using entity-related concepts knowledge.
• KAE: is an attention encoder that takes account of both entity and concept knowl-

edge.
• KAE/E:is a variant of KAE that not considering entities knowledge.
• KAE/C: is a variant of KAE that eliminates entity-related concepts knowledge.
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Fig. 4 Results of comparison among different variants of KAGN
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Table 8 Impact of entity and concept knowledge on model performance for twitter15 datasets

Variants Accuracy Precision Recall F1

PTE 0.8036 0.8053 0.8036 0.8037

PTE + KGE/E 0.8156 0.833 0.8149 0.8154

PTE + KGE/C 0.8344 0.8344 0.8354 0.8342

PTE + KGE 0.8406 0.8486 0.8408 0.8417

PTE + KAE/E 0.8281 0.8323 0.8291 0.8279

PTE + KAE/C 0.8438 0.8436 0.8445 0.8428

PTE + KAE 0.8636 0.869 0.8628 0.8642

Table 9 Impact of entity and concept knowledge on model performance for twitter16 datasets

Variants Accuracy Precision Recall F1

PTE 0.8295 0.8359 0.8296 0.8315

PTE + KGE/E 0.8352 0.8361 0.8347 0.8350

PTE + KGE/C 0.8580 0.8628 0.8577 0.8594

PTE + KGE 0.8672 0.8734 0.8676 0.8650

PTE + KAE/E 0.8465 0.8478 0.8463 0.8460

PTE + KAE/C 0.8594 0.8637 0.8582 0.8585

PTE + KAE 0.8750 0.8749 0.8742 0.8744

Table 10 Impact of entity and concept knowledge on model performance for PHEME datasets

Variants Accuracy Precision Recall F1

PTE 0.8125 0.8056 0.8125 0.8052

PTE + KGE/E 0.7813 0.7886 0.7813 0.7457

PTE + KGE/C 0.7917 0.8061 0.7917 0.7578

PTE + KGE 0.8281 0.8228 0.8281 0.8208

PTE + KAE/E 0.8333 0.8298 0.8333 0.8241

PTE + KAE/C 0.8490 0.8469 0.8489 0.8477

PTE + KAE 0.8594 0.8594 0.8594 0.8593

Table 11 Impact of entity and concept knowledge on model performance for Politifact datasets

Variants Accuracy Precision Recall F1

PTE 0.8203 0.8203 0.8210 0.8202

PTE + KGE/E 0.8047 0.8074 0.8068 0.8047

PTE + KGE/C 0.8359 0.8367 0.8345 0.8351

PTE + KGE 0.8438 0.8434 0.8434 0.8438

PTE + KAE/E 0.8516 0.8515 0.8509 0.8511

PTE + KAE/C 0.8593 0.8634 0.8620 0.8593

PTE + KAE 0.8672 0.8683 0.8672 0.8673
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Tables  8, 9, 10, 11, and Fig.  5 illustrate the model’s effects of entity and concept 
knowledge, respectively, from which the following conclusions can be drawn:

• When we do not incoporate entity knowledge, the performance of PTE + KGE/E 
is significantly worse than PTE + KGE, with accuracy decreasing by 2.5%, 
3.2%, 4.68% and 3.91% on four datasets, respectively. Similarly, the accuracy of 
PTE + KAE/E decreases by 3.55%, 2.85%, 2.61% and 1.56% respectively, when 
compared to PTE + KAE on four dataset. The findings indicate that entity 
knowledge plays an important role in sentence disambiguation and contributes 
to a correct understanding of text meaning.

• When concept knowledge is not taken into account, the accuracy of 
PTE + KGE/C decreases by 0.62%, 0.92%, 3.64% and 1.56% on four data-
sets respectively compared to PTE + KGE, and the accuracy of PTE + KAE/C 
decreases by 2%, 1.6%, 1.01% and 0.79% compared to PTE + KAE on four data-
sets. This suggests that the conceptual knowledge implicit in the text aids com-
prehension of the text’s content.

• Simultaneously, we discovered from the results that entity knowledge has a 
greater impact on model accuracy. It is possible that entities originate from the 
text itself, and that entities are more semantically connected to the text, whereas 
there are numerous entity-based concepts that may cause interference with the 
text’s semantics.

The above results show that introducing external knowledge is important to guide 
rumor detection.

Fig. 5 Impact of entity and concept knowledge on model performance for four datasets
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Complexity analysis
In the knowledge distillation stage, we extracted the set of entities in the text with a 
confidence level greater than 0.1, as well as the concepts of the top 10 rankings for 
each entity. Since this is a one-off pre-processing step, it does not need to be repeated 
in the training loop. The computational complexity and spatial complexity of knowl-
edge extraction is fixed. Table 12 displays the memory usage of the entity and concept 
sets on four datasets.

Now, we consider the steps and their time complexity in one iteration. In the Posts 
Texts Encoder, the vector representations of source post are fed into the multi-filter 
CNN layers. For a single CNN layer, it costs a computational complexity of O(knd) , 
where k is the kernel size of convolutions, n is the sequence length and d is the repre-
sentation dimension. The vector representations of entities and concepts are fed into 
the Knowledge Attention Encoder, and then passed through the bi-LSTM and multi-
headed attention mechanisms to obtain the fused representations of knowledge. Bi-
LSTM take O

(
m2

)
 time, where m is the hidden size. Multi-head self/cross attention 

takes O
(
n2d

)
 time, where n is the sequence length and d is the representation dimen-

sion. In the Knowledge Graph Encoder, the GCN algorithm require a time complexity 
of O

(
l�A0�d + lnd2

)
 and space complexity O

(
lnd + ld2

)
 , where l  is number of layers, 

n is number of nodes, ‖A0‖ is number of nonzeros in the adjacency matrix, and d is 
dimention of features. For memory complexity, ld2 is for storing 

{
W (l)

}∣∣L
l=1 and the 

other term is for storing embeddings. For simplicity we omit the memory for storing 
the graph (GCN) or sub-graphs (other approaches) since they are fixed. The number 
of nodes of post-entity-concept graph on four datasets are illustrated in Table 13. In 
addition, we investigate the computational complexity of the model by tracking the 

Table 12 Comparisons of memory usages on four datasets

Memory space Twitter15 Twitter16 PHEME Politifact

Entities set 362 KB 199 KB 206 KB 449 KB

Concepts set 1251 KB 313 KB 728 KB 2104 KB

Table 13 Number of nodes for post-entity-concept graph on four datasets

Type of nodes Twitter15 Twitter16 PHEME Politifact

Post node 1490 818 2018 745

Entities node 1951 1133 1316 3438

Concepts node 4643 1078 4715 12514

Table 14 Training and prediction time of KAGN on four datasets

Twitter15 Twitter16 PHEME Politifact

training time per epoch 
(MM:SS.ms)

00:03:233 00:01:120 00:04:360 00:05:580

prediction time per 
epoch (MM:SS.ms)

00:00:336.7 00:00:167.6 00:00:452.2 00:00:863.9
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training and prediction times of KAGN, which are presented in minute, second, and 
millisecond (MM:SS.ms) formats as seen in Table 14.

Discussion
Power of knowledge

We employ entity and conceptual information as prior knowledge to enrich the repre-
sentation of text posts and enhance classification performance. To verify the efficacy of 
knowledge in our model, we select some examples from the Twitter dataset for testing 
and display them in Fig. 6. Our model correctly classifies these texts, whereas traditional 
DNNs that lack knowledge misclassify them. In general, the information of entities and 
concepts plays a crucial role in the classification of short texts, especially when context 
is insufficient. As the first example shown in Fig. 6(a), “eric lawson” stands for person’s 
name, cannot provide more information, and thus it is challenging to acquire a good 
representation of A, resulting in the poor performance of conventional DNNs. However, 
our model is helpful to avoid ambiguity and makes semantics more explicit by integrat-
ing entity and concept knowledge. “eric lawson” and “marlboro man” are semantically 
linked by the identified entity “Marlboro Man”. The concepts such as “character” and 
“cigarette” further enriches the meaning of the entity. In addition, there may be some 
underlying relationship between the concepts contained in the sentence, such as “ciga-
rette” and “lung disease”. Our model can mine such long-range semantic associations by 
building post-entity-concept graphs. Figure 6(b) illustrates another example, “kkk” is a 
rare word, i.e., occurs less frequently in the training set. However, our model solves the 
rare and unknown word problem in some degree by introducing knowledge from KB. 
“kkk” is linked to the entity “Ku Klux Klan”, which conceptually means “white suprema-
cist group” and “hate group”. Furthermore, the MAE module in our model determines 
that the interpretation of “black” prefers entity “African Americans” based on attention 
weights. The concepts “ethnic group” and “minority group” further complement “African 

Fig. 6 Two examples for power of knowledge
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Americans” semantically. Since “black” and “kkk” are in conflict in terms of high level 
semantics, which is beneficial for classifying the short text into the correct class (Fig. 7, 
8).

Effects of the numbers of cross attention heads and GCN layers

In this section, we investigate how the numbers of cross attention heads in the Knowl-
edge Attention Encoder and the maximum number of GCN layer affect the model’s 
performance. Since the number of cross attention heads must be divisible by the word 
vector dimension, we set the range of the number of heads to [4, 8, 12, 16]. Table 7 shows 
the performance of the KAGN for different numbers of heads. Although the number of 
cross attention heads has little effect on the results, we can observe that the performance 
of the KAGN increases with the number of heads up to 8. We set the range of the num-
ber of KAT layers to [1–4]. Table 8 shows the performance of the KAGN for different 

Twitter15 Twitter16 PHEME Politifact
0.84

0.86

0.88

0.90

4
8
12
16

Fig. 7 The experimental results of the KAGN under different numbers of cross attention heads

Twitter15 Twitter16 PHEME Politifact
0.82

0.84

0.86

0.88

0.90

1
2
3
4

Fig. 8 The experimental results of the KAGN under different numbers of GCN layers
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numbers of GCN layers. We observe that as the number of GCN layers increases, the 
model performance is not improved or becomes even slightly worse. Hence, we set the 
numbers of GCN layers and cross attention heads to 2 and 8, respectively.

Limitation
According to the above experimental results and discussions, our KAGN performs well 
for rumor detection tasks. However, since the proposed method takes advantage of 
knowledge from the external knowledge base, one limitation of our method is that the 
performance of KAGN is influenced by the accuracy of external entity linking tools and 
knowledge bases, which is beyond our control. Furthermore, KAGN is more applicable 
to text with obvious entity mention. The ground-truth and predicted results of two sam-
ples are shown in Fig. 9. It can be observed from the figure that the entity links in text(a) 
and text(b) are incorrectntity, and there are no obvious entities in text(c). Therefore, we 
can only rely on the the word features of texts in our method for classification. However, 
from the analysis in Table 7 the knowledge of text has an important contribution to the 
proposed method. Therefore, our method may be limited in predicting the authenticity 
of the news evoked by texts without obvious entities, which is consistent with the con-
clusion in Table 7

Conclusion and future work
KAGN is proposed in this paper as a method to detect rumor, which incorporates enti-
ties and concepts from an external knowledge base to complement the semantic repre-
sentation of the short text of posts. When we incorporate entities and concepts into the 
representation of the text, we are able to make better use of external knowledge informa-
tion because we have used an attention mechanism. In addition, we use graph convolu-
tional neural networks to construct graphs containing post texts, entities, and concepts 
to obtain associative features among knowledge. The experimental results on four pub-
licly datasets demonstrate the effectiveness of the proposed model and that the perfor-
mance of the model can be effectively improved by introducing external knowledge. In 
the future, we intend to investigate the combination of multimodal data (e.g.images) and 
external knowledge for the detection of fake message.

Fig. 9 Three failure examples of the proposed KAGN on the Twitter dataset
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