
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Hancock et al. Journal of Big Data (2023) 10:42
https://doi.org/10.1186/s40537-023-00724-5

Journal of Big Data

Evaluating classifier performance with highly
imbalanced Big Data
John T. Hancock1*, Taghi M. Khoshgoftaar1 and Justin M. Johnson1

Abstract

Using the wrong metrics to gauge classification of highly imbalanced Big Data may
hide important information in experimental results. However, we find that analysis of
metrics for performance evaluation and what they can hide or reveal is rarely covered
in related works. Therefore, we address that gap by analyzing multiple popular per-
formance metrics on three Big Data classification tasks. To the best of our knowledge,
we are the first to utilize three new Medicare insurance claims datasets which became
publicly available in 2021. These datasets are all highly imbalanced. Furthermore, the
datasets are comprised of completely different data. We evaluate the performance of
five ensemble learners in the Machine Learning task of Medicare fraud detection. Ran-
dom Undersampling (RUS) is applied to induce five class ratios. The classifiers are evalu-
ated with both the Area Under the Receiver Operating Characteristic Curve (AUC), and
Area Under the Precision Recall Curve (AUPRC) metrics. We show that AUPRC provides
a better insight into classification performance. Our findings reveal that the AUC metric
hides the performance impact of RUS. However, classification results in terms of AUPRC
show RUS has a detrimental effect. We show that, for highly imbalanced Big Data, the
AUC metric fails to capture information about precision scores and false positive counts
that the AUPRC metric reveals. Our contribution is to show AUPRC is a more effective
metric for evaluating the performance of classifiers when working with highly imbal-
anced Big Data.

Keywords: Extremely randomized trees, XGBoost, Class imbalance, Big Data,
Undersampling, AUC , AUPRC

Introduction
The use of a single metric to draw conclusions on the impact of a factor in classification
experiments may lead to mistakes that we wish to help our fellow researchers avoid. Ran-
dom Undersampling (RUS) is an appealing strategy for mitigating class imbalance in Big
Data. It can drastically reduce the size of the training data used during the model train-
ing phase of Machine Learning. Less training data translates into faster training times
for many Machine Learning algorithms. Therefore, applying RUS may save a researcher
time when conducting experiments. Our contribution is to reveal that there is a trade-
off for applying RUS that one should consider before concluding that applying RUS is the
best choice. We show that RUS may have a positive impact on Area Under the Receiver

*Correspondence:
jhancoc4@fau.edu

1 Department of Electrical
Engineering and Computer
Science, Florida Atlantic
University, Boca Raton, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00724-5&domain=pdf

Page 2 of 31Hancock et al. Journal of Big Data (2023) 10:42

Operating Characteristic Curve (AUC) [1] scores. At the same time, we show RUS may
have a clear negative impact on Area Under the Precision Recall Curve (AUPRC) [2]
scores.

This underscores the importance of evaluating results in terms of more than one met-
ric. Therefore, if performance in terms of AUPRC is important, applying RUS may not be
a viable option. We validate these findings using three distinct data sets and five popular
ensemble learners in the task of Medicare fraud detection. In our experiments, we apply
RUS to induce five different levels of minority:majority class ratios, and classify data-
sets of varying sizes. The smallest dataset we work with has approximately 12 million
instances. We also perform experiments with a dataset that has approximately 68 million
instances, and another dataset that has approximately 175 million instances. For each
dataset we find the same pattern holds: AUC scores are either not affected, or improved
by RUS, and AUPRC scores are degraded.

The application domain of our study is automated Medicare insurance fraud detection.
Medicare is the United States public health insurance program, primarily dedicated to
individuals aged 65 and over. The organization responsible for the Medicare program
is the Centers for Medicare and Medicaid Services (CMS). To foster research, the CMS
maintains a repository of publicly available Medicare insurance claims data. We use
data from three different sources in this study. Data from each source has unique attrib-
utes. The smallest dataset we use is from a section of the CMS website titled “Medicare
Durable Medical Equipment, Devices & Supplies—by Referring Provider and Service”
(DMEPOS) [3]. We construct a dataset of approximately 12 million instances from this
data. The next largest data we use is from a section of the CMS website “Medicare Physi-
cian & Other Practitioners—by Provider and Service” (Part B) [4]. We derive a dataset
with approximately 68 million instances from the Part B data. Finally, the largest data we
use is from a section of the CMS website titled “Medicare Provider Utilization and Pay-
ment Data: Part D Prescriber” (Part D) [5]. We compile a dataset of nearly 175 million
instances from the Part D data. The CMS regularly adds to each of these data sources,
which lends them the aspects of volume and velocity that characterizes Big Data [6].

The volume and velocity of the Part B, Part D, and DMEPOS data also reflects the
quantity and speed at which the CMS receives insurance claims from healthcare pro-
viders. Currently, it is possible for some dishonest providers to get away with sub-
mitting fraudulent claims to Medicare and avoid detection. The volume of claims
submitted is large enough that a small fraction of undetected fraudulent claims still
translates to large dollar amounts. It is a fact that, in 2019, the Department of Jus-
tice was able to recover approximately three billion dollars in fraudulently obtained
funds by prosecuting rogue healthcare providers [7]. Nevertheless, there is a degree
of uncertainty surrounding how much money the CMS loses due to fraud. The CMS
does not report an estimate of funds paid on fraudulent claims. Rather, it reports an
estimate of “improper payments.” For 2019, the CMS reported it made approximately
$100 billion dollars in improper payments [8]. The CMS defines improper payments
to include payments due to fraud, as well as payments due to mistakes on the CMS’s
part. Reliable, automated fraud detection would provide a means for the CMS to give
an estimate of the percentage of improper payments due to fraud. This would in turn
provide a stronger justification for law enforcement to pursue the recovery of money

Page 3 of 31Hancock et al. Journal of Big Data (2023) 10:42

stolen by fraudsters. Our application domain is Machine Learning for Medicare fraud
detection. Therefore, our work is a contribution towards the ultimate goal of auto-
mated Medicare fraud detection. The benefit of better fraud detection is that govern-
ment can put funds to better use, or lower taxes due to a reduced cost of the program.

There are valid concerns to be raised on the subject of automated fraud detection.
Chief among them is the possibility of accusing legitimate providers of fraud when
they are innocent. Since we refer to the population of fraudulent providers as the pos-
itive class in our classification framework, accusation of innocent healthcare provid-
ers is equivalent to a false positive. Clearly, numerous false positives would mean that
automated fraud detection would be doing more harm than good. This is why the key
finding in our work is important in the field of automated Medicare fraud detection,
since it reveals a better way to detect when a classifier that is applied to classify highly
imbalanced Big Data yields many false positives. AUC is a popular metric for evalu-
ating highly imbalanced Big Data, for example [9, 10]. However, our research shows
AUC might not always provide a complete picture of classification results. Our exper-
imental results show how the AUPRC metric can provide a clearer signal that a model
is generating false positives, when compared to AUC. A look at the definitions of the
components of AUC and AUPRC reveals why AUPRC is a better herald of false posi-
tives. On one hand, AUPRC is calculated by plotting the precision and recall scores a
model yields as we vary the output probability threshold for the classification decision
from zero to one. Precision is defined as

and the definition of recall is

On the other hand, AUC is calculated by plotting true positive rate and false positive
rate as the output probability threshold varies from zero to one. The true positive rate is

and false positive rate equivalent to

Since true positive rate and recall are actually the same quantity, the difference in AUC
and AUPRC must come from the difference between precision and the false positive rate.
We see that the false positive rate involves true negatives, whereas precision does not. In
highly imbalanced Big Data, where the positive class is the minority class, the true posi-
tives in the formula for precision should be small numbers, so that when the number of
false positives starts to grow, it can quickly dominate the value of precision. Hence, pre-
cision can easily reflect the number of false positives in classifying imbalanced Big Data.

true positives

true positives+ false positives,

true positives

true positives+ false negatives.

true positives

true positives+ false negatives

false positives

true negatives+ false positives
.

Page 4 of 31Hancock et al. Journal of Big Data (2023) 10:42

A similar analysis of the terms involved in calculating the false positive rate shows that
false positives get drowned out due to the size of the negative class. Since the denomi-
nator in the definition of the false positive rate is the size of the negative class, and the
size of the negative class is large in imbalanced Big Data, a change in the number of false
positives may be difficult to perceive.

To solidify the argument, we give an example with some hypothetical numbers. Let
us assume we have a dataset where the size of the negative class is two million. Further-
more, let us assume we have done a classification of the data for some output probabil-
ity threshold, and we have 1800 true positives and 2000 false positives. Moreover, the
sample has 2000 positive instances. From these numbers, we can calculate precision and
false positive rate. The precision is

and the false positive rate is

Now let us assume that for a different output probability threshold the number of false
positives has increased to 4000. Then the new value of precision is

and the false positive rate is

In this example, doubling the total number of false positives decreases the precision
score by 0.16, but only increases the false positive rate by 0.001. Since both values are
used directly as values of coordinates on curves that occupy the same square with area
1× 1 in the x–y coordinate plane, we can compare them directly. Therefore, for this
example, we conclude that the increase in false positives has a bigger impact on preci-
sion and AUPRC, than on the false positive rate and AUC. Therefore, it is possible that
if a factor in some experiments causes a larger number of false positives, AUC will not
reflect the impact, but AUPRC will.

We perform a collection of experiments that provides an example of how AUC will
not reflect the impact of a factor on classification results, but AUPRC will. One factor
tested in this collection of experiments is the minority:majority class ratio in the training
data. We apply RUS to induce five different class ratios. The second factor in our experi-
ments is the type of classifier used. We use five popular, open source ensemble learn-
ers: CatBoost [11], XGBoost [12], LightGBM [13], Random Forest [14], and Extremely
Randomized Trees (ET) [15]. Our results show that, regardless of learner and dataset,
AUPRC scores are diminished as the class ratio gets closer to 1:1. The AUC scores for
the same experiments do not reflect the relationship RUS has with AUPRC. This leads
us to the conclusion that AUPRC scores reveal more about the impact of RUS than AUC

1800

1800+ 2000
≈ 0.47,

2000

2, 000, 000
= 0.001

1800

1800+ 4000)
≈ 0.31,

4000

2, 000, 000
= 0.002

Page 5 of 31Hancock et al. Journal of Big Data (2023) 10:42

scores. Our goal is to provide a thorough justification for this conclusion. Along the
way to providing this justification, to the best of our knowledge, we make several novel
contributions:

• we are the first to use the Part B, Part D, and DMEPOS data, which became available
in 2021, in a peer-reviewed study;

• we are the first to show that classification of this new Big Data should be evaluated in
terms of AUPRC,

• we are the first to use five ensemble learners to do Medicare fraud detection,
• we are the first to employ a Random Forest implementation that runs on Graphics

Processing units (GPUs) do to Medicare fraud detection, and
• we are the first to use ET to do Medicare fraud detection.

The remainder of this study is organized into the following sections: Related Works,
Algorithms, Data Description and Preparation, Methodology, Results, Statistical Analy-
sis, and Conclusions.

Related work
“Data sampling approaches with severely imbalanced big data for medicare fraud detec-
tion” is a 2018 study by Bauder et al. [9]. In their study, the authors combine Part B, Part
D, and DMEPOS Medicare claims data to form a dataset for Medicare fraud detection
via classification. Hence, their study is in the same application domain as ours, albeit
with less data than we use, since we use data was not available at the time their study
was written. The data they work with has under one million instances. Bauder et al.
employ six data sampling techniques in their experiments. The six techniques are RUS,
Random Oversampling (ROS), Synthetic Minority Oversampling Technique (SMOTE)
[16], two variations of Borderline SMOTE (also covered in [16], and Adaptive Syn-
thetic (ADASYN) [17]. The sampling techniques are used to induce minority:majority
class ratios of 1:99, 10:90, 25:75, 65:35, and 50:50. Experiments with the original class
ratio of 473:759,267 (approximately 0.00062) are performed as well. For classification
experiments, they use Apache Spark [18] implementations of Random Forest, Logistic
Regression [19] and Gradient Boosted Trees [20]. To evaluate the performance of the
combinations of classifiers and data sampling techniques, the authors use AUC. Bauder
et al. conclude that classifiers trained on data with RUS applied to it yield significantly
better performance, in terms of AUC, than classifiers trained on data with the original
class ratio. Since Bauder et al. prefer RUS to other sampling techniques, we employ only
RUS. However, we measure classification results in terms of the AUPRC metric as well.
Our results are unique and meaningful, since, on one hand we duplicate Bauder et al.’s
results that show an improvement in AUC scores when RUS is applied, but on the other
hand, we show that AUPRC scores decline when RUS is used.

Hasanin et al. [21] study the effect of RUS on Geometric Mean [22] and AUC scores.
They find RUS has a positive impact on AUC and Geometric Mean scores in the clas-
sification of imbalanced Big Data. Here, we investigate the performance of RUS on AUC
and AUPRC scores. One advantage AUC and AUPRC have over the Geometric Mean is
that they reflect performance over a range of model output probability threshold values,

Page 6 of 31Hancock et al. Journal of Big Data (2023) 10:42

whereas in order to calculate Geometric Mean, one must select a specific output prob-
ability threshold. Therefore, a model’s Geometric Mean score can only tell us about the
performance of the model for one particular threshold value. Another issue that sets our
study apart from Hasanin et al. is that the largest dataset used in their study has under
1.7 million instances. The data we work with here is orders of magnitude larger. Hasa-
nin et al. report that they use one-hot encoding for all categorical features. Here we use
CatBoost encoding [11], a technique that is more scalable than one-hot encoding since it
does not require the introduction of additional attributes to the dataset. For example, to
one-hot encode a categorical value that has thousands of possible values, we would need
to add thousands of attributes to our dataset. However, CatBoost encoding requires no
additional space consumption.

Another study where the authors choose to use Geometric mean as a performance
metric is by Del Río et al. In this 2014 study, the authors investigate the impact of RUS
on Big Data classification. A second performance metric they use is βf-measure [23]. As
a part of their study, experiments are performed as applications of Random Forest to
classify various datasets, which are treated with undersampling. The largest dataset they
employ in their experiments has less than six million instances. Apart from the size of
the dataset, another aspect of our work that sets it apart from Del Río et al. is how they
treat their data with RUS. Del Río et al. apply RUS to induce a 1:1 class ratio. We apply
RUS to induce five different class ratios, which enables us to report the effect of varying
levels of RUS. This is important since we aim to show the effects of RUS on AUC and
AUPRC.

Research into the impact of RUS on the classification of Big Data often involves the
Apache Spark framework since it is well suited to Big Data. One such study is by Slee-
man and Krawczyk [24]. In their experiments, they work with datasets that have at most
three million instances. Sleeman and Krawczyk do a thorough job of reporting perfor-
mance metrics in their study, however, they do not report performance for the AUC or
AUPRC metrics. The focus of our study is on the impact of RUS on two well-known
metrics, AUC and AUPRC. A separate aspect of our study that differentiates it from
Sleeman and Krawczyk’s is that we investigate the effect of RUS at different levels. Slee-
man and Krawczyk investigate RUS to induce a 1:1 class ratio. We use RUS to induce five
class ratios, thus we can treat RUS more thoroughly as a factor in our experiments. The
differences between Sleeman and Krawczyk’s study and our own imply that our results
serve different purposes.

In “Threshold based optimization of performance metrics with severely imbalanced
big security data” Calvert and Khoshgoftaar use multiple metrics to evaluate multiple
classifiers [25]. The application domain for their study is information systems network
security. Hence, their results reveal the ability of Machine Learning algorithms to detect
malicious network traffic. Since most of the traffic in their dataset is benign, the clas-
sification task is an exercise in the classification of imbalanced data. The data they use
in their experiments has approximately 1.7 million instances. To give a sense of the level
of class imbalance, the dataset Calvert and Khoshgoftaar use has a minority to majority
class ratio of approximately 0.0014. Therefore, their data resembles ours, however we
find our dataset is more realistic, since Calvert and Khoshgoftaar generate the malicious
traffic in the raw network traffic data they use in their experiments. In a sense our raw

Page 7 of 31Hancock et al. Journal of Big Data (2023) 10:42

data is more natural, since we do not play a role in generating it. Their key finding is that
one classifier yields the best performance in terms of AUC, but significantly worse in
terms of other metrics. Furthermore, they find one classifier yields the best performance
in multiple metrics other than AUC. They claim this result indicates AUC alone can-
not identify the best performing model. The principal item that differentiates our study
from Calvert and Khoshgoftaar’s is that they do not use RUS as a factor in any of their
experiments.

One type of classifier we have not discussed yet is Neural Network classifiers. John-
son and Khoshgoftaar document experiments with Neural Network-based classifiers
and RUS in [26]. The performance metrics they use to evaluate classification results are
AUC, Geometric Mean, True Positive Rate, and True Negative Rate. The application
domain for their study is Medicare fraud detection. One thing that sets our study apart
from Johnson and Khoshgoftaar’s is our use of the AUPRC metric. Our studies have use
of the AUC metric in common. Johnson and Khoshgoftaar find that when RUS is applied
to their data to induce a class ratio with the minority class occupying more than 20%
of the data, AUC scores begin to deteriorate. In a further demonstration on the effect
the RUS technique, they show that all metrics reflect worsening performance as RUS
is used to grow the proportion of the minority class in the training data. Johnson and
Khoshgoftaar work with data similar to ours, however, they apply an aggregation step
to prepare their data for experiments. The aggregation reduces the size of their dataset
to under five million instances. The aggregation also eliminates the highest cardinality
categorical features. They use one-hot encoding for the remainder of the categorical fea-
tures. For a study on many available options for encoding categorical features, please
see [27]. For this study, we selected CatBoost encoding, which has the advantage of sup-
porting much higher cardinality categorical features than can be practical with one-hot
encoding. Due to the differences we have listed here, our study represents a contribution
that is separate from what Johnson and Khoshgoftaar have to offer.

In a later work, Johnson and Khoshgoftaar use Geometric Mean and AUC to evalu-
ate the performance of Deep Learning algorithms to classify imbalanced Big Data Medi-
care [28]. They apply RUS to have the minority class constitute larger percentages of
the training data. The dataset used in their experiments has approximately five million
instances. Results in this study show metrics are even more sensitive to RUS than their
previous study. In this study, they find performance, in terms of both metrics, begins
to suffer when the minority class becomes more than one percent of the training data.
One major difference between our study and Johnson and Khoshgoftaar’s is that we use
AUPRC, whereas they use Geometric Mean. Also, as in their previous study, Johnson
and Khoshgoftaar use an aggregation technique which eliminates high-cardinality cat-
egorical features, and then use one-hot encoding to encode remaining categorical fea-
tures. For reasons mentioned previously, we prefer to apply CatBoost encoding to our
categorical features. Hence, our study also differs significantly from this second study by
Johnson and Khoshgoftaar.

In “An insight into imbalanced big data classification: outcomes and challenges”, Fer-
nandez et al. report on the effects of RUS in the classification of imbalanced Big Data
with the Apache Hadoop [29] and Spark distributed computing frameworks. The largest
dataset used in their experiments contains approximately 12 million instances. While

Page 8 of 31Hancock et al. Journal of Big Data (2023) 10:42

Fernandez et al. apply RUS to their data, they induce only the 1:1 class ratio. As stated
previously, our experiments involve five different levels of RUS, which enables a more
thorough review of the impact of RUS. Fernandez et al. find RUS improves classification
performance, in terms of Geometric Mean. Our aim is to compare the impact of RUS
on two different performance metrics, AUC and AUPRC, hence to provide results in a
domain separate from those of Fernandez et al. Although Fernandez et al. use imbal-
anced data in their experiments, the data we use is more imbalanced. Their data has an
initial minority to majority class ratio of 1:50, whereas ours has an initial ratio of 1:256.
Therefore, our study involves a larger, more imbalanced dataset.

In the aptly named “The Precision-Recall Plot Is More Informative than the ROC
Plot When Evaluating Binary Classifiers on Imbalanced Datasets”, Saito and Rehms-
meier compare classification results in terms of AUC and AUPRC [30]. They perform
experiments in the microRNA gene discovery application domain with multiple classi-
fiers and datasets. Their results are similar to ours in that they demonstrate, for varying
levels of class imbalance, that AUC curves show good performance. However, for the
same experiments, the AUPRC curves reveal stark differences in performance. Saito and
Rehmsmeier do not discuss whether their results apply to datasets with high cardinal-
ity, categorical features. We show our results apply to datasets, with categorical features
that have thousands of possible values. The datasets Saito and Rehmsmeier use are small,
all with less than 15,000 instances each. We show the merits of AUPRC as a metric for
classifying highly imbalanced Big Data. In addition, we show that as the size of the data-
set grows, AUPRC is the more informative metric to assess the impact of experimental
factors.

Related works cover concepts that overlap with our study. We find research where RUS
is a factor in experiments with highly imbalanced Big Data. However, we do not find a
study that reveals insights into the divergent effect of RUS on AUC and AUPRC scores
in the classification of highly imbalanced Big Data. We feel our contribution is an impor-
tant one since it shows that focus on AUC alone can cause one to overlook the negative
impact of RUS, and therefore possibly other factors, on classification performance.

Classification algorithms
As a means of ensuring reproducible results, we employ five publicly available, open-
source ensemble learners as the classifiers in our experiments. As mentioned previously
the learners are: LightGBM, XGBoost, ET, CatBoost, and Random Forest. The learners
fall into two distinct families of algorithms. ET and Random Forest are members of the
Bagging family of learners. CatBoost, XGBoost, and LightGBM hail from the Gradient
Boosted Decision Tree family of Machine Learning algorithms. The advantage to using
algorithms that exploit different general techniques is that we can show our results apply
to more than just one type of algorithm. Bagging and Gradient Boosted Decision Trees
take two different approaches to using a collection of learners to perform classification.

Breiman introduces the Bagging technique for Machine Learning in a 1996 study, [31].
Breiman explains that Bagging can be used in classification and regression problems.
Our study involves experiments in binary classification, so we focus on Breiman’s treat-
ment of Bagging as it pertains to binary classification. The Bagging technique is based
on applying a Machine Learning algorithm (learner) to bootstrap samples of the training

Page 9 of 31Hancock et al. Journal of Big Data (2023) 10:42

data to train a collection (ensemble) of instances of the algorithm. A bootstrap sample is
a sample, with replacement, from the training data [32]. After the learners are fit to the
bootstrap samples, each learner classifies instances of the test data. The classification
result is taken as the classification returned by the majority of learners in the ensemble.
A probabilistic argument explains how Bagging may improve classification results.

Assume there is a chance that a poorly performing (weak) learner makes a correct
classification more often than not. Then, the chance of a majority of weak learners in an
ensemble making the correct classification increases as we increase the number of weak
learners. In that case if we treat the ensemble as a classifier it will perform better than
one of the constituent learners by itself.

Random Forest relies on the Bagging principle, and adds an enhancement to it. Brei-
man is also credited with the seminal implementation of Random Forest [14]. Random
Forest is an application of the Bagging technique to decision trees, with an addition. In
order to explain the enhancement to the Bagging technique, we must first define the
term “split” in the context of decision trees. The internal nodes of a decision tree con-
sist of rules that specify which edge to traverse next. The rule is based on a compari-
son of one numeric value, the split, versus the current value of one of the independent
variables in the dataset. Hence, fitting a decision tree to a dataset heavily involves deter-
mining the optimal values for splits. The enhancement Random Forest makes to the Bag-
ging approach is to randomly sample a subset of the attributes to use in determining
the optimal value for a split. We include Random Forest, since it has been applied suc-
cessfully to the classification of highly, or severely imbalanced Big Data [33]. As men-
tioned previously, to the best of our knowledge, this is the first study on Medicare fraud
detection where an implementation of Random Forest that runs on Graphics Processing
Units (GPUs)1 is used. In preliminary experiments we found this GPU implementation
of Random Forest to have a much faster running time when compared to the CPU based
implementation we used previously.

The second classifier from the Bagging family of Machine Learning algorithms we
employ is the ET classifier [15]. ET is an extension of Random Forest where we choose
the values for splits in the decision tree randomly. In Random Forest, and other deci-
sion-tree based learners, splits are usually calculated systematically. For example, one
may calculate the optimal value for a split in a decision tree based on some metric that
gauges how well the splitting rule divides the training data into subsets that all have the
same label. ET does away with systematic ways of determining the values for splits and
chooses them randomly. Perhaps surprisingly, our results show ET’s random selection
of splits can turn out to yield the best performance in classifying highly imbalanced Big
Data for Medicare fraud detection.

The remaining classifiers used in our study are descended from the Gradient Boosted
Machine algorithm discovered by Friedman [34]. The Gradient Boosting Machine tech-
nique is an ensemble technique, but the way in which the constituent learners are com-
bined is different from how it is accomplished with the Bagging technique. The Gradient
Boosting Machine technique begins with a single learner that makes an initial set of esti-
mates ŷ of the dependent variable y . The differences (residuals) in the estimates ŷ and

1 https:// docs. rapids. ai/ api/ cuml/ stable/ api. html# random- forest

https://docs.rapids.ai/api/cuml/stable/api.html#random-forest

Page 10 of 31Hancock et al. Journal of Big Data (2023) 10:42

y forms a vector y − ŷ that we can think of as a new dependent variable that we can
estimate with the original independent variables and a second learner. Then, the sum
of the output values of the two models will be a more accurate estimate of the depend-
ent variable than the output values of the first model. We can continue to add learners
to the ensemble similarly, where each new learner is trained to predict the residuals of
the current ensemble. Therefore, each learner we add to the ensemble provides a better
estimate of the dependent variable. The Gradient Boosting Machine implementations
we use are all enhancements to Friedman’s initial proposal. They all involve a specific
type of learner, Decision Tree, so we refer to them as Gradient Boosted Decision Trees
(GBDTs).

Of the three GBDT implementations we use, XGBoost was the first to be released.
Chen and Guestrin released XGBoost in 2016. XGBoost offers several enhancements to
the GBDT technique. The first enhancement is an improved loss function used during
the training phase. The loss function contains an additional term for regularization to
prevent overfitting. Another enhancement XGBoost makes to GBDTs is one that has to
do with calculating splits in the constituent decision trees of the GBDT ensemble. Chen
and Guestrin introduce the so called “approximate algorithm” which is a technique for
estimating optimal values of splits. The approximate algorithm is suitable for distributed
environments, as well as applications where the entire dataset does not fit in main mem-
ory. A third enhancement in XGBoost is another algorithm for finding splits that works
well with sparse data. Sparse data is the type of data that is nearly constant in value with
infrequently occurring aberrations. XGBoost can take advantage of sparse data with its
“sparsity aware split finding” feature.

Ke et al. released the seminal paper on LightGBM in 2017 [13]. Their goal was to offer
a GBDT implementation that yields performance equivalent to XGBoost, while consum-
ing fewer resources. In order to achieve their goal, Ke et al. make two key enhancements
to the GBDT technique. The first is Exclusive Feature Bundling (EFB). EFB is a tech-
nique for reducing the dimensions of a dataset by combining two features (attributes)
of a dataset into a single feature. EFB is an effective technique for sparse data. When
two attributes of a dataset exhibit sparsity, and the infrequently occurring values of both
attributes are mutually exclusive, they may be safely combined into a single feature with-
out the loss of information. EFB reduces the number of dimensions of a dataset, which
helps reduce training time. LightGBM’s second enhancement to the GBDT technique
is called Gradient-based One-Side Sampling (GOSS). GOSS is a technique for intelli-
gently reducing the number training instances used. GOSS selects instances for training
based on their contribution to the loss function that is calculated as part of fitting the
GBDT ensemble to the training data. If the instance contributes more than a configur-
able threshold value to the loss of the model, then it is retained for further iterations of
the fitting process. Likewise, instances that contribute less than the threshold amount
are set aside. Via GOSS and EFB Ke et al. deliver a GBDT implementation that consumes
fewer computing resources.

The third GBDT implementation we use is CatBoost [11]. Prokhorenkova et al. intro-
duced CatBoost in 2018. One may find more information on applications of CatBoost in
various domains in [35]. Their motivation for developing CatBoost was to prevent over-
fitting. The first protection against overfitting that CatBoost makes is Ordered Boosting.

Page 11 of 31Hancock et al. Journal of Big Data (2023) 10:42

Ordered Boosting is a technique for selecting training instances. There are two steps for
adding a decision tree to the GBDT ensemble. The first is to fit the decision tree to the
dependent variable in the training data. Multiple decision trees are fit to different sam-
ples of the training data. After the trees have been fit, they must be evaluated in order
to select the tree that best enhances the overall performance of the ensemble. Under
Ordered Boosting one can be sure that training instances used to fit the decision tree will
not be used to evaluate it for inclusion into the ensemble. This helps prevent the ensem-
ble from being overfit to the training data. The second kind of overfitting CatBoost offers
protections against is through its Ordered Target Statistics method of encoding categor-
ical features. In simple target encoding, a categorical feature is assigned the mean value
of the dependent variable that the feature is observed to co-occur with. This strategy for
encoding may lead to information leakage in the sense that if the encoded feature co-
occurs with different values of the dependent variable in the test data the encoded fea-
ture will not be a useful predictor of the dependent variable. To avoid this issue, Ordered
Target Statistics is a technique for ensuring that the encoded value for a categorical fea-
ture of a given instance is derived from other instances. Put another way, the encoded
value of a categorical feature is not allowed to be calculated from the label it appears
with. This makes it impossible for the encoded feature value of the instance to be directly
related to the value of the dependent variable. This is a protection against what Prok-
horenkova et al. call “target leakage”.

The five ensemble techniques we employ here lend robustness to our experimen-
tal design. Using different learners allows us to rule out the possibility that patterns we
see in the results are due to the peculiarities of one model. ET and Random Forest are
enhancements to Breiman’s Bagging technique. XGBoost, LightGBM, and CatBoost
are enhancements to Freidman’s Gradient Boosting technique. In the next section we
explain how we prepare the data we use as input to these learners.

Data description and preparation
As mentioned in the introduction, the CMS provides the data used in this study. The
most recent CMS data we use in constructing all three datasets first became available in
2021. The latest Part B, Part D, and DMEPOS data all spans the years 2013 through 2019.
Previous studies on Medicare fraud detection use data that covers fewer years. Moreo-
ver, some of the attributes of the latest data are not available in previous studies where
older versions of the Part B, Part D, and DMEPOS are used. For example, in “Leveraging
lightgbm for categorical big data” [36] we report our DMEPOS data has nine features,
whereas one can see in Table 1 our current version of the DMEPOS data has 18 features.
Furthermore, in [36], Part B data is reported to have eight features, and Part D data is
reported to have seven features. In Table 2 we show that the Part B data we use has
16 features, and in Table 3, we show our Part D Data has 9 features. To the best of our
knowledge, we are the first to employ the most recently available data from CMS in a
study.

We use the same process for labeling each of the three datasets with data from the List
of Excluded Individuals and Entities (LEIE) [37]. The United Sates Office of the Inspec-
tor General publishes the LEIE on a monthly basis. If a healthcare provider appears in
the LEIE, this means the provider has been convicted of some activity which prevents

Page 12 of 31Hancock et al. Journal of Big Data (2023) 10:42

the provider from submitting insurance claims to Medicare. Records in the LEIE, Part
B, Part D, and DEMEPOS data sources have a National Provider ID (NPI) in common.
There are different types of exclusions that a provider may fall under. The types of exclu-
sions we consider to be indicative of fraud are those identified by Bauder and Khosh-
goftaar [38]. When a provider appears in the LEIE under any of these exclusions, we
label all records belonging to that provider in the Part B, Part D, and DMEPOS data as
fraudulent.

Exclusions have start and end dates. We label all of a provider’s claims data pertaining
to dates prior to the end of the exclusion period as fraudulent. Since the Part B, Part D,
and DMEPOS data consists of records pertaining to entire years, and exclusion periods
end at specific months, we round the end of the exclusion period to the nearest year.
Once a provider’s exclusion period is over, the provider is removed from the LEIE. The
provider may once again submit claims to Medicare, so data that pertains to claims the
provider submits after the end of the exclusion period is labeled as not fraudulent. If one

Table 1 Features of the DMEPOS Dataset

Feature name Description

Rfrg_Prvdr_Crdntls The referring provider’s credentials [example: MD]; categorical, 7,315 distinct
values

Rfrg_Prvdr_Gndr The referring provider’s gender; categorical, three distinct values

Rfrg_Prvdr_Ent_Cd Type of entity [individual or organization] reported in NPPES; categorical, 2
distinct values

Rfrg_Prvdr_Type Derived from the Medicare provider/supplier specialty code reported on all of
the NPI’s Part B non-institutional claims (DMEPOS and non-DMEPOS); categorical,
204 distinct values

Rfrg_Prvdr_Type_Flag A flag variable that indicates the source of the Referring Provider Type; categori-
cal two distinct values

BETOS_Lvl High level grouping of the Berenson-Eggers Type of Service (Berenson-Eggers
Type of Service) Classifications into three groups including Durable Medical
Equipment, Prosthetic and Orthotic Devices, and Drugs and Nutritional Products;
categorical three distinct values

BETOS_Cd The BETOS classification code assigned to the HCPCS Healthcare Common
Procedure Coding System code; categorical, 12 distinct values

BETOS_Desc Description of the HCPCS code for the specific product or service furnished by
the DMEPOS supplier; categorical, 12 distinct values

HCPCS_Cd HCPCS code for the specific product or service furnished by the DMEPOS sup-
plier; categorical, 1337 distinct values

HCPCS_Desc Description of the HCPCS code for the specific product or service furnished by
the DMEPOS supplier; categorical, 1,618 distinct values

Suplr_Rentl_Ind Identifies whether the DMEPOS product/service submitted on the supplier’s
claim is rental or non-rental; categorical 2 distinct values

Tot_Suplrs Number of suppliers rendering DMEPOS products/services ordered by the refer-
ring provider

Tot_Suplr_Benes Number of beneficiaries associated with the supplier DMEPOS products/services
ordered by the referring provider

Tot_Suplr_Clms Number of DMEPOS claims submitted by the supplier, reflecting products/ser-
vices ordered by the referring provider

Tot_Suplr_Srvcs Number of DMEPOS products/services rendered by the supplier

Avg_Suplr_Sbmtd_Chrg Average of the charges that suppliers submit for DMEPOS products/services

Avg_Suplr_Mdcr_Alowd_Amt Average Medicare allowed amounts for the DMEPOS product/service rendered
by suppliers

Avg_Suplr_Mdcr_Pymt_Amt Average amount that Medicare paid suppliers after deductible and coinsurance
amounts have been deducted for the line item DMEPOS product/service

Page 13 of 31Hancock et al. Journal of Big Data (2023) 10:42

is compiling a dataset that spans all the available years, the current LEIE will not contain
records of providers that were in the LEIE previously. Therefore, one should use a utility
such as Internet Archive Tool2 to retrieve previous versions of the LEIE to label older
records of the CMS data.

Table 2 Features of the Part B Dataset

Feature name Description

Rndrng_Prvdr_Crdntls The referring provider’s credentials [example: MD]; categorical, 23,672 distinct
values

Rndrng_Prvdr_Gndr The referring provider’s gender; categorical, three distinct values

Rndrng_Prvdr_Ent_Cd Type of entity [individual or organization] reported in NPPES; categorical, 2
distinct values

Rndrng_Prvdr_Type Derived from the Medicare provider/supplier specialty code reported on
all of the NPI’s Part B non-institutional claims (DMEPOS and non-DMEPOS);
categorical, 204 distinct values

Rndrng_Prvdr_Mdcr_Prtcptg_Ind Identifies whether the provider participates in Medicare and/or accepts
assignment of Medicare allowed amounts; categorical two distinct values

HCPCS_Cd HCPCS code used to identify the specific medical service furnished by the
provider; categorical 7,738 distinct values

HCPCS_Desc Description of the HCPCS code for the specific medical service furnished by
the provider; categorical, 8,252 distinct values

HCPCS_Drug_Ind Identifies whether the HCPCS code for the specific service furnished by the
provider is a HCPCS listed on the Medicare Part B Drug Average Sales Price
(ASP) File; categorical, two distinct values

Place_Of_Srvc Identifies whether the place of service submitted on the claims is a facility
(value of ‘F’) or non-facility (value of ‘O’); categorical two distinct values

Tot_Benes Number of distinct Medicare beneficiaries receiving the service for each
Rndrng_NPI, HCPCS_Cd, and Place_Of_Srvc

Tot_Srvcs Number of services provided; note that the metrics used to count the num-
ber provided can vary from service to service

Tot_Bene_Day_Srvcs Number of distinct Medicare beneficiary/per day services

Avg_Sbmtd_Chrg Average of the charges that the provider submitted for the service

Avg_Mdcr_Alowd_Amt Average of the Medicare allowed amount for the service

Avg_Mdcr_Pymt_Amt Average amount that Medicare paid after deductible and coinsurance
amounts have been deducted for the line item service

Avg_Mdcr_Stdzd_Amt Average amount that Medicare paid after beneficiary deductible and
coinsurance amounts have been deducted for the line item service and after
standardization of the Medicare payment has been applied

Table 3 Features of the Part D Dataset

Feature name Description

Prscrbr_Type Derived from the Medicare provider/supplier specialty code; categorical, 249 distinct values

Prscrbr_Type_Src Source of the Medicare provider/supplier specialty code; categorical, 2 distinct values

Brnd_Name Brand name (trademarked name) of the drug filled; categorical, 3,907 distinct values

Gnrc_Name A term referring to the chemical ingredient of a drug rather than the trademarked brand
name under which the drug is sold; categorical, 22,72 distinct values

Tot_Clms The number of Medicare Part D claims

Tot_30day_Fills The aggregate number of Medicare Part D standardized 30-day fills

Tot_Day_Suply The aggregate number of day’s supply for which this drug was dispensed

Tot_Drug_Cst The aggregate drug cost paid for all associated claims

Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one claim for the drug

2 http:// archi ve. org/ web.

http://archive.org/web

Page 14 of 31Hancock et al. Journal of Big Data (2023) 10:42

The dataset we derive from the DMEPOS data is the smallest, containing 12,215,370
instances. The original fraction of minority instances in the DMEPOS data is 0.0044.
The data pertains to three classes of healthcare expenditures: durable medical equip-
ment, prosthetics orthotics and supplies, and drugs and nutrition-related products. The
DMEPOS data has a HCPCS code feature that identifies the expenditure item precisely.
Each record in the DMEPOS data is a summary of insurance claims the provider sent to
Medicare for the item identified by the HCPCS code for the year. Please see Table 1 for
descriptions of the elements of the DMEPOS data we use. The descriptions of the fea-
tures are copied from the DMEPOS data dictionary [39]. We augment the descriptions
with information on the categorical features in the DMEPOS data. Any feature that we
document as categorical is encoded with CatBoost encoding during experiments. In the
DMEPOS data, as well as data for other parts of the program, there are several attributes
that are not suitable for Machine Learning. These are attributes that pertain to the iden-
tity of providers, but provide no description of their activities or practices. These are the
National Provider ID and other attributes related to the providers’ address.

The next largest dataset we use is compiled from the Part B data. The Part B data
describes treatments and procedures that a provider performs for patients. One record
of the Part B data represents a summary of all the times a provider rendered a particu-
lar treatment or procedure for their patients for the year. The treatment or procedure is
identified by the HCPCS code listed in the record. Table 2 contains names and descrip-
tions of elements of the Part B data we use in this study. We copy the definitions from
the Part B data dictionary [40], and add additional information about the number of pos-
sible values for categorical features. Our strategy for adopting elements of the Part B
data is similar to the one we employ for the DMEPOS data. We discard the NPI and
location data that would serve as the equivalent of a unique identifier for the provider.
The final number of instances we obtain for the Part B data is 67,856,547. The fraction of
instances of the minority class in the Part B data is 0.0019.

The Part D data comprises the largest of the three datasets that we work with. The
Part D data pertains to medications that providers prescribe for their patients. A record
of the Part D data relates to one particular medication that a provider prescribed for
patients for 1 year. As with the DMEPOS and Part B data, we discard the NPI and loca-
tion data that could interfere with a Machine Learning Model’s ability to generalize.
Table 3 summarizes all the Part D data elements we use in this study. Similar to Tables 1
and 2, we copy data definitions from the Part D data dictionary [41], and augment them
with information on distinct values of categorical features. Our finalized version of the
Part D data contains 173,677,665 records. The fraction of instances in the minority class
in the Part D data is 0.0039.

Methodology
To perform experiments, we run programs that train Machine Learning models. Then
we employ the trained models to classify the DMEPOS, Part B, or Part D data. The pro-
grams are implemented in the Python language [42]. We rely on publicly available, open
source libraries to provide implementations of the all classifiers used in this study. One
may install any one of them using the standard Python package manager. This lends to
the reproducibility of our work.

Page 15 of 31Hancock et al. Journal of Big Data (2023) 10:42

Due to the stochastic nature of Machine Learning algorithms (learners), in our exper-
iments we do ten iterations of five-fold cross validation. We use unique seeds for the
random number generators involved in the experiments to ensure unique initial condi-
tions for every experiment. One round of fivefold cross validation produces one experi-
mental outcome, consisting of an AUC value and an AUPRC value. We average these
values across the five rounds and ten iterations. Therefore, Scikit-learn [43] is another
library that is vital to the success of our work. It provides functions for performing five-
fold cross validation and calculating the AUC and AUPRC metrics after classification is
completed.

We use CatBoost encoding [44] for all learners except LightGBM since LightGBM has
a built-in function for encoding categorical data. The CatBoost Encoder is another pub-
licly available, open source library one can easily install with a Python package manager.
We opted for a general purpose encoding method, since the focus of our study is on
RUS and performance metrics. For a study on special purpose encoding techniques in
the Medicare fraud detection application domain, please see [45]. The function of the
CatBoost Encoder is to convert categorical features to floating point numbers, so they
are suitable for use with the learners. The CatBoost encoder must be fit to data before it
can be used to encode features. One must take care to fit the encoder to the training data
only. Otherwise, the encoded features will contain information about the test data that
may cause learners to overfit to the dataset, and yield unrealistically high performance
metrics. This is commonly known as target leakage.

After encoding categorical features, before starting classification, we apply RUS to
change the class ratio to induce one of the five minority:majority class ratios, 1:1, 1:3,
1:9, 1:27 and 1:81. During our literature review, we found most studies where RUS is
applied utilize the 1:1 class ratio. This is our motivation for selecting it. We arrive at the
remaining class ratios by iteratively tripling the size of the majority class. As a baseline
for determining the effect of RUS, we also perform experiments where we leave the class
ratio unchanged. We apply RUS to the training data only. Class ratios of the test data are
left unchanged.

We use GPU implementations of Random Forest, XGBoost and CatBoost. In pre-
liminary experiments we found the GPU implementations of these learners to be much
faster than their CPU implementations. We attempted to use the GPU implementation
of LightGBM, but we found the built-in encoding for Categorical features when run on
GPUs is not compatible with high-cardinality categorical data. To the best of our knowl-
edge, we are the first to apply a GPU implementation of Random Forest to the task of
Medicare fraud detection in a study. The version Random Forest we use is part of the
CuML library.3

Also, to the best of our knowledge, we are the first to apply the ET classifier to the
task of automated Medicare fraud detection in a peer-reviewed study. ET is available
as a component of the Scikit-learn library. Due to the robustness of results ET yields,
we recommend it for use in future studies involving imbalanced Big Data. We did not
find a GPU implementation of ET that is suitable for working with datasets as large
as the ones we work with here. Since ET is based on Random Forest, one avenue for

3 https:// docs. rapids. ai/ api/ cuml/ stable/ api. html# random- forest.

https://docs.rapids.ai/api/cuml/stable/api.html#random-forest

Page 16 of 31Hancock et al. Journal of Big Data (2023) 10:42

future research is to modify the CuML implementation of Random Forest to produce
a GPU implementation of ET. Therefore, for our experiments we use a CPU imple-
mentation of ET.

In preliminary experiments, we found maximum tree depth to be an important
hyperparameter to optimize in order to obtain the best results. The Scikit-learn
implementations of Random Forest and ET have unlimited maximum tree depth
as a default setting. We saw that these classifiers were initially outperforming Cat-
Boost and XGBoost. According to their current on-line documentation, CatBoost and
XGBoost both have a default maximum tree depth of 6 [46, 47]. We found it neces-
sary to raise the maximum tree depth of CatBoost to 16 and the maximum tree depth
of XGBoost to 24 in order to obtain the best results. The largest value for maximum
tree depth that CatBoost will currently permit is 16. Due to resource limitations, we
were not able to successfully execute experiments with XGBoost where the maximum
tree depth was set to a value greater than 24. Table 4 contains the values of all the
changed hyperparameter settings we use in our experiments. Hyperparameter values
listed were discovered after doing tuning experiments. Hence, they represent the best
settings we discovered for each classifier. We did not find it necessary to modify any
hyperparameter settings for ET.

Our experiments are all executed in a distributed computing platform as batch pro-
cesses. The nodes available to us on the platform have Intel Xeon Central Processing
Units (CPUs) with 16 cores, 256 GB RAM per CPU and Nvidia V100 GPUs. A single
node has sufficient resources to run any experiment covered here.

Table 4 Changed hyperparameter settings

Classifier/

Hyperparameter Setting Description

CatBoost

task_type GPU Use GPU(s) for execution

devices 0 GPU device ID

max_ctr_complexity 1 Maximum number of features to combine

max_depth 16 Maximum tree depth

n_estimators 100 Number of trees in ensemble

XGBoost

tree_method gpu_hist Use GPU(s) for execution

gpu_id 0 GPU device ID

n_estimators 100 Number of trees in ensemble

max_depth 24 Maximum tree depth

LightGBM

num_threads 64 Maximum number of execution threads

Random Forest

max_depth 32 Maximum tree depth

n_streams 8 Number of simultaneous GPU streams
active during the fit phase

Page 17 of 31Hancock et al. Journal of Big Data (2023) 10:42

Results
We report AUC and AUPRC scores for classification results. The values for AUC and
AUPRC reported here are mean values computed by averaging 50 experimental out-
comes. One round of fivefold cross validation yields one experimental outcome consist-
ing of one AUC and AUPRC score. Since we do 10 iterations of five-fold cross validation,
we obtain 50 instances of each metric. We report the same data in graphical and tabular
form. The graphical form shows relative performance and the trend in results as the size
of the majority class is increased. In addition, we provide the data in tabular form along
with standard deviations to give a sense of the spread of AUC and AUPRC scores over
the ten iterations of five-fold cross validation.

As stated previously in the section on methodology, we apply RUS to induce a class
ratio in the training data. We do not alter the class ratio in the test data. Therefore,
scores one sees reported in this section are results for classifying data sampled from its
original class ratio. Put another way, models are trained on data with RUS applied, and
only evaluated on test data with the original class ratio.

The first results we report are the AUC and AUPRC scores the five classifiers yield for
classifying the DMEPOS data. We provide plots of AUC and AUPRC scores in Fig. 1.

Fig. 1 DMEPOS Data: AUC Scores (left) and AUPRC scores (right)

Table 5 DMEPOS mean and standard deviation of AUC with varying levels of RUS (10 iterations of
fivefold cross-validation)

Standard deviations are below AUC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.87070 0.91952 0.98862 0.97944 0.96163

(0.00145) (0.00134) (0.00059) (0.00077) (0.00082)

1:3 0.87610 0.92829 0.98874 0.98732 0.97472

(0.00161) (0.00108) (0.00072) (0.00067) (0.00082)

1:9 0.87922 0.92575 0.98774 0.98933 0.98175

(0.00169) (0.00152) (0.00095) (0.00069) (0.00060)

1:27 0.88011 0.91607 0.98536 0.98992 0.98511

(0.00165) (0.00174) (0.00111) (0.00069) (0.00066)

1:81 0.87140 0.90471 0.98207 0.98977 0.98549

(0.00241) (0.00192) (0.00124) (0.00063) (0.00074)

Unchanged 0.85223 0.89143 0.97917 0.98959 0.98453

(0.00492) (0.00207) (0.00113) (0.00069) (0.00104)

Page 18 of 31Hancock et al. Journal of Big Data (2023) 10:42

Table 6 DMEPOS mean and standard deviation of AUPRC with varying levels of RUS (10 iterations of
fivefold cross-validation)

Standard deviations are below AUPRC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.06233 0.08935 0.92987 0.21863 0.32763

(0.00319) (0.00453) (0.00267) (0.00823) (0.01293)

1:3 0.07842 0.13984 0.93779 0.49056 0.47900

(0.00294) (0.00422) (0.00258) (0.00875) (0.01033)

1:9 0.09192 0.17826 0.94208 0.74880 0.60368

(0.00305) (0.00497) (0.00265) (0.00968) (0.00678)

1:27 0.09788 0.19499 0.94493 0.87928 0.72180

(0.00404) (0.00510) (0.00267) (0.00534) (0.00474)

1:81 0.08387 0.19489 0.94710 0.91788 0.80715

(0.00566) (0.00508) (0.00301) (0.00324) (0.00387)

Unchanged 0.07531 0.17815 0.94866 0.92811 0.83319

(0.00752) (0.00474) (0.00213) (0.00316) (0.00547)

Fig. 2 Part B Data: AUC scores (left) and AUPRC scores (right)

Table 7 Part-B mean and standard deviation of AUC with varying levels of RUS (10 iterations of
fivefold cross-validation)

Standard deviations are below AUC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.90846 0.93072 0.99316 0.98621 0.97534

(0.00086) (0.00087) (0.00039) (0.00039) (0.00039)

1:3 0.91054 0.93427 0.99323 0.99219 0.98404

(0.00078) (0.00089) (0.00037) (0.00028) (0.00038)

1:9 0.91087 0.93028 0.99259 0.99394 0.98849

(0.00102) (0.00101) (0.00041) (0.00025) (0.00043)

1:27 0.90664 0.92148 0.99085 0.99443 0.99050

(0.00241) (0.00127) (0.00041) (0.00032) (0.00041)

1:81 0.89803 0.91200 0.98764 0.99458 0.99069

(0.00530) (0.00104) (0.00051) (0.00028) (0.00048)

Unchanged 0.88554 0.89698 0.98118 0.99436 0.98862

(0.00542) (0.00121) (0.00080) (0.00033) (0.00051)

Page 19 of 31Hancock et al. Journal of Big Data (2023) 10:42

Table 8 Part-B mean and standard deviation of AUPRC with varying levels of RUS (10 iterations of
fivefold cross-validation)

Standard deviations are below AUPRC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.04621 0.05853 0.93517 0.15584 0.26342

(0.00253) (0.00238) (0.00209) (0.00419) (0.01037)

1:3 0.06426 0.08606 0.94335 0.38531 0.42815

(0.00217) (0.00236) (0.00160) (0.00786) (0.00815)

1:9 0.07818 0.11695 0.94563 0.67304 0.56271

(0.00513) (0.00224) (0.00129) (0.00795) (0.00532)

1:27 0.06664 0.14166 0.94682 0.85988 0.70862

(0.00761) (0.00309) (0.00155) (0.00376) (0.00746)

1:81 0.06128 0.15084 0.94758 0.92030 0.80848

(0.01261) (0.00299) (0.00150) (0.00167) (0.00270)

Unchanged 0.06768 0.13607 0.94990 0.93947 0.90510

(0.01071) (0.00254) (0.00162) (0.00156) (0.00182)

Fig. 3 Part D Data: AUC scores (left) and AUPRC scores (right)

Table 9 Part-D mean and standard deviation of AUC with varying levels of RUS (10 iterations of
fivefold cross-validation)

Standard deviations are below AUC scores in parenthesis

Class ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.76230 0.77169 0.97625 0.95292 0.93523

(0.00067) (0.00075) (0.00033) (0.00059) (0.00046)

1:3 0.76326 0.77125 0.97586 0.96809 0.95465

(0.00060) (0.00074) (0.00038) (0.00045) (0.00024)

1:9 0.76317 0.76571 0.97464 0.97256 0.96476

(0.00055) (0.00080) (0.00038) (0.00037) (0.00040)

1:27 0.76279 0.75888 0.97244 0.97363 0.96868

(0.00060) (0.00062) (0.00037) (0.00037) (0.00030)

1:81 0.76212 0.75329 0.96966 0.97348 0.96963

(0.00064) (0.00089) (0.00035) (0.00039) (0.00037)

Unchanged 0.76085 0.74847 0.96746 0.97273 0.96996

(0.00081) (0.00076) (0.00038) (0.00042) (0.00031)

Page 20 of 31Hancock et al. Journal of Big Data (2023) 10:42

Due to space limitations, we use the following abbreviations for classifier names in
Tables 5, 6, 7, 8, 9, 10 and figures in this section. Classifier names are abbreviated as fol-
lows: CatBoost with maximum tree depth set to 16: CB-16, LightGBM: LGB, Extremely
Randomized Trees: ET, and the GPU implementation of Random Forest with maximum
tree depth set to 32 RF-GPU-32. In Fig. 1 one may notice some facts that hold for other
data as well. Mean AUC scores are high, and show little impact of RUS as the size of the
majority class increases. However, there is more variance in results in terms of the mean
AUPRC metric. ET yields consistently strong performance as RUS is applied to make the
majority class larger in the training data. Random Forest and XGBoost yield better per-
formance in terms of AUPRC when we apply RUS to make the size of the majority class
larger. CatBoost and LightGBM yield relatively poor performance in terms of AUPRC
regardless of how RUS changes.

Next, we report results for classifying the Part B data, starting with Fig. 2. Results are
similar to those we obtain for the DMEPOS data. Again, all classifiers show strong per-
formance in terms of mean AUC. However, the mean AUPRC scores reveal a different
picture altogether. Consistent with results for DMEPOS, we see ET yields consistently
strong AUPRC scores. XGBoost and Random Forest AUPRC scores appear to be in some
direct proportion with the size of the majority class in the training data. Also in keeping
with their performance in classifying the DMEPOS data, LightGBM and CatBoost yield
low AUPRC scores for any level of RUS.

Finally, we report classification results for Part D data. We notice in Fig. 3 that while
mean AUC scores are high, with the larger dataset there is a bifurcation of performance
in terms of AUC. XGBoost, ET, and Random Forest yield AUC scores that appear
noticeably higher than those of LightGBM and CatBoost. For classifying the Part D data,
mean AUPRC scores are generally lower than those we see for the Part B or DMEPOS
data. However, the same pattern we saw in the results for the Part B and DMEPOS data
appears again in the Part D data; ET yields consistently high results, Random Forest and
XGBoost scores improve as we apply RUS to increase the size of the majority class, and
LightGBM and CatBoost yield low scores relative to the other classifiers.

Table 10 Part-D mean and standard deviation of AUPRC with varying levels of RUS (10 iterations of
fivefold cross-validation)

Standard deviations are below AUPRC scores in parenthesis

Class Ratio LGB CB-16 ET XGB-24 RF-GPU-32

1:1 0.01567 0.01766 0.83614 0.11168 0.20205

(0.00015) (0.00020) (0.00307) (0.00158) (0.00322)

1:3 0.01724 0.02096 0.88826 0.32721 0.32806

(0.00016) (0.00021) (0.00181) (0.00572) (0.00322)

1:9 0.01910 0.02451 0.91341 0.58986 0.45801

(0.00025) (0.00035) (0.00103) (0.00571) (0.00312)

1:27 0.02095 0.02736 0.92451 0.70815 0.56448

(0.00031) (0.00039) (0.00080) (0.00375) (0.00195)

1:81 0.02203 0.02818 0.92925 0.74950 0.63787

(0.00030) (0.00044) (0.00073) (0.00335) (0.00283)

Unchanged 0.02294 0.02651 0.93288 0.76105 0.71047

(0.00037) (0.00054) (0.00073) (0.00406) (0.00169)

Page 21 of 31Hancock et al. Journal of Big Data (2023) 10:42

We find AUPRC scores for CatBoost and LightGBM to be surprisingly low. As a val-
idation step, we performed one additional experiment. We wrote a separate program,
completely independent of the program that produced the results above, and we per-
formed an experiment where we trained XGBoost, CatBoost and LightGBM on 80% of
the shuffled Part B data without RUS, and use 20% of the shuffled Part B without RUS
data as a test set. We then calculated the AUC and AUPRC scores for the three classi-
fiers, and obtained results that align with the previous results we report here. In that
experiment, CatBoost yields an AUC score of 0.89744, and an AUPRC score of 0.14076,
XGBoost yields an AUC score of 0.99407, and an AUPRC score of 0.93796, LightGBM
yields and AUC score of 0.87017, and an AUPRC score of 0.07413. We include these
results to show due diligence in ruling out any software bugs causing the extreme differ-
ences in AUPRC scores we report.

Statistical analysis
In order to make an informed decision on the results of the previous section, we apply
statistical analysis in the form of Analysis of Variance (ANOVA) [48] and Tukey’s Hon-
estly Significant Difference (HSD) [49] tests. The ANOVA tests tell us whether a factor
has a significant effect on experimental outcomes. When the ANOVA test identifies that
a factor has a significant impact, we can then perform an HSD test to rank the levels of
the factor in terms of its impact on experimental outcomes. Here, the outcome is either
an AUC score or an AUPRC score. For all statistical tests, we use a significance level of
α = 0.01.

The first outcome we perform analysis for is the AUC score. This is analysis of the vari-
ance in AUC scores for all classifiers, all datasets, and all levels of RUS. In all ANOVA
tables we present, CLF indicates the classifier factor, RUS indicates the Random Under-
sampling factor, and Size indicates the number of instances in the dataset before RUS
is applied. Please see Table 11 for the ANOVA test results. Since the Pr(>F), or p-val-
ues associated with each factor are practically zero, we conclude that all factors have

Table 11 ANOVA for RUS, CLF and Size as factors of performance in terms of AUC

* Indicates value is less than 1× 10−4 , † indicates value is less than 1× 10−2

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.06 0.01 14.21 *

CLF 4 16.97 4.24 4832.58 *

Size 2 4.70 2.35 2673.69 *

Residuals 4488 3.94 †

Table 12 HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:9, 1:3, 1:27

Group ab consists of: 1:81

Group bc consists of: 1:1

Group c consists of: Unchanged

Page 22 of 31Hancock et al. Journal of Big Data (2023) 10:42

a significant effect on experimental outcomes. Therefore, we can conduct HSD tests to
rank the levels of each factor in terms of its impact on AUC score.

HSD test results separate factors into groups such that levels of a factor that have a
similar impact on performance are placed into the same group. The group that is asso-
ciated with the highest value of the experimental outcome is labeled as group ‘a’, lower
ranked groups are labeled with letters that follow in alphabetical order. If there is overlap
in the performance associated with two groups, then overlapping groups will be labeled
with letters in common. For example, in Table 12, the results for the 1:1 level of the RUS
factor are placed in group ‘ab’, and results for the 1:81 level of the RUS factor are placed
in group ‘bc’. This implies the intersection of confidence intervals for AUC scores associ-
ated with these levels of RUS overlap.

The HSD test results in Table 12 show that applying RUS to induce class ratios of 1:9,
1:3, or 1:27 yields the best performance. This is important to bear in mind, since the
HSD tests for the impact of RUS on AUPRC scores will show there is a negative impact
on performance.

The next HSD test we undertake is to determine which classifier yields the best perfor-
mance. The results here are processed for all datasets, and all levels of RUS. Here we see
ET and XGBoost yield the best performance (Tables 13, 14).

The final HSD test we can conduct is for the size factor. We have three datasets of
varying size. The HSD test results do not reveal a trend on the impact of size. We see
that the best AUC scores are associated with the medium size, Part B, dataset. However,
the second best AUC scores are associated with the small size, DMEPOS dataset. Finally,
the lowest AUC scores are coupled with the largest, Part D dataset.

Table 13 HSD test groupings after ANOVA of AUC for the CLF factor

Group a consists of: XGB-24, ET

Group b consists of: RF-GPU-32

Group c consists of: CB-16

Group d consists of: LGB

Table 14 HSD test groupings after ANOVA of AUC for the size factor

Group a consists of: Medium

Group b consists of: Small

Group c consists of: Large

Table 15 ANOVA for RUS, CLF and size as factors of performance in terms of AUPRC

* Indicates value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 44.65 8.93 713.68 *

CLF 4 501.08 125.27 10011.73 *

Size 2 9.62 4.81 384.50 *

Residuals 4488 56.16 0.01

Page 23 of 31Hancock et al. Journal of Big Data (2023) 10:42

Here we begin a series of statistical tests similar to the previous section, only now the
experimental outcome we are analyzing is AUPRC instead of AUC. As is the case with
the previous analysis of AUC scores, results here are obtained by processing experimen-
tal outcome data over all factors: data set size, RUS and classifier, for the Part B, Part
D, and DMEPOS data. The factors in Table 15 are the same as in Table 11. Similar to
Table 11, the Pr(>F) values for all factors in Table 15 are practically zero, which means
each factor has a significant impact on AUPRC scores.

Since all factors have a significant impact on performance, we can conduct a Tukey
HSD test to rank the levels of the factors in terms of their impact on performance. Here
we see a clear relationship between the class ratio and AUPRC scores. The HSD results
in Table 16 show that models built with larger number of majority class instances in the
training data are associated with higher AUPRC scores. Since the results here are for
AUPRC scores averaged across all datasets and learners, they imply that in general, RUS
to induce a class ratio any larger than 1:81 yields worse performance in terms of AUPRC.

Next we report the results of the HSD test to rank the classifier factor. In keeping with
the previous results for performance in terms of AUC, ET and XGBoost are associated
with the best performance. However, we see in Table 17 that for performance in terms of
AUPRC, ET is in a class by itself. ET and XGBoost are grouped together for best perfor-
mance in terms of AUC.

Interestingly, for performance in terms of AUPRC, we see there is a trend in the size of
the dataset and performance in terms of AUPRC. The smallest dataset is associated with
the best performance in terms of AUPRC, as Table 18 reveals. Intuitively, the smallest
dataset has the smallest negative class size. This could make it so there are fewer false

Table 16 HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: Unchanged, 1:81

Group b consists of: 1:27

Group c consists of: 1:9

Group d consists of: 1:3

Group e consists of: 1:1

Table 17 HSD test groupings after ANOVA of AUPRC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 18 HSD test groupings after ANOVA of AUPRC for the size factor

Group a consists of: Small

Group b consists of: Medium

Group c consists of: Large

Page 24 of 31Hancock et al. Journal of Big Data (2023) 10:42

positives to bring down the precision score. It is an interesting question for future work
as to whether we might see less of an impact of RUS on performance in terms of AUPRC
for small imbalanced datasets than large imbalanced datasets.

Now we move on to analyze the effect of classifier and RUS on experimental outcomes
for individual datasets. The first dataset we report on is the DMEPOS dataset. First we
present the ANOVA table for the analysis of the variance in AUC scores that the classi-
fier and RUS factors contribute to experimental outcomes. The ANOVA test results in
Table 19 show both RUS and classifier factors have a significant impact on AUC scores.

Since both the choice of classifier and RUS have a significant impact on experimental
outcomes, we can rank both factors with HSD test. The first test we do is to rank the
RUS factors. The result of the HSD test is in Table 20. Similar to the previous case where
we looked at the impact of RUS across all three datasets, we see that for the DMEPOS
data, RUS to induce class ratios of 1:9, 1:27, and 1:3 yield the best performance in terms
of AUC.

Table 19 ANOVA for RUS and CLF as factors of performance in terms of AUC

*Indicates the Pr(>F) value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.03 0.01 132.89 *

CLF 4 3.26 0.82 16241.00 *

Residuals 1490 0.07 0.00

Table 20 HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:9, 1:27, 1:3

Group b consists of: 1:81

Group c consists of: 1:1

Group d consists of: Unchanged

Table 21 HSD test groupings after ANOVA of AUC for the CLF factor

Group a consists of: XGB-24

Group b consists of: ET

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 22 ANOVA for RUS and CLF as factors of performance in terms of AUPRC

*Indicates value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 14.37 2.87 260.65 *

CLF 4 161.84 40.46 3669.03 *

Residuals 1490 16.43 0.01

Page 25 of 31Hancock et al. Journal of Big Data (2023) 10:42

Next we rank the classifiers in terms of their impact on AUC scores when classify-
ing the DMEPOS data. This ranking is in Table 21. In this case XGBoost is the top
performer; however, the pattern that the two best classifiers are XGBoost and ET con-
tinues to hold.

Here we take a look at how the RUS and classifier factors influence the outcome
of DMEPOS classification as measured by the AUPRC score. The ANOVA results
recorded in Table 22 show both factors have a significant impact on AUPRC scores.
Therefore, HSD tests are worthwhile to conduct.

The impact of RUS on AUPRC scores for the classification of DMEPOS data is simi-
lar to what we find for the classification over all datasets. The outcome of the HSD
test is reported in Table 23. We see not applying RUS at all, and applying it to induce
class ratios of 1:81 or 1:27 does not yield a significant difference in the best possible
results.

Table 23 HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: Unchanged, 1:81, 1:27

Group b consists of: 1:9

Group c consists of: 1:3

Group d consists of: 1:1

Table 24 HSD test groupings after ANOVA of AUPRC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 25 ANOVA for RUS and CLF as factors of performance in terms of AUC

*Indicates the value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.03 0.01 160.56 *

CLF 4 2.21 0.55 13222.85 *

Residuals 1490 0.06 0.00

Table 26 HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:9, 1:3

Group b consists of: 1:27

Group c consists of: 1:1

Group d consists of: 1:81

Group e consists of: Unchanged

Page 26 of 31Hancock et al. Journal of Big Data (2023) 10:42

Next we take a look at the impact of the choice of classifier on AUPRC scores for the
classification of DMEPOS data. The result of the HSD test in Table 24 reflects the trend
that XGBoost and ET yield the best performance.

Here we start the analysis of results for classification of the Part B data. Table 25 con-
tains the results of the ANOVA test for the impact of the classifier and RUS factors on
AUC scores recorded for classification of the Part B data. Since the Pr(>F) values for
both factors are both practically zero, we conclude both factors have a significant impact
on AUC scores.

Since the ANOVA test results in Table 25 show RUS has a significant impact, we con-
duct an HSD test to determine which level of RUS is associated with the best perfor-
mance. The result of the HSD test is in Table 26. The HSD test results for all datasets and
the DMEPOS dataset associate RUS at the 1:27 level with the best performance. How-
ever, for the Part B data, we see that 1:3 and 1:9 are associated with the best performance.

In Table 27 we have the results of the HSD test for the classifier factor. In keeping with
their performance across all datasets, and the DMEPOS dataset, ET and XGBoost are
the two best performing classifiers.

Now we come to the analysis of classification results for the Part B data. To start the
analysis of the impact of RUS and classifier on the AUPRC scores we recorded in our
experiments with the Part B data, we ran an ANOVA test. The outcome of the ANOVA
test is listed in Table 28. Since the Pr(>F) values are very small, we conclude both the
RUS and CLF factors have a significant impact on AUPRC scores.

Table 27 HSD test groupings after ANOVA of AUC for the CLF factor

Group a consists of: XGB-24

Group b consists of: ET

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 28 ANOVA for RUS and CLF as factors of performance in terms of AUPRC

*Indicates the values is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 18.29 3.66 242.75 *

CLF 4 171.20 42.80 2839.60 *

Residuals 1490 22.46 0.02

Table 29 HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: Unchanged

Group ab consists of: 1:81

Group b consists of: 1:27

Group c consists of: 1:9

Group d consists of: 1:3

Group e consists of: 1:1

Page 27 of 31Hancock et al. Journal of Big Data (2023) 10:42

Since the ANOVA test shows RUS has a significant effect on AUPRC scores, we can
use an HSD test to rank levels of the RUS factor. This will determine which level of
RUS yields the best performance. For the Part B data, we see not applying RUS yields
the best performance. This result is recorded in Table 29.

The ANOVA test also shows that the classifier has a significant impact on AUPRC
scores for the classification of Part B data. Therefore, we conduct an HSD test to rank
the classifiers. In Table 30 we have the now-familiar results of ET doing the best in
terms of AUPRC scores, and XGBoost coming in second.

Here we begin the analysis of results for the largest of the three datasets, the Part
D data. The first set of results we analyze is for the AUC scores recorded for experi-
ments in classifying the Part D data. The resulting ANOVA table is Table 31. It shows
that both RUS and classifier choice have a significant impact on performance.

Table 30 HSD test groupings after ANOVA of AUPRC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: CB-16

Group e consists of: LGB

Table 31 ANOVA for RUS and CLF as factors of performance in terms of AUC

*Indicates the value is less than 1× 10−4 , †indicates the value is less than 1× 10−3

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.01 0.00 45.53 *

CLF 4 15.21 3.80 72803.06 *

Residuals 1490 0.08 †

Table 32 HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:9

Group ab consists of: 1:27, 1:3

Group bc consists of: 1:81

Group c consists of: Unchanged

Group d consists of: 1:1

Table 33 HSD test groupings after ANOVA of AUC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: LGB, CB-16

Page 28 of 31Hancock et al. Journal of Big Data (2023) 10:42

Since the ANOVA test shows that RUS has a significant impact, we can rank the RUS
factors by their effect on AUC scores. In Table 32 we see only the 1:9 RUS level is associ-
ated with the best performance.

The ANOVA test result for the classifier factor also implies that it has a significant
impact on AUC scores. Interestingly, in Table 33 we see that ET is associated with the
best performance in terms of AUC. For other datasets, and across all datasets, XGBoost
is associated with the best performance.

The last statistical analysis we perform is for the effect of RUS and classifier on AUPRC
scores for the classification of the Part D data. The outcome of the ANOVA test is listed
in Table 34. The results show both factors have a significant impact on AUPRC scores.

Table 35 shows that not applying RUS yields the best AUPRC scores. This is consistent
with results for other datasets. We see consistently that other levels of RUS are associ-
ated with lower AUPRC scores for other datasets.

The HSD result for the effect of the classifier on AUPRC scores is in Table 36. As the in
cases of other datasets, ET is associated with the highest AUPRC scores for classifying
the Part D data as well.

Conclusion
We have presented a thorough review of experiments for Medicare fraud detection in
three highly imbalanced Big Data datasets. The three datasets, DMEPOS, Part B, and
Part D, range in size from about 12 million to 175 million instances. To the best of our

Table 34 ANOVA for RUS and CLF as factors of performance in terms of AUPRC

*Indicates value is less than 1× 10−4

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 12.38 2.48 248.02 *

CLF 4 170.02 42.51 4256.20 *

Residuals 1490 14.88 0.01

Table 35 HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: Unchanged

Group ab consists of: 1:81

Group b consists of: 1:27

Group c consists of: 1:9

Group d consists of: 1:3

Group e consists of: 1:1

Table 36 HSD test groupings after ANOVA of AUPRC for the CLF factor

Group a consists of: ET

Group b consists of: XGB-24

Group c consists of: RF-GPU-32

Group d consists of: CB-16, LGB

Page 29 of 31Hancock et al. Journal of Big Data (2023) 10:42

knowledge, we are the first to present a study on the latest versions of all three datasets.
The original class ratio of the DMEPOS data is 0.0044, Part B data is 0.0019, and the
Part D data is 0.0039. Our primary goal in compiling this study is to show that the AUC
metric does not give a clear signal on the negative impact of RUS in the classification of
highly imbalanced Big Data. RUS is a tempting technique for addressing class imbalance
with Big Data since it lowers resource consumption. However, our results and statistical
analyses show that applying RUS to change class ratios appears to have a positive impact
on AUC scores. At the same time, for some classifiers, we see a significant drop in
AUPRC scores as we apply RUS to make the majority class closer in size to the minority
class. Moreover, we find that although other classifiers yield relatively high AUC scores,
they yield relatively low AUPRC scores, regardless of the level of RUS used.

For highly imbalanced Big Data, we find that the size of the majority class overwhelms
other terms in the calculation of the false positive rate, and therefore hides the detrimen-
tal effect of RUS. This in turn hides the effect of RUS in the calculation of AUC as well.
Since the AUPRC metric involves recall, and not the false positive rate, the impact of
RUS is easier to detect in AUPRC scores. Moreover, as Table 18 illustrates, the size of the
majority class magnifies the impact on AUPRC scores. Therefore, the size of the imbal-
anced dataset is an important consideration when selecting a performance metric. Two
interesting avenues for future work are investigation into whether RUS has a negative
impact on the classification of smaller imbalanced Big Data, and whether there exist any
classifiers that exhibit the same robustness to RUS that ET does.

The choice of classifier has a significant effect on our experimental outcomes. XGBoost
and ET are consistently the best classifiers, both for performance in terms of AUC and
AUPRC. It is interesting to note that were we to select XGBoost and ET on the basis of
their performance in terms of AUC, we would find they both give strong performance for
all levels of RUS. However, the AUPRC scores would more accurately inform which clas-
sifier performs better. Overall, we find ET is the more robust of the two classifiers, since
it is the least impacted by RUS. To the best of our knowledge, we are the first to apply
ET in the domain of Medicare fraud detection. All classifiers appear to do well when
we look at AUC scores. However, when we look at AUPRC scores we see differences in
classifier performance. XGBoost and Random Forest show improved performance as the
class ratio reduces from 1:1 to its original highly imbalanced ratio. CatBoost and Light-
GBM yield relatively poor performance in terms of AUPRC. The ensemble technique for
classifiers does not appear to have an effect on outcome, since LightGBM, CatBoost, and
XGBoost are all GBDT implementations, and Random Forest and ET are applications of
a bagging technique. Moreover, we see the performance of CatBoost and LightGBM, in
terms of AUPRC, appears to diminish also as the size of the dataset increases. Overall,
we see RUS has the smallest effect on ET. We conjecture that ET’s random split selection
makes it robust to the random deletion of instances of the majority class that we perform
when doing RUS. Our results can be summarized as follows: in the classification of the
highly imbalanced Part B, Part D, and DMEPOS Big Data, AUPRC shows that RUS can
have a detrimental effect on performance, whereas AUC does not show this detrimental
effect, and ET’s performance in terms of AUC is more robust to RUS than other learners.

Page 30 of 31Hancock et al. Journal of Big Data (2023) 10:42

Abbreviations
ADASYN Adaptive synthetic sampling technique
ANOVA Analysis of variance
AUC Area Under the Receiver Operating Characteristic Curve
AUPRC Area Under the Precision Recall Curve
CMS Centers for medicare and medicaid services
DMEPOS Durable Medical Equipment Prosthetics Orthotics and Supplies
EFB Exclusive feature bundling
GOSS Gradient based one-side sampling
GPU Graphics processing unit
HSD Honestly significant difference
RUS Random Undersampling
SMOTE Synthetic minority oversampling technique

Acknowledgements
The authors would like to thank the various members of the Data Mining and Machine Learning Laboratory, Florida
Atlantic University, for their assistance with the reviews.

Author contributions
JTH conducted experiments, and wrote the manuscript. JMJ prepared all datasets, and provided reviews and input for
the manuscript. TMK provided oversight of experiments, coordinated research, and provided input for the manuscript.
All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 September 2022 Accepted: 28 March 2023

References
 1. Bekkar M, Djemaa HK, Alitouche TA. Evaluation measures for models assessment over imbalanced data sets. J Inf Eng

Appl. 2013;3:10.
 2. Boyd K, Eng KH, Page CD. Area under the precision-recall curve: point estimates and confidence intervals. In: Joint Euro-

pean Conference on Machine Learning and Knowledge Discovery in Databases. Springer: New York; 2013. p. 451–66.
 3. The Centers for Medicare and Medicaid Services: Medicare Durable Medical Equipment, Devices & Supplies – by Refer-

ring Provider and Service. https:// data. cms. gov/ provi der- summa ry- by- type- of- servi ce/ medic are- durab le- medic al- equip
ment- devic es- suppl ies/ medic are- durab le- medic al- equip ment- devic es- suppl ies- by- refer ring- provi der- and- servi ce 2021.

 4. The Centers for Medicare and Medicaid Services: Medicare Physician & Other Practitioners – by Provider and Service.
https:// data. cms. gov/ provi der- summa ry- by- type- of- servi ce/ medic are- physi cian- other- pract ition ers/ medic are- physi
cian- other- pract ition ers- by- provi der- and- servi ce. 2021.

 5. The Centers for Medicare and Medicaid Services: Medicare Part D Prescribers – by Provider and Drug. https:// data. cms.
gov/ provi der- summa ry- by- type- of- servi ce/ medic are- part-d- presc ribers/ medic are- part-d- presc ribers- by- provi der- and-
drug 2021.

 6. De Mauro A, Greco M, Grimaldi M. A formal definition of big data based on its essential features. Library Review 2016.
 7. Civil Division, U.S. Department of Justice: Fraud Statistics, Overview. https:// www. justi ce. gov/ opa/ press- relea se/ file/

13543 16/ downl oad 2020.
 8. Centers for Medicare and Medicaid Services: 2019 Estimated Improper Payment Rates for Centers for Medicare & Med-

icaid Services (CMS) Programs. https:// www. cms. gov/ newsr oom/ fact- sheets/ 2019- estim ated- impro per- payme nt- rates-
cente rs- medic are- medic aid- servi ces- cms- progr ams 2019.

 9. Bauder RA, Khoshgoftaar TM, Hasanin T. Data sampling approaches with severely imbalanced big data for medicare
fraud detection. In: 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), 2018;137–142.
IEEE

 10. Zuech R, Hancock JT, Khoshgoftaar TM. Detecting web attacks using random undersampling and ensemble learners. J
Big Data. 2021;8(1):1–20.

https://data.cms.gov/provider-summary-by-type-of-service/medicare-durable-medical-equipment-devices-supplies/medicare-durable-medical-equipment-devices-supplies-by-referring-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-durable-medical-equipment-devices-supplies/medicare-durable-medical-equipment-devices-supplies-by-referring-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-physician-other-practitioners/medicare-physician-other-practitioners-by-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-physician-other-practitioners/medicare-physician-other-practitioners-by-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-part-d-prescribers/medicare-part-d-prescribers-by-provider-and-drug
https://data.cms.gov/provider-summary-by-type-of-service/medicare-part-d-prescribers/medicare-part-d-prescribers-by-provider-and-drug
https://data.cms.gov/provider-summary-by-type-of-service/medicare-part-d-prescribers/medicare-part-d-prescribers-by-provider-and-drug
https://www.justice.gov/opa/press-release/file/1354316/download
https://www.justice.gov/opa/press-release/file/1354316/download
https://www.cms.gov/newsroom/fact-sheets/2019-estimated-improper-payment-rates-centers-medicare-medicaid-services-cms-programs
https://www.cms.gov/newsroom/fact-sheets/2019-estimated-improper-payment-rates-centers-medicare-medicaid-services-cms-programs

Page 31 of 31Hancock et al. Journal of Big Data (2023) 10:42

 11. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. Catboost: unbiased boosting with categorical features.
Adva Neural Inf Process Syst. 2018;31:8.

 12. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD ’16 2016. https:// doi. org/ 10. 1145/ 29396 72. 29397 85.

 13. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. Lightgbm: A highly efficient gradient boosting decision tree.
Adva Neural Inf Process Syst. 2017;30:3146–54.

 14. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
 15. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3–42.
 16. Han H, Wang W-Y, Mao B-H. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: Inter-

national Conference on Intelligent Computing. Springer: Berlin; 2005. p. 878–87.
 17. He H, Bai Y, Garcia EA, Li S. Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE Interna-

tional Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008;1322–1328. IEEE
 18. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, et al. Apache

spark: a unified engine for big data processing. Commun ACM. 2016;59(11):56–65.
 19. Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. J R Stat Soc. 1992;41(1):191–201.
 20. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, Freeman J, Tsai D, Amde M, Owen S, et al. Mllib: Machine

learning in apache spark. J Mach Learn Res. 2016;17(1):1235–41.
 21. Hasanin T, Khoshgoftaar TM, Leevy JL, Bauder RA. Severely imbalanced big data challenges: investigating data sampling

approaches. J Big Data. 2019;6(1):1–25.
 22. Kuncheva LI, Arnaiz-Gonzalez A, Díez-Pastor J-F, Gunn IA. Instance selection improves geometric mean accuracy: a study

on imbalanced data classification. Prog Artif Intell. 2019;8(2):215–28.
 23. He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–84.
 24. Sleeman WC IV, Krawczyk B. Multi-class imbalanced big data classification on spark. Knowl-Based Syst. 2021;212: 106598.
 25. Calvert CL, Khoshgoftaar TM. Threshold based optimization of performance metrics with severely imbalanced big

security data. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019. p. 1328–34.
 26. Johnson JM, Khoshgoftaar TM. Medicare fraud detection using neural networks. J Big Data. 2019;6(1):1–35.
 27. Hancock JT, Khoshgoftaar TM. Survey on categorical data for neural networks. J Big Data. 2020;7(1):1–41.
 28. Johnson JM, Khoshgoftaar TM. The effects of data sampling with deep learning and highly imbalanced big data. Inf Syst

Front. 2020;22(5):1113–31.
 29. Apache Software Foundation: Hadoop. https:// hadoop. apache. org.
 30. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the roc plot when evaluating binary classifiers

on imbalanced datasets. PloS one. 2015;10(3):0118432.
 31. Breiman L. Bagging predictors. Machine learning. 1996;24(2):123–40.
 32. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Boca Raton: CRC Press; 1994. p. 5–6.
 33. Hasanin T, Khoshgoftaar TM. The effects of random undersampling with simulated class imbalance for big data. In: 2018

IEEE International Conference on Information Reuse and Integration (IRI), 2018. p. 70–9.
 34. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;34:1189–232.
 35. Hancock JT, Khoshgoftaar TM. Catboost for big data: an interdisciplinary review. J Big Data. 2020;7(1):1–45.
 36. Hancock JT, Khoshgoftaar TM. Leveraging lightgbm for categorical big data. In: 2021 IEEE Seventh International Confer-

ence on Big Data Computing Service and Applications (BigDataService), 2021. p. 149–154.
 37. LEIE: Office of Inspector General Leie Downloadable Databases. https:// oig. hhs. gov/ exclu sions/ index. asp.
 38. Bauder RA, Khoshgoftaar TM. A novel method for fraudulent medicare claims detection from expected payment devia-

tions (application paper). In: 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), 2016. p.
11–19.

 39. The Centers for Medicare and Medicaid Services: Medicare Durable Medical Equipment, Devices & Supplies – by Refer-
ring Provider and Service Data Dictionary. https:// data. cms. gov/ resou rces/ medic are- durab le- medic al- equip ment- devic
es- suppl ies- by- refer ring- provi der- and- servi ce- data- dicti onary 2021.

 40. The Centers for Medicare and Medicaid Services: Medicare Physician & Other Practitioners – by Provider and Service
Data Dictionary. https:// data. cms. gov/ resou rces/ medic are- physi cian- other- pract ition ers- by- provi der- and- servi ce- data-
dicti onary. 2021.

 41. The Centers for Medicare and Medicaid Services: Medicare Part D Prescribers – by Provider and Drug Data Dictionary.
https:// data. cms. gov/ resou rces/ medic are- part-d- presc ribers- by- provi der- and- drug- data- dicti onary 2021.

 42. Van Rossum G, Drake FL. Python/C Api Manual-Python 3. CreateSpace 2009.
 43. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al.

Scikit-learn: Machine learning in python. J Mach Learn Res. 2011;12:2825–30.
 44. McGinnis W. Category Encoders. https:// contr ib. scikit- learn. org/ categ ory_ encod ers/.
 45. Johnson JM, Khoshgoftaar TM. Medical provider embeddings for healthcare fraud detection. SN Computer Sci.

2021;2(4):276.
 46. XGBoost Parameters. XGBoost Developers. https:// xgboo st. readt hedocs. io/ en/ stable/ param eter. html Accessed 9 Jul

2022.
 47. Parameters. Yandex Corporation. https:// catbo ost. ai/ en/ docs/ refer ences/ train ing- param eters/ common. Accessed 9 Jul

2022.
 48. Iversen GR, Norpoth H. Analysis of Variance, vol. 1. Newbury Park: Sage; 1987.
 49. Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949;56:99–114.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2939672.2939785
https://hadoop.apache.org
https://oig.hhs.gov/exclusions/index.asp
https://data.cms.gov/resources/medicare-durable-medical-equipment-devices-supplies-by-referring-provider-and-service-data-dictionary
https://data.cms.gov/resources/medicare-durable-medical-equipment-devices-supplies-by-referring-provider-and-service-data-dictionary
https://data.cms.gov/resources/medicare-physician-other-practitioners-by-provider-and-service-data-dictionary
https://data.cms.gov/resources/medicare-physician-other-practitioners-by-provider-and-service-data-dictionary
https://data.cms.gov/resources/medicare-part-d-prescribers-by-provider-and-drug-data-dictionary
https://contrib.scikit-learn.org/category_encoders/
https://xgboost.readthedocs.io/en/stable/parameter.html
https://catboost.ai/en/docs/references/training-parameters/common

	Evaluating classifier performance with highly imbalanced Big Data
	Abstract
	Introduction
	Related work
	Classification algorithms
	Data description and preparation
	Methodology
	Results
	Statistical analysis
	Conclusion
	Acknowledgements
	References

