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Abstract 

Given a dataset V of points from some metric space, a popular robust formulation 
of the k-center clustering problem requires to select k points (centers) of V which 
minimize the maximum distance of any point of V from its closest center, excluding 
the z most distant points (outliers) from the computation of the maximum. In this 
paper, we focus on an important constrained variant of the robust k-center problem, 
namely, the Robust Matroid Center (RMC) problem, where the set of returned centers 
are constrained to be an independent set of a matroid of rank k built on V. Instantiat-
ing the problem with the partition matroid yields a formulation of the fair k-center 
problem, which has attracted the interest of the ML community in recent years. In this 
paper, we target accurate solutions of the RMC problem under general matroids, when 
confronted with large inputs. Specifically, we devise a coreset-based algorithm afford-
ing efficient sequential, distributed (MapReduce) and streaming implementations. 
For any fixed ε > 0 , the algorithm returns solutions featuring a (3+ ε)-approximation 
ratio, which is a mere additive term ε away from the 3-approximations achievable 
by the best known polynomial-time sequential algorithms. Moreover, the algorithm 
obliviously adapts to the intrinsic complexity of the dataset, captured by its doubling 
dimension D. For wide ranges of k, z , ε,D , our MapReduce/streaming implementations 
require two rounds/one pass and substantially sublinear local/working memory. The 
theoretical results are complemented by an extensive set of experiments on real-world 
datasets, which provide clear evidence of the accuracy and efficiency of our algorithms 
and of their improved performance with respect to previous solutions.

Introduction
Center-based clustering is a crucial primitive for data management. In general terms, 
given a dataset V, a distance function between pairs of points in V, and a value k, a solu-
tion for center-based clustering is a set of k representative points, called centers, which 
induce a partition of V into k subsets (clusters), each containing all points in V closest to 
the same center. One important formulation of center-based clustering is the k-center 
problem, where the set of centers must be chosen as a subset of V which minimizes the 
maximum distance of any point of V to its closest center. It is well known that k-center 
is NP-hard, that it admits a 2-approximation algorithm, and that for any ε > 0 it is not 
(2− ε)-approximable unless P = NP [1].
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Since the k-center objective function involves a maximum, the optimal solution is at 
risk of being severely influenced by a few “distant” points in V, called outliers. In fact, the 
presence of outliers is inherent in many datasets, since these points are often due to arti-
facts or errors in data collection. To cope with this issue, k-center admits the following 
robust formulation that takes into account outliers [2]: given an additional input param-
eter z, when computing the k-center objective function, the z points of V with the largest 
distances from their respective centers are disregarded when taking the maximum.

Some applications may need that the solution of the (robust) k-center problem sat-
isfy additional constraints. For example, the set of centers may be required to be an 
independent set of a given matroid M = (V , I) , where V is the ground set and I is the 
family of independent sets. A robust formulation of the k-center problem under a gen-
eral matroid constraint, referred to as Robust Matroid Center (RMC), has been recently 
studied in [3–5]. Matroid constraints arise naturally in the context of content distribu-
tion networks and facility location [6, 7]. Moreover, the special case of partition matroid 
can be used to model fairness constraints where the points of V are naturally subdivided 
into m ≤ k groups (e.g., demographic groups) and fair solutions to k-center are sought 
which include ki points from the ith group, for given ki ’s such that 

∑m
i=1 ki = k [8, 9]. 

The k-center problem under a matroid constraint is NP-hard, and, for any ε > 0 , it is not 
(2− ε)-approximable unless P = NP [3]. This hardness results hold even for points on a 
line and clearly extend to the robust version RMC as well.

Due to the ever increasing need of efficient tools for analyzing large datasets, it is para-
mount to devise clustering strategies amenable to the typical computational frameworks 
employed for big data processing, such as MapReduce and streaming [10]. Coreset-
based strategies have recently emerged as ideal approaches for big data processing [11]. 
Informally, these strategies entail the (efficient) extraction of a very succinct summary 
T (dubbed coreset) of the dataset V, so that a solution for V can be obtained by running 
(suitable modifications of ) the best sequential algorithm on T. Coreset constructions 
that can be either parallelized or streamlined efficiently, yield scalable and space-effi-
cient algorithms in the big data realm. In this paper, we devise a novel coreset-based 
algorithm for the RMC problem, featuring efficient sequential, distributed and stream-
ing implementations. Our distributed implementation is specified using the MapReduce 
framework which is recognized as one of the reference models for the efficient distrib-
uted processing of large datasets, but it can be immediately ported to other distributed 
frameworks (e.g., the Massively Parallel Computation model (MPC) [12]).

Previous work

For brevity, we only report on the works most closely related to the specific topic of 
this paper, and refer the interested reader to [13] for a more comprehensive overview of 
center-based clustering. The most accurate sequential algorithms to date for the RMC 
problem are the sequential 3-approximations presented in [4, 5], whose running times 
(not explicitly quantified in the papers) are polynomials of likely high degree due to the 
use of dynamic and linear programming. A simpler combinatorial algorithm, more ame-
nable to practical implementation, is the 7-approximation of [3]. All of these algorithms 
are not immediately portable to the MapReduce or streaming settings. A coreset-based 
streaming algorithm for RMC has been recently devised by Kale in [14]. For ε > 0 , the 
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algorithm computes a coreset of size O(k(k + z) log(1/ε)/ε) , which contains a (15+ ε)

-approximate solution, where z is the number of outliers and k is the rank of the matroid. 
This solution can then be extracted from the coreset using exhaustive search in time 
exponential in k. Alternatively, one of the sequential approximation algorithms in [4, 5] 
can be run on the coreset to yield a (51+ ε)-approximate solution. Kale’s strategy tests 
and updates, in parallel, several guesses on the optimal value of the objective function, 
and computes, for each guess, a suitable coreset through an adaptation of the k-center 
streaming strategy in [15].

The special case of RMC with the partition matroid and z = 0 (i.e., without outliers) 
has been recently studied in the context of fair k-center clustering, where the matroid 
constraint is used to enforce that given fractions of the centers be picked from the 
matroid categories. A streaming (3+ ε)-approximation algorithm running in two passes, 
and a distributed (17+ ε)-approximation algorithm running in two rounds and using 
sublinear local memory, are presented in [9], together with results of some experiments 
carried out, however, on very small datasets.

Coreset-based algorithms for the unconstrained (robust) k-center and related prob-
lems, suitable for the MapReduce and streaming settings, can be found in [16–20]. 
Coreset-based techniques have also found applications in other domains, such as graph 
processing [21, 22]. Useful techniques to deal with matroid constraints in big data sce-
narios have been introduced in [23, 24] in the realm of diversity maximization.

To the best of our knowledge, no distributed (e.g., MapReduce) algorithms for the gen-
eral RMC problem have been presented in the open literature.

Our algorithms are analyzed in terms of the doubling dimension [25], which along with 
the VC-dimension [26], the local intrinsic dimensionality [27], the expansion [28], and 
the relative contrast [29] is a useful measure to characterize the behavior of algorithms.

Our contribution

We present a novel coreset-based algorithm for the RMC problem which features an 
approximation ratio close to the best one attainable sequentially, and admits efficient 
sequential, distributed (MapReduce) and streaming implementations, affording a dra-
matic performance improvement over the existing sequential approaches, hence prov-
ing suitable for dealing with massive inputs. By leveraging ideas introduced in [14, 23, 
30], our algorithm makes pivotal use of the unconstrained k-center primitive to extract 
a small coreset T from the ground set V of the input matroid M = (V , I) , with the prop-
erty that the distance between each point of V and the closest point of T is a small frac-
tion of the cost of the optimal solution. In order to cope with the matroid constraint, 
T is built in such a way that for every independent set in I there is a “pointwise close” 
independent set in T. Consequently, T contains a good solution for the original problem 
on V, which can be computed by assigning a suitable multiplicity to each point of T, and 
feeding T to the best-known sequential algorithms for RMC, adapted to take multiplici-
ties into account. The performance of the algorithm is analyzed in terms of the number 
of outliers z, the rank k of matroid M, an accuracy parameter ε capturing the approxima-
tion quality, and the doubling dimension D of the ground set V, a parameter that general-
izes the notion of Euclidean dimension to arbitrary metric spaces.

The main contributions of our paper are the following.
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• A coreset-based RMC algorithm called RobustMatroidCenter that, for any 
fixed ε ∈ (0, 1) , attains an (α + ε)-approximation ratio, where α is the approxima-
tion ratio of the sequential RMC algorithm (generalized to handle multiplicities) 
run on the coreset (Theorem 6).

• A sequential implementation of RobustMatroidCenter, which attains the 
same approximation ratio, and requires time O

(
|V | poly(k , z, (c/ε)D)

)
 , for a suit-

able constant c > 0 . This running time is linear in |V| for a wide range of param-
eters.

• A distributed implementation of RobustMatroidCenter in MapReduce, which 
attains the same approximation ratio, runs in 2 rounds, and requires 
O
(√

|V | poly(k , z)(c/ε)D
)
 memory at each worker, for a suitable constant c > 0 

(Theorem 9). This local memory bound is substantially sublinear in |V| for a wide 
range of parameters.

• A streaming implementation of RobustMatroidCenter which attains the same 
approximation ratio, runs in 1 pass, and uses O

(
poly(k , z)(c/ε)D

)
 working mem-

ory, for a suitable constant c > 0 (Theorem  11). This working memory bound is 
independent of |V|.

• A rich suite of experiments demonstrating the competitiveness of our algorithm, 
both in the distributed and in the streaming setting, when applied to large datasets 
of up to several million points, which are out of reach of the current sequential 
algorithms with best approximation ratios (section "Experiments").

We also show how to adapt the sequential RMC algorithm in [4] to handle multi-
plicities, retaining approximation ratio 3. Therefore, RobustMatroidCenter yields 
a (3+ ε)-approximation in all computational frameworks. In the distributed setting, 
is proved in [9] that an approximation ratio less than 4 for unconstrained k-center 
(hence, for RMC) cannot be achieved with sublinear communication volume. In con-
trast, our MapReduce implementation achieves sublinear communication volume 
(matching the local memory requirement) for low dimensional spaces and small val-
ues of k and z, thus showing that the lower bound can be beaten in these cases.

We remark that, while the analysis is performed in terms of the doubling dimension 
D of V, RobustMatroidCenter is oblivious to the value D, in the sense that this 
value, which is hard to compute and expensive to approximate [31], is not used by the 
algorithm. We also observe that, as it is often the case in dimensionality-aware analy-
ses, time and space requirements exhibit an exponential dependence on D, hence they 
are mostly effective for low-dimensional datasets. Nevertheless, in our experiments 
we did not observe the degradation exponential D suggested by the theory.

Our results improve upon the state of the art as follows.

• We provide the first distributed solution to RMC for general matroids, with an 
approximation guarantee comparable to one of the best sequential algorithm. 
Also, compared to the MapReduce algorithm for fair k-center clustering of [9] 
(i.e., z = 0 and the partition matroid), we improve the approximation ratio from 
(17+ ε) to (3+ ε) , at the expense of a modest memory blow-up, for ground sets of 
low doubling dimension.
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• In the streaming setting, we substantially improve upon the approximations attained 
in [14] for general matroids, by virtue of a different construction strategy that yields 
higher-precision coresets, at the expense of a modest blow-up in the coreset size, for 
ground sets of low doubling dimension. Also, for fair k-center clustering we obtain 
the same approximation ratio of [9] in one pass rather than two.

• To the best of our knowledge, we carry out the first experimentation to date of RMC 
algorithms for general matroids. The experiments demonstrate that confining the 
execution of an expensive accurate sequential strategy to small subsets of the ground 
set, affords the solution of large instances and yields dramatic improvements in run-
ning time, while maintaining roughly the same approximation quality

The rest of the paper is organized as follows. Section "Preliminaries" defines key prop-
erties of matroids, formally defines the RMC problem, and describes the MapReduce 
and streaming computational settings. Algorithm RobustMatroidCenter is pre-
sented and analyzed in section  "Coreset-based strategy for the RMC problem", while 
its MapReduce and streaming implementations are described in section  "MapReduce 
and streaming implementations". The results of the experiments are reported in sec-
tion "Experiments". section "Concluding remarks" closes the paper with some conclud-
ing remarks. Finally, at the end of the paper a technical appendix describes the extension 
of the RMC algorithm of [4] to handle multiplicities, which is needed by our approach.

Preliminaries
Matroids

Let V be a ground set of elements from a metric space with distance function d(·, ·) satis-
fying the triangle inequality. A matroid [32] on V is a pair M = (V , I) , where I is a family 
of subsets of V, called independent sets, satisfying the following properties: (i) the empty 
set is independent; (ii) every subset of an independent set is independent (hereditary 
property); and (iii) if A ∈ I and B ∈ I , and |A| > |B| , then there exist x ∈ A\B such that 
B ∪ {x} ∈ I (augmentation property). An independent set is maximal if it is not properly 
contained in another independent set. A basic property of a matroid M is that all of its 
maximal independent sets have the same size. The notion of maximality can be natu-
rally extended to any subset of the ground set. Namely, for V ′ ⊆ V  , an independent set 
A ⊆ V ′ of maximum cardinality among all independent sets contained in V ′ is called a 
maximal independent set of V ′ , and all maximal independent sets of V ′ have the same 
size. We let the rank of a subset V ′ ⊂ V  , denoted by rank(V ′) to be the size of a maximal 
independent set in V ′ . The rank of the matroid rank(M) is then defined as rank(V). An 
important property of the rank function is submodularity: for any A,B ⊆ V  it holds that 
rank(A ∪ B)+ rank(A ∩ B) ≤ rank(A)+ rank(B) . The following lemma is an adapta-
tion of [14, Lemma 3] and provides a useful property of matroids which will be exploited 
to derive the results of this paper.

Lemma 1 (Extended augmentation property) Let M = (V , I) be a matroid. Consider 
an independent set A ∈ I, a subset V ′ ⊆ V , and an independent set B ⊆ V ′ which is max-
imal within V ′. If there exists y ∈ V ′\A such that A ∪ {y} ∈ I, then there exists x ∈ B\A 
such that A ∪ {x} ∈ I.
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Proof Since B is maximal in V ′ , we have that rank(B ∪ {y}) = rank(B) = rank  
((B ∪ {y}) ∩ (A ∪ B)) . Also, rank((B ∪ {y}) ∪ (A ∪ B)) ≥ rank(A ∪ {y}) ≥ |A| + 1 , since  
A ∪ {y} ∈ I . By applying the submodularity property to sets B ∪ {y} and A ∪ B we have  
the inequality rank((B ∪ {y}) ∪ (A ∪ B))+ rank((B ∪ {y}) ∩ (A ∪ B)) ≤ rank(B ∪ {y})+

rank(A ∪ B) . Therefore, rank(A ∪ {y})+ rank(B ∪ {y}) ≤ rank((B ∪ {y}) ∪ (A ∪ B))+ rank

((B ∪ {y}) ∩ (A ∪ B)) ≤ rank(B ∪ {y})+ rank(A ∪ B),  whence rank(A ∪ B) ≥ rank

(A ∪ {y}) ≥ |A| + 1 . So, there exists an independent set C ⊆ A ∪ B of |A| + 1 elements, 
and the lemma follows.  �

Given a matroid M = (V , I) and a subset V ′ ⊆ V  , we define the restriction of M to V ′ 
as MV ′ = (V ′, IV ′) , where IV ′ = {X ∩ V ′ : X ∈ I} . It is easy to see that MV ′ is also a 
matroid.

Robust Matroid Center

The well-known k-center problem is defined as follows. Given a set V of points from a 
metric space with distance function d(·, ·) , determine a subset S ⊆ V  of size k which 
minimizes maxi∈V d(i, S).1 We let ρ∗(V , k) denote the cost of the optimal solution. In 
this paper, we focus on the following variant of the k-center problem, defined below 
using the same terminology adopted in [5].

Definition 1 Let M = (V , I) be a matroid defined over the set of points V, and let z be 
an integer, with 0 ≤ z < |V | . The Robust Matroid Center (RMC) problem on M with 
parameter z, requires to determine an independent set S ∈ I minimizing

We use the tuple (M = (V , I), z) to denote an instance of RMC, and let r∗(M, z) 
denote the cost of its optimal solution. It is immediate to see that the objective func-
tion r(S, V, z) corresponds to the (|V | − z)-th smallest distance of a point of V from S. In 
other words, the best solution is allowed to ignore the contribution of the z most distant 
points, which can be regarded as outliers. Note that if the matroid (V, I) has rank k, any 
feasible solution S ∈ I has size at most k. Also, note that the standard k-center problem 
is a special case of RMC problem where z = 0 , and the set I of independent sets consists 
of all subsets of size at most k.

The state of the art on sequential solution for the problem is the 3-approximation algo-
rithm presented in [4]. The coreset-based approaches developed in this paper require 
the solution of a generalized version of the problem, where each point i ∈ V  comes with 
a positive integer multiplicity mi . Let µV =

∑
i∈V mi . The generalized version, dubbed 

RMC problem with Multiplicities (RMCM problem), allows z to vary in [0,µV ) and 
modifies the cost function as follows:

Letting m =
(
m1, . . .mi, . . .m|V |

)
 , we use the tuple (M = (V , I), z,m) to denote 

instances of RMCM. To the best of our knowledge, prior to this work, no algorithms had 
been devised to solve the RMCM problem. However, we can show that the sequential 

r(S,V , z) = min
X⊆V :|X |≥|V |−z

max
i∈X

d(i, S).

r(S,V , z) = min
X⊆V :

∑
i∈X mi≥µV−z

max
i∈X

d(i, S).

1 For convenience, we use the notation d(i, S) = minc∈S d(i, c).
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algorithms in [4] can be adapted to solve the RMCM problem, featuring the same 
approximation guarantees as in the case without multiplicities. This is summarized in 
the following theorem (proof in Appendix).

Theorem 2 There exists a 3-approximate polynomial-time sequential algorithm for the 
RMCM problem.

Doubling dimension

The algorithm in this paper will be analyzed in terms of the dimensionality of the ground 
set V as captured by the well-established notion of doubling dimension. Formally, given 
a point i ∈ V  , let the ball of radius  r  centered at  i be the subset of points of V at dis-
tance at most r from i. The doubling dimension of V is the smallest value D such that any 
balls of radius r centered at a point i ∈ V  is contained in the union of at most 2D balls of 
radius r/2 suitably centered at points of V. The algorithms that will be presented in this 
paper adapt automatically to the doubling dimension D of the input dataset and attain 
their best performance when D is small, possibly constant. This is the case, for instance, 
of ground sets V whose points belong to low-dimensional Euclidean spaces, or represent 
nodes of mildly-expanding network topologies under shortest-path distances.

The doubling dimension D of a ground set V allows to establish the following interest-
ing relation between the radius of a clustering and its granularity, which will be crucially 
exploited in this paper.

Proposition 1 Let ε ∈ (0, 1). Consider a set S ⊆ V , and let ρ = maxi∈V d(i, S).  
If V has doubling dimension D, there exists a set S′ ⊆ V  of size ≤ |S|(2/ε)D such that 
maxi∈V d(i, S′) ≤ ερ.

Proof By repeatedly applying the definition of doubling dimension, it is easily seen that 
each ball of radius ρ around a point in S can be covered with at most (2/ε)D smaller balls 
of radius at most ερ . The centers of all of these smaller balls provide the desired set S′ . �

Computational settings

In recent years, MapReduce [10, 33, 34] has become one of the reference models for the 
efficient distributed processing of large datasets. In particular, MapReduce has proven to 
be an effective computational model for clustering problems [18, 35, 36]. A MapReduce 
algorithm executes as a sequence of parallel rounds. In a round, a multiset X of key-value 
pairs is first transformed into a new multiset X ′ of pairs by applying a given map func-
tion to each individual pair, and then into a final multiset Y of pairs by applying a given 
reduce function (referred to as reducer) independently to each subset of pairs of X ′ hav-
ing the same key. The model is parametrized by total aggregate memory available to the 
computation, denoted with MA , and the maximum amount of memory locally available 
to each reducer, denoted with ML . We remark that, although we use the MapReduce 
abstraction for the high level design and analysis of our algorithms, the whole approach 
can be straightforwardly rephrased for other distributed models, such as the popular 
Massively Parallel Computation (MPC) model [12]. Furthermore, we implement our 
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distributed algorithms in the state-of-the-art timely dataflow system [37], which pro-
vides superior performance with respect to more established distributed frameworks 
supporting a MapReduce programming style.

The need to cope with data produced at high rates, which cannot be stored for offline 
processing, has led to the emergence of the streaming setting [10, 38] where the compu-
tation is performed by a single processor with a small working memory, and the input is 
provided as a continuous stream of items, usually too large to fit in the working memory. 
Typically, streaming strategies aim at a single pass on the input but in some cases few 
additional passes may be needed. Key performance indicators are the size of the working 
memory and the number of passes.

The holy grail of big data algorithmics is the development of MapReduce (resp., 
streaming) algorithms which work in as few rounds (resp., passes) as possible and 
require substantially sublinear local memory (resp., working memory) and linear aggre-
gate memory.

Coreset‑based strategy for the RMC problem
In this section, we present a two-phase strategy to solve the RMC problem based on the 
following simple high-level idea. In the first phase, a small coreset T ⊆ V  is extracted 
from the ground set V, with the property that each point j ∈ V  has a suitably “close” 
proxy p(j) in T. While the algorithm does not explicitly store the proxy function, it stores, 
with each point in i ∈ T  , its multiplicity mi , defined as the number of distinct points 
j ∈ V  whose proxy is i. In the second phase, an approximate solution S to the RMCM 
problem is computed on T (efficiently, due to T’s small size). The key ingredient of our 
strategy is that for each independent set X of the input matroid there is an independent 
set X ′ ⊆ T  whose elements are pointwise “close” to those of X. This fact will allow us to 
show that S is also a good solution for the RMC problem on V. The section is structured 
as follows. Section "Coreset construction" describes and analyzes the construction of T, 
while section "Extraction of the solution from the coreset" discusses how to extract an 
accurate solution for V from the coreset T with its multiplicities.

Coreset construction

Let (M = (V , I), z) be an instance of the RMC problem. As in previous works, we assume 
that constant-time oracles are available to compute the distance between two elements 
of V and to check whether a subset of V is an independent set (see e.g., [39]). We let k be 
the rank of matroid M, and make the reasonable assumption that k is provided in input 
together with the instance.

In order to construct the coreset T, we first determine a β-approximate solution S to 
the unconstrained (k + z)-center problem on V, for some constant β > 0 , and compute 
its cost ρ = maxi∈V d(i, S) . Hence, ρ ≤ βρ∗(V , k + z) . The value β will depend on the 
employed approximation algorithm, which, in turn, depends on the computational set-
ting. For instance, in the sequential setting, Gonzalez’s algorithm [1] provides β = 2 , 
while in the streaming setting, Gonzalez’s algorithm cannot be used, and a larger value 
of β will be needed [15, 40].

As a next step, we fix a suitable accuracy parameter ε′ ∈ (0, 1) and determine a 
set T ′ of points of V such that d(i1, i2) > (ε′/(2β))ρ , for every i1  = i2 ∈ T ′ , and 
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d(j,T ′) ≤ (ε′/(2β))ρ , for every j ∈ V \ T ′. We define rT ′ = maxi∈V d(i,T ′) , hence, 
rT ′ ≤ (ε′/(2β))ρ . T ′ can be computed greedily by performing a linear scan of V, start-
ing with an initially empty T ′ , and iteratively adding to T ′ each point that is at distance 
greater than (ε′/(2β))ρ from the current T ′ [41].

Let T ′ = {i1, i2, . . . , iτ } , for some value τ which is a function of ρ , β , and ε′ . For 
1 ≤ ℓ ≤ τ , define the cluster Cℓ = {j ∈ V : d(j, iℓ) = d(j,T ′)} (ties broken arbitrarily for 
points j ∈ V  equidistant from two or more points of Tτ ). From each Cℓ we extract a max-
imum independent set2 Yℓ and define

For every 1 ≤ ℓ ≤ τ and every point j ∈ Cℓ , we set the proxy p(j) = i ∈ Yℓ , where 
d(j, i) = d(j,Yℓ) (ties broken arbitrarily). Moreover, for each i ∈ T  , we compute its mul-
tiplicity as mi = |{j ∈ V : p(j) = i}| . The above construction is implemented by Proce-
dure CoresetConstruction in the pseudocode provided as Algorithm 1.

In the rest of this subsection, we show that T is a good representative for the ground 
set V, and provide a bound on its size, in terms of the doubling dimension of V. We first 
determine sufficient conditions on any coreset Q ⊆ V  , which guarantee that a good solu-
tion to the RMCM problem on Q is also a good solution for the RMC problem on V, and 
then we prove that the coreset T built above satisfies these conditions. Consider a core-
set Q ⊆ V  with proxy function p : V → Q , and let mi = |{j ∈ V : p(j) = i}| , for every 
i ∈ Q . Let MQ = (Q, IQ) denote the restriction of matroid M = (V , I) to the coreset Q, 
where IQ = {X ∩ Q : X ∈ I} . Finally, let (MQ, z,m) denote the RMCM instance defined 
by MQ , z and m = {mi : i ∈ Q} . The following lemma holds

Lemma 3 Suppose that the coreset Q with proxy function p : V → Q satisfies the fol-
lowing conditions, for a given ε′ ∈ (0, 1):

C1 For each j ∈ V  , d(j, p(j)) ≤ ε′r∗(M, z);
C2 For each independent set X ∈ I there exists an injective mapping πX : X → Q such 
that:

• {πX (i) : i ∈ X} ⊆ Q is an independent set;
• for each i ∈ X , d(i,πX (i)) ≤ ε′r∗(M, z).

Then: 

P1  There exists a solution to (MQ = (Q, IQ), z,m) of cost at most (1+ 2ε′)r∗(M, z);
P2  Every solution S to (MQ, z,m) of cost rS is also a solution to (M = (V , I), z) of cost 

at most rS + ε′r∗(M, z).

Proof Let us first show P1. Let X∗
V  be the optimal solution to the RMC instance 

(M = (V , I), z) and let Y = {πX∗
V
(o) : o ∈ X∗

V } ⊆ Q . We will show that Y is a solution for 

T = ∪1≤ℓ≤τYℓ.

2 For ease of presentation, we are assuming that Cℓ always contains a non-empty independent set. If this were not the 
case, it would be sufficient to set Yℓ to a singleton consisting of an arbitrary element of Cℓ , so that Cℓ is represented in the 
final coreset.
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(MQ, z,m) of cost at most (1+ 2ε′)r∗(M, z) . By C2, |Y | = |X∗
V | and Y is an independ-

ent set in IQ . Consider now a point j ∈ V  such that ∃o ∈ X∗
V  with d(j, o) ≤ r∗(M, z) and 

observe that there are at least |V | − z such points (e.g., all nonoutliers). We have that

Let µQ =
∑

i∈Q mi and observe that µQ = |V | . We have that

which concludes the proof of P1. In order to prove P2, let S be a solution to (MQ, z,m) 
of cost rS . Clearly, S is an independent set in I. Consider a generic point i ∈ Q such that 
d(i, S) ≤ rS and let a be the point of S closest to i. Observe that the mi points j ∈ V  
with i = p(j) are such that d(j, S) ≤ d(j, a) ≤ d(j, i)+ d(i, a) ≤ ε′r∗(M, z)+ rS . Since ∑

i∈Q:d(i,S)≤rS
mi ≥ µQ − z , there are at least µQ − z = |V | − z points of V that are 

within a distance ε′r∗(M, z)+ rS from S.  �

We have:

Lemma 4 The coreset T returned by Procedure  CoresetConstruc-
tion(M = (V , I), z, ε′) satisfies Conditions C1 and C2 of Lemma  3, hence, it exhibits 
Properties P1 and P2 of that lemma.

Proof First, we prove C1. Consider an arbitrary point j ∈ V  , and suppose that j belongs 
to cluster Cℓ , for some ℓ . Thus, p(j) belongs to Yℓ ⊆ Cℓ and d(j, p(j)) ≤ 2rT ′ ≤ (ε′/β)ρ . 
Since any solution to the (M = (V , I), z) instance of RMC, with the addition of the z 
outlier points as extra centers, is a solution to (k + z)-center on V, it is easy to see that 
ρ∗(V , k + z) ≤ r∗(M, z) . Now, by using the fact that ρ is the cost of a β-approximate 
solution to (k + z)-center on V, we have

thus proving C1. As for C2, we reason as follows. Consider an arbitrary independ-
ent set X ∈ I . We now show that there exists an injective mapping πX which trans-
forms X into an independent set contained in T, and such that, for each j ∈ X , if 
j belongs to cluster Cℓ , for some 1 ≤ ℓ ≤ τ , then also πX (j) ∈ Cℓ . This will imme-
diately imply that d(j,πX (j)) ≤ 2rT ′ ≤ ε′r∗(M, z) . Let X = {xa : 1 ≤ a ≤ |X |} . We 

d(p(j),Y ) ≤ d(p(j),πX∗
V
(o))

≤d(p(j), j)+ d(j, o)+ d(o,πX∗
V
(o))

(by triangle inequality)

≤ε′r∗(M, z)+ r∗(M, z)+ ε′r∗(M, z)

(by C1 and C2)

≤(1+ 2ε′)r∗(M, z).

∑

i∈Q:d(i,Y )≤(1+2ε′)r∗(M,z)

mi ≥

≥
∑

i∈Q:∃j∈V :(i=p(j))∧(d(j,X∗
V )≤r∗(M,z))

mi

≥ |{j ∈ V : d(j,X∗
V ) ≤ r∗(M, z)}|

≥ |V | − z,

d(j, p(j)) ≤ (ε′/β)ρ ≤ ε′ρ∗(V , k + z) ≤ ε′r∗(M, z),
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define the mapping πX incrementally one element at a time. Suppose that we have 
fixed the mapping for the first h ≥ 0 elements of X, and assume, inductively, that 
W (h) = {πX (xa) : 1 ≤ a ≤ h} ∪ {xa : h < a ≤ |X |} is an independent set of size |X| and 
that xa and πX (xa) belong to the same cluster, for every 1 ≤ a ≤ h . Consider now xh+1 , 
and suppose that xh+1 ∈ Cℓ , for some ℓ . We distinguish among the following two cases:

• Case 1. If xh+1 ∈ Yℓ , we set πX (xh+1) = xh+1 , hence W (h+ 1) = W (h).
• Case 2. If xh+1 �∈ Yℓ , we apply the extended augmentation property stated in 

Lemma  1 with A = W (h) \ {xh+1} , y = xh+1 , V ′ = Cℓ , and B = Yℓ to con-
clude that there exists a point πX (xh+1) ∈ B\A = Yℓ\(W (h)\{xh+1}) such that 
W (h+ 1) = (W (h)\{xh+1}) ∪ πX (xh+1) is an independent set.

After |X| iterations of the above inductive argument, we have that the mapping 
πX is completely specified and exhibits the following properties: it is injective, 
{πX (xa) : 1 ≤ a ≤ |X |} is an independent set, and, for 1 ≤ a ≤ |X | , if xa ∈ Cℓ then also 
πX (xa) ∈ Cℓ , hence d(xa,πX (xa)) ≤ ε′r∗(M, z) . This proves C2.  �

The size of coreset T can be conveniently bounded as a function of the doubling 
dimension of the ground set V.

Theorem 5 If V has doubling dimension D, then the coreset T obtained with the above 
construction has size at most k(k + z)(8β/ε′)D.

Proof Since the matroid M = (V , I) has rank k, we have that |T | ≤ kτ , hence we are left 
to bound τ . Consider the first set S of k + z centers computed by the coreset construc-
tion algorithm (i.e., the one that provided the value ρ = maxi∈V d(i, S) ≤ βρ∗(V , k + z) ). 
Proposition 1 implies that there exists a set S′ of at most h = (k + z)(8β/ε′)D points such 
that maxi∈V d(i, S′) ≤ (ε′/(4β))ρ , hence V can be covered with h balls of radius at most 
(ε′/(4β))ρ . It is easy to see that the greedy strategy used to construct T ′ , picks at most 
one point from each such ball. Hence, τ = |T ′| ≤ h , and the theorem follows.  �

Extraction of the solution from the coreset

Once the coreset T with the multiplicities m = {mi : i ∈ T } is computed from V, the final 
solution S to instance (M = (V , I), z) of RMC is obtained by running an approximation 
algorithm A for RMCM on instance (MT = (T , IT ), z,m) . (The pseudocode for both the 
coreset construction and the extraction of the final solution is provided by Algorithm 1.)

The following theorem establishes an upper bound to the approximation obtainable 
for the RMC problem.

Theorem 6 Let ε ∈ (0, 1) and suppose that an α-approximation algorithm A for RMCM 
is available. If the coreset T exhibits Properties P1 and P2 of Lemma 3 with ε′ = ε/(2α + 1)

then the solution, S returned by running A on instance (MT = (T , IT ), z,m) of RMCM, is 
an (α + ε)-approximate solution to instance (M = (V , I), z) of RMC.
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Proof By Property P1 of Lemma  3, we know that the optimal solution to 
(MT = (T , IT ), z,m) has cost at most (1+ 2ε′)r∗(M, z) = (1+ 2ε/(2α + 1))r∗(M, z) . 
Hence, S has cost rS ≤ (α + 2αε/(2α + 1))r∗(M, z) . By Property P2 of Lemma 3, S is also a 
solution to instance (M = (V , I), z) of RMC with cost rS + ε′r∗(M, z) ≤ (α + ε)r∗(M, z) . 
 �

Using the 3-approximation algorithm for RMCM from Theorem  2 as A in the above 
theorem, immediately yields the following corollary.

Corollary 7 Algorithm RobustMatroidCenter can be used to compute a (3+ ε)

-approximate solution to any instance (M = (V , I), z), for any fixed ε ∈ (0, 1).

Remarks A straightforward consequence of Theorems 2 and 5, and of Corollary 7, is 
that there is a sequential (3+ ε)-approximation algorithm for the RMC problem which 
runs in time O

(
|V | poly(k , z, (c/ε)D)

)
 when given in input an instance ( M = (V , I), z, ε) ), 

where c is a suitable constant and D is the doubling dimension of V. Therefore, if k, z, ε 
and D are constants, the running time is linear in |V|. Moreover, an exhaustive search on 
the coreset can yield a tighter (1+ ε)-approximate solution while maintaining the run-
ning time linear in |V|, although exponential in the other parameters. It is also impor-
tant to observe that, while the analysis of our algorithm is performed in terms of the 
doubling dimension D of V, the algorithm itself is oblivious to the value D , in the sense 
that D is not explicitly used by the algorithm, and becomes very efficient for spaces of 
low doubling dimension.

MapReduce and streaming implementations
In this section, we present efficient implementations of RobustMatroidCenter 
in the MapReduce (section  "MapReduce implementation") and streaming (sec-
tion "Streaming implementation") settings.
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MapReduce implementation

In MapReduce, RobustMatroidCenter can be implemented in two rounds, where 
the first round computes the coreset T and the second round extracts the solution S 
from T. While, in the second round, the small size of T affords computing S by run-
ning a sequential RMCM algorithm on T in one reducer, the computation of T in the 
first round involves the whole (possibly very large) ground set V, and thus requires 
a careful implementation able to exploit parallelism while keeping memory require-
ments suitably low.

A key feature the RMC coreset construction presented in the previous section is its 
composability [42], a property referring to the fact that the coreset for the entire set 
V can be obtained as the union of partial coresets, one for each subset of an arbitrary 
partition of V. The next lemma establishes this property.

We have:

Lemma 8 Given a matroid M = (V , I), consider an arbitrary partition of V  into ℓ 
disjoint subsets V1, . . . ,Vℓ, with ℓ ≥ 1. For 1 ≤ q ≤ ℓ, let Tq be the coreset returned by 
CoresetConstruction (MVq = (Vq , IVq ), z, ε

′/2), with proxy function pq : Vq → Tq, 
where MVq is the restriction of M to Vq. Then, the coreset T = ∪1≤q≤ℓTq, with proxy func-
tion p : V → T  defined as p(i) = pq(i) for i ∈ Vq, satisfies the conditions C1 and C2 of 
Lemma 3

Proof The proof follows by repeating the same argument used in the proof of Lemma 4, 
with the only modification that, for any subset Vq , a simple application of the triangle 
inequality suffices to show that ρ∗(Vq , k + z) ≤ 2ρ∗(V , k + z) .  �

As an immediate consequence of the above lemma, a coreset T satisfying Condi-
tions C1 and C2 of Lemma  3 can be constructed in one MapReduce round as fol-
lows. Partition V evenly but arbitrarily into ℓ disjoint subsets V1, . . . ,Vℓ , and 
assign each Vq to a distinct reducer, which builds a coreset Tq for Vq by invoking 
CoresetConstruction (Mq = (Vq , IVq ), z, ε

′/2) , instantiated with the (β = 2)-approxi-
mation algorithm by Gonzalez [1] to find the initial solution to (k + z)-center. In a 
second round, the Tq ’s are gathered into the final coreset T = ∪1≤q≤ℓTq , and a solu-
tion can be computed from T using a single reducer running A(MT = (T , IT ), z,m) , 
where A is a sequential approximation algorithm for the RMCM problem.

Setting ℓ =
√
|V |/(k(k + z)) and applying Theorem  5 (with ε′/2 ) we have that 

|T | = O(
√

|V |k(k + z)(16/ε′)D) . Observe that for a large range of values of k and z, 
the size of each Vq and the size of T are substantially sublinear in |V|. The following 
theorem is an immediate consequence of the above discussion and of the results of 
Theorem 6.

Theorem 9 Let ε ∈ (0, 1) and suppose that a sequential α-approximation algorithm for 
RMCM is available, for some constant α > 0. Then, there exists a 2-round MapReduce 
algorithm that for the RMC instance (M = (V , I), z) computes an (α + ε)-approximate 
solution using MA = O(|V |) and ML = O(

√
|V |k(k + z)(c/ε)D), for a suitable con-

stant c.
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By using the result of Theorem  2, the value α = 3 can be plugged in the above 
theorem.

Streaming implementation

In the streaming setting, the coreset construction devised in section Coreset-based strat-
egy for the RMC problem can be easily implemented in two passes, where the first pass 
computes the initial solution to (k + z)-center on V, using the scaling algorithm of [15], 
and the second pass computes the coreset T, together with the multiplicities, through an 
adaptation of the greedy linear scan of Lines 9–11 of Algorithm 1, so to compute con-
currently the points of T ′ and their associated independent sets. At the end of the second 
pass, the final solution is obtained by running the sequential approximation algorithm A 
on T. We describe below how the two passes can be reduced to one, by exploiting ideas 
similar to those in [24, 40].

Let Vt denote the first t points of the ground set stream V, and let δ, ε′ ∈ (0, 1) be two 
fixed accuracy parameters. For each t ≥ k + z + 1 , our implementation maintains the 
following data:

• A set St ⊆ Vt of k + z centers and a value ρ′
t ≤ (2+ δ)ρ∗(Vt , k + z) such that for 

every i ∈ Vt , d(i, St) ≤ ρ′
t.

• A set T ′
t ⊆ Vt with the property that for every i  = j ∈ T ′

t : d(i, j) > (ε′/(2β))R , and 
for every i ∈ Vt : d(i,T ′

t ) ≤ (ε′/β)R , where R is a suitable value in [ρ′
t/2, ρ

′
t ] and 

β = 2 · (2+ δ).
• An implicit partition Vt into clusters, C1,C2, . . . ,C|T ′

t |
 , such that all points of any 

cluster Cℓ are at distance at most (ε′/β)R from the ℓ-th point of T ′
t (call it iℓ ), which is 

regarded as the center of Cℓ . The partition is not explicitly stored, but for each Cℓ , the 
algorithm maintains its size and a maximal independent set Yℓ ⊆ Cℓ , with multiplici-
ties assigned to its points so that they add up to |Cℓ|.

For any t, the set St and the value ρ′
t are maintained through the scaling algorithm of [15]. 

For t = k + z + 1 , R is set equal to ρ′
t , while T ′

t , the independent sets Yℓ , and the related 
multiplicities, are initialized by performing a simple scan of Vt . For t > k + z + 1 , let i 
be the point arriving at time t. If d(i,T ′

t−1) > (ε′/(2β))R then T ′
t = T ′

t−1 ∪ {i} and i will 
make a singleton cluster and independent set with multiplicity 1. Otherwise, T ′

t = T ′
t−1 

and i will be implicitly added to a cluster Cℓ such that the distance between i and the 
center iℓ of Cℓ is at most (ε′/β)R . Also, i is added to Yℓ if Yℓ ∪ {i} stays independent. In 
both cases, the multiplicities in Yℓ are updated to reflect that there is a new point in Cℓ.

As soon as the current estimate ρ′
t becomes greater than 2R, the algorithm sets R equal 

to ρ′
t (thus R increases by a factor at least 2) and “shrinks” T ′

t by iteratively eliminating 
each point that is within distance (ε′/(2β))R from another point, so to re-establish the 
separation property stated above. When a point iℓ ∈ T ′

t is eliminated from T ′
t because of 

another point iℓ′ ∈ T ′
t , with d(iℓ, iℓ′) ≤ (ε′/(2β))R , the cluster Cℓ corresponding to iℓ is 

implicitly merged with Cluster Cℓ′ . To reflect such a merging, the old subset Yℓ′ is reas-
signed to a maximal independent set obtained from Yℓ ∪ Yℓ′ , and the multiplicities of 
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the points in the new Yℓ′ are chosen to add up to |Cℓ| + |Cℓ′ | . The correctness of this 
procedure (i.e., the fact that the new subset Yℓ′ is a maximal independent set of Cℓ ∪ Cℓ′ ) 
follows by the extended augmentation property of Lemma 1.

At the end of the stream, the coreset T is set equal to the union of the Yℓ’s, with mul-
tiplicities inherited from those of the Yℓ’s. Finally, the solution to the (M = (V , I), z) 
instance to the problem is computed as A(MT = (T , IT ), z,m) , where A is a sequential 
approximation algorithm for the RMCM problem.

Lemma 10 The coreset T computed at the end of the stream has size at most 
k(k + z)(32(2+ δ)/ε′)D, where D is the doubling dimension of V. Moreover, it satisfies 
Conditions C1 and C2 of Lemma 3, hence, it exhibits Properties P1 and P2 of that lemma.

Proof Let n = |V | . By construction, |T | ≤ k|T ′
n| , hence, it is sufficient to upper 

bound |T ′
n| . At the end of the stream, Sn is a set of k + z centers with the guarantee that 

d(i, Sn) ≤ ρ′
n ≤ (2+ δ)ρ∗(Vn, k + z) for every i ∈ Vn = V  , and for any two points i  = j ∈ T ′

n 
we have that d(i, j) > (ε′/(2β))R ≥ (ε′/(4 · (2+ δ)))(ρ′

n/2) ≥ (ε′/(8(2+ δ)))ρ′
n . 

By Proposition  1 we have that V can be covered with at most (k + z)(32(2+ δ)/ε′)D 
balls of radius at most (ε′/(16(2+ δ)))ρ′

n . Clearly, no two points of T ′
n can reside in any 

such ball, which implies |T ′
n| ≤ (k + z)(32(2+ δ)/ε′)D . In order to show that T satis-

fies Conditions C1 and C2 of Lemma 3, we first observe that, for every i ∈ V  , if i belongs 
to cluster Cℓ with center iℓ ∈ T ′

n , we have that the proxy p(i) of i is a point of Yℓ , hence 
d(i, p(i)) ≤ 2d(i, iℓ) ≤ (ε′/(2+ δ))R ≤ (ε′/(2+ δ))ρ′

n ≤ ε′ρ∗(Vn, k + z) ≤ ε′r∗(M, z) .   
Then, the same proof of Lemma 4 can be repeated.  �

Note that the proof of the above lemma can be immediately generalized to show that at 
any time t, the aggregate size of all Yℓ ’s is at most k(k + z)(32(2+ δ)/ε′)D . Since, the scal-
ing algorithm used to maintain St requires working memory O

(
(k + z)(1/δ) log(1/δ)

)
 

[15], we have that the dominant factor in the working memory requirements is the 
aggregate size of the Yℓ’s. For a fixed constant δ , the following theorem is an immediate 
consequence of the above discussion and of the results of Lemma 10 and Theorem 6.

Theorem  11 Let ε ∈ (0, 1) and suppose that a sequential α-approximation algorithm 
for RMCM is available, for some constant α > 0. There exists a 1-pass streaming algo-
rithm that for the RMC instance (M = (V , I), z) computes an (α + ε)-approximate solu-
tion using working memory of size O

(
k(k + z)(c/ε)D

)
, for a suitable constant c.

Again, a (3+ ε)-approximation can be attained by using the RMCM algorithm of 
Theorem 2.

Experiments
We carry out an experimental evaluation of RobustMatroidCenter and its sequen-
tial, MapReduce and streaming implementations, aimed at answering the following 
questions:

• What is the impact of the coreset size on performance, both in terms of quality and 
running time?
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• How does the coreset-based strategy used by RobustMatroidCenter compare 
against existing sequential and streaming baselines?

• To what extent does the distributed implementation of the coreset construction ben-
efit from parallelism?

• How expensive is to build the coreset, compared to finding a good solution to the 
RMCM problem on the coreset itself?

Our experiments focus on the robust formulation of the problem under general 
matroids, and for this reason we do not compare with the algorithms from [8, 9], which 
are restricted to the non-robust case under the partition matroid.

Experimental setup We implemented all algorithms using Rust 1.53.0-nightly 
(ca075d268 2021-04-28). The MapReduce implementation of our coreset approach 
runs on top of Timely Dataflow [37]. All experiments have been executed on a cluster 
with 8 machines equipped with a Intel®Xeon®CPU (E5-2670 v2 @ 2.50GHz), and 16 Gb 
of RAM each. Each result is the average over at least 10 runs.

Algorithms For RobustMatroidCenter, we developed a sequential implementa-
tion (dubbed SeqCoreset), a streaming algorithm (dubbed StreamingCoreset), and 
a MapReduce implementation (dubbed MRCoreset). As baselines to compare with, 
we implemented the sequential 7-approximation algorithm from  [3] (dubbed Chen-
EtAl), which we have straightforwardly extended to handle multiplicities, and the 
streaming algorithm from [14] (dubbed KaleStream). We also used the multiplicity-
enhanced ChenEtAl implementation in all coreset-based algorithms to extract the final 
solution from the coreset. In fact, we did not make use of the algorithm of [4] which, 
although theoretically more accurate, does not admit an efficient implementation due 
to its recourse to the ellipsoid method, while ChenEtAl features a simpler and faster 
implementation. All our implementations are available as open source code3 and adopt a 
framework which easily allows to tweak parameters [43]. We stress that the main takea-
way from our experiments is that coresets provide a dramatic reduction in the size of the 
data fed to expensive sequential strategies, at the cost of a limited loss in approximation 
quality. This holds irrespective of whether the algorithms in [3] or [4] are used.

In all experiments, rather than setting the parameter ε , which in the previous sections 
relates the quality of the solution to the size of the coreset, we control directly the num-
ber of cluster centers around which the coresets are built. We denote this parameter with 
τ . This is to have greater control on the size of the coreset, which will be ≤ τ · rank(M) , 
with the goal of observing the effect on the performance both in terms of time and qual-
ity. While adapting the sequential and MapReduce coreset constructions to this end 
is straightforward (we just run the algorithm from  [1] aiming for τ clusters), adapting 
the streaming construction requires more care. To this end, rather than maintaining 
the guess on the radius by means of several instances run in parallel, as in the scaling 
algorithm of [15], we fix the number of centers to τ and update the radius guess follow-
ing the schedule of the doubling algorithm of [40]. Each cluster center is associated to a 
maximal independent set of the points closest to the center seen so far, and such sets are 

3 https:// github. com/ Cecca/ macaco.

https://github.com/Cecca/macaco
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merged whenever the radius guess is updated, dropping points as needed so to maintain 
independence.

Datasets We consider three datasets in this experimental evaluation, whose character-
istics are summarised in Table 1. The scripts to automatically download and preprocess 
the datasets are available in the code repository.
Higgs   [44] is a 7-dimensional dataset of 11  M simulated readings from a particle 

detector. Each reading is characterized by 28 attributes, where 7 of them are a function 
of the other 21. We used only the 7 derived attributes. Each reading is classified as being 
either signal or background. We define a rank-20 partition matroid on these two classes 
by allowing up to 10 points from each class in any independent set.
Phones  [45] is a 3-dimensional dataset of over 13 M sensor readings from phones, 

each tagged with one of seven activities (stand, sit, walk, bike, stairs up, stairs down, 
null). We define a partition matroid on these activities by allowing up to 5 points from 
each activity in any independent set.
Wiki is derived from a recent snapshot of about 5 M pages of the English Wikipe-

dia [46]. Each page is mapped to a 10-dimensional vector using GloVe [47]. Furthermore, 
we use Latent Dirichlet Allocation [48] to derive a set of 50 categories, together with a 
probability distribution over these categories for each page. We then assign each page to 
the most likely categories, so to obtain a transversal matroid of rank 50. The use of LDA 
is motivated by the fact that the original categories of Wikipedia are over one million, 
and using all of them to define a transversal matroid would make the matroid constraint 
immaterial.

For each dataset, we set the number of allowed outliers to 50, 100, or 150. Allowing 
for more outliers would make the set of non-outlier points more cohesive, so that simply 
sampling a random independent set would yield a competitive solution compared to the 
one obtained with ChenEtAl). In the following, we report the results for 50 outliers. 
The results for 100 and 150 outliers are very similar and are not reported for brevity.

Influence of coreset size

First, we consider the effect of varying the size of the coreset on accuracy and the run-
ning time of SeqCoreset and StreamingCoreset. We vary τ from 1 to 10: note that 
τ = 1 is a degenerate configuration where the coreset is an arbitrary independent set. 
Lacking exact solutions, we evaluate the quality of the solution in terms of the ratio 
between the returned radius and the smallest radius found on that dataset by any tested 
configuration.

Figure 1 reports the results of this experiment. First, the top plots of the figure show 
that increasing τ quickly improves the solution before hitting a plateau, where build-
ing larger coresets does not improve the quality of the solution. On Higgs this effect is 

Table 1 Datasets used in this experimental evaluation

Dataset n Dim Matroid Rank

Higgs 11,000,000 7 Partition 20

Phones 13,062,475 3 Partition 35

Wiki 4,976,753 10 Transversal 50
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more pronounced, whereas for Wiki already using a small coreset yields a good-qual-
ity solution. Furthermore, we notice that StreamingCoreset and SeqCoreset have 
comparable quality, with the former performing slightly worse for the same value of τ , as 
predicted by the theory.

The bottom part of Fig. 1 reports the running times of these experiments, showing that 
SeqCoreset scales linearly with τ , as expected. As for StreamingCoreset, its per-
formance is comparable with SeqCoreset with some interesting behavior: for Wiki, 
increasing τ beyond 4 does not imply a linear degradation of the performance. The rea-
son is that StreamingCoreset in practice builds coresets smaller than the maximum 
allowed τ · rank(M) : after the last doubling of the radius guess the < τ cluster centers 
are able to accommodate all the remaining points in the stream, thus building less clus-
ters than the maximum allowed budget. Furthermore, we stress that StreamingCore-
set works on unbounded streams of data in a single pass using limited memory (more 
on this in what follows).

Second, we compare the performance of SeqCoreset with ChenEtAl. Due to the 
high complexity of ChenEtAl, we are unable to run it on the full datasets, hence we 
also consider samples of 10,000 points from each dataset. Table  2 reports the result 
obtained by SeqCoreset with large coresets ( τ ≈ 10 ) with ChenEtAl both in terms of 
approximation quality and running time. First and foremost, we note that SeqCoreset 
is over two orders of magnitude faster than ChenEtAl. At the same time, the approxi-
mation quality is comparable, if not better (e.g. on Phones). In fact, recall that Seq-
Coreset actually runs ChenEtAl on the coreset to obtain the output solution. Results 
in Table 2 suggest that using a coreset to reduce the size of the input fed to the slower 

Fig. 1 Effect of the parameter τ on the solution quality (top) and the running time (bottom) for SeqCoreSet 
and StreamingCoreSet 
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approximation algorithm not only does not impact quality, but, in some cases, it may 
help the greedy choices of the slower algorithm, thus leading to better approximations.

The reader might have noticed that we have set τ , i.e. the parameter controlling the 
number of clusters out of which to build the coreset, to values much smaller than the 
minimum k + z mandated by the theory (see section "Coreset construction). Nonethe-
less, we observed that in the real datasets that we considered, the quality of the approxi-
mation improves quickly with τ , reaching a plateau for values of τ much smaller than 
k + z . We now explore a setting in which using larger values of τ is paramount to achiev-
ing a good approximation quality. Consider the Higgs dataset (for other datasets the 
results are similar and omitted for brevity), and let cMEB and rMEB be the center and 
radius of the minimum enclosing ball of the dataset, respectively. Now, sample z = 50 
points at random, and relocate them on the sphere centered at cMEB of radius 100 · rMEB : 
clearly, these z points are extreme outliers. Note that each of these z points still belongs 
to its original category in the partition matroid.

We run SeqCoreset on this artificial dataset, reporting the results in Fig.  2. We 
observe that for τ < z + 1 the approximation ratio is very high. In this configuration, 
some of the outliers are included in the clusters defining the coreset along with points 
from the bulk of the dataset: they might therefore be part of the independent set repre-
senting the cluster, thus receiving a multiplicity larger than 1, making them non-outliers 
in the final execution of ChenEtAl on the coreset. Starting from τ = z + 1 we have a 
rapid improvement of the approximation quality, similar to what we observed in Fig. 1, 
but with values of τ shifted by z. Indeed, in these configurations, the coreset construc-
tion will place each outlier in its own cluster, allowing ChenEtAl to handle it appropri-
ately when building the solution on the coreset.

The intuition for this behavior is the following: when the outliers are very far from the 
bulk of the dataset, assigning them too high a multiplicity in the coreset is detrimental, 
so we need to put them in their own cluster, so that they have unit multiplicity. On the 
other hand, when outliers are not so extreme (like in the case of the original datasets), in 
practice a much smaller τ allows to achieve very good approximations.

Table 2 Comparison of SeqCoreSet and Chenetal on a sample of 10,000 points from each dataset

Total time (s) Ratio to best

Dataset ChenetAl SeqCoreSet ChenetAl SeqCoreSet

Higgs 1215 3.17 1.000 1.022

Phones 2640 5.13 1.135 1.045

Wiki 5758 18.11 1.039 1.073

Fig. 2 Ratio to best solution of SeqCoreSet on an instance of Higgs with artificially inserted outliers
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Comparison of streaming algorithms

We now compare our streaming algorithm StreamingCoreset with KaleStream. 
Since the two algorithms are parameterized differently, we study their performance in 
terms of approximation ratio and running time parameterized by the amount of mem-
ory used. Note that for StreamingCoreset a larger τ implies a higher memory usage, 
for KaleStream the memory increases by decreasing ε . Figure 3 reports on the results 
of these experiments, fixing the number of outliers to 50. We observe that in general, for 
comparable amounts of memory, StreamingCoreset is able to find approximations 
comparable to KaleStream in much less time. The memory used by both algorithms is 
negligible and, most importantly, not related to the size of the dataset.

Scalability of the MapReduce coreset construction

We now focus on the cost of building the coreset using the MRCoreset algorithm, com-
pared to SeqCoreset. We test 2, 4, and 8 workers, and values of τ ∈ [1, 9] , but plot the 
results only for τ = 3, 6, 9 , for brevity. Note that for the same value of τ , the size of the 
aggregated coreset will change depending on the number of workers. As for the number 
of allowed outliers, we fix it to 100, noting that it does not influence the time required to 
build the coreset itself.

Figure 4 reports the results of this experiment, focusing just on the corset construc-
tion time, which is the part of the algorithm carried out in parallel. For fixed values of 
τ , the MRCoreset coreset construction scales linearly with the number of processors. 
Furthermore, in most cases (except τ = 3, 6 for Phones) MRCoreset is faster than Seq-
Coreset when using 2 processors, i.e., it has a COST metric of 2 [49]. This is due to the 

Fig. 3 Approximation ratio and total running time for StreamingCoreSet and KaleStream against memory usage. 
The time scale is logarithmic
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overheads introduced by the communication required to distribute data to processors 
located on different machines.

Balance between the coreset construction and solution computation

We now discuss the balance between the time required to build the coreset and the time 
to compute the solution on the coreset. In MRCoreset we fix the number of workers 
to 8. The results are reported in Fig. 5, where each line corresponds to a value of τ for 
a given combination of algorithm and dataset. Each line is divided in two: the left (red) 
part represents the time to compute the solution, the right (blue) part is the time to build 
the coreset. Therefore, the span of each line, from dot to dot, is the total running time of 
a particular configuration.

In general, building a larger coreset clearly tilts the balance towards the more expen-
sive sequential computation of the final solution. This is to be expected, since the core-
set construction scales linearly in τ , whereas the computation of the solution is at least 
quadratic in the coreset size. Interestingly, for any given value of τ , the time to com-
pute the solution on the coreset built by StreamingCoreset is less then the that for 
SeqCoreset. The reason lies in the behavior of the streaming construction algorithm. 
Adjusting its guess of the radius to remain within the allotted budget of centers τ , it may 
end up not using it completely, thus building smaller coresets compared to SeqCoreset.

For MRCoreset, we have that the computation of the solution dominates the running 
time by far. This is due to the size of the coreset built in parallel, which, for the same τ , is 
larger than the one computed by SeqCoreset, by a factor (roughly) equal to the num-
ber of workers. This problem can be ameliorated as follows. After building the coreset 
in parallel, SeqCoreset can be applied to reduce the size of the resulting set of points. 
While this might incur into a worsening of the approximation ratio, it would dramati-
cally speed up the computation of the final solution, thus amplificating the benefits of 

Fig. 4 Time to build the coreset with the mrCoreSet algorithm, for varying number of workers. Each column 
of plots corresponds to a different value of τ . The dotted line represents the performance of the SeqCoreSet 
algorithm in constructing the coreset. The time scale is linear



Page 22 of 26Ceccarello et al. Journal of Big Data           (2023) 10:49 

the scalable coreset construction. We deem this solution MRCoresetRec, and report 
its performance as the last column of plots of Fig. 5. We have that the time to compute 
the solution is now comparable to SeqCoreset, but the coreset construction benefits 
from running on 8 processors. The approximation quality of this approach is in practice 
comparable to the one obtained by SeqCoreset: we observed a maximum difference 
between the final radius of the cluster obtained with MRCoresetRec and SeqCoreset 
of 25%, with the average difference being ≈ 1.5%.

For MRCoreset, we have that the computation of the solution dominates the running 
time by far. This is due to the size of the coreset built in parallel, which, for the same τ , is 
larger than the one computed by SeqCoreset, by a factor (roughly) equal to the number 
of workers. This problem can be ameliorated as follows. After building the coreset in 
parallel, SeqCoreset can be applied first to compute the “coreset of the coreset”, (of size 
comparable to the coreset obtained by directly running SeqCoreset on the entire data-
set), and then to obtain the final solution from this smaller coreset. While this approach 
might incur into a worsening of the approximation ratio, it dramatically speeds up the 
computation of the final solution, thus amplifying the benefits of the scalable coreset 
construction. We deem this solution MRCoresetRec, and report its performance 
as the last column of plots of Fig.  5. We have that, as expected, the time to compute 
the solution is now comparable to SeqCoreset, but the coreset construction benefits 
from running on 8 processors. The approximation quality of this approach is in practice 
comparable to the one obtained by SeqCoreset: we observed a maximum difference 
between the final radius of the cluster obtained with MRCoresetRec and SeqCoreset 
of about 25%, but the average difference is much more contained (approximately 1.5%).

Fig. 5 Time spent building the coreset and time spent computing the solution. To the left the time for the 
solution , to the right the time for the coreset . The x axis reports the running time (in seconds), the y axis 
reports the values of τ
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Concluding remarks
In this paper, we presented a coreset-based strategy for computing approximate solu-
tions to the RMC problem under general matroids, and provided efficient sequential, 
distributed (MapReduce) and streaming implementations of the strategy. The theoretical 
analysis shows that our strategy attains approximation guarantees comparable to the one 
of the best sequential strategies, with a dramatic improvement in efficiency for datasets 
of low doubling dimension. A rich suite of experiments on large inputs demonstrates the 
practical viability of our approach.

It is not difficult to show that the techniques employed for the RMC problem can 
also be used to extend the algorithms presented in [18, 24] for diversity maximization 
under partition and transversal matroid constraints, to work for all possible matroids, 
also improving their space requirements. Moreover, some preliminary theoretical results 
(see manuscript [50]) indicate that similar coreset-based approaches can be profit-
ably employed to solve the Robust Knapsack Center problem [3], a variant of the robust 
unconstrained k-center problem where each input carries a weight, and the aggregate 
weight of the returned centers cannot exceed a certain budget.

Appendix
Proof of Theorem 2

A polynomial-time 3-approximation sequential algorithm for the RMCM problem can 
be obtained through a technical generalization of the approach of [4] to handle multi-
plicities. For ease of exposition, we restate the RMCM problem as an instantiation of the 
Robust F -Supplier problem of [4] for the case where F  is the family of independent sets 
of a matroid. Specifically, we define the Robust Matroid Supplier problem with Multiplici-
ties (RMSM), whose generic instance is a tuple I = (F ∪ C , d,m,F ,µ) , where (F ∪ C , d) 
is a metric space, m is an integer parameter, (F ,F) is a matroid, and µ : C → N is a 
function that associates a multiplicity to each point of C. The objective is to find S ∈ F  
and T ⊆ C such that 

∑
u∈T µ(u) ≥ m and maxu∈T d(u, S) is minimized. An instance 

(M = (V , I), z,m) of the RMCM problem can be regarded as instance of RMSM where: 
V = F = C , I = F  , m = |V | − z , and µ = m.

Following the lines of [4], a good approximate solution to the RMSM problem can 
be obtained by resorting to the auxiliary Matroid-maximization under Partition Con-
straint (Matroid-PCM) problem (which corresponds to the F -PCM problem of [4], 
when F  is the family of independent sets of a matroid). An instance of Matroid-PCM 
is a tuple I = (F ,F ,P , val) , where (F ,F) is a matroid, P is a sub-partition of F, and 
val : F → {0, 1, 2, . . . } is integer valued function consistent with P , in the sense that 
for each A ∈ P and for each pair f1, f2 ∈ A , val(f1) = val(f2) . For a set S ∈ P , we let 
val(S) =

∑
f ∈S val(f ) . The objective of F -PCM problem is to compute

We remark that solving an instance of Matroid-PCM problem is equivalent to solv-
ing the weighted matroid intersection problem, where we need to find an intersection 
between the matroid (F ,F) and the partition matroid defined by P . As a consequence 
this problem can be solved in polynomial time [51].

max{val(S) : (S ∈ F) ∧ (∀A ∈ P : |S ∩ A| ≤ 1)}.
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In order to describe the algorithm for RMSM, we make algorithm F -PCM 
instance construction (Algorithm 1 in [4, Section 3.1]) conscious to multiplici-
ties by substituting Line 10 with the following line:

Similarly, we modify the definition of the polytope PI

cov in [4, section "Extraction of the 
solution from the coreset"] by substituting the constraint ( PI

cov.1) in the definition of the 
polytope with

We sketch here the algorithm, which is the same as the one given in the proof of [4, The-
orem 1], except for the changes to F -PCM instance construction and to polytope 
PI

cov described above. The algorithm starts by making a guess ôpt on the optimal value 
of the solution. Then it considers the polytope PI

cov , which is non-empty if the guess ôpt 
is at least the cost of the optimal solution. It is possible to check whether PI

cov is empty 
using the ellipsoid algorithm [51]. When the ellipsoid algorithm asks if a given point is 
in the polytope, we run algorithm F -PCM instance construction to construct a 
Matroid-PCM instance that we solve using the weighted matroid intersection algorithm. 
If the algorithm finds a point inside PI

cov , then we obtain a 3-approximate solution, oth-
erwise if PI

cov is empty the algorithm proceeds with a new guess ôpt.
We omit the proof of the correctness of the algorithm since it is a straightforward 

adaptation of the proof in [4].
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