
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Ceccarello et al. Journal of Big Data (2023) 10:49
https://doi.org/10.1186/s40537-023-00717-4

Journal of Big Data

Scalable and space-efficient Robust Matroid
Center algorithms
Matteo Ceccarello1*, Andrea Pietracaprina1, Geppino Pucci1 and Federico Soldà2

Abstract

Given a dataset V of points from some metric space, a popular robust formulation
of the k-center clustering problem requires to select k points (centers) of V which
minimize the maximum distance of any point of V from its closest center, excluding
the z most distant points (outliers) from the computation of the maximum. In this
paper, we focus on an important constrained variant of the robust k-center problem,
namely, the Robust Matroid Center (RMC) problem, where the set of returned centers
are constrained to be an independent set of a matroid of rank k built on V. Instantiat-
ing the problem with the partition matroid yields a formulation of the fair k-center
problem, which has attracted the interest of the ML community in recent years. In this
paper, we target accurate solutions of the RMC problem under general matroids, when
confronted with large inputs. Specifically, we devise a coreset-based algorithm afford-
ing efficient sequential, distributed (MapReduce) and streaming implementations.
For any fixed ε > 0 , the algorithm returns solutions featuring a (3+ ε)-approximation
ratio, which is a mere additive term ε away from the 3-approximations achievable
by the best known polynomial-time sequential algorithms. Moreover, the algorithm
obliviously adapts to the intrinsic complexity of the dataset, captured by its doubling
dimension D. For wide ranges of k, z , ε,D , our MapReduce/streaming implementations
require two rounds/one pass and substantially sublinear local/working memory. The
theoretical results are complemented by an extensive set of experiments on real-world
datasets, which provide clear evidence of the accuracy and efficiency of our algorithms
and of their improved performance with respect to previous solutions.

Introduction
Center-based clustering is a crucial primitive for data management. In general terms,
given a dataset V, a distance function between pairs of points in V, and a value k, a solu-
tion for center-based clustering is a set of k representative points, called centers, which
induce a partition of V into k subsets (clusters), each containing all points in V closest to
the same center. One important formulation of center-based clustering is the k-center
problem, where the set of centers must be chosen as a subset of V which minimizes the
maximum distance of any point of V to its closest center. It is well known that k-center
is NP-hard, that it admits a 2-approximation algorithm, and that for any ε > 0 it is not
(2− ε)-approximable unless P = NP [1].

*Correspondence:
matteo.ceccarello@unipd.it

1 University of Padova, Padua,
Italy
2 ETH Zurich, Zurich, Switzerland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00717-4&domain=pdf

Page 2 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

Since the k-center objective function involves a maximum, the optimal solution is at
risk of being severely influenced by a few “distant” points in V, called outliers. In fact, the
presence of outliers is inherent in many datasets, since these points are often due to arti-
facts or errors in data collection. To cope with this issue, k-center admits the following
robust formulation that takes into account outliers [2]: given an additional input param-
eter z, when computing the k-center objective function, the z points of V with the largest
distances from their respective centers are disregarded when taking the maximum.

Some applications may need that the solution of the (robust) k-center problem sat-
isfy additional constraints. For example, the set of centers may be required to be an
independent set of a given matroid M = (V , I) , where V is the ground set and I is the
family of independent sets. A robust formulation of the k-center problem under a gen-
eral matroid constraint, referred to as Robust Matroid Center (RMC), has been recently
studied in [3–5]. Matroid constraints arise naturally in the context of content distribu-
tion networks and facility location [6, 7]. Moreover, the special case of partition matroid
can be used to model fairness constraints where the points of V are naturally subdivided
into m ≤ k groups (e.g., demographic groups) and fair solutions to k-center are sought
which include ki points from the ith group, for given ki ’s such that

∑m
i=1 ki = k [8, 9].

The k-center problem under a matroid constraint is NP-hard, and, for any ε > 0 , it is not
(2− ε)-approximable unless P = NP [3]. This hardness results hold even for points on a
line and clearly extend to the robust version RMC as well.

Due to the ever increasing need of efficient tools for analyzing large datasets, it is para-
mount to devise clustering strategies amenable to the typical computational frameworks
employed for big data processing, such as MapReduce and streaming [10]. Coreset-
based strategies have recently emerged as ideal approaches for big data processing [11].
Informally, these strategies entail the (efficient) extraction of a very succinct summary
T (dubbed coreset) of the dataset V, so that a solution for V can be obtained by running
(suitable modifications of) the best sequential algorithm on T. Coreset constructions
that can be either parallelized or streamlined efficiently, yield scalable and space-effi-
cient algorithms in the big data realm. In this paper, we devise a novel coreset-based
algorithm for the RMC problem, featuring efficient sequential, distributed and stream-
ing implementations. Our distributed implementation is specified using the MapReduce
framework which is recognized as one of the reference models for the efficient distrib-
uted processing of large datasets, but it can be immediately ported to other distributed
frameworks (e.g., the Massively Parallel Computation model (MPC) [12]).

Previous work

For brevity, we only report on the works most closely related to the specific topic of
this paper, and refer the interested reader to [13] for a more comprehensive overview of
center-based clustering. The most accurate sequential algorithms to date for the RMC
problem are the sequential 3-approximations presented in [4, 5], whose running times
(not explicitly quantified in the papers) are polynomials of likely high degree due to the
use of dynamic and linear programming. A simpler combinatorial algorithm, more ame-
nable to practical implementation, is the 7-approximation of [3]. All of these algorithms
are not immediately portable to the MapReduce or streaming settings. A coreset-based
streaming algorithm for RMC has been recently devised by Kale in [14]. For ε > 0 , the

Page 3 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

algorithm computes a coreset of size O(k(k + z) log(1/ε)/ε) , which contains a (15+ ε)

-approximate solution, where z is the number of outliers and k is the rank of the matroid.
This solution can then be extracted from the coreset using exhaustive search in time
exponential in k. Alternatively, one of the sequential approximation algorithms in [4, 5]
can be run on the coreset to yield a (51+ ε)-approximate solution. Kale’s strategy tests
and updates, in parallel, several guesses on the optimal value of the objective function,
and computes, for each guess, a suitable coreset through an adaptation of the k-center
streaming strategy in [15].

The special case of RMC with the partition matroid and z = 0 (i.e., without outliers)
has been recently studied in the context of fair k-center clustering, where the matroid
constraint is used to enforce that given fractions of the centers be picked from the
matroid categories. A streaming (3+ ε)-approximation algorithm running in two passes,
and a distributed (17+ ε)-approximation algorithm running in two rounds and using
sublinear local memory, are presented in [9], together with results of some experiments
carried out, however, on very small datasets.

Coreset-based algorithms for the unconstrained (robust) k-center and related prob-
lems, suitable for the MapReduce and streaming settings, can be found in [16–20].
Coreset-based techniques have also found applications in other domains, such as graph
processing [21, 22]. Useful techniques to deal with matroid constraints in big data sce-
narios have been introduced in [23, 24] in the realm of diversity maximization.

To the best of our knowledge, no distributed (e.g., MapReduce) algorithms for the gen-
eral RMC problem have been presented in the open literature.

Our algorithms are analyzed in terms of the doubling dimension [25], which along with
the VC-dimension [26], the local intrinsic dimensionality [27], the expansion [28], and
the relative contrast [29] is a useful measure to characterize the behavior of algorithms.

Our contribution

We present a novel coreset-based algorithm for the RMC problem which features an
approximation ratio close to the best one attainable sequentially, and admits efficient
sequential, distributed (MapReduce) and streaming implementations, affording a dra-
matic performance improvement over the existing sequential approaches, hence prov-
ing suitable for dealing with massive inputs. By leveraging ideas introduced in [14, 23,
30], our algorithm makes pivotal use of the unconstrained k-center primitive to extract
a small coreset T from the ground set V of the input matroid M = (V , I) , with the prop-
erty that the distance between each point of V and the closest point of T is a small frac-
tion of the cost of the optimal solution. In order to cope with the matroid constraint,
T is built in such a way that for every independent set in I there is a “pointwise close”
independent set in T. Consequently, T contains a good solution for the original problem
on V, which can be computed by assigning a suitable multiplicity to each point of T, and
feeding T to the best-known sequential algorithms for RMC, adapted to take multiplici-
ties into account. The performance of the algorithm is analyzed in terms of the number
of outliers z, the rank k of matroid M, an accuracy parameter ε capturing the approxima-
tion quality, and the doubling dimension D of the ground set V, a parameter that general-
izes the notion of Euclidean dimension to arbitrary metric spaces.

The main contributions of our paper are the following.

Page 4 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

• A coreset-based RMC algorithm called RobustMatroidCenter that, for any
fixed ε ∈ (0, 1) , attains an (α + ε)-approximation ratio, where α is the approxima-
tion ratio of the sequential RMC algorithm (generalized to handle multiplicities)
run on the coreset (Theorem 6).

• A sequential implementation of RobustMatroidCenter, which attains the
same approximation ratio, and requires time O

(
|V | poly(k , z, (c/ε)D)

)
 , for a suit-

able constant c > 0 . This running time is linear in |V| for a wide range of param-
eters.

• A distributed implementation of RobustMatroidCenter in MapReduce, which
attains the same approximation ratio, runs in 2 rounds, and requires
O
(√

|V | poly(k , z)(c/ε)D
)
 memory at each worker, for a suitable constant c > 0

(Theorem 9). This local memory bound is substantially sublinear in |V| for a wide
range of parameters.

• A streaming implementation of RobustMatroidCenter which attains the same
approximation ratio, runs in 1 pass, and uses O

(
poly(k , z)(c/ε)D

)
 working mem-

ory, for a suitable constant c > 0 (Theorem 11). This working memory bound is
independent of |V|.

• A rich suite of experiments demonstrating the competitiveness of our algorithm,
both in the distributed and in the streaming setting, when applied to large datasets
of up to several million points, which are out of reach of the current sequential
algorithms with best approximation ratios (section "Experiments").

We also show how to adapt the sequential RMC algorithm in [4] to handle multi-
plicities, retaining approximation ratio 3. Therefore, RobustMatroidCenter yields
a (3+ ε)-approximation in all computational frameworks. In the distributed setting,
is proved in [9] that an approximation ratio less than 4 for unconstrained k-center
(hence, for RMC) cannot be achieved with sublinear communication volume. In con-
trast, our MapReduce implementation achieves sublinear communication volume
(matching the local memory requirement) for low dimensional spaces and small val-
ues of k and z, thus showing that the lower bound can be beaten in these cases.

We remark that, while the analysis is performed in terms of the doubling dimension
D of V, RobustMatroidCenter is oblivious to the value D, in the sense that this
value, which is hard to compute and expensive to approximate [31], is not used by the
algorithm. We also observe that, as it is often the case in dimensionality-aware analy-
ses, time and space requirements exhibit an exponential dependence on D, hence they
are mostly effective for low-dimensional datasets. Nevertheless, in our experiments
we did not observe the degradation exponential D suggested by the theory.

Our results improve upon the state of the art as follows.

• We provide the first distributed solution to RMC for general matroids, with an
approximation guarantee comparable to one of the best sequential algorithm.
Also, compared to the MapReduce algorithm for fair k-center clustering of [9]
(i.e., z = 0 and the partition matroid), we improve the approximation ratio from
(17+ ε) to (3+ ε) , at the expense of a modest memory blow-up, for ground sets of
low doubling dimension.

Page 5 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

• In the streaming setting, we substantially improve upon the approximations attained
in [14] for general matroids, by virtue of a different construction strategy that yields
higher-precision coresets, at the expense of a modest blow-up in the coreset size, for
ground sets of low doubling dimension. Also, for fair k-center clustering we obtain
the same approximation ratio of [9] in one pass rather than two.

• To the best of our knowledge, we carry out the first experimentation to date of RMC
algorithms for general matroids. The experiments demonstrate that confining the
execution of an expensive accurate sequential strategy to small subsets of the ground
set, affords the solution of large instances and yields dramatic improvements in run-
ning time, while maintaining roughly the same approximation quality

The rest of the paper is organized as follows. Section "Preliminaries" defines key prop-
erties of matroids, formally defines the RMC problem, and describes the MapReduce
and streaming computational settings. Algorithm RobustMatroidCenter is pre-
sented and analyzed in section "Coreset-based strategy for the RMC problem", while
its MapReduce and streaming implementations are described in section "MapReduce
and streaming implementations". The results of the experiments are reported in sec-
tion "Experiments". section "Concluding remarks" closes the paper with some conclud-
ing remarks. Finally, at the end of the paper a technical appendix describes the extension
of the RMC algorithm of [4] to handle multiplicities, which is needed by our approach.

Preliminaries
Matroids

Let V be a ground set of elements from a metric space with distance function d(·, ·) satis-
fying the triangle inequality. A matroid [32] on V is a pair M = (V , I) , where I is a family
of subsets of V, called independent sets, satisfying the following properties: (i) the empty
set is independent; (ii) every subset of an independent set is independent (hereditary
property); and (iii) if A ∈ I and B ∈ I , and |A| > |B| , then there exist x ∈ A\B such that
B ∪ {x} ∈ I (augmentation property). An independent set is maximal if it is not properly
contained in another independent set. A basic property of a matroid M is that all of its
maximal independent sets have the same size. The notion of maximality can be natu-
rally extended to any subset of the ground set. Namely, for V ′ ⊆ V , an independent set
A ⊆ V ′ of maximum cardinality among all independent sets contained in V ′ is called a
maximal independent set of V ′ , and all maximal independent sets of V ′ have the same
size. We let the rank of a subset V ′ ⊂ V , denoted by rank(V ′) to be the size of a maximal
independent set in V ′ . The rank of the matroid rank(M) is then defined as rank(V). An
important property of the rank function is submodularity: for any A,B ⊆ V it holds that
rank(A ∪ B)+ rank(A ∩ B) ≤ rank(A)+ rank(B) . The following lemma is an adapta-
tion of [14, Lemma 3] and provides a useful property of matroids which will be exploited
to derive the results of this paper.

Lemma 1 (Extended augmentation property) Let M = (V , I) be a matroid. Consider
an independent set A ∈ I, a subset V ′ ⊆ V , and an independent set B ⊆ V ′ which is max-
imal within V ′. If there exists y ∈ V ′\A such that A ∪ {y} ∈ I, then there exists x ∈ B\A
such that A ∪ {x} ∈ I.

Page 6 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

Proof Since B is maximal in V ′ , we have that rank(B ∪ {y}) = rank(B) = rank
((B ∪ {y}) ∩ (A ∪ B)) . Also, rank((B ∪ {y}) ∪ (A ∪ B)) ≥ rank(A ∪ {y}) ≥ |A| + 1 , since
A ∪ {y} ∈ I . By applying the submodularity property to sets B ∪ {y} and A ∪ B we have
the inequality rank((B ∪ {y}) ∪ (A ∪ B))+ rank((B ∪ {y}) ∩ (A ∪ B)) ≤ rank(B ∪ {y})+

rank(A ∪ B) . Therefore, rank(A ∪ {y})+ rank(B ∪ {y}) ≤ rank((B ∪ {y}) ∪ (A ∪ B))+ rank

((B ∪ {y}) ∩ (A ∪ B)) ≤ rank(B ∪ {y})+ rank(A ∪ B), whence rank(A ∪ B) ≥ rank

(A ∪ {y}) ≥ |A| + 1 . So, there exists an independent set C ⊆ A ∪ B of |A| + 1 elements,
and the lemma follows. �

Given a matroid M = (V , I) and a subset V ′ ⊆ V , we define the restriction of M to V ′
as MV ′ = (V ′, IV ′) , where IV ′ = {X ∩ V ′ : X ∈ I} . It is easy to see that MV ′ is also a
matroid.

Robust Matroid Center

The well-known k-center problem is defined as follows. Given a set V of points from a
metric space with distance function d(·, ·) , determine a subset S ⊆ V of size k which
minimizes maxi∈V d(i, S).1 We let ρ∗(V , k) denote the cost of the optimal solution. In
this paper, we focus on the following variant of the k-center problem, defined below
using the same terminology adopted in [5].

Definition 1 Let M = (V , I) be a matroid defined over the set of points V, and let z be
an integer, with 0 ≤ z < |V | . The Robust Matroid Center (RMC) problem on M with
parameter z, requires to determine an independent set S ∈ I minimizing

We use the tuple (M = (V , I), z) to denote an instance of RMC, and let r∗(M, z)
denote the cost of its optimal solution. It is immediate to see that the objective func-
tion r(S, V, z) corresponds to the (|V | − z)-th smallest distance of a point of V from S. In
other words, the best solution is allowed to ignore the contribution of the z most distant
points, which can be regarded as outliers. Note that if the matroid (V, I) has rank k, any
feasible solution S ∈ I has size at most k. Also, note that the standard k-center problem
is a special case of RMC problem where z = 0 , and the set I of independent sets consists
of all subsets of size at most k.

The state of the art on sequential solution for the problem is the 3-approximation algo-
rithm presented in [4]. The coreset-based approaches developed in this paper require
the solution of a generalized version of the problem, where each point i ∈ V comes with
a positive integer multiplicity mi . Let µV =

∑
i∈V mi . The generalized version, dubbed

RMC problem with Multiplicities (RMCM problem), allows z to vary in [0,µV) and
modifies the cost function as follows:

Letting m =
(
m1, . . .mi, . . .m|V |

)
 , we use the tuple (M = (V , I), z,m) to denote

instances of RMCM. To the best of our knowledge, prior to this work, no algorithms had
been devised to solve the RMCM problem. However, we can show that the sequential

r(S,V , z) = min
X⊆V :|X |≥|V |−z

max
i∈X

d(i, S).

r(S,V , z) = min
X⊆V :

∑
i∈X mi≥µV−z

max
i∈X

d(i, S).

1 For convenience, we use the notation d(i, S) = minc∈S d(i, c).

Page 7 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

algorithms in [4] can be adapted to solve the RMCM problem, featuring the same
approximation guarantees as in the case without multiplicities. This is summarized in
the following theorem (proof in Appendix).

Theorem 2 There exists a 3-approximate polynomial-time sequential algorithm for the
RMCM problem.

Doubling dimension

The algorithm in this paper will be analyzed in terms of the dimensionality of the ground
set V as captured by the well-established notion of doubling dimension. Formally, given
a point i ∈ V , let the ball of radius r centered at i be the subset of points of V at dis-
tance at most r from i. The doubling dimension of V is the smallest value D such that any
balls of radius r centered at a point i ∈ V is contained in the union of at most 2D balls of
radius r/2 suitably centered at points of V. The algorithms that will be presented in this
paper adapt automatically to the doubling dimension D of the input dataset and attain
their best performance when D is small, possibly constant. This is the case, for instance,
of ground sets V whose points belong to low-dimensional Euclidean spaces, or represent
nodes of mildly-expanding network topologies under shortest-path distances.

The doubling dimension D of a ground set V allows to establish the following interest-
ing relation between the radius of a clustering and its granularity, which will be crucially
exploited in this paper.

Proposition 1 Let ε ∈ (0, 1). Consider a set S ⊆ V , and let ρ = maxi∈V d(i, S).
If V has doubling dimension D, there exists a set S′ ⊆ V of size ≤ |S|(2/ε)D such that
maxi∈V d(i, S′) ≤ ερ.

Proof By repeatedly applying the definition of doubling dimension, it is easily seen that
each ball of radius ρ around a point in S can be covered with at most (2/ε)D smaller balls
of radius at most ερ . The centers of all of these smaller balls provide the desired set S′ . �

Computational settings

In recent years, MapReduce [10, 33, 34] has become one of the reference models for the
efficient distributed processing of large datasets. In particular, MapReduce has proven to
be an effective computational model for clustering problems [18, 35, 36]. A MapReduce
algorithm executes as a sequence of parallel rounds. In a round, a multiset X of key-value
pairs is first transformed into a new multiset X ′ of pairs by applying a given map func-
tion to each individual pair, and then into a final multiset Y of pairs by applying a given
reduce function (referred to as reducer) independently to each subset of pairs of X ′ hav-
ing the same key. The model is parametrized by total aggregate memory available to the
computation, denoted with MA , and the maximum amount of memory locally available
to each reducer, denoted with ML . We remark that, although we use the MapReduce
abstraction for the high level design and analysis of our algorithms, the whole approach
can be straightforwardly rephrased for other distributed models, such as the popular
Massively Parallel Computation (MPC) model [12]. Furthermore, we implement our

Page 8 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

distributed algorithms in the state-of-the-art timely dataflow system [37], which pro-
vides superior performance with respect to more established distributed frameworks
supporting a MapReduce programming style.

The need to cope with data produced at high rates, which cannot be stored for offline
processing, has led to the emergence of the streaming setting [10, 38] where the compu-
tation is performed by a single processor with a small working memory, and the input is
provided as a continuous stream of items, usually too large to fit in the working memory.
Typically, streaming strategies aim at a single pass on the input but in some cases few
additional passes may be needed. Key performance indicators are the size of the working
memory and the number of passes.

The holy grail of big data algorithmics is the development of MapReduce (resp.,
streaming) algorithms which work in as few rounds (resp., passes) as possible and
require substantially sublinear local memory (resp., working memory) and linear aggre-
gate memory.

Coreset‑based strategy for the RMC problem
In this section, we present a two-phase strategy to solve the RMC problem based on the
following simple high-level idea. In the first phase, a small coreset T ⊆ V is extracted
from the ground set V, with the property that each point j ∈ V has a suitably “close”
proxy p(j) in T. While the algorithm does not explicitly store the proxy function, it stores,
with each point in i ∈ T , its multiplicity mi , defined as the number of distinct points
j ∈ V whose proxy is i. In the second phase, an approximate solution S to the RMCM
problem is computed on T (efficiently, due to T’s small size). The key ingredient of our
strategy is that for each independent set X of the input matroid there is an independent
set X ′ ⊆ T whose elements are pointwise “close” to those of X. This fact will allow us to
show that S is also a good solution for the RMC problem on V. The section is structured
as follows. Section "Coreset construction" describes and analyzes the construction of T,
while section "Extraction of the solution from the coreset" discusses how to extract an
accurate solution for V from the coreset T with its multiplicities.

Coreset construction

Let (M = (V , I), z) be an instance of the RMC problem. As in previous works, we assume
that constant-time oracles are available to compute the distance between two elements
of V and to check whether a subset of V is an independent set (see e.g., [39]). We let k be
the rank of matroid M, and make the reasonable assumption that k is provided in input
together with the instance.

In order to construct the coreset T, we first determine a β-approximate solution S to
the unconstrained (k + z)-center problem on V, for some constant β > 0 , and compute
its cost ρ = maxi∈V d(i, S) . Hence, ρ ≤ βρ∗(V , k + z) . The value β will depend on the
employed approximation algorithm, which, in turn, depends on the computational set-
ting. For instance, in the sequential setting, Gonzalez’s algorithm [1] provides β = 2 ,
while in the streaming setting, Gonzalez’s algorithm cannot be used, and a larger value
of β will be needed [15, 40].

As a next step, we fix a suitable accuracy parameter ε′ ∈ (0, 1) and determine a
set T ′ of points of V such that d(i1, i2) > (ε′/(2β))ρ , for every i1 = i2 ∈ T ′ , and

Page 9 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

d(j,T ′) ≤ (ε′/(2β))ρ , for every j ∈ V \ T ′. We define rT ′ = maxi∈V d(i,T ′) , hence,
rT ′ ≤ (ε′/(2β))ρ . T ′ can be computed greedily by performing a linear scan of V, start-
ing with an initially empty T ′ , and iteratively adding to T ′ each point that is at distance
greater than (ε′/(2β))ρ from the current T ′ [41].

Let T ′ = {i1, i2, . . . , iτ } , for some value τ which is a function of ρ , β , and ε′ . For
1 ≤ ℓ ≤ τ , define the cluster Cℓ = {j ∈ V : d(j, iℓ) = d(j,T ′)} (ties broken arbitrarily for
points j ∈ V equidistant from two or more points of Tτ). From each Cℓ we extract a max-
imum independent set2 Yℓ and define

For every 1 ≤ ℓ ≤ τ and every point j ∈ Cℓ , we set the proxy p(j) = i ∈ Yℓ , where
d(j, i) = d(j,Yℓ) (ties broken arbitrarily). Moreover, for each i ∈ T , we compute its mul-
tiplicity as mi = |{j ∈ V : p(j) = i}| . The above construction is implemented by Proce-
dure CoresetConstruction in the pseudocode provided as Algorithm 1.

In the rest of this subsection, we show that T is a good representative for the ground
set V, and provide a bound on its size, in terms of the doubling dimension of V. We first
determine sufficient conditions on any coreset Q ⊆ V , which guarantee that a good solu-
tion to the RMCM problem on Q is also a good solution for the RMC problem on V, and
then we prove that the coreset T built above satisfies these conditions. Consider a core-
set Q ⊆ V with proxy function p : V → Q , and let mi = |{j ∈ V : p(j) = i}| , for every
i ∈ Q . Let MQ = (Q, IQ) denote the restriction of matroid M = (V , I) to the coreset Q,
where IQ = {X ∩ Q : X ∈ I} . Finally, let (MQ, z,m) denote the RMCM instance defined
by MQ , z and m = {mi : i ∈ Q} . The following lemma holds

Lemma 3 Suppose that the coreset Q with proxy function p : V → Q satisfies the fol-
lowing conditions, for a given ε′ ∈ (0, 1):

C1 For each j ∈ V , d(j, p(j)) ≤ ε′r∗(M, z);
C2 For each independent set X ∈ I there exists an injective mapping πX : X → Q such
that:

• {πX (i) : i ∈ X} ⊆ Q is an independent set;
• for each i ∈ X , d(i,πX (i)) ≤ ε′r∗(M, z).

Then:

P1 There exists a solution to (MQ = (Q, IQ), z,m) of cost at most (1+ 2ε′)r∗(M, z);
P2 Every solution S to (MQ, z,m) of cost rS is also a solution to (M = (V , I), z) of cost

at most rS + ε′r∗(M, z).

Proof Let us first show P1. Let X∗
V be the optimal solution to the RMC instance

(M = (V , I), z) and let Y = {πX∗
V
(o) : o ∈ X∗

V } ⊆ Q . We will show that Y is a solution for

T = ∪1≤ℓ≤τYℓ.

2 For ease of presentation, we are assuming that Cℓ always contains a non-empty independent set. If this were not the
case, it would be sufficient to set Yℓ to a singleton consisting of an arbitrary element of Cℓ , so that Cℓ is represented in the
final coreset.

Page 10 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

(MQ, z,m) of cost at most (1+ 2ε′)r∗(M, z) . By C2, |Y | = |X∗
V | and Y is an independ-

ent set in IQ . Consider now a point j ∈ V such that ∃o ∈ X∗
V with d(j, o) ≤ r∗(M, z) and

observe that there are at least |V | − z such points (e.g., all nonoutliers). We have that

Let µQ =
∑

i∈Q mi and observe that µQ = |V | . We have that

which concludes the proof of P1. In order to prove P2, let S be a solution to (MQ, z,m)
of cost rS . Clearly, S is an independent set in I. Consider a generic point i ∈ Q such that
d(i, S) ≤ rS and let a be the point of S closest to i. Observe that the mi points j ∈ V
with i = p(j) are such that d(j, S) ≤ d(j, a) ≤ d(j, i)+ d(i, a) ≤ ε′r∗(M, z)+ rS . Since ∑

i∈Q:d(i,S)≤rS
mi ≥ µQ − z , there are at least µQ − z = |V | − z points of V that are

within a distance ε′r∗(M, z)+ rS from S. �

We have:

Lemma 4 The coreset T returned by Procedure CoresetConstruc-
tion(M = (V , I), z, ε′) satisfies Conditions C1 and C2 of Lemma 3, hence, it exhibits
Properties P1 and P2 of that lemma.

Proof First, we prove C1. Consider an arbitrary point j ∈ V , and suppose that j belongs
to cluster Cℓ , for some ℓ . Thus, p(j) belongs to Yℓ ⊆ Cℓ and d(j, p(j)) ≤ 2rT ′ ≤ (ε′/β)ρ .
Since any solution to the (M = (V , I), z) instance of RMC, with the addition of the z
outlier points as extra centers, is a solution to (k + z)-center on V, it is easy to see that
ρ∗(V , k + z) ≤ r∗(M, z) . Now, by using the fact that ρ is the cost of a β-approximate
solution to (k + z)-center on V, we have

thus proving C1. As for C2, we reason as follows. Consider an arbitrary independ-
ent set X ∈ I . We now show that there exists an injective mapping πX which trans-
forms X into an independent set contained in T, and such that, for each j ∈ X , if
j belongs to cluster Cℓ , for some 1 ≤ ℓ ≤ τ , then also πX (j) ∈ Cℓ . This will imme-
diately imply that d(j,πX (j)) ≤ 2rT ′ ≤ ε′r∗(M, z) . Let X = {xa : 1 ≤ a ≤ |X |} . We

d(p(j),Y) ≤ d(p(j),πX∗
V
(o))

≤d(p(j), j)+ d(j, o)+ d(o,πX∗
V
(o))

(by triangle inequality)

≤ε′r∗(M, z)+ r∗(M, z)+ ε′r∗(M, z)

(by C1 and C2)

≤(1+ 2ε′)r∗(M, z).

∑

i∈Q:d(i,Y)≤(1+2ε′)r∗(M,z)

mi ≥

≥
∑

i∈Q:∃j∈V :(i=p(j))∧(d(j,X∗
V)≤r∗(M,z))

mi

≥ |{j ∈ V : d(j,X∗
V) ≤ r∗(M, z)}|

≥ |V | − z,

d(j, p(j)) ≤ (ε′/β)ρ ≤ ε′ρ∗(V , k + z) ≤ ε′r∗(M, z),

Page 11 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

define the mapping πX incrementally one element at a time. Suppose that we have
fixed the mapping for the first h ≥ 0 elements of X, and assume, inductively, that
W (h) = {πX (xa) : 1 ≤ a ≤ h} ∪ {xa : h < a ≤ |X |} is an independent set of size |X| and
that xa and πX (xa) belong to the same cluster, for every 1 ≤ a ≤ h . Consider now xh+1 ,
and suppose that xh+1 ∈ Cℓ , for some ℓ . We distinguish among the following two cases:

• Case 1. If xh+1 ∈ Yℓ , we set πX (xh+1) = xh+1 , hence W (h+ 1) = W (h).
• Case 2. If xh+1 �∈ Yℓ , we apply the extended augmentation property stated in

Lemma 1 with A = W (h) \ {xh+1} , y = xh+1 , V ′ = Cℓ , and B = Yℓ to con-
clude that there exists a point πX (xh+1) ∈ B\A = Yℓ\(W (h)\{xh+1}) such that
W (h+ 1) = (W (h)\{xh+1}) ∪ πX (xh+1) is an independent set.

After |X| iterations of the above inductive argument, we have that the mapping
πX is completely specified and exhibits the following properties: it is injective,
{πX (xa) : 1 ≤ a ≤ |X |} is an independent set, and, for 1 ≤ a ≤ |X | , if xa ∈ Cℓ then also
πX (xa) ∈ Cℓ , hence d(xa,πX (xa)) ≤ ε′r∗(M, z) . This proves C2. �

The size of coreset T can be conveniently bounded as a function of the doubling
dimension of the ground set V.

Theorem 5 If V has doubling dimension D, then the coreset T obtained with the above
construction has size at most k(k + z)(8β/ε′)D.

Proof Since the matroid M = (V , I) has rank k, we have that |T | ≤ kτ , hence we are left
to bound τ . Consider the first set S of k + z centers computed by the coreset construc-
tion algorithm (i.e., the one that provided the value ρ = maxi∈V d(i, S) ≤ βρ∗(V , k + z)).
Proposition 1 implies that there exists a set S′ of at most h = (k + z)(8β/ε′)D points such
that maxi∈V d(i, S′) ≤ (ε′/(4β))ρ , hence V can be covered with h balls of radius at most
(ε′/(4β))ρ . It is easy to see that the greedy strategy used to construct T ′ , picks at most
one point from each such ball. Hence, τ = |T ′| ≤ h , and the theorem follows. �

Extraction of the solution from the coreset

Once the coreset T with the multiplicities m = {mi : i ∈ T } is computed from V, the final
solution S to instance (M = (V , I), z) of RMC is obtained by running an approximation
algorithm A for RMCM on instance (MT = (T , IT), z,m) . (The pseudocode for both the
coreset construction and the extraction of the final solution is provided by Algorithm 1.)

The following theorem establishes an upper bound to the approximation obtainable
for the RMC problem.

Theorem 6 Let ε ∈ (0, 1) and suppose that an α-approximation algorithm A for RMCM
is available. If the coreset T exhibits Properties P1 and P2 of Lemma 3 with ε′ = ε/(2α + 1)

then the solution, S returned by running A on instance (MT = (T , IT), z,m) of RMCM, is
an (α + ε)-approximate solution to instance (M = (V , I), z) of RMC.

Page 12 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

Proof By Property P1 of Lemma 3, we know that the optimal solution to
(MT = (T , IT), z,m) has cost at most (1+ 2ε′)r∗(M, z) = (1+ 2ε/(2α + 1))r∗(M, z) .
Hence, S has cost rS ≤ (α + 2αε/(2α + 1))r∗(M, z) . By Property P2 of Lemma 3, S is also a
solution to instance (M = (V , I), z) of RMC with cost rS + ε′r∗(M, z) ≤ (α + ε)r∗(M, z) .
 �

Using the 3-approximation algorithm for RMCM from Theorem 2 as A in the above
theorem, immediately yields the following corollary.

Corollary 7 Algorithm RobustMatroidCenter can be used to compute a (3+ ε)

-approximate solution to any instance (M = (V , I), z), for any fixed ε ∈ (0, 1).

Remarks A straightforward consequence of Theorems 2 and 5, and of Corollary 7, is
that there is a sequential (3+ ε)-approximation algorithm for the RMC problem which
runs in time O

(
|V | poly(k , z, (c/ε)D)

)
 when given in input an instance (M = (V , I), z, ε)),

where c is a suitable constant and D is the doubling dimension of V. Therefore, if k, z, ε
and D are constants, the running time is linear in |V|. Moreover, an exhaustive search on
the coreset can yield a tighter (1+ ε)-approximate solution while maintaining the run-
ning time linear in |V|, although exponential in the other parameters. It is also impor-
tant to observe that, while the analysis of our algorithm is performed in terms of the
doubling dimension D of V, the algorithm itself is oblivious to the value D , in the sense
that D is not explicitly used by the algorithm, and becomes very efficient for spaces of
low doubling dimension.

MapReduce and streaming implementations
In this section, we present efficient implementations of RobustMatroidCenter
in the MapReduce (section "MapReduce implementation") and streaming (sec-
tion "Streaming implementation") settings.

Page 13 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

MapReduce implementation

In MapReduce, RobustMatroidCenter can be implemented in two rounds, where
the first round computes the coreset T and the second round extracts the solution S
from T. While, in the second round, the small size of T affords computing S by run-
ning a sequential RMCM algorithm on T in one reducer, the computation of T in the
first round involves the whole (possibly very large) ground set V, and thus requires
a careful implementation able to exploit parallelism while keeping memory require-
ments suitably low.

A key feature the RMC coreset construction presented in the previous section is its
composability [42], a property referring to the fact that the coreset for the entire set
V can be obtained as the union of partial coresets, one for each subset of an arbitrary
partition of V. The next lemma establishes this property.

We have:

Lemma 8 Given a matroid M = (V , I), consider an arbitrary partition of V into ℓ
disjoint subsets V1, . . . ,Vℓ, with ℓ ≥ 1. For 1 ≤ q ≤ ℓ, let Tq be the coreset returned by
CoresetConstruction (MVq = (Vq , IVq), z, ε

′/2), with proxy function pq : Vq → Tq,
where MVq is the restriction of M to Vq. Then, the coreset T = ∪1≤q≤ℓTq, with proxy func-
tion p : V → T defined as p(i) = pq(i) for i ∈ Vq, satisfies the conditions C1 and C2 of
Lemma 3

Proof The proof follows by repeating the same argument used in the proof of Lemma 4,
with the only modification that, for any subset Vq , a simple application of the triangle
inequality suffices to show that ρ∗(Vq , k + z) ≤ 2ρ∗(V , k + z) . �

As an immediate consequence of the above lemma, a coreset T satisfying Condi-
tions C1 and C2 of Lemma 3 can be constructed in one MapReduce round as fol-
lows. Partition V evenly but arbitrarily into ℓ disjoint subsets V1, . . . ,Vℓ , and
assign each Vq to a distinct reducer, which builds a coreset Tq for Vq by invoking
CoresetConstruction (Mq = (Vq , IVq), z, ε

′/2) , instantiated with the (β = 2)-approxi-
mation algorithm by Gonzalez [1] to find the initial solution to (k + z)-center. In a
second round, the Tq ’s are gathered into the final coreset T = ∪1≤q≤ℓTq , and a solu-
tion can be computed from T using a single reducer running A(MT = (T , IT), z,m) ,
where A is a sequential approximation algorithm for the RMCM problem.

Setting ℓ =
√
|V |/(k(k + z)) and applying Theorem 5 (with ε′/2) we have that

|T | = O(
√

|V |k(k + z)(16/ε′)D) . Observe that for a large range of values of k and z,
the size of each Vq and the size of T are substantially sublinear in |V|. The following
theorem is an immediate consequence of the above discussion and of the results of
Theorem 6.

Theorem 9 Let ε ∈ (0, 1) and suppose that a sequential α-approximation algorithm for
RMCM is available, for some constant α > 0. Then, there exists a 2-round MapReduce
algorithm that for the RMC instance (M = (V , I), z) computes an (α + ε)-approximate
solution using MA = O(|V |) and ML = O(

√
|V |k(k + z)(c/ε)D), for a suitable con-

stant c.

Page 14 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

By using the result of Theorem 2, the value α = 3 can be plugged in the above
theorem.

Streaming implementation

In the streaming setting, the coreset construction devised in section Coreset-based strat-
egy for the RMC problem can be easily implemented in two passes, where the first pass
computes the initial solution to (k + z)-center on V, using the scaling algorithm of [15],
and the second pass computes the coreset T, together with the multiplicities, through an
adaptation of the greedy linear scan of Lines 9–11 of Algorithm 1, so to compute con-
currently the points of T ′ and their associated independent sets. At the end of the second
pass, the final solution is obtained by running the sequential approximation algorithm A
on T. We describe below how the two passes can be reduced to one, by exploiting ideas
similar to those in [24, 40].

Let Vt denote the first t points of the ground set stream V, and let δ, ε′ ∈ (0, 1) be two
fixed accuracy parameters. For each t ≥ k + z + 1 , our implementation maintains the
following data:

• A set St ⊆ Vt of k + z centers and a value ρ′
t ≤ (2+ δ)ρ∗(Vt , k + z) such that for

every i ∈ Vt , d(i, St) ≤ ρ′
t.

• A set T ′
t ⊆ Vt with the property that for every i = j ∈ T ′

t : d(i, j) > (ε′/(2β))R , and
for every i ∈ Vt : d(i,T ′

t) ≤ (ε′/β)R , where R is a suitable value in [ρ′
t/2, ρ

′
t] and

β = 2 · (2+ δ).
• An implicit partition Vt into clusters, C1,C2, . . . ,C|T ′

t |
 , such that all points of any

cluster Cℓ are at distance at most (ε′/β)R from the ℓ-th point of T ′
t (call it iℓ), which is

regarded as the center of Cℓ . The partition is not explicitly stored, but for each Cℓ , the
algorithm maintains its size and a maximal independent set Yℓ ⊆ Cℓ , with multiplici-
ties assigned to its points so that they add up to |Cℓ|.

For any t, the set St and the value ρ′
t are maintained through the scaling algorithm of [15].

For t = k + z + 1 , R is set equal to ρ′
t , while T ′

t , the independent sets Yℓ , and the related
multiplicities, are initialized by performing a simple scan of Vt . For t > k + z + 1 , let i
be the point arriving at time t. If d(i,T ′

t−1) > (ε′/(2β))R then T ′
t = T ′

t−1 ∪ {i} and i will
make a singleton cluster and independent set with multiplicity 1. Otherwise, T ′

t = T ′
t−1

and i will be implicitly added to a cluster Cℓ such that the distance between i and the
center iℓ of Cℓ is at most (ε′/β)R . Also, i is added to Yℓ if Yℓ ∪ {i} stays independent. In
both cases, the multiplicities in Yℓ are updated to reflect that there is a new point in Cℓ.

As soon as the current estimate ρ′
t becomes greater than 2R, the algorithm sets R equal

to ρ′
t (thus R increases by a factor at least 2) and “shrinks” T ′

t by iteratively eliminating
each point that is within distance (ε′/(2β))R from another point, so to re-establish the
separation property stated above. When a point iℓ ∈ T ′

t is eliminated from T ′
t because of

another point iℓ′ ∈ T ′
t , with d(iℓ, iℓ′) ≤ (ε′/(2β))R , the cluster Cℓ corresponding to iℓ is

implicitly merged with Cluster Cℓ′ . To reflect such a merging, the old subset Yℓ′ is reas-
signed to a maximal independent set obtained from Yℓ ∪ Yℓ′ , and the multiplicities of

Page 15 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

the points in the new Yℓ′ are chosen to add up to |Cℓ| + |Cℓ′ | . The correctness of this
procedure (i.e., the fact that the new subset Yℓ′ is a maximal independent set of Cℓ ∪ Cℓ′)
follows by the extended augmentation property of Lemma 1.

At the end of the stream, the coreset T is set equal to the union of the Yℓ’s, with mul-
tiplicities inherited from those of the Yℓ’s. Finally, the solution to the (M = (V , I), z)
instance to the problem is computed as A(MT = (T , IT), z,m) , where A is a sequential
approximation algorithm for the RMCM problem.

Lemma 10 The coreset T computed at the end of the stream has size at most
k(k + z)(32(2+ δ)/ε′)D, where D is the doubling dimension of V. Moreover, it satisfies
Conditions C1 and C2 of Lemma 3, hence, it exhibits Properties P1 and P2 of that lemma.

Proof Let n = |V | . By construction, |T | ≤ k|T ′
n| , hence, it is sufficient to upper

bound |T ′
n| . At the end of the stream, Sn is a set of k + z centers with the guarantee that

d(i, Sn) ≤ ρ′
n ≤ (2+ δ)ρ∗(Vn, k + z) for every i ∈ Vn = V , and for any two points i = j ∈ T ′

n
we have that d(i, j) > (ε′/(2β))R ≥ (ε′/(4 · (2+ δ)))(ρ′

n/2) ≥ (ε′/(8(2+ δ)))ρ′
n .

By Proposition 1 we have that V can be covered with at most (k + z)(32(2+ δ)/ε′)D
balls of radius at most (ε′/(16(2+ δ)))ρ′

n . Clearly, no two points of T ′
n can reside in any

such ball, which implies |T ′
n| ≤ (k + z)(32(2+ δ)/ε′)D . In order to show that T satis-

fies Conditions C1 and C2 of Lemma 3, we first observe that, for every i ∈ V , if i belongs
to cluster Cℓ with center iℓ ∈ T ′

n , we have that the proxy p(i) of i is a point of Yℓ , hence
d(i, p(i)) ≤ 2d(i, iℓ) ≤ (ε′/(2+ δ))R ≤ (ε′/(2+ δ))ρ′

n ≤ ε′ρ∗(Vn, k + z) ≤ ε′r∗(M, z) .
Then, the same proof of Lemma 4 can be repeated. �

Note that the proof of the above lemma can be immediately generalized to show that at
any time t, the aggregate size of all Yℓ ’s is at most k(k + z)(32(2+ δ)/ε′)D . Since, the scal-
ing algorithm used to maintain St requires working memory O

(
(k + z)(1/δ) log(1/δ)

)

[15], we have that the dominant factor in the working memory requirements is the
aggregate size of the Yℓ’s. For a fixed constant δ , the following theorem is an immediate
consequence of the above discussion and of the results of Lemma 10 and Theorem 6.

Theorem 11 Let ε ∈ (0, 1) and suppose that a sequential α-approximation algorithm
for RMCM is available, for some constant α > 0. There exists a 1-pass streaming algo-
rithm that for the RMC instance (M = (V , I), z) computes an (α + ε)-approximate solu-
tion using working memory of size O

(
k(k + z)(c/ε)D

)
, for a suitable constant c.

Again, a (3+ ε)-approximation can be attained by using the RMCM algorithm of
Theorem 2.

Experiments
We carry out an experimental evaluation of RobustMatroidCenter and its sequen-
tial, MapReduce and streaming implementations, aimed at answering the following
questions:

• What is the impact of the coreset size on performance, both in terms of quality and
running time?

Page 16 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

• How does the coreset-based strategy used by RobustMatroidCenter compare
against existing sequential and streaming baselines?

• To what extent does the distributed implementation of the coreset construction ben-
efit from parallelism?

• How expensive is to build the coreset, compared to finding a good solution to the
RMCM problem on the coreset itself?

Our experiments focus on the robust formulation of the problem under general
matroids, and for this reason we do not compare with the algorithms from [8, 9], which
are restricted to the non-robust case under the partition matroid.

Experimental setup We implemented all algorithms using Rust 1.53.0-nightly
(ca075d268 2021-04-28). The MapReduce implementation of our coreset approach
runs on top of Timely Dataflow [37]. All experiments have been executed on a cluster
with 8 machines equipped with a Intel®Xeon®CPU (E5-2670 v2 @ 2.50GHz), and 16 Gb
of RAM each. Each result is the average over at least 10 runs.

Algorithms For RobustMatroidCenter, we developed a sequential implementa-
tion (dubbed SeqCoreset), a streaming algorithm (dubbed StreamingCoreset), and
a MapReduce implementation (dubbed MRCoreset). As baselines to compare with,
we implemented the sequential 7-approximation algorithm from [3] (dubbed Chen-
EtAl), which we have straightforwardly extended to handle multiplicities, and the
streaming algorithm from [14] (dubbed KaleStream). We also used the multiplicity-
enhanced ChenEtAl implementation in all coreset-based algorithms to extract the final
solution from the coreset. In fact, we did not make use of the algorithm of [4] which,
although theoretically more accurate, does not admit an efficient implementation due
to its recourse to the ellipsoid method, while ChenEtAl features a simpler and faster
implementation. All our implementations are available as open source code3 and adopt a
framework which easily allows to tweak parameters [43]. We stress that the main takea-
way from our experiments is that coresets provide a dramatic reduction in the size of the
data fed to expensive sequential strategies, at the cost of a limited loss in approximation
quality. This holds irrespective of whether the algorithms in [3] or [4] are used.

In all experiments, rather than setting the parameter ε , which in the previous sections
relates the quality of the solution to the size of the coreset, we control directly the num-
ber of cluster centers around which the coresets are built. We denote this parameter with
τ . This is to have greater control on the size of the coreset, which will be ≤ τ · rank(M) ,
with the goal of observing the effect on the performance both in terms of time and qual-
ity. While adapting the sequential and MapReduce coreset constructions to this end
is straightforward (we just run the algorithm from [1] aiming for τ clusters), adapting
the streaming construction requires more care. To this end, rather than maintaining
the guess on the radius by means of several instances run in parallel, as in the scaling
algorithm of [15], we fix the number of centers to τ and update the radius guess follow-
ing the schedule of the doubling algorithm of [40]. Each cluster center is associated to a
maximal independent set of the points closest to the center seen so far, and such sets are

3 https:// github. com/ Cecca/ macaco.

https://github.com/Cecca/macaco

Page 17 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

merged whenever the radius guess is updated, dropping points as needed so to maintain
independence.

Datasets We consider three datasets in this experimental evaluation, whose character-
istics are summarised in Table 1. The scripts to automatically download and preprocess
the datasets are available in the code repository.
Higgs [44] is a 7-dimensional dataset of 11 M simulated readings from a particle

detector. Each reading is characterized by 28 attributes, where 7 of them are a function
of the other 21. We used only the 7 derived attributes. Each reading is classified as being
either signal or background. We define a rank-20 partition matroid on these two classes
by allowing up to 10 points from each class in any independent set.
Phones [45] is a 3-dimensional dataset of over 13 M sensor readings from phones,

each tagged with one of seven activities (stand, sit, walk, bike, stairs up, stairs down,
null). We define a partition matroid on these activities by allowing up to 5 points from
each activity in any independent set.
Wiki is derived from a recent snapshot of about 5 M pages of the English Wikipe-

dia [46]. Each page is mapped to a 10-dimensional vector using GloVe [47]. Furthermore,
we use Latent Dirichlet Allocation [48] to derive a set of 50 categories, together with a
probability distribution over these categories for each page. We then assign each page to
the most likely categories, so to obtain a transversal matroid of rank 50. The use of LDA
is motivated by the fact that the original categories of Wikipedia are over one million,
and using all of them to define a transversal matroid would make the matroid constraint
immaterial.

For each dataset, we set the number of allowed outliers to 50, 100, or 150. Allowing
for more outliers would make the set of non-outlier points more cohesive, so that simply
sampling a random independent set would yield a competitive solution compared to the
one obtained with ChenEtAl). In the following, we report the results for 50 outliers.
The results for 100 and 150 outliers are very similar and are not reported for brevity.

Influence of coreset size

First, we consider the effect of varying the size of the coreset on accuracy and the run-
ning time of SeqCoreset and StreamingCoreset. We vary τ from 1 to 10: note that
τ = 1 is a degenerate configuration where the coreset is an arbitrary independent set.
Lacking exact solutions, we evaluate the quality of the solution in terms of the ratio
between the returned radius and the smallest radius found on that dataset by any tested
configuration.

Figure 1 reports the results of this experiment. First, the top plots of the figure show
that increasing τ quickly improves the solution before hitting a plateau, where build-
ing larger coresets does not improve the quality of the solution. On Higgs this effect is

Table 1 Datasets used in this experimental evaluation

Dataset n Dim Matroid Rank

Higgs 11,000,000 7 Partition 20

Phones 13,062,475 3 Partition 35

Wiki 4,976,753 10 Transversal 50

Page 18 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

more pronounced, whereas for Wiki already using a small coreset yields a good-qual-
ity solution. Furthermore, we notice that StreamingCoreset and SeqCoreset have
comparable quality, with the former performing slightly worse for the same value of τ , as
predicted by the theory.

The bottom part of Fig. 1 reports the running times of these experiments, showing that
SeqCoreset scales linearly with τ , as expected. As for StreamingCoreset, its per-
formance is comparable with SeqCoreset with some interesting behavior: for Wiki,
increasing τ beyond 4 does not imply a linear degradation of the performance. The rea-
son is that StreamingCoreset in practice builds coresets smaller than the maximum
allowed τ · rank(M) : after the last doubling of the radius guess the < τ cluster centers
are able to accommodate all the remaining points in the stream, thus building less clus-
ters than the maximum allowed budget. Furthermore, we stress that StreamingCore-
set works on unbounded streams of data in a single pass using limited memory (more
on this in what follows).

Second, we compare the performance of SeqCoreset with ChenEtAl. Due to the
high complexity of ChenEtAl, we are unable to run it on the full datasets, hence we
also consider samples of 10,000 points from each dataset. Table 2 reports the result
obtained by SeqCoreset with large coresets (τ ≈ 10) with ChenEtAl both in terms of
approximation quality and running time. First and foremost, we note that SeqCoreset
is over two orders of magnitude faster than ChenEtAl. At the same time, the approxi-
mation quality is comparable, if not better (e.g. on Phones). In fact, recall that Seq-
Coreset actually runs ChenEtAl on the coreset to obtain the output solution. Results
in Table 2 suggest that using a coreset to reduce the size of the input fed to the slower

Fig. 1 Effect of the parameter τ on the solution quality (top) and the running time (bottom) for SeqCoreSet
and StreamingCoreSet

Page 19 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

approximation algorithm not only does not impact quality, but, in some cases, it may
help the greedy choices of the slower algorithm, thus leading to better approximations.

The reader might have noticed that we have set τ , i.e. the parameter controlling the
number of clusters out of which to build the coreset, to values much smaller than the
minimum k + z mandated by the theory (see section "Coreset construction). Nonethe-
less, we observed that in the real datasets that we considered, the quality of the approxi-
mation improves quickly with τ , reaching a plateau for values of τ much smaller than
k + z . We now explore a setting in which using larger values of τ is paramount to achiev-
ing a good approximation quality. Consider the Higgs dataset (for other datasets the
results are similar and omitted for brevity), and let cMEB and rMEB be the center and
radius of the minimum enclosing ball of the dataset, respectively. Now, sample z = 50
points at random, and relocate them on the sphere centered at cMEB of radius 100 · rMEB :
clearly, these z points are extreme outliers. Note that each of these z points still belongs
to its original category in the partition matroid.

We run SeqCoreset on this artificial dataset, reporting the results in Fig. 2. We
observe that for τ < z + 1 the approximation ratio is very high. In this configuration,
some of the outliers are included in the clusters defining the coreset along with points
from the bulk of the dataset: they might therefore be part of the independent set repre-
senting the cluster, thus receiving a multiplicity larger than 1, making them non-outliers
in the final execution of ChenEtAl on the coreset. Starting from τ = z + 1 we have a
rapid improvement of the approximation quality, similar to what we observed in Fig. 1,
but with values of τ shifted by z. Indeed, in these configurations, the coreset construc-
tion will place each outlier in its own cluster, allowing ChenEtAl to handle it appropri-
ately when building the solution on the coreset.

The intuition for this behavior is the following: when the outliers are very far from the
bulk of the dataset, assigning them too high a multiplicity in the coreset is detrimental,
so we need to put them in their own cluster, so that they have unit multiplicity. On the
other hand, when outliers are not so extreme (like in the case of the original datasets), in
practice a much smaller τ allows to achieve very good approximations.

Table 2 Comparison of SeqCoreSet and Chenetal on a sample of 10,000 points from each dataset

Total time (s) Ratio to best

Dataset ChenetAl SeqCoreSet ChenetAl SeqCoreSet

Higgs 1215 3.17 1.000 1.022

Phones 2640 5.13 1.135 1.045

Wiki 5758 18.11 1.039 1.073

Fig. 2 Ratio to best solution of SeqCoreSet on an instance of Higgs with artificially inserted outliers

Page 20 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

Comparison of streaming algorithms

We now compare our streaming algorithm StreamingCoreset with KaleStream.
Since the two algorithms are parameterized differently, we study their performance in
terms of approximation ratio and running time parameterized by the amount of mem-
ory used. Note that for StreamingCoreset a larger τ implies a higher memory usage,
for KaleStream the memory increases by decreasing ε . Figure 3 reports on the results
of these experiments, fixing the number of outliers to 50. We observe that in general, for
comparable amounts of memory, StreamingCoreset is able to find approximations
comparable to KaleStream in much less time. The memory used by both algorithms is
negligible and, most importantly, not related to the size of the dataset.

Scalability of the MapReduce coreset construction

We now focus on the cost of building the coreset using the MRCoreset algorithm, com-
pared to SeqCoreset. We test 2, 4, and 8 workers, and values of τ ∈ [1, 9] , but plot the
results only for τ = 3, 6, 9 , for brevity. Note that for the same value of τ , the size of the
aggregated coreset will change depending on the number of workers. As for the number
of allowed outliers, we fix it to 100, noting that it does not influence the time required to
build the coreset itself.

Figure 4 reports the results of this experiment, focusing just on the corset construc-
tion time, which is the part of the algorithm carried out in parallel. For fixed values of
τ , the MRCoreset coreset construction scales linearly with the number of processors.
Furthermore, in most cases (except τ = 3, 6 for Phones) MRCoreset is faster than Seq-
Coreset when using 2 processors, i.e., it has a COST metric of 2 [49]. This is due to the

Fig. 3 Approximation ratio and total running time for StreamingCoreSet and KaleStream against memory usage.
The time scale is logarithmic

Page 21 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

overheads introduced by the communication required to distribute data to processors
located on different machines.

Balance between the coreset construction and solution computation

We now discuss the balance between the time required to build the coreset and the time
to compute the solution on the coreset. In MRCoreset we fix the number of workers
to 8. The results are reported in Fig. 5, where each line corresponds to a value of τ for
a given combination of algorithm and dataset. Each line is divided in two: the left (red)
part represents the time to compute the solution, the right (blue) part is the time to build
the coreset. Therefore, the span of each line, from dot to dot, is the total running time of
a particular configuration.

In general, building a larger coreset clearly tilts the balance towards the more expen-
sive sequential computation of the final solution. This is to be expected, since the core-
set construction scales linearly in τ , whereas the computation of the solution is at least
quadratic in the coreset size. Interestingly, for any given value of τ , the time to com-
pute the solution on the coreset built by StreamingCoreset is less then the that for
SeqCoreset. The reason lies in the behavior of the streaming construction algorithm.
Adjusting its guess of the radius to remain within the allotted budget of centers τ , it may
end up not using it completely, thus building smaller coresets compared to SeqCoreset.

For MRCoreset, we have that the computation of the solution dominates the running
time by far. This is due to the size of the coreset built in parallel, which, for the same τ , is
larger than the one computed by SeqCoreset, by a factor (roughly) equal to the num-
ber of workers. This problem can be ameliorated as follows. After building the coreset
in parallel, SeqCoreset can be applied to reduce the size of the resulting set of points.
While this might incur into a worsening of the approximation ratio, it would dramati-
cally speed up the computation of the final solution, thus amplificating the benefits of

Fig. 4 Time to build the coreset with the mrCoreSet algorithm, for varying number of workers. Each column
of plots corresponds to a different value of τ . The dotted line represents the performance of the SeqCoreSet
algorithm in constructing the coreset. The time scale is linear

Page 22 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

the scalable coreset construction. We deem this solution MRCoresetRec, and report
its performance as the last column of plots of Fig. 5. We have that the time to compute
the solution is now comparable to SeqCoreset, but the coreset construction benefits
from running on 8 processors. The approximation quality of this approach is in practice
comparable to the one obtained by SeqCoreset: we observed a maximum difference
between the final radius of the cluster obtained with MRCoresetRec and SeqCoreset
of 25%, with the average difference being ≈ 1.5%.

For MRCoreset, we have that the computation of the solution dominates the running
time by far. This is due to the size of the coreset built in parallel, which, for the same τ , is
larger than the one computed by SeqCoreset, by a factor (roughly) equal to the number
of workers. This problem can be ameliorated as follows. After building the coreset in
parallel, SeqCoreset can be applied first to compute the “coreset of the coreset”, (of size
comparable to the coreset obtained by directly running SeqCoreset on the entire data-
set), and then to obtain the final solution from this smaller coreset. While this approach
might incur into a worsening of the approximation ratio, it dramatically speeds up the
computation of the final solution, thus amplifying the benefits of the scalable coreset
construction. We deem this solution MRCoresetRec, and report its performance
as the last column of plots of Fig. 5. We have that, as expected, the time to compute
the solution is now comparable to SeqCoreset, but the coreset construction benefits
from running on 8 processors. The approximation quality of this approach is in practice
comparable to the one obtained by SeqCoreset: we observed a maximum difference
between the final radius of the cluster obtained with MRCoresetRec and SeqCoreset
of about 25%, but the average difference is much more contained (approximately 1.5%).

Fig. 5 Time spent building the coreset and time spent computing the solution. To the left the time for the
solution , to the right the time for the coreset . The x axis reports the running time (in seconds), the y axis
reports the values of τ

Page 23 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

Concluding remarks
In this paper, we presented a coreset-based strategy for computing approximate solu-
tions to the RMC problem under general matroids, and provided efficient sequential,
distributed (MapReduce) and streaming implementations of the strategy. The theoretical
analysis shows that our strategy attains approximation guarantees comparable to the one
of the best sequential strategies, with a dramatic improvement in efficiency for datasets
of low doubling dimension. A rich suite of experiments on large inputs demonstrates the
practical viability of our approach.

It is not difficult to show that the techniques employed for the RMC problem can
also be used to extend the algorithms presented in [18, 24] for diversity maximization
under partition and transversal matroid constraints, to work for all possible matroids,
also improving their space requirements. Moreover, some preliminary theoretical results
(see manuscript [50]) indicate that similar coreset-based approaches can be profit-
ably employed to solve the Robust Knapsack Center problem [3], a variant of the robust
unconstrained k-center problem where each input carries a weight, and the aggregate
weight of the returned centers cannot exceed a certain budget.

Appendix
Proof of Theorem 2

A polynomial-time 3-approximation sequential algorithm for the RMCM problem can
be obtained through a technical generalization of the approach of [4] to handle multi-
plicities. For ease of exposition, we restate the RMCM problem as an instantiation of the
Robust F -Supplier problem of [4] for the case where F is the family of independent sets
of a matroid. Specifically, we define the Robust Matroid Supplier problem with Multiplici-
ties (RMSM), whose generic instance is a tuple I = (F ∪ C , d,m,F ,µ) , where (F ∪ C , d)
is a metric space, m is an integer parameter, (F ,F) is a matroid, and µ : C → N is a
function that associates a multiplicity to each point of C. The objective is to find S ∈ F
and T ⊆ C such that

∑
u∈T µ(u) ≥ m and maxu∈T d(u, S) is minimized. An instance

(M = (V , I), z,m) of the RMCM problem can be regarded as instance of RMSM where:
V = F = C , I = F , m = |V | − z , and µ = m.

Following the lines of [4], a good approximate solution to the RMSM problem can
be obtained by resorting to the auxiliary Matroid-maximization under Partition Con-
straint (Matroid-PCM) problem (which corresponds to the F -PCM problem of [4],
when F is the family of independent sets of a matroid). An instance of Matroid-PCM
is a tuple I = (F ,F ,P , val) , where (F ,F) is a matroid, P is a sub-partition of F, and
val : F → {0, 1, 2, . . . } is integer valued function consistent with P , in the sense that
for each A ∈ P and for each pair f1, f2 ∈ A , val(f1) = val(f2) . For a set S ∈ P , we let
val(S) =

∑
f ∈S val(f) . The objective of F -PCM problem is to compute

We remark that solving an instance of Matroid-PCM problem is equivalent to solv-
ing the weighted matroid intersection problem, where we need to find an intersection
between the matroid (F ,F) and the partition matroid defined by P . As a consequence
this problem can be solved in polynomial time [51].

max{val(S) : (S ∈ F) ∧ (∀A ∈ P : |S ∩ A| ≤ 1)}.

Page 24 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

In order to describe the algorithm for RMSM, we make algorithm F -PCM
instance construction (Algorithm 1 in [4, Section 3.1]) conscious to multiplici-
ties by substituting Line 10 with the following line:

Similarly, we modify the definition of the polytope PI

cov in [4, section "Extraction of the
solution from the coreset"] by substituting the constraint (PI

cov.1) in the definition of the
polytope with

We sketch here the algorithm, which is the same as the one given in the proof of [4, The-
orem 1], except for the changes to F -PCM instance construction and to polytope
PI

cov described above. The algorithm starts by making a guess ôpt on the optimal value
of the solution. Then it considers the polytope PI

cov , which is non-empty if the guess ôpt
is at least the cost of the optimal solution. It is possible to check whether PI

cov is empty
using the ellipsoid algorithm [51]. When the ellipsoid algorithm asks if a given point is
in the polytope, we run algorithm F -PCM instance construction to construct a
Matroid-PCM instance that we solve using the weighted matroid intersection algorithm.
If the algorithm finds a point inside PI

cov , then we obtain a 3-approximate solution, oth-
erwise if PI

cov is empty the algorithm proceeds with a new guess ôpt.
We omit the proof of the correctness of the algorithm since it is a straightforward

adaptation of the proof in [4].

Abbreviations
rmC Robust Matroid Center
rmCm Robust Matroid Center with multiplicities
mPC Massively Parallel Computation model

Acknowledgements
Not applicable.

Author contributions
AP, GP and FS developed the algorithmic ideas and the theoretical analysis. MC implemented the algorithms and carried
out the experimental evaluation. All authors contributed to the writing of the manuscript. All authors read and approved
the final manuscript.

Funding
This work was supported, in part, by MUR, the Italian Ministry of University and Research, under Projects PRIN
20174LF3T8 (AHeAD: Efficient Algorithms for HArnessing Networked Data), and PNRR CN00000013 (National Centre for
HPC, Big Data and Quantum Computing), and by the University of Padova under Project SID 2020 (RATED-X: Resource-
Allocation TradEoffs for Dynamic and eXtreme data).

Availability of data and materials
All our implementations are available as open source code which can be accessed at https:// github. com/ Cecca/ macaco.
The Phones and Higgs datasets are publicly available from the UCI Machine Learning Repository https:// archi ve. ics.
uci. edu/ ml/ index. php. The Wikipedia dataset can be downloaded from [46]. All the preprocessing required to prepare
the datasets for usage with our implementation is implemented in the script experiments/datasets.py avail-
able in the source code repository.

Declarations

Ethics approval and consent to participate
Not applicable.

val(f) ←
∑

u∈Chld(v)

µ(u) ∀f ∈ BF (v, 1).

∑

v∈C

µ(v)cov(v) ≥ m.

https://github.com/Cecca/macaco
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

Page 25 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 January 2022 Accepted: 16 March 2023

References
 1. Gonzalez TF. Clustering to minimize the maximum Intercluster distance. Theor Comput Sci. 1985;38:293–306.

https:// doi. org/ 10. 1016/ 0304- 3975(85) 90224-5.
 2. Charikar M, Khuller S, Mount DM, Narasimhan G. Algorithms for facility location problems with outliers. In: Proc. of

the 12th Annual Symposium on Discrete Algorithms, (SODA). ACM/SIAM; 2001. p. 642–651. http:// dl. acm. org/ citat
ion. cfm? id= 365411. 365555.

 3. Chen DZ, Li J, Liang H, Wang H. Matroid and Knapsack center problems. Algorithmica. 2016;75(1):27–52.
 4. Chakrabarty D, Negahbani M. Generalized center problems with outliers. ACM Trans Algorithms. 2019;15(3):41:1-

41:14. https:// doi. org/ 10. 1145/ 33385 13.
 5. Harris DG, Pensyl TW, Srinivasan A, Trinh K. A lottery model for center-type problems with outliers. ACM Trans Algo-

rithms. 2019;15(3):36:1-36:25. https:// doi. org/ 10. 1145/ 33119 53.
 6. Krishnaswamy R, Kumar A, Nagarajan V, Sabharwal Y, Saha B. The Matroid Median Problem. In: Proc. of the Twenty-

Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. SIAM; 2011. p. 1117–1130. https:// doi. org/ 10.
1137/1. 97816 11973 082. 84.

 7. Hajiaghayi MT, Khandekar R, Kortsarz G. Local search algorithms for the red-blue median problem. Algorithmica.
2012;63(4):795–814.

 8. Kleindessner M, Awasthi P, Morgenstern J. Fair k-Center Clustering for Data Summarization. In: Proc. of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. vol. 97 of
Proc. of Machine Learning Research. PMLR; 2019. p. 3448–3457. http:// proce edings. mlr. press/ v97/ klein dessn er19a.
html.

 9. Chiplunkar A, Kale SS, Ramamoorthy SN. How to Solve Fair k-Center in Massive Data Models. In: Proc. of the 37th
International Conference on Machine Learning, ICML 2020, 13−18 July 2020, Virtual Event. vol. 119 of Proc. of
Machine Learning Research. PMLR; 2020. p. 1877–1886. http:// proce edings. mlr. press/ v119/ chipl unkar 20a. html.

 10. Leskovec J, Rajaraman A, Ullman JD. Mining of massive datasets. 2nd ed. Cambridge: Cambridge University Press;
2014.

 11. Badoiu M, Har-Peled S, Indyk P. Approximate clustering via core-sets. In: Proc. on 34th Annual ACM Symposium on
Theory of Computing, STOC. ACM; 2002. p. 250–257. https:// doi. org/ 10. 1145/ 509907. 509947.

 12. Beame P, Koutris P, Suciu D. Communication steps for parallel query processing. In: Proc. of the 32nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS. ACM; 2013. p. 273–284. https:// doi. org/ 10.
1145/ 24636 64. 24652 24.

 13. Awasthi P, Balcan MF. Center based clustering: a foundational perspective. In: Handbook of cluster analysis. CRC
Press; 2015.

 14. Kale S. Small Space Stream Summary for Matroid Center. In: Proceedings of the Workshop on Approximation,
Randomization, and Combinatorial Optimization, Algorithms and Techniques, APPROX/RANDOM. vol. 145 of LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. p. 20:1–20:22. https:// doi. org/ 10. 4230/ LIPIcs. APPROX- RAN-
DOM. 2019. 20.

 15. McCutchen RM, Khuller S. Streaming Algorithms for k-Center Clustering with Outliers and with Anonymity. In: Proc.
of the 11th International Workshot on Approximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques, APPROX-RANDOM. vol. 5171 of Lecture Notes in Computer Science. Springer; 2008. p. 165–178.
https:// doi. org/ 10. 1007/ 978-3- 540- 85363-3_ 14.

 16. Malkomes G, Kusner MJ, Chen W, Weinberger KQ, Moseley B. Fast Distributed k-Center Clustering with Outliers
on Massive Data. In: Proc. of the Annual Conference on Neural Information Processing Systems, NIPS; 2015. p.
1063–1071. https:// proce edings. neuri ps. cc/ paper/ 2015/ hash/ 8fecb 20817 b3847 419bb 3de39 a609a fe- Abstr act. html.

 17. Ceccarello M, Pietracaprina A, Pucci G, Upfal E. MapReduce and streaming algorithms for diversity maximization
in metric spaces of bounded doubling dimension. Proc VLDB Endow. 2017;10(5):469–80.

 18. Ceccarello M, Pietracaprina A, Pucci G. Solving k-center clustering (with outliers) in MapReduce and streaming,
almost as accurately as sequentially. Proc VLDB Endow. 2019;12(7):766–78.

 19. Ding H, Yu H, Wang Z. Greedy Strategy Works for k-Center Clustering with Outliers and Coreset Construction. In:
Proc. of the 27th Annual European Symposium on Algorithms, ESA. vol. 144 of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik; 2019. p. 40:1–40:16. https:// doi. org/ 10. 4230/ LIPIcs. ESA. 2019. 40.

 20. de Berg M, Monemizadeh M, Zhong Y. k-Center Clustering with Outliers in the Sliding-Window Model. In: Proc.
of the 29th Annual European Symposium on Algorithms, ESA. vol. 204 of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik; 2021. p. 13:1–13:13. https:// doi. org/ 10. 4230/ LIPIcs. ESA. 2021. 13.

 21. Ceccarello M, Pietracaprina A, Pucci G, Upfal E. A practical parallel algorithm for diameter approximation of mas-
sive weighted graphs. In: Proc. of the International Parallel and Distributed Processing Symposium, IPDPS. IEEE
Computer Society; 2016. p. 12–21. https:// doi. org/ 10. 1109/ IPDPS. 2016. 61.

 22. Ceccarello M, Fantozzi C, Pietracaprina A, Pucci G, Vandin F. Clustering uncertain graphs. Proc VLDB Endow.
2017;11(4):472–84.

https://doi.org/10.1016/0304-3975(85)90224-5
http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=365411.365555
https://doi.org/10.1145/3338513
https://doi.org/10.1145/3311953
https://doi.org/10.1137/1.9781611973082.84
https://doi.org/10.1137/1.9781611973082.84
http://proceedings.mlr.press/v97/kleindessner19a.html
http://proceedings.mlr.press/v97/kleindessner19a.html
http://proceedings.mlr.press/v119/chiplunkar20a.html
https://doi.org/10.1145/509907.509947
https://doi.org/10.1145/2463664.2465224
https://doi.org/10.1145/2463664.2465224
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.20
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.20
https://doi.org/10.1007/978-3-540-85363-3_14
https://proceedings.neurips.cc/paper/2015/hash/8fecb20817b3847419bb3de39a609afe-Abstract.html
https://doi.org/10.4230/LIPIcs.ESA.2019.40
https://doi.org/10.4230/LIPIcs.ESA.2021.13
https://doi.org/10.1109/IPDPS.2016.61

Page 26 of 26Ceccarello et al. Journal of Big Data (2023) 10:49

 23. Ceccarello M, Pietracaprina A, Pucci G. Fast coreset-based diversity maximization under matroid constraints. In:
Proc. of the 11th ACM International Conference on Web Search and Data Mining, WSDM. ACM; 2018. p. 81–89.
https:// doi. org/ 10. 1145/ 31596 52. 31597 19.

 24. Ceccarello M, Pietracaprina A, Pucci G. A general coreset-based approach to diversity maximization under
matroid constraints. ACM Trans Knowl Discov Data. 2020;14(5):60:1-60:27. https:// doi. org/ 10. 1145/ 34024 48.

 25. Gupta A, Krauthgamer R, Lee JR. Bounded geometries, fractals, and low-distortion embeddings. In: Proc. of the
44th Symposium on Foundations of Computer Science, FOCS. IEEE Computer Society; 2003. p. 534–543. https://
doi. org/ 10. 1109/ SFCS. 2003. 12382 26.

 26. Vapnik VN, Chervonenkis AY. In: Vovk V, Papadopoulos H, Gammerman A, editors. On the uniform convergence
of relative frequencies of events to their probabilities. Cham: Springer International Publishing; 2015. p. 11–30.
https:// doi. org/ 10. 1007/ 978-3- 319- 21852-6_3.

 27. Aumüller M, Ceccarello M. The Role of Local Intrinsic Dimensionality in Benchmarking Nearest Neighbor Search.
In: Proc. of the 12th International Conference on Similarity Search and Applications, SISAP. vol. 11807 of Lecture
Notes in Computer Science. Springer; 2019. p. 113–127. https:// doi. org/ 10. 1007/ 978-3- 030- 32047-8_ 11.

 28. Ahle TD, Aumüller M, Pagh R. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting. In: Proc.
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. SIAM; 2017. p. 239–256. https:// doi.
org/ 10. 1137/1. 97816 11974 782. 16.

 29. He J, Kumar S, Chang S. On the difficulty of nearest neighbor search. In: Proc. of the 29th International Confer-
ence on Machine Learning, ICML. icml.cc / Omnipress; 2012. http:// icml. cc/ 2012/ papers/ 580. pdf.

 30. Mazzetto A, Pietracaprina A, Pucci G. Accurate MapReduce algorithms for k-Median and k-Means in general
metric spaces. In: Proc. of the 30th International Symposium on Algorithms and Computation, ISAAC. vol. 149
of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. p. 34:1–34:16. https:// doi. org/ 10. 4230/ LIPIcs.
ISAAC. 2019. 34.

 31. Gottlieb L, Krauthgamer R. Proximity algorithms for nearly doubling spaces. SIAM J Discret Math.
2013;27(4):1759–69.

 32. Oxley JG. Matroid Theory. Oxford graduate texts in mathematics. Oxford: Oxford University Press; 2006.
 33. Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. In: Proc. OSDI; 2004. p. 137–150.
 34. Pietracaprina A, Pucci G, Riondato M, Silvestri F, Upfal E. Space-round tradeoffs for MapReduce computations. In:

Proc. of the International Conference on Supercomputing, ICS. ACM; 2012. p. 235–244. https:// doi. org/ 10. 1145/
23045 76. 23046 07.

 35. Sreedhar C, Kasiviswanath N, Reddy PC. Clustering large datasets using K-means modified inter and intra cluster-
ing (KM-I2C) in Hadoop. J Big Data. 2017;4:27. https:// doi. org/ 10. 1186/ s40537- 017- 0087-2.

 36. Bakhthemmat A, Izadi M. Decreasing the execution time of reducers by revising clustering based on the futuris-
tic greedy approach. J Big Data. 2020;7(1):6.

 37. Murray DG, McSherry F, Isard M, Isaacs R, Barham P, Abadi M. Incremental, iterative data processing with timely
dataflow. Commun ACM. 2016;59(10):75–83.

 38. Henzinger MR, Raghavan P, Rajagopalan S. Computing on data streams. In: Proc. DIMACS Workshop on External
Memory Algorithms; 1998. p. 107–118.

 39. Abbassi Z, Mirrokni VS, Thakur M. Diversity maximization under matroid constraints. In: Proc. of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD. ACM; 2013. p. 32–40. https://
doi. org/ 10. 1145/ 24875 75. 24876 36.

 40. Charikar M, Chekuri C, Feder T, Motwani R. Incremental clustering and dynamic information retrieval. SIAM J
Comput. 2004;33(6):1417–40.

 41. Hochbaum DS, Shmoys DB. A Best possible heuristic for the k-center problem. Math Oper Res. 1985;10(2):180–4.
 42. Indyk P, Mahabadi S, Mahdian M, Mirrokni VS. Composable core-sets for diversity and coverage maximization.

In: Proc. of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS. ACM;
2014. p. 100–108. https:// doi. org/ 10. 1145/ 25945 38. 25945 60.

 43. Aumüller M, Ceccarello M. Running experiments with confidence and sanity. In: Proc. of the 13th International
Conference on Similarity Search and Applications, SISAP. vol. 12440 of Lecture Notes in Computer Science.
Springer; 2020. p. 387–395. https:// doi. org/ 10. 1007/ 978-3- 030- 60936-8_ 31.

 44. Higgs Dataset; https:// archi ve. ics. uci. edu/ ml/ datas ets/ HIGGS. Accessed 20 Jan 2021.
 45. Phone Activity Recognition Dataset; https:// archi ve. ics. uci. edu/ ml/ datas ets/ Heter ogene ity+ Activ ity+ Recog

nition. . Accessed 20 Jan 2021.
 46. Wikipedia XML dump; https:// dumps. wikim edia. org/ enwiki/ 20210 120/ enwiki- 20210 120- pages- artic les- multi

stream. xml. bz2. Accessed 20 Jan 2021.
 47. Pennington J, Socher R, Manning CD. Glove: global vectors for word representation. In: Proc. of the 2014 Conference

on Empirical Methods in Natural Language Processing, EMNLP. ACL; 2014. p. 1532–1543. https:// doi. org/ 10. 3115/ v1/
d14- 1162.

 48. Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. J Mach Learn Res. 2003;3:993–1022.
 49. McSherry F, Isard M, Murray DG. Scalability! But at what COST? In: Proc. of the 15th Workshop on Hot Topics in Oper-

ating Systems, HotOS. USENIX Association; 2015. https:// www. usenix. org/ confe rence/ hotos 15/ works hop- progr am/
prese ntati on/ mcshe rry.

 50. Pietracaprina A, Pucci G, Soldà F. Coreset-based Strategies for Robust Center-type Problems. CoRR. 2020; arXiv: abs/
2002. 07463.

 51. Schrijver A. Combinatorial optimization polyhedra and efficiency. Berlin: Springer; 2003.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3159652.3159719
https://doi.org/10.1145/3402448
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1007/978-3-319-21852-6_3
https://doi.org/10.1007/978-3-030-32047-8_11
https://doi.org/10.1137/1.9781611974782.16
https://doi.org/10.1137/1.9781611974782.16
http://icml.cc/2012/papers/580.pdf
https://doi.org/10.4230/LIPIcs.ISAAC.2019.34
https://doi.org/10.4230/LIPIcs.ISAAC.2019.34
https://doi.org/10.1145/2304576.2304607
https://doi.org/10.1145/2304576.2304607
https://doi.org/10.1186/s40537-017-0087-2
https://doi.org/10.1145/2487575.2487636
https://doi.org/10.1145/2487575.2487636
https://doi.org/10.1145/2594538.2594560
https://doi.org/10.1007/978-3-030-60936-8_31
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://dumps.wikimedia.org/enwiki/20210120/enwiki-20210120-pages-articles-multistream.xml.bz2
https://dumps.wikimedia.org/enwiki/20210120/enwiki-20210120-pages-articles-multistream.xml.bz2
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
http://arxiv.org/2002.07463
http://arxiv.org/2002.07463

	Scalable and space-efficient Robust Matroid Center algorithms
	Abstract
	Introduction
	Previous work
	Our contribution

	Preliminaries
	Matroids
	Robust Matroid Center
	Doubling dimension
	Computational settings

	Coreset-based strategy for the RMC problem
	Coreset construction
	Extraction of the solution from the coreset

	MapReduce and streaming implementations
	MapReduce implementation
	Streaming implementation

	Experiments
	Influence of coreset size
	Comparison of streaming algorithms
	Scalability of the MapReduce coreset construction
	Balance between the coreset construction and solution computation

	Concluding remarks
	Appendix
	Proof of Theorem 2

	Acknowledgements
	References

