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Abstract 

Oral cancer may arise from oral leukoplakia and oral lichenoid mucositis (oral lichen 
planus and oral lichenoid lesions) subtypes of oral potentially malignant disorders. 
As not all patients will develop oral cancer in their lifetime, the availability of malig‑
nant transformation predictive platforms would assist in the individualized treatment 
planning and formulation of optimal follow‑up regimens for these patients. Therefore, 
this study aims to compare and select optimal machine learning (ML)‑based models 
for stratifying the malignant transformation status of patients with oral leukoplakia and 
oral lichenoid mucositis. One thousand one hundred and eighty‑seven patients with 
oral leukoplakia and oral lichenoid mucositis treated at three tertiary health institu‑
tions in Hong Kong, Newcastle UK, and Lagos Nigeria were included in the study. 
Demographic, clinical, pathological, and treatment‑based factors obtained at diagnosis 
and during follow‑up were used to populate and compare forty‑six machine learning‑
based models. These were implemented as a set of twenty‑six predictors for centers 
with substantial data quantity and fifteen predictors for centers with insufficient data. 
Two best models were selected according to the number of variables. We found that 
the optimal ML‑based risk models with twenty‑six and fifteen predictors achieved an 
accuracy of 97% and 94% respectively following model testing. Upon external valida‑
tion, both models achieved a sensitivity, specificity, and F1‑score of 1, 0.88, and 0.67 
on consecutive patients treated after the construction of the models. Furthermore, 
the 15‑predictor ML model for centers with reduced data achieved a higher sensitivity 
for identifying oral leukoplakia and oral lichenoid mucositis patients that developed 
malignancies in other treatment settings compared to the binary oral epithelial dys‑
plasia system for risk stratification (0.96 vs 0.82). These findings suggest that machine 
learning‑based models could be useful potentially to stratify patients with oral leuko‑
plakia and oral lichenoid mucositis according to their risk of malignant transformation 
in different settings.
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Introduction
Background of the study

Oral cancer is the most prevalent malignancy in the head and neck region [1, 2]. Com-
monly, tumors are of the squamous cell carcinoma subtype histologically and related to 
the tissue-damaging sequelae of behavioral influences such as tobacco smoking/chew-
ing, areca nut consumption, and heavy alcohol drinking in addition to certain genetic 
and autoimmune predisposition [3, 4]. In other patients, tumors arise in the absence of 
known risk factors [5].

The natural history of oral cancer can be diverse. Some patients present with malig-
nant ulcers or exophytic growths while others exhibit precursor mucosal disease with 
an inherently high risk of malignant transformation; these are collectively known as 
oral potentially malignant disorders (OPMD) [6, 7]. About 50–62% of oral cavity can-
cers arise from precancerous lesions such as leukoplakia (white patch), proliferative ver-
rucous leukoplakia (white patch with verrucous appearance), erythroplakia (red patch), 
erythroleukoplakia (mixed white and red patch), oral lichen planus, and oral lichenoid 
lesions [6–8]. More widespread conditions include oral submucous fibrosis, oral graft 
vs host disease (OGVHD), long-term immunosuppressive treatment, Plummer-Vinson 
syndrome, chronic discoid lupus erythematosus, and dyskeratosis congenita [7, 9, 10]. 
Since not all patients with oral potentially malignant disorders develop cancer in their 
lifetime, appropriate recognition and prediction of malignant transformation risk in 
these disorders could be imperative to obtaining impactful oral cancer prevention, early 
diagnosis, and disease-specific prognosis.

There are, however, no consistent malignant transformation data in the literature to 
guide the management of common precursor lesions such as oral leukoplakia and oral 
lichenoid mucositis (oral lichen planus and oral lichenoid lesions) [7, 8, 11]. The average 
malignant transformation proportion of oral leukoplakia, oral lichen planus, and oral 
lichenoid lesions ranges from 5.9 to 14%, 0.9 to 2.3%, and 1.6 to 7% [12–15]. As such, 
practitioners, especially those working in non-specialist services, are unable to reliably 
inform or reassure patients about the risk of oral cancer development. Presently, grad-
ing oral epithelial dysplasia following histopathology appears to be the most common 
method of estimating the risk of malignant transformation, although, this is fraught with 
subpar accuracy, poor precision, and unclear reproducibility [16, 17]. Also, molecular 
markers suggested for outcome prediction have only been associated with certain risk 
groups without overt predictive optimization for use in clinical practice [8, 18].

Nomograms based on statistical inferences have been proposed to serve as predictive 
adjuncts in clinical practice [19]. Nomograms constructed to predict malignant trans-
formation have shown promising accuracy in different populations [20–22], but their 
implementation may be inelegant, technical, and unautomated which may prolong 
patient consultation time. Also, such platforms do not have a threshold score for risk 
stratification and none of the tools have been externally validated at this time [3].

Aims and significance

The application of artificial intelligence and machine learning in clinical prediction 
and decision-making has been found to be relatively superior to traditional statistical 



Page 3 of 24Adeoye et al. Journal of Big Data           (2023) 10:39  

methods in many fields including oncology [23–26]. Learning models based on these 
classifiers have outperformed alternate methods of prediction with intrinsic merits that 
make them attractive for potential clinical application compared to some clinical nom-
ograms [23]. However, little information is available from comprehensive studies that 
have utilized a comparative modeling approach to support the consideration of machine 
learning models to predict malignant transformation in oral leukoplakia and oral 
lichenoid mucositis using variables available from medical records. Therefore, this study 
aimed to compare and validate machine learning-based models to predict the malignant 
transformation risk of oral leukoplakia and oral lichenoid mucositis using demographic, 
clinicopathological, and treatment features obtainable from patient medical records in 
different treatment centers.

Research hypothesis

This study hypothesizes that machine learning models based on health records informa-
tion would predict oral cancer risk in oral leukoplakia and oral lichenoid mucositis with 
satisfactory to good accuracy, sensitivity, and specificity. Additionally, the performance 
of the machine learning models will be equivalent to or even better than the sole appli-
cation of the binary oral epithelial dysplasia grading system for risk stratification in oral 
leukoplakia and oral lichenoid mucositis.

Materials and methods
Data description

Retrospective patients with clinical diagnoses of oral leukoplakia, oral lichen planus, and 
oral lichenoid lesion) who had biopsy and histopathology for definitive diagnosis were 
included in this study. The rationale for selecting these diseases was due to their global 
prevalence and variability of their malignant transformation proportions/rates which 
necessitate individualized prediction in these specific disorders [8, 27, 28]. As such, 
patients with erythroplakia or proliferative verrucous leukoplakia at other oral cavity 
sites with coexisting diseases of interest were excluded.

Patient cohorts from three institutions in Hong Kong, Newcastle Upon Tyne, and 
Lagos Nigeria were used (Fig. 1). The Hong Kong cohort included two patient groups. 
The first group comprised 716 patients managed at the Departments of Oral and Maxil-
lofacial Surgery, Otorhinolaryngology, and Head and Neck Surgery of the Queen Mary 
Hospital, Hong Kong between January 2003 and December 2019 (collected for machine-
learning-based model development). This cohort has also been described in a previ-
ous report by our group [29]. Further, the second group of Hong Kong patients (n = 58) 
encountered from January 1 to December 31, 2020, as well as the Newcastle and Lagos 
patient cohorts (n = 413) were sourced following model construction for external valida-
tion. Newcastle patients were treated at the Maxillofacial Surgery Unit of the Newcas-
tle Dental Hospital and the Royal Victoria Infirmary, Newcastle-Upon-Tyne, the United 
Kingdom [30–32]. Likewise, the Lagos cohort was treated at the Dental clinics of the 
Lagos University Teaching Hospital, Lagos Nigeria between January 2013, and Septem-
ber 2019. None of the patients had inherited diseases that predisposed them to oral can-
cer such as Fanconi anemia, xeroderma pigmentosum, and Li-Fraumeni syndrome.
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Variable selection and rationale

In total, 27 variables were considered which cuts across sociodemographic, clinical, 
pathological, and treatment information (Table  1). These variables have been pre-
sented in several reports as independent risk predictors for the malignant transforma-
tion of these precancerous lesions [21, 33–35]. Treatment for these conditions ranges 
from routine observation, pharmacological management, and scalpel or laser surgical 
excision/ablation and this was factored into model development [36]. A binary out-
come indicating the presence or absence of malignant transformation was obtained 
for patients in all cohorts in this study. This was determined as of December 31, 2021, 
for the Hong Kong and Lagos OPMD cohorts and December 31, 2014, for the New-
castle cohort. Irrespective of the follow-up dates, all patients included had a mini-
mum follow-up of 12 months. No statistical assessment of the effect of the predictors 
on this outcome specifically for these cohorts was conducted in this study. Also, data 
was not restricted only to patients with oral epithelial dysplasia as oral cancer may 
also occur in oral leukoplakia and oral lichenoid mucositis without this histologic fea-
ture [37]. Only squamous cell carcinomas arising from the precancer lesion, recur-
rences, or continued progression to adjacent sites were considered in this study.

Model development

Data preprocessing and feature engineering

Electronic entry spreadsheet templates (Microsoft Excel for Mac v 16.52) were used 
for data collection and column filtering was done to ensure correlation between per-
tinent variables. Input features for training were continuous (n = 2), Boolean (n = 16), 
and categorical (n = 9). As OPMDs represent disparate subtypes/entities, the machine 
learning models in this study were trained to account for the specific clinical subtype 
(oral leukoplakia vs oral lichenoid mucositis) as this variable was included as a predic-
tor. Both tobacco smoking and alcohol consumption status had missing data that were 

Fig. 1 Description of model construction and deployment phases underwent in this study
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handled through the binarization of both variables into two categories which left no 
missing instances (Table 1). This new variable – patient risk habit category, was based 
on classifying ever-smokers and ever-drinkers as smoking and alcohol-drinking (SD) 
patients and non-smokers and non-drinkers as non-smoking and non-alcohol-drink-
ing (NSND) patients. This stratification has been used previously to propose that both 
groups are distinct entities [5, 38]. Altogether, this left 26 variables available to model 
malignant transformation risk using machine learning.

We envisaged that all 26 variables (Table  1) obtained following feature engineering 
may not be easily obtained by specialists at different treatment centers, especially in 
remote areas where electronic patient documentation was not practiced. Therefore, 15 
variables (Table 1 in bold) more likely to be available in manual records or obtained from 
patients were selected for the construction of another set of models to be applied in this 
scenario [21–23].

Table 1 List of input parameters obtained for machine learning and missing instances

All predictors were used for modeling and the variables in bold were the predictors included in the 15 feature models in this 
study. Note that ‘Tobacco smoking’ and ‘Alcohol consumption’ were binarized into a single variable

Input feature Type Missing instances 
(Hong Kong Cohort 
only)

Handling 
technique for 
missing data

Age Continuous 0 NA

Sex Boolean 0 NA

Tobacco smoking Boolean 2 Binarization 
of variables 
during feature 
engineering

Alcohol drinking Categorical (nominal) 33

Risk habit indulgence following diagnosis Categorical (nominal) 0 NA

Previous malignancy Categorical (nominal) 0 NA

Charlson Comorbidity Index (CCI) Continuous 0 NA

Hypertension status Boolean 0 NA

Diabetes Mellitus status Boolean 0 NA

Hyperlipidemia status Boolean 0 NA

Autoimmune disease status Boolean 0 NA

Viral hepatitis status Boolean 0 NA

Type of lesion Boolean 0 NA

Clinical subtype of lichenoid lesion Categorical (nominal) 0 NA

Tongue/FOM involved Boolean 0 NA

Labial/buccal mucosa involved Boolean 0 NA

Retromolar area involved Boolean 0 NA

Gingiva involved Boolean 0 NA

Palate involved Boolean 0 NA

Number of lesions Categorical (ordinal) 0 NA

Presence of ulcers or erosions Boolean 0 NA

Presence of induration Boolean 0 NA

Treatment at diagnosis Categorical (nominal) 0 NA

Recurrence after surgical excision Boolean 0 NA

Number of recurrences Categorical (ordinal) 0 NA

Oral epithelial dysplasia at diagnosis Categorical (nominal) 0 NA

Oral epithelial dysplasia detected during 
follow‑up

Categorical (nominal) 0 NA
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Machine learning algorithms considered

To select the optimal models useful for prediction, the performance of nine popular 
machine learning classifiers was compared (Fig. 1). These were logistic regression, lin-
ear support vector machines (SVM), radial basis function (RBF) kernel SVM, random 
forest, decision tree, gradient boosting, k-nearest neighbor (kNN), linear discriminant 
analysis, and multilayer perceptron with backpropagation (MLP-BP). The choice of these 
algorithms was per previously described models for the prediction of other oncological 
outcomes [23, 24, 39]. In this study, logistic regression, linear discriminant analysis, and 
linear SVM were the parametric models used to optimize the function being learned to 
a known form as a linear combination of the input parameters. Conversely, all the other 
algorithms use the nonparametric method which does not make a specific assumption of 
the mapping function from the training data and possesses adjustable parameters.

Model training

The first group of the Hong Kong cohort (n = 716) was used to train the algorithms. 
Data splitting into training and test sets was done according to the 80:20 rule. Two sets 
of models were trained per algorithm based on the number of input variables (Fig. 1). 
One set was trained with all 26 features (following binarization of alcohol drinking and 
tobacco smoking status) while the other set of models included the 15 predictors that 
would be obtained easily in different centers. Ten-fold cross-validation was employed 
with the training data to obtain performance measures across each fold for tuning 
hyperparameters after each training session and to evaluate the model stability. Model 
stability is defined as the sensitivity of a machine learning model to variations in the 
training dataset and it is considered a measure of the reliability of the trained models 
[40]. In this study, the model stability was evaluated using the coefficient of variation 
(COV) as a ratio of the standard deviation (s) to the mean (x ) of the training accuracy for 
each model to provide the variability of this measure. In this study, the COV is inversely 
proportional to the model stability such that models with better stability were expected 
to have lower COV values compared to less-stable models. Mathematically, the coeffi-
cient of variation is defined as:

As the occurrence of malignant transformation can be described as a rare event rela-
tive to the entire cohort (event to censored ratio of 1:10), we also compared the per-
formance of two synthetic oversampling techniques and class weight assignment for 
parametric and tree-based models (i.e., logistic regression, SVM, decision tree, and ran-
dom forest). Oversampling class imbalance techniques used were synthetic minority 
oversampling technique (SMOTE for categorical and continuous variables) and adap-
tive synthetic sampling approach (ADASYN). Both methods create synthetic data for the 
minority class using the k-nearest neighbor algorithm. While both methods are similar, 
ADASYN uses a density distribution to decide the number of synthetic samples to be 
generated with more samples for lower-density minority regions (instances that are hard 
to learn) as opposed to an equal number of synthetic samples for SMOTE [41]. Class 

COV =
s

X
∗ 100
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weight assignment for parametric and tree-based algorithms was implemented by auto-
matically adjusting the different cost function weights given to the minority and major-
ity outcome classes in an inversely proportional fashion relative to their frequencies 
in the training data. Overall, this meant that six models were each trained for logistic 
regression, SVM, decision tree, and random forest algorithms, and four models for oth-
ers based on feature selection and the type of class imbalance. In total, 46 models were 
trained in this study.

Manual hyperparameter tuning according to the cross-validation performance was 
implemented in gradient boosting, decision tree, random forest, kNN, and MLP-BP to 
select optimal models while automated hyperparameter optimization was employed in 
other models. Manual categorical encoding was also used with categorical data to allow 
the implementation of SVM and kNN during training. The MLP-BP architecture had 
64 hidden layers and was trained with rectified linear unit (ReLU) activation, adaptive 
moment estimation (ADAM) optimizer, and a learning rate of 0.001. Also, for MLP-BP, 
early stopping regularization was implemented to stop model performance when there 
was no improvement on a randomly preselected 10% validation set.

Model validation

The unseen 20% dataset of the first Hong Kong patient group was used for testing the 
trained models. Testing performance measures were generated for all models trained 
per algorithm i.e., 46 models. These metrics were used to compare the overall perfor-
mance and to select the best-performing model based on 26 predictors and 15 predic-
tors in this study. Furthermore, two rounds of external validation were performed. First, 
patients in the second Hong Kong cohort group (n = 58) were used to independently 
validate the two best-performing models based on 26 features and 15 features. Second, 
external validation of the 15-feature model (intended for general use due to its common 
input features) was performed using the Newcastle and Lagos cohorts (n = 413). The 
performance of these models in the latter external validation round was compared to the 
binary dysplasia grading system currently used for risk stratification in clinical practice. 
In this system, atypia extending below and to the middle of the squamous epithelium on 
histology is classified as low grade/low risk and atypia above this level is deemed high 
grade/high risk [42, 43].

Performance measures

Six measures were obtained for each of the models to assess all-around performance. 
This included accuracy, sensitivity, specificity, precision, negative predictive value, and 
F1-score (defined as the harmonic mean between the precision and sensitivity). Math-
ematical calculations for the performance metrics are given below:
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The sensitivity and F1 score were the main measures for comparing model perfor-
mance as the development of malignant lesions is time-dependent and credible predic-
tion models are expected to identify majority of the cases that will have malignancies 
to enable surgical management and closer routine follow-up [44]. However, greater 
preference was given to the sensitivity than precision for models with similar F1-scores 
(± 0.05).

Explainability and net benefit analyses

To explain the rationale behind the risk prediction of the best-performing models as a 
measure of the input features, the Shapley additive explanations (SHAP) framework was 
used in this study. This is a model-agnostic approach to machine learning interpretabil-
ity that is based on competitive game theory [45]. Global SHAP values were obtained for 
the predictions of the models using the Hong Kong external validation dataset.

Furthermore, decision curve analysis [46] was performed to estimate the net benefit 
of the models based on 26 and 15 features for selecting patients with oral leukoplakia 
and oral lichenoid mucositis that may benefit from surgical intervention and close 
monitoring. Net benefit was determined for all probability thresholds at or below 50% 
and these were used to plot the decision curves of both models. Decision curves were 
compared to standard references which included proffering treatment for all patients 
and treating none of the patients. Predicted output from the Hong Kong external vali-
dation dataset was also used for decision curve analysis.

Web‑based application for future beta testing

To encourage further validation of trained models, we generated web platforms 
(based on 26 and 15 input variables) deployed on the backend of the best-performing 
models (Fig.  1). These tools were developed using the Flask module in Python and 
deployed using the Heroku cloud platform. Patient data with blinded outputs may be 
uploaded or inputted to this platform to automatically generate predictions without 
any need to repeat the model development process. We created two types of web-
based graphical user interfaces i.e., data frame and interactive user-defined platforms. 
For the data frame web tool, the performance of the algorithms can be determined 
by uploading institutional EHR datasets in form of spreadsheets (CSV format) with-
out the need to develop the model internally. Likewise, the interactive platform can 
be used to determine the risk of malignant transformation for single instances of 
patients with oral leukoplakia or oral lichenoid mucositis.

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP

Accuracy =
TP + TN

TP + FN + TN + FP
Precision =

TP

TP + FP

NPV =
TN

TN + FN
F1 score = 2 ∗

precision ∗ sensitivity

precision+ sensitivity
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Computation

Descriptive statistics were performed using SPSS v 26 (IBM Corp., Armonk, NY, 
USA). Training, testing, and validation of all supervised learning algorithms as well 
as model deployment were performed with Python v 3.8.7 using scikit-learn [47] and 
Flask [48] (Python Software Foundation, Wilmington, DE, USA) [23]. McNemar’s test 
was used to compare the sensitivity values of the best 15-feature model and binary 
epithelial dysplasia grading during external validation. Probability values below 5% 
was used to denote statistical significance. The Transparent reporting of a multivari-
able prediction model for individual prognosis or diagnosis (TRIPOD) checklist [49] 
was adhered to during the study.

Results
Patients’ description

One thousand one hundred and eighty-seven patients were included in this study 
with 716 patients used for model construction and 471 patients used for external vali-
dation. For the training cohort, the average follow-up time was 90.9 months and the 
median age (IQR) of patients was 58 (49–67) years. Majority of them were females 
(56%) and non-smokers/non-drinkers (65.5%). Most of the lesions were of the oral 
leukoplakia subtype than oral lichenoid mucositis (54.3% vs 45.7%, Table 2). Lesions 
involving the buccal or labial mucosa were more common than other anatomic sites 
(56.8%) with only 6.6% of patients presenting with indurated lesions. Most patients 
received no treatment or were placed on periodic observation (41.9%) while 30.9% 
of them received surgical intervention for their mucosal disease. Post-excision recur-
rence was observed among 19% of those that received surgical treatment with 13.5% 
experiencing only one recurrence as of the censoring date. Epithelial dysplasia was 
found on histology in 9.5% of patients at diagnosis and 7% of patients during follow-
up biopsies. Approximately, one-tenth of the patients experienced malignant trans-
formation of their lesions. Clinical and histologic characteristics of tumors are also 
shown in Table 2.

A detailed description of the external validation cohorts is presented in Table 2 and 
Additional file 1: Table S1. This cohort had an average follow-up time of 77.3 months. 
Overall, the prevalence of malignant transformation in the external validation cohort 
was 6% and the Newcastle cohort comprised patients with a clinically high risk of malig-
nant transformation as 89% of the patients had epithelial dysplasia of various grades at 
diagnosis.

Predictive performance of classifiers

In total, 46 models were trained and the distribution of their accuracies in each cross-
validation fold are shown in Figs. 2, 3. Mean accuracies during training ranged from 0.81 
to 0.93 and the respective comparison of models developed within each algorithm are 
detailed below.
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Table 2 Demographic, clinicopathologic, and outcome information of 774 Hong Kong patients 
used for training and validation

Variables First patient group (2003 
– 2019)

Second patient 
group (2020)

N = 716 N = 58

N (%) N (%)

Median age at diagnosis (IQR) 58 (49–67) 61.5 (53.8–68.3)

Gender

 Female 401 (56.0) 33 (56.9)

 Male 315 (44.0) 25 (43.1)

Patient category

 NSND 469 (65.5) 41 (70.7)

 SD 247 (34.5) 17 (29.3)

Continued risk habits following diagnosis

 Yes 14 (2.0) 11 (19.0)

 No 167 (23.3) 1 (1.7)

 Not applicable 535 (74.7) 46 (79.3)

Previous malignancy

 Head and neck tumors 21 (2.9) 0

 Other tumors 46 (6.4) 3 (5.2)

 Hematologic malignancies 23 (3.2) 6 (10.3)

 No malignancy 626 (87.4) 49 (84.5)

Charlson comorbidity index–mean (SD) 0.72 (1.01) 0.64 (1.02)

 Hypertension 22 (37.9) 211 (29.5)

 Diabetes mellitus 9 (15.5) 111 (15.5)

 Hyperlipidemia 21 (36.2) 122 (17.0)

 Autoimmune disease 3 (5.2) 42 (5.9)

 Viral hepatitis infection 3 (5.2) 69 (9.6)

Lesion

 Oral leukoplakia 389 (54.3) 41 (70.7)

 Oral lichen planus/lichenoid lesion 327 (45.7) 17 (29.3)

Clinical subtype of lichenoid lesion

 Reticular/Papular 100 (14.0) 4 (6.9)

 Erosive/Atrophic 142 (19.8) 6 (10.3)

 Plaque 85 (11.9) 7 (12.1)

 Tongue/FOM 245 (34.2) 25 (43.1)

 Buccal/Labial mucosa 407 (56.8) 27 (46.6)

 Retromolar area 26 (3.6) 3 (5.2)

 Gingiva 88 (12.3) 2 (3.4)

 Palate 23 (3.2) 3 (5.2)

Number of lesions

 Single 469 (65.5) 44 (75.9)

 Bilateral or double 210 (29.3) 10 (17.2)

 Multiple 37 (5.2) 4 (6.9)

 Presence of ulcers or erosions 228 (31.8) 19 (32.8)

 Induration 47 (6.6) 5 (8.6)

Treatment

 Surgical intervention 221 (30.9) 20 (34.5)

 Pharmacological treatment 195 (27.2) 7 (12.1)

 No treatment 300 (41.9) 31 (53.4)

 Post‑excision recurrence 42 (19.0) 2 (3.4)
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Logistic regression

The average accuracies of all models were similar during training, although, the models 
trained following oversampling with SMOTE were more stable with a lower coefficient 
of variation across the cross-validation folds. Upon validation, the models with balanced 
class weights performed better than those resampled with ADASYN or SMOTE based 
on their F1 scores (Tables 3, 4, 5). Nonetheless, the models with 26 features performed 
better than the 15-feature models, and the 26-parameter balanced class weight assign-
ment model had the best accuracy, and F1 score of 0.92 and 0.60 respectively as well as a 
sensitivity of 0.75 following testing.

Table 2 (continued)

Variables First patient group (2003 
– 2019)

Second patient 
group (2020)

N = 716 N = 58

N (%) N (%)

Number of recurrences

 1 30 (13.5) 2 (3.4)

 2 7 (3.2) 0

 3 4 (1.8) 0

 4 1 (0.5) 0

Oral epithelial dysplasia at diagnosis

 Absent 641 (89.5) 48 (82.8)

 Mild 34 (4.7) 6 (10.3)

 Moderate 27 (3.8) 0

 Severe 7 (1.0) 0

 Unknown (defaulted biopsy at diagnosis) 7 (1.0) 4 (6.9)

Oral epithelial dysplasia at follow‑up

 Absent 658 (91.9) 48 (82.8)

 Mild 11 (1.5) 0

 Moderate 15 (2.1) 1 (1.7)

 Severe 24 (3.4) 7 (12.1)

 Unknown (defaulted biopsy during follow‑up) 8 (1.1) 2 (3.4)

Malignant transformation 76 (10.6) 6 (10.3)

AJCC TNM stage

 Stage I 47 (6.6) 3 (5.2)

 Stage II 9 (1.3) 2 (3.4)

 Stage III 6 (0.8) 0

 Stage IV 12 (1.7) 0

Tumor grade

 Well differentiated 23 (3.2) NA

 Moderate differentiated 30 (4.2)

Poorly differentiated 3 (0.4)

Tumor prognosis

 Remission 58 (8.1) 4 (6.9)

 Recurrence 6 (0.8) 2 (3.4)

 Cancer‑related death 6 (0.8) 0

 Second primary tumor 6 (0.8) 0

a NA not available
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Linear SVM

Similar mean accuracies were obtained for all models with the 26-parameter SMOTE 
model being the most consistent across the ten cross-validation folds (A detailed 
description of the external validation cohorts is presented in Table  2 and Additional 
file  1: Table  S2). The 26-parameter models had better accuracy and F1 scores than 

Fig. 2 Violin plots showing the distribution of accuracy estimates obtained across the cross‑validation 
folds during model training of five algorithms using three class imbalance correction methods—(a) Logistic 
regression (b) Linear SVM (c) Radial basis function SVM (d) Random Forest (e) Decision tree

Fig. 3 Violin plots showing the distribution of accuracy estimates obtained across the cross‑validation folds 
during model training of four algorithms using two synthetic class imbalance correction methods—(a) 
gradient boosting (b) k‑nearest neighbor (c) multilayer perceptron (d) linear discriminant analysis
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models trained with 15 features, and the 26-parameter ADASYN model had the best 
accuracy and F1 score of 0.95 and 0.70, and a sensitivity of 0.67 following testing.

RBF‑Kernel SVM

All six models had excellent average accuracy on training, however, the 15-parameter 
ADASYN model was the most stable (Additional file 1: Table S2). Models with 26 fea-
tures were slightly better than those with 15 features and lower performances were 
observed irrespective of the class imbalance technique implemented (Tables  3, 4, 5). 
Overall, the 26-parameter SMOTE model had the best accuracy and F1-score of 0.92 
and 0.52 upon testing; although, the sensitivity of this model on the test set was 0.50.

Random forest

Irrespective of the class imbalance resampling used, the 26-feature model had 
equal or better mean training accuracy and was more stable than the models with 
15 features (Tables 2, 3, 4). However, the 26-parameter balanced class weight model 
outperformed all other algorithms on the test dataset with accuracy, F1 score, and 
sensitivity of 0.97, 0.81, and 0.75 respectively.

Decision tree

The mean accuracies of the 15-feature models were higher than the 26-feature models 
for models trained with synthetic oversampling (Tables  3, 4). However, the 26-fea-
ture model had better mean training accuracy when class weight assignment was used 
(Table 5). The 15-feature ADASYN model was the most stable across the validation 
folds (Additional file 1: Table S2). Following testing, the 26-parameter models based 
on ADASYN and class weight distribution both outperformed other models with sim-
ilar accuracy, F1 score, and sensitivity of 0.95, 0.72, and 0.75 respectively.

Gradient boosting

Mean accuracies on training followed the same trend based on the type of imbalance 
technique, although, the accuracy of the 26-parameter models was higher and stable 
generally (Tables 3, 4). Upon evaluation with the test dataset, the 26-parameter model 
with ADASYN technique had the best accuracy and F1 score of 0.95 and 0.70 with a 
sensitivity of 0.67.

kNN

While the 15-parameter ADASYN had the highest mean accuracy for the models dur-
ing training, the 26-parameter SMOTE model was most stable across the folds (Addi-
tional file 1: Table S2). Models with 26 and 15 features based on SMOTE-resampled 
training data had similar accuracy, F1 score, and sensitivity of 0.87, 0.35, and 0.42 
which was better than both ADASYN-resampled models upon evaluation with the 
test dataset (Tables 3, 4).

MLP‑BP

The 15-parameter SMOTE model had the highest accuracy on the training dataset 
and the most stable performance estimates across the cross-validation folds (Tables 3, 
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4). On evaluation with the test dataset, the 26-parameter SMOTE model had the best 
accuracy, F1 score, and sensitivity of 0.94, 0.67, and 0.75.

Linear discriminant analysis

Irrespective of the class imbalance method, the 26-parameter model had a higher 
mean accuracy than the 15-parameter model on the training dataset and the SMOTE-
resampled models were generally more stable (Tables  3, 4). The 26-parameter 
ADASYN model performed best with an accuracy, F1 score, and sensitivity of 0.93, 
0.58, and 0.58 respectively following model testing.

Comparison of model performance upon testing

Testing performances of these trained models are also presented in Tables 3, 4, 5. For 
all algorithms, the 26-parameter SMOTE models had better stability across the cross-
validation folds (Additional file 1: Table S2). However, the 15-parameter RBF-kernel 
SVM model based on ADASYN resampling had the lowest coefficient of variation 
and best stability of any model upon comparing the mean training accuracies. Also, 
according to the F1 scores, for models using synthetic class imbalance correction, 
those based on ADASYN had better mean F1 scores than those based on SMOTE 
(Additional file 1: Table S3). Likewise, irrespective of class imbalance, the 26-param-
eter models had better mean F1 scores than the 15-parameter models.

Overall, for the models with 26 predictors, the weighted random forest model outper-
formed other models with an F1 score, sensitivity, precision, and accuracy of 0.81, 0.75, 
0.90, and 0.97 respectively (Table  5). Also, this model was better than all others irre-
spective of the number of variables or class resampling technique. For the 15-parameter 
models, both random forest with SMOTE (F1-score: 0.70, sensitivity: 0.58, accuracy: 
0.96) and gradient boosting with ADASYN (F1-score: 0.69, sensitivity: 0.75, accuracy: 

Fig. 4 Global SHAP summary plot to explain the importance of the features to the model predictions of the 
weighted random forest model (with 26 input parameters)
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0.94) had similar performances that bested other models (Table 4). However, based on 
the prioritization of sensitivity over precision for models with similar F1 scores, the gra-
dient boosting with ADASYN resampling had the best performance for the 15 feature 
models in this study.

External validation of the two best models using prospective Hong Kong patients

We assessed the performance of the two outperforming models (weighted random for-
est for 26 predictors and gradient boosting-ADASYN model for 15 variables) using 58 
consecutive Hong Kong patients with oral leukoplakia and oral lichenoid mucositis. For 
all patients, both models had perfect sensitivity (1.00) for predicting malignant transfor-
mation as of the last date of follow-up (December 31, 2021) and both displayed satisfac-
tory yet comparable predictive accuracies. Both risk models for oral leukoplakia and oral 
lichenoid mucositis achieved similar AUC, accuracy, specificity, and F1 score of 0.94, 
0.90, 0.88, and 0.67 respectively.

Fig. 5 Global SHAP summary plot to explain the importance of the features to the model predictions of the 
gradient boosting‑ADASYN model (with 15 input parameters)

Fig. 6 Decision curves indicating the net benefits of the weighted random forest model (A) and gradient 
boosting‑ADASYN model (B) in selecting patients for intervention and close monitoring
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Explainability using global SHAP values for both 26 and 15 feature models is presented 
in Figs.  4, 5. For the weighted random forest model, epithelial dysplasia at diagnosis 
and follow-up, tongue lesions, number of lesions, and occurrence of recurrent lesions 
were the five most important features contributing to the predicted output. Likewise, 
for the gradient boosting-ADASYN model, buccal mucosa lesions, epithelial dysplasia 
at diagnosis and follow-up, type of lesions (leukoplakia vs lichenoid mucositis), and the 
patient’s gender were covariates that were pertinent to predicted outputs in the external 
validation cohort. Decision curve analysis to determine the net benefit of the predicted 
outputs of the models is plotted in Fig. 6. Overall, both models offered higher benefits 
when used for risk stratification at different threshold probabilities than if surgical inter-
vention is performed in all patients in the external validation cohort.

External validation of the 15‑feature model using patients from different settings

Since the malignant transformation prediction model based on 15 variables was specifi-
cally developed to be used in other areas according to the ease of data availability, we 
further assessed its generalizability using patients managed in Newcastle, UK (high-risk 
cohort) and Lagos, Nigeria for which the same variables were available. The 15-param-
eter gradient boosting-ADASYN risk model achieved a higher sensitivity for identifying 
patients with malignant transformation in these cohorts than the binary epithelial dys-
plasia grading system (0.96 vs 0.82). However, the difference in sensitivity values between 
the ML model and dysplasia grading did not achieve statistical significance (p = 0.250).

Web deployment

The data frame web-based deployment of both risk models according to 26 predictors 
(weighted random forest) and 15 predictors (gradient boosting-ADASYN can be found 
at https:// wrf- 26. herok uapp. com and https:// mtp- gb-a- 15. herok uapp. com. The tem-
plates for input parameters and coding of variables have been included in Additional 
file 2 (for 26 features) and Additional file 3 (for 15 features). Predicted outputs are given 
as high risk (1) and low risk (0) for malignant transformation. Further, the interactive 
web applications of the models to enable day-to-day validation are available at https:// 
opmd- predi ct- facde nt- hku. herok uapp. com and https:// opmd- predi ct- facde nt- hku- 26. 
herok uapp. com which also includes the predicted class probabilities.

Discussion
Predicting the malignant transformation of oral leukoplakia and oral lichenoid mucositis 
often pose a conundrum to clinicians especially in non-specialist centers and resource-
limited settings [10]. Adjunctive decision-making and risk stratification platforms that 
could predict cancer occurrence in OPMDs with good sensitivity and precision would 
prove to be substantive assets in contemporary clinical practice. Machine learning rep-
resents one of the most advanced and sophisticated methods for developing such tools 
leading to the objective of this study to compare different models and select the most 
promising ones for further optimization.

Generally, this study found that machine learning models with 26 variables performed 
better than those with 15 variables in sensitivity and precision. This alludes to the abil-
ity of clinical factors such as risk factor category, clinical history of comorbidities, viral 

https://wrf-26.herokuapp.com
https://mtp-gb-a-15.herokuapp.com
https://opmd-predict-facdent-hku.herokuapp.com
https://opmd-predict-facdent-hku.herokuapp.com
https://opmd-predict-facdent-hku-26.herokuapp.com
https://opmd-predict-facdent-hku-26.herokuapp.com
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hepatitis status, number of lesions, and presence of induration which were included in 
the 26-feature models to better delineate high and low-risks patients with oral leukopla-
kia and oral lichenoid mucositis when they are available. Notably, the performance of the 
machine learning models was found to vary with the method of class imbalance correc-
tion as those employing ADASYN obtained better F1-scores than SMOTE irrespective 
of the number of variables or the type of machine learning algorithm employed. This 
supports the notion of a potential increase in model performance that may be offered 
by ADASYN over SMOTE since it focuses on instances that are difficult to classify [50]. 
Nonetheless, we maintain that this is likely to vary with the type of machine learning 
classifier used [51].

This study developed two models based random forest and gradient boosting algo-
rithms which were the outperformers to predict the malignant transformation of oral 
leukoplakia and oral lichenoid mucositis. In this study, these models were selected for 
achieving a satisfactory sensitivity (all > 75%) for patients with high risk of malignancy 
in the different datasets used during internal and external validation irrespective of the 
number of predictors available for the task. Random forest and gradient boosting are 
robust ensemble learning algorithms that seek to reduce the generalization error of pre-
dictions by considering decisions from different weak learners resulting in better overall 
performance [52, 53]. The performance of these algorithms for producing better predic-
tive models for oral cavity cancer outcomes (such as locoregional recurrence) has been 
previously reported by our group and others which supports the findings of this study 
[23, 39, 54–56].

To date, three models for predicting the malignant transformation of OPMDs have 
been proposed [55, 57, 58] none of which have resulted from a comprehensive model 
comparison experiments, internal/external validation, or utilized predictive features 
available at different point-of-care centers [57]. Comparing all tools proposed, the best-
performing models in this study had better sensitivity on internal and even external vali-
dation. Furthermore, we obtained better overall performance for the developed models 
in this study when compared to the few nomograms proposed to stratify the risk of can-
cer occurrence in patients with OPMDs [21, 22]. One of such nomograms (Newcastle 
nomogram) was developed with a similar dataset with that used for external validation 
in this study and our models displayed better sensitivity for identifying patients with 
high risk of malignant transformation [22]. Also, the outperforming machine learning 
models had better sensitivity than reported for the WHO dysplasia grading system or 
binary epithelial dysplasia grading system in predicting the risk of malignant transfor-
mation in different OPMDs [16, 17, 42]

Limitations
The main limitation in the implementation of the models developed and validated in 
this study is their moderate precision. However, the high sensitivity achieved on exter-
nal validation indicates that they are indeed better suited to risk stratification for better 
clinical judgment currently than the incontrovertible prediction that some white lesions 
will develop malignancies. To improve the precision, we suggest the inclusion of other 
cytologic or molecular-based features which may further indicate malignant outcomes 
among clinically high-risk patients with high-grade dysplasia in future endeavors [18, 
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59, 60]. Furthermore, the models were developed using a retrospective dataset that was 
not purposeful for training the algorithms. However, the data was collected from elec-
tronic records linked across different specialties and clinics involved in the management 
of oral precancer and correlated across multiple platforms and visits to ensure correct 
imputation. Likewise, our generalizability assessments of these models are only incipi-
ent and solely to assess the potential utility of these models in cases from other centers. 
Hopefully, the availability of web platforms based on the malignant transformation risk 
models constructed in this study will encourage further external validation and impact 
assessment in other populations using randomized controlled trial designs [61] before 
routine implementation at various general and oncological practices in specialist and 
remote centers.

Conclusions
Overall, this study found that machine learning-based models have satisfactory sen-
sitivity and accuracy in identifying patients with oral leukoplakia and oral lichenoid 
mucositis that are at risk of malignant transformation. Tree-based algorithms (gra-
dient boosting and random forest) performed best and were used to develop two 
promising models based on 15 and 26 features respectively.  Although not statisti-
cally significant, the 15-parameter gradient boosting model had a higher sensitivity 
than the binary epithelial dysplasia grading system. Furthermore, this study provided 
proof-of-concept that demographic, clinicopathological, and treatment information 
obtainable from electronic health records are useful for predicting the risk of malig-
nant transformation of oral leukoplakia and oral lichenoid mucositis as a binary 
outcome. The models were deployed as web-based platforms to encourage further 
external validation and serve as tools for future research to determine their impact in 
the management of patients with oral leukoplakia and oral lichenoid mucositis.
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