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Abstract 

The automatic classification of marine species based on images is a challenging task 
for which multiple solutions have been increasingly provided in the past two decades. 
Oceans are complex ecosystems, difficult to access, and often the images obtained are 
of low quality. In such cases, animal classification becomes tedious. Therefore, it is often 
necessary to apply enhancement or pre‑processing techniques to the images, before 
applying classification algorithms. In this work, we propose an image enhancement 
and classification pipeline that allows automated processing of images from benthic 
moving platforms. Deep‑sea (870 m depth) fauna was targeted in footage taken by the 
crawler “Wally” (an Internet Operated Vehicle), within the Ocean Network Canada (ONC) 
area of Barkley Canyon (Vancouver, BC; Canada). The image enhancement process 
consists mainly of a convolutional residual network, capable of generating enhanced 
images from a set of raw images. The images generated by the trained convolutional 
residual network obtained high values in metrics for underwater imagery assessment 
such as UIQM (~ 2.585) and UCIQE (2.406). The highest SSIM and PSNR values were 
also obtained when compared to the original dataset. The entire process has shown 
good classification results on an independent test data set, with an accuracy value 
of 66.44% and an Area Under the ROC Curve (AUROC) value of 82.91%, which were 
subsequently improved to 79.44% and 88.64% for accuracy and AUROC respectively. 
These results obtained with the enhanced images are quite promising and superior to 
those obtained with the non‑enhanced datasets, paving the strategy for the on‑board 
real‑time processing of crawler imaging, and outperforming those published in previ‑
ous papers.

Keywords: Underwater image enhancement, Deep learning, Neural networks, Image 
classification

Introduction
The use of Machine Learning (ML) techniques by Artificial Intelligence (AI) is growing 
at a constant pace in several scientific fields, with applications in medicine [15], [55], 
agriculture [23], industry [53], and marine ecology [6, 7, 59, 81]. As a matter of fact, the 
implementation of AI-based algorithms for tracking and classification of animals in sea-
floor (i.e., benthic) realms has grown spectacularly in the past decade both in data from 
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cabled observatories [60, 61, 71, 105], Remotely Operated Vehicles (ROVs) [65], [100] 
and Autonomous Underwater Vehicles (AUVs) [16], [101]. Thus, AI processing innova-
tion is rather conditioned by the different operational scenarios, as for example the mon-
itoring of deep-sea biodiversity and stock assessment [1, 2, 24] or ecosystem recovery 
from different disturbances [13, 75, 82].

Marine imaging acquisition

Although most of the surface of this planet is covered by seawater, a large part of its 
volume and projected seafloor remains unexplored [25, 40, 92]. This is principally a con-
sequence of the particular characteristics of the ocean environment such as high pres-
sure, low temperature and absence of light, which make it hostile to humans and pose 
practical challenges to its exploration [79]. However, advances in robotic platforms and 
sensor technologies have made possible to dive in virtually any realm of the deep marine 
biosphere [12, 33, 67], obtaining relevant information about many marine environments 
and their inhabiting species [3, 22, 41, 68]. Oceans provide us with goods and services 
that, if exploited without control, can be depleted [29, 99]. Therefore, much more effort 
is required for the acquisition of baseline knowledge on marine ecosystems in terms of 
species and their habitats characteristics, in order to promote sound and scientifically 
sustained management policies [27, 28]. This data acquisition is up to date with the 
framework of the UNESCO Ocean Decade Initiative (https:// en. unesco. org/ ocean- dec-
ade) (C. N. [64]. The study of imaging data provided by new robotic platforms is progres-
sively playing a central role for fisheries [1, 2, 14], with evident industrial applications 
in terms of impact quantifications at off-shore decommissioning and projected mining 
activities [8, 43, 46], [65, 87].

During the last two decades, underwater imaging assets have increased with the 
improvement of High-Definition (HD) optics and the introduction of low-light equip-
ment that, in association with acoustic multi-beam cameras, are presently allowing 
vision in darkness [3]. Complex sensor packages are being installed on cabled observato-
ries and their docked mobile platforms such as crawlers (i.e., Internet Operated Vehicles, 
IOVs), combining oceanographic and geo-chemical assets with cameras [20, 20, 21, 21], 
[32, 50, 93]. This combined image and multiparametric environmental data acquisition 
is allowing to link visual counts of animals for the different species within a marine com-
munity with concomitant habitat quality changes, as an experimental field measure of 
their ecological niche [1, 2]. The technological developments are also paralleled by ves-
sel-assisted robotic technologies such as AUVs and ROVs [17, 26, 81], [101].

Underwater image quality challenges

The automation of image acquisition and processing for animal tracking prior the classifica-
tion is of relevance for the prolonged and continuous monitoring of marine biodiversity in 
any different operational scenario [6, 7, 10, 49, 81]. Although the use of better imaging tech-
nologies has made it possible to obtain HD outputs of increased quality, in almost all cases 
a pre-processing is necessary, due to strong environmental variability (i.e., “real world” sce-
narios, [61, 86]). While in controlled laboratory environments the bottom is static and with 
hardly any details [36, 37, 56, 88, 89, 103], in uncontrolled field settings such as the seas, 
images are acquired under variable environmental light or artificial lighting (for costal to 
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deep-sea applications), floating particles and variable substrates as background [18, 31, 57, 
62]. Such a variability represents a challenge in the identification and tracking of animals 
within the Field of Views (FOVs) and the extraction of their morphological features for clas-
sification [5, 57, 60, 61, 71, 85].

In this framework, image pre-processing is essential to improve animals’ detection and 
their posterior classification. Image enhancement encompasses both Computer Vision 
(CV) methods (i.e. noise removal, contrast change or colour adjustment: e.g., [30] and Deep 
Learning (DL) methods such as neural networks, capable of generating a new enhanced 
image from the original one [54], [96, 105]. However, given the amount of images col-
lected, manual processing becomes infeasible. Therefore, an automatic process is needed 
to improve these huge datasets, either to analyse them manually or to use them later in a 
detection and classification process to obtain better results. In order to manage the pro-
cessing difficulties of image treatment in real world case scenarios some authors [57, 88, 
89, 105] established a pipeline based on different automated treatment steps toward qual-
ity enhancement at cabled observatories. Such an effort has not yet been done with their 
docked mobile platforms such as IOVs, although some work has already been developed for 
ROVs (e.g., [100] and AUVs (e.g., [16]. The images and videos obtained by crawlers in par-
ticular are composed of different scenarios, as IOVs are often in constant motion. Typically, 
multiple sediment particles can be seen in the images, as they are lifted by the movement of 
the crawler and can impede visibility [20, 21, 32].

Objectives

The objective of this paper is to design an automatic image enhancement process pipeline 
using Deep Learning techniques, in order to enhance the images and subsequently obtain 
better animals’ classification results. Based on previous experience at cabled observatories 
[57], this process can be applied to ROV and AUV data. This enhancement was carried out 
on images acquired by the deep-sea crawler “Wally” with innovative deep-learning tech-
niques, as baseline condition for improved animal classification which is required by moni-
toring and conservation strategies [28]. This processing provides a solution to the problem 
of enhancing very dark underwater images, since existing enhancement and classification 
solutions are still too dependent upon high illumination levels.

The article is organised as follows: Sect. “Materials and methods” describes the image set 
used in this work, some existing methods for image enhancement, and the chosen evalua-
tion metrics (both for image quality assessment and species classification). Sect. “Proposed 
methods” presents the proposed methods, including the image enhancement pipeline and 
the classification process. Sect. “Experimental design” details the experimental design used 
to carry out the different experiments. Sect. “Results” shows all the obtained results, first 
regarding image generation and then animal classification, while Sect.  “Discussion” dis-
cusses the results. Finally, Sect. “Conclusions and Future Work” gives our conclusions and 
future work.

Materials and methods
The IOV and the study area

The crawler operates since 2009 at the Hydrates site (~ 870 m depth; 48° 18′ 46″ N, 126° 
03′ 57″ W) of the Barkley Canyon Node of the North-East Pacific Undersea Networked 
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Experiments (NEPTUNE) seafloor cabled observatory, operated and maintained by the 
Ocean Networks Canada (ONC; www. ocean netwo rks. ca). The site is a soft sediment 
plateau, characterised by the presence of outcrops of methane hydrates forming small 
mounds, with chemosynthetic bacteria forming thin mats suspect to erosion by currents 
[94]. A prevalent down-canyon current flow of intermediate velocity, i.e., seldom higher 
than 0.3 m/s [20, 21] and mainly SW direction can generate turbidity and phytodetritus 
fluxes [20, 21] with varying quantities of particles, potentially interfering with the FOV. 
The tidal regime is mixed semi-diurnal, with two unequal pairs of highs and lows [47], 
determining the image capturing protocol (see Sect. “Data collection”).

Data collection

The image capturing process is described in [20, 21]. In brief, a total of 18 imaging tran-
sects (i.e., 9 forth and 9 back) of ~ 30 m length were carried out between 2 November 
and 2 December 2016. The currents in the area are generally stronger than the crawler’s 
established speed (i.e., ~ 0.04  m/s), meaning that moving towards the same direction 
as the current would constantly place the entire sediment cloud in front of the camera. 
Moving against the current was an efficient strategy to avoid that, but did not impede 
the generation of sediment cloud, parts of which would occasionally interfere with the 
camera’s field of view.

Imaging was performed at 1  Hz (i.e., 1 image/s) with a Basler dart USB 3.0 camera 
(daA1600-60 μm/μc; 1600 × 1200 pixel), which was mounted on a structured light sys-
tem (i.e., pan/tilt unit; PTU) developed by DFKI Bremen, with illumination provided by 
two 33 W, 2000 m rated LED lamps. For standardization purposes, angles were set to 
− 76° left for pan and − 2° up for tilt in all but one transect (for further details on camera 
calibration see Supplementary Table S2 in [20, 21]. The camera was facing towards the 
right of the crawler at all times, so that the background was different between the back 
and forth transects.

The targeted group of species

The main megafauna (i.e., animals with body size above 2–3 cm) from a total of 14 mor-
phospecies (i.e., identified down to species level or to higher taxonomic ranking, based 
on general morphology) present in the dataset, were identified by visual inspection with 
the help of the NEPTUNE Canada Marine Life Field Guide in [38]. However, species for 
which few records were available were combined into one class which was later added. 
The remaining considered species were:

• Demersal fish of the family Sebastidae. This group included rockfishes of the genus 
Sebastes and thornyheads of the genus Sebastolobus, which are mainly observed 
inactive on the seabed and are characterised by their orange-red colour pattern.

• The blackfin poacher (Bathyagonus nigripinnis) a small, thin, dark coloured fish also 
often observed as inactive on the seabed.

• The Pacific hagfish (Eptatretus stoutii), with a characteristic grey-violet colour and 
long, slender body, observed either laying on the seabed or swimming in sudden 
bursts.

http://www.oceannetworks.ca
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• The grooved tanner crab (Chionoecetes tanneri) of varying size between adults and 
juveniles, orange body and 4 pairs of walking legs, observed both as immobile or 
walking.

• Sea stars of the class Asteroidea, appearing as white and stationary (compared to the 
temporal scale of each transect).

• The ctenophore Bolinopsis infundibulum, transparent and drifting with the current 
flow at varying velocities or actively swimming across the FOV.

• The jellyfish Poralia rufescens, orange-red and round-bell shaped, also moving with a 
combination of active swimming and drifting with the current.

Moreover, three classes were added a posteriori due to their recurrent occurrence: 
firstly, the class encompassing floating and resuspended sediment particles in water, 
because the movement of the IOV leads to their occurrence on countless occasions 
and the currents drag visible phytodetritus from shallower waters; on the other hand, 
the class containing transect plastic metric reference marks (for remote navigation) 
has been added, as they can be observed in many of the images; finally, the class which 
includes unclassified species, as too dark or too far in the FOV to be recognised, or 
because they belong to the group of species for which few records were available in 
the current dataset. All species and classes used can be seen in Figs. 1 and 2.

Table 1 shows the number of samples per class (before data augmentation) consid-
ered for the generation of the datasets.

Image enhancement methods

To enhance the images, a pipeline has been generated using different techniques to 
deliver an input for a neural network that would then generate properly enhanced 
images.

Although many techniques were finally discarded, it was necessary to carry out a 
preliminary survey on those techniques to seek for best enhancement results. The fol-
lowing list contains a brief description of each of the techniques that were used:

Fig. 1 An example of the species in the dataset: A Asteroidea, B Chionoecetes tanneri, C Bathyagonus 
nigripinnis, D Eptatretus stoutii, E Sebastidae, F Bolinopsis infundibulum, G Poralia rufescens 
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• The Contrast Limited Adaptive Histogram Equalization (CLAHE) [106] reduces 
the problem of its predecessor, the traditional Adaptive Histogram Equalization 
[76], which tends to amplify the noise in constant and homogeneous regions.

• Gamma Correction (or Gamma Encoding) is the non-linear operation to encode 
and decode the luminance values in images or videos, used to compensate human 
vision in order to maximize bit bandwidth in relation light/colour perception and 
details hidden in dark images can be appreciated [77].

• Colour Balance (i.e., as white balance) is the global adjustment of colour intensi-
ties to correct the representation of neutral colours [9, 84].

• Convolutional Neural Networks (CNNs) are a type of neural network models 
commonly used for image recognition and classification [51, 52].

Fig. 2 An example of other classes added to the dataset: A floating particles and B transect plastic metric 
reference marks and C other species (unclassified or few records available)

Table 1 Number of samples of species used for building the dataset for reference at automated 
classification

Species Samples 
in 
dataset

Asteroidea 731

Chionoecetes tanneri 793

Bathyagonus nigripinnis 604

Eptatretus stoutii 651

Sebastidae 1102

Bolinopsis infundibulum 849

Poralia rufescens 748

Sand particles 520

Objects 656

Other species 318
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• Autoencoders are used as unsupervised learning neural networks and have three 
main components: the encoder, the code (also known as latent space representation) 
and the decoder [11, 39].

Metrics

To evaluate the improvements in image quality after applying the processes described 
above and also to evaluate the further classification, we selected a set of evaluation 
metrics.

Image quality metrics

For the evaluation of the images, the following image quality assessment metrics have 
been used:

• Structural Similarity Index (SSIM) (Z. [97]
• Peak Signal-to-Noise Ratio (PSNR) [44]
• Underwater Image Quality Measure (UIQM) [72], [73]
• Underwater Colour Image Quality Evaluation (UCIQE) [102]

Classification metrics

To evaluate the performance of the classifiers, the following metrics were used:

• Accuracy [34]
• The Area Under the Receiver Operating characteristic Curve (AUROC) [34]
• Loss
• The confusion matrix [34]

Proposed methods
Image enhancement pipeline

In this subsection we present the image enhancement process in terms of composing 
steps and the description of the residual network that mainly constitutes this process. 
The complete pipeline can be seen in Fig. 3. The original images were in raw format and 
appeared in grayscale, so a chromatic interpolation algorithm by demosaicking or debay-
ering, a digital image process used to reconstruct an image in colour, was applied.

Since the images still retained the greenish hue characteristic, we model and train a 
residual CNN network to generate the enhanced images and thus eliminate the green-
ish hue characteristic. Those neural networks are known for skip connections, or short-
cuts to jump over some layers. The omitted connections aim to avoid the problem of 
vanishing gradients or mitigate the problem of Degradation (accuracy saturation), where 
adding more layers to a deep model leads to a larger training and test error [42]. This 
network has the structure of an autoencoder, which usually presents a structure made 
by three parts: the encoder, which extracts features from the input image, a central 
part that performs feature processing, and the decoder, the final part, which decodes 
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the processed features into an output image. In the elaborated residual CNN network, 
the optimizer, batch size and layers of were modified until the results were improved. 
Techniques such as White Balance, Gamma Correction and the CLAHE algorithm were 
applied to generate the images with which the network would be trained.

Each convolutional layer was followed by a ReLU activation layer [70], a linear func-
tion whose output, if positive, will be the same as the input value, while if negative, the 
output will be zero, as indicated in Eq. (1):

After the input layer, there were two pairs of convolutional and ReLU layers followed 
by a max pooling layer. Next, there was a larger block consisting of three convolutional 
and ReLU layers and a max pooling layer. This was followed by a group of four convolu-
tional layers. The last group was composed of three convolutional layers. The optimiser 
chosen for this network was Adam [48], while the loss function chosen was MSE loss. 
The layered structure can be seen in Fig. 4. This residual network has two residual blocks 
which skip connections. In this way, these shortcuts perform identity mapping, where 
their outputs are added to the outputs of the stacked layers.

Classification pipeline

For the detection and classification of animals within the different species as categories, 
a modified version of the pipeline previously proposed in [57] was used, omitting the 
application of CLAHE at the image processing step. However, here, background subtrac-
tion procedure did not work properly since FOV characteristics slightly changed over 

(1)f (x) = max(0, x)

Fig. 3 Underwater image enhancement Pipeline
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consecutive frames/image due to the crawler’s motion. Therefore, the frame difference 
technique was applied, where each frame was subtracted from the previous one [66].

The used classification algorithms are detailed in subSect.  “Metrics” of [57]. On one 
hand, 8 classical algorithms: two versions of Support Vector Machine (LSVM and SVM_
SGD), two K-Nearest Neighbours (K-NN1 and K-NN2), two Decision Trees (DT1 and 
DT2) and two Random Forests (RF1 and RF2). On the other hand, 8 neural networks: 
four Convolutional Networks (CNN1, CNN2, CNN3 and CNN4) and four Deep Neural 
Networks (DNN1, DNN2, DNN3 and DNN4) with different configuration and structure 
parameters. The parameters chosen for training were the same as in [57].

Experimental design
This section explains the experimental setup of the experiments carried out using both 
proposed pipelines, i.e., the image enhancement pipeline and the classification pipeline.

As the original images were too large and slowed down the training too much, they 
were resized to 400 × 300 pixels.

The implemented residual CNN had a 14-layer structure, separated in different blocks. 
The network for image enhancement was configured to train a maximum of 50 epochs of 
100 iterations each. An epoch is one complete presentation of the data set to be learned, 
while an iteration is the number of batches needed to complete one epoch. The batch 
size is the total number of training examples present in a single batch. The higher is this 
parameter, the more memory space is needed. In addition, it was also designed to save 
the model every time the loss value decreased, and also to stop training if the loss value 
did not improve within 5 epochs (to avoid the over-fitting problem).

To train the residual CNN that was part of the image enhancement process, a dataset 
of 13,548 images was used to create the training and test data sets for the new datasets. 
80% of the images (10,838 images) constituted the training dataset, while the remainder 
was used to test the network. Different datasets were incrementally generated, to test the 
techniques that best affected the final classification results. For the purpose of simplify 
the names of the datasets used and generated and used in this paper, the following table 
has been created in which all the names and their description are listed in Table 2.

Fig. 4 Structure of the residual convolutional neural network
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To evaluate the CNN-generated underwater images, we chose SSIM, PSNR, UIQM 
and UCIQE values.

As for the classification, the size of the collected set was only of 6972 elements. As there 
were not too many images, we decided to apply data augmentation techniques to 80% of 
the images (a total of 5573 images), which are the ones that made up the training set. After 
applying data augmentation techniques, the training set increased from 5573 to 35,020 
images, obtaining 3502 samples per class.

All the selected classifiers were tested by tenfold cross-validation by considering that the 
elements of each class were distributed evenly in each fold [45, 58, 90]. The performance 
of the models was evaluated by the accuracy, the loss (both train and testing), the AUROC 
average scores [34], as well as by the confusion matrix. The accuracy and AUROC values 
were calculated by the multiclass implementation from Scikit-learn, which estimates the 
metrics for each label, without considering the label imbalance.

All experiments were conducted in Python. The implementation of all the classical algo-
rithms used is within the Scikit‐learn library [74] (https:// scikit- learn. org), while the neu-
ral networks were implemented with the Keras and Tensorflow libraries. The environment 
used for training the selected algorithms and the defined models was Google Colaboratory 
(also known as Colab). It operates currently under Ubuntu 18.04 (64 bits) and it is provided 
by an Intel Xeon processor and 12 GB RAM. It is also provided with Nvidia K80, T4, P4 and 
P100 GPUs.

On the one hand, a classification of 4 datasets (the original-coloured dataset, Dataset1, 
and the three generated by the network, Dataset5, Dataset6 and Dataset7), whose num-
ber of classes amounts to 7, was carried out. In addition, the dataset for which the lowest 
loss value and the highest accuracy and AUROC test values were obtained was selected for 
another classification, in which three more classes will be added to make a total of 10.

Table 2 Simplified names of datasets used and their description

Techniques Short name Description

RAW Dataset0 Dataset with the original images

DBY Dataset1 Dataset with the original images, but in colour (after the 
application of the debayering technique)

DBY + WB Dataset2 Dataset containing images of the DBY dataset to which 
the White Balance (WB) method has been applied

DBY + WB + GC Dataset3 Dataset containing images of the DBY + WB dataset to 
which the Gamma Correction (GC) method has been 
applied

DBY + WB + GC + CLAHE Dataset4 Dataset containing images of the DBY + WB + GC data‑
set to which the CLAHE algorithm has been applied

DBY + WB + ResidualCNN Dataset5 Dataset generated by the trained Residual CNN, using 
as input the colour images of the DBY dataset to which 
the WB method has been applied

DBY + WB + GC + ResidualCNN Dataset6 Dataset generated by the trained Residual CNN, using 
as input the images of the DBY + WB + GC dataset

DBY + WB + GC + CLAHE + ResidualCNN Dataset7 Dataset generated by the trained Residual CNN, using 
as input the images of the DBY + WB + GC + CLAHE 
dataset

https://scikit-learn.org
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Results
In this section, the results obtained following the experimental design are presented: 
the results of the image enhancement pipeline are presented in SubSect.  “Image 
enhancement pipeline results”, while the results of the classification pipeline in Sub-
Sect. “Classification results”.

Image enhancement pipeline results

The network was finally trained for 15 epochs (due to the configured stop condition) 
and approximately each epoch took 1100 s to run (approx. 20 min). The visual com-
parison between the different image datasets is reported in Fig. 5, where the original, 
colourised and CNN-generated images are shown.

Regarding the visual aspect, the greenish colour that characterised the images to 
which techniques such as WB, GC and CLAHE were applied (Dataset2, Dataset3 and 
Dataset4), was almost eliminated. The images generated by the residual network did 
anyway maintain a bluish tone, but the colours of the visible animals were more pro-
nounced. In any case, at a simple visual inspection, the images generated by CNN 
were somewhat blurrier compared to those processed by CV methods.

Figures 6 and 7 show in detail the comparison between two images as an example. 
Figures 6A and 7A are part of the input dataset to which CV methods were applied, 
while Figs. 6B and 7B are images of the dataset generated by the enhancement net-
work. Figure  6 shows an example of image processing where the generated result 
is quite similar to the input image. As a result of that processing, the two animals 
belonging to two species (i.e., a floating ctenophore and a rockfish lying on the sea-
bed) can be better visualised by the naked eye.

Similarly, a different comparison between two images can be seen in Fig. 7 also for 
two species (i.e., a hagfish and another rockfish). This time, the residual CNN gener-
ated a superior colour and illumination quality in the output image, except for warm 
colours, which maintained some of the bluish tone, as common characteristic of 
untreated underwater images.

Figure 8 shows other two images from input Dataset4 and the output Dataset7. As 
can be seen in both images, a floating jellyfish can be observed. In this case, the net-
work has transformed the orange tones while maintaining some bluish tones.

The values of the UIQM and UCIQE metrics for the evaluation of images of the two 
scenes are summarised in Table 3. The UIQM and UCIQE mean values were slightly 
higher for the input images of the network. The difference is even greater for coloured 
images (by debayering).

The values of the SSIM and PSNR metrics for the evaluation of the quality and simi-
larity of the images corresponding to the different datasets are shown in Tables 4 and 
5 respectively. As for the SSIM values (Table 4), we can observe that the highest val-
ues have been obtained by the datasets generated by the network, while the datasets 
to which CV techniques were applied (used to train the residual network) obtained 
lower values. In the same form, the PSNR values have been slightly higher for the 
datasets generated by the residual network, as can be seen in Table 5
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Classification results

The classification results have been divided in two parts: first the results are shown for 
the seven-class dataset and then for the modified dataset containing ten classes.

The 7‑classes classification results

The results obtained in the classification of the first 7 selected classes (Sebastidae, Bath-
yagonus nigripinnis, Eptatretus stoutii, Chionoecetes tanneri, Asteroidea, Bolinopsis 
infundibulum, Poralia rufescens) are shown in Tables 6 and 7.

Fig. 5 Comparison among the different image datasets: original, processed with CV techniques and 
generated by the CNN. Dataset0: dataset of original images in RAW format. Dataset1: dataset of colourised 
images. Dataset2: dataset of images to which the WB technique has been applied. Dataset3: dataset of 
images with WB and GC applied. Dataset4: dataset of images to which the WB, GC and CLAHE techniques 
have been applied. Dataset5: dataset of images generated by the CNN having as input the images of the 
Dataset2 dataset. Dataset6: dataset of images generated by the CNN having as input the images of the 
Dataset3 dataset. Dataset7: dataset of images generated by the CNN having as input the images of the 
Dataset4 dataset
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Table  6 shows the results obtained by the classic classifiers on the different data-
sets. The dataset that obtained the lowest values overall during this classification was 
the Dataset1. The remaining datasets obtained fairly equal results. The algorithm that 
obtained the highest performance on all the datasets (both accuracy and AUROC values) 
was the RF2. The highest accuracy value of 0.6147 was achieved with the Dataset5 data-
set, while the highest AUROC value of 0.8041 was achieved with the Dataset7 dataset.

The results obtained by the deep learning techniques can be seen in Table  7. The 
dataset that obtained the lowest values overall during classification was the so-called 

Fig. 6 Comparison of CNN input and output images. A Shows an input image as after WB, GC and CLAHE 
processes (from Dataset4). B Shows an image generated by the CNN (from Dataset7)

Fig. 7 Comparison of CNN input and output images. A Shows an input image after WB, GC and CLAHE 
processes (from Dataset4). B Shows an image generated by the CNN (from Dataset7)

Fig. 8 Comparison of CNN input and output images. A Shows an input image after WB, GC and CLAHE 
processes (from Dataset4). B Shows an image generated by the CNN (from Dataset7)
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Dataset1. Several of the networks obtained high values of accuracy and AUROC, and 
low values of loss (also during test).

The 10‑classes classification results

Three more classes were added to represent floating particles and sand suspended in the 
water, objects placed on the ground and unclassified species and species that contained 

Table 3 UIQM and UCIQE mean values for the different datasets

The bold values refer to the highest (and best) value

UIQM UCIQE

Dataset0 1.845 0.2719

Dataset1 1.936 3.515
Dataset2 2.421 2.778

Dataset3 2.299 2.475

Dataset4 2.023 3.096

Dataset5 2.585 2.164

Dataset6 2.454 1.892

Dataset7 1.908 2.406

Table 4 SSIM mean values between the different datasets

The bold values are the highest (and therefore best) value

SSIM Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7

Data‑
set0

0.5464 ± 
 0.0663

0.5298 ±  
0.0668

0.6465 ±  
0.0496

0.5199 ±  
0.0723

0.5355 ±  
0.0585

0.6496 ±  
0.0382

0.5348 ±  
0.0620

Table 5 PSNR mean values between the different datasets

The bold values are the highest (and therefore best) value

PSNR Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7

Dataset0 15.3835 ±  
0.6807

15.4722 ± 
 0.6855

19.5634 ±  
0.9484

16.3320 ± 
 0.7462

15.7494 ±  
0.6848

20.1172 ±  
0.9509

17.0195 ± 
 0.7969

Table 6 Test accuracy and AUROC values obtained by the classical algorithms with the 7 classes 
datasets

The bold values refer to the highest (and best) value

Classifier Dataset1 Dataset5 Dataset6 Dataset7

Test 
AUROC

Test 
accuracy

Test 
AUROC

Test 
accuracy

Test 
AUROC

Test 
accuracy

Test 
AUROC

Test 
accuracy

LSVM 0.6443 0.3390 0.7365 0.4976 0.7484 0.5141 0.7506 0.5171

SVM_SGD 0.6098 0.2868 0.6457 0.3911 0.6773 0.4534 0.7220 0.4850

K‑NN1 0.6557 0.3579 0.7077 0.4083 0.6999 0.4050 0.7179 0.4282

K‑NN2 0.6136 0.2999 0.6715 0.3462 0.6590 0.3446 0.6763 0.3558

DT1 0.6780 0.4135 0.7047 0.4634 0.6972 0.4570 0.7065 0.4744

DT2 0.6743 0.4112 0.6998 0.4559 0.6966 0.4571 0.7020 0.4648

RF1 0.6744 0.4067 0.7033 0.4571 0.7050 0.4665 0.7062 0.4721

RF2 0.7524 0.5214 0.8009 0.6147 0.7965 0.6034 0.8041 0.6110
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very few records, in order to improve the results obtained at the time of detection. In 
fact, elements within these three categories were detected but were not classified in ini-
tially available classes. This dataset was only considered in its Dataset7 processing trials, 
where it delivered the best result. As can be seen in Table 8, RF2 obtained an accuracy 
value of more than 0.75 and an AUROC value of almost 0.87.

The confusion matrix (Fig.  9) corresponds to the results obtained by RF2, as the 
best performing algorithm. It classified quite correctly several classes, like Asteroidea, 
Bathyagonus nigripinnis, Human-made objects and Floating particles, but it frequently 

Table 7 Training accuracy, training loss, test AUROC and test accuracy and loss values obtained by 
the deep learning approaches with the 7 classes datasets

The bold values refer to the best value

Classifier Train accuracy Train loss Test AUROC Test accuracy Test loss

Dataset1

 CNN‑1 0.6097 1.2148 0.5839 0.2508 2.4334

 CNN‑2 0.6568 1.0570 0.5983 0.2779 2.3739

 CNN‑3 0.9704 0.1289 0.7960 0.6106 3.4402

 CNN‑4 0.9875 0.0490 0.7918 0.6043 4.3183

 DNN‑1 0.6330 0.7024 0.8264 0.6046 2.3056

 DNN‑2 0.6311 0.7548 0.8181 0.6042 3.6272

 DNN‑3 0.5799 0.9233 0.8097 0.6373 1.1579
 DNN‑4 0.5693 0.9631 0.8090 0.6358 1.1581

Dataset5

 CNN‑1 0.6345 1.1534 0.6602 0.4595 1.4518

 CNN‑2 0.6603 1.0562 0.6509 0.4374 1.4733

 CNN‑3 0.9807 0.1263 0.7910 0.6075 3.8420

 CNN‑4 0.9883 0.0723 0.7923 0.6083 4.2763

 DNN‑1 0.6395 0.6841 0.8208 0.6563 2.4390

 DNN‑2 0.6297 0.7835 0.8169 0.6573 4.1019

 DNN‑3 0.5952 0.8647 0.8227 0.6531 1.1528
 DNN‑4 0.5978 0.8466 0.8215 0.6525 1.2127

Dataset6

 CNN‑1 0.6236 1.1459 0.6679 0.4296 1.5100

 CNN‑2 0.6709 1.0069 0.6721 0.4348 1.5241

 CNN‑3 0.9632 0.1421 0.7846 0.5925 3.5784

 CNN‑4 0.9809 0.0775 0.7837 0.5851 4.3230

 DNN‑1 0.6377 0.6915 0.7987 0.6193 2.7051

 DNN‑2 0.6300 0.7649 0.8026 0.6218 4.2045

 DNN‑3 0.5653 0.9716 0.7990 0.6106 1.2135
 DNN‑4 0.5715 0.9392 0.8076 0.6264 1.2195

Dataset7

 CNN‑1 0.6375 1.1002 0.6668 0.4738 1.4635

 CNN‑2 0.7033 0.9094 0.6584 0.4335 1.4909

 CNN‑3 0.9741 0.1291 0.7889 0.5950 3.8693

 CNN‑4 0.9866 0.0735 0.7970 0.6144 3.9761

 DNN‑1 0.6371 0.6880 0.8210 0.6520 2.6627

 DNN‑2 0.6312 0.7615 0.8246 0.6616 3.8673

 DNN‑3 0.5908 0.8806 0.8291 0.6616 1.1330
 DNN‑4 0.6018 0.8376 0.8277 0.6644 1.2163
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misclassified two classes (Eptatretus stoutii and Sebastidae), for which it achieved a 60% 
of success rate.

As for neural networks, training accuracy and loss did not show major differences 
compared to those obtained for 7 classes datasets. However, other metrics such as the 
AUROC value, the test accuracy and test loss values improved (Table  9). The high-
est AUROC value was 0.8864, achieved by DNN-2. The best test accuracy value was 

Table 8 Test accuracy and AUROC values obtained by the classical algorithms with the 10 classes 
for the images from Dataset7

The bold values refer to the highest (and best) value

Classifier Test AUROC Test accuracy

LSVM 0.7549 0.5458

SVM_SGD 0.7089 0.4719

K‑NN1 0.7787 0.5802

K‑NN2 0.7207 0.4727

DT1 0.7587 0.5610

DT2 0.7582 0.5592

RF1 0.7608 0.5637

RF2 0.8691 0.7568

Fig. 9 Confusion matrix for the classification results (accuracy) obtained by RF2
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0.7944, much higher than in any of the previous datasets of 7 classes (see Table 7). 
Finally, the test loss also decreased to 0.8389 in the case of DNN-4.

Figure 10 shows the confusion matrix for the classification results obtained by DNN-4, 
which achieved good results for almost every class. In this case, five classes (Asteroidea, 
Bathyagonus nigripinnis, human-made objects, Poralia rufescens and Floating Particles) 

Table 9 Training accuracy, training loss and test AUROC, accuracy and loss values obtained by the 
deep learning approaches for the 10 classes Dataset7

The bold values refer to the best value

Classifier Train accuracy Train loss Test AUROC Test accuracy Test loss

CNN‑1 0.5860 1.4096 0.6170 0.3124 2.4164

CNN‑2 0.5314 1.6716 0.6370 0.3410 3.5452

CNN‑3 0.9224 0.2387 0.8242 0.6749 1.9160

CNN‑4 0.9552 0.1326 0.8136 0.6359 2.8140

DNN‑1 0.5929 0.8642 0.8859 0.7944 1.2662

DNN‑2 0.5813 0.9618 0.8864 0.7888 1.4685

DNN‑3 0.5594 1.0097 0.8479 0.7299 0.8745

DNN‑4 0.5626 0.9914 0.8760 0.7578 0.8389

Fig. 10 Confusion matrix for the classification results (accuracy) obtained by the DNN‑4
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were correctly classified with a rate above 80%, and the worst ranked class (Sebastidae) 
had 56% correctly labeled.

The performance during the training of the DNN-4 can be seen in Fig. 11. This net-
work was trained during 889 epochs. Figure  11A shows the progress of the accuracy 
value, while Fig. 11B shows the decreasing of the loss value.

Some examples of detection and classification by DNN-4 are shown in Figs. 12 and 13. 
Figure 12 shows cases of correct detection and classification, while Fig. 13 shows cases 
where the algorithm confused the classes, leading to a wrong labelling.

It is possible that the misclassification of floating particles as ctenophore shown in 
Fig.  13 is due to their similarity in colour, as this species body is transparent and has 
some white spots. The objects classified as species may have been confused because of 
their location, as these are common areas where such species are found, and probably 
also because of their shape.

Discussion
In this study, we presented a novel pipeline for the enhancement of dark deep-sea 
images and the automated classification of visible fauna, in footage taken by a crawler 
as a moving benthic platform on a changing background. We elaborated an enhance-
ment procedure that allowed to improve the animals classification capability, hence 
the functionalities previously achieved with static cameras at cable observatories [57]. 
For this purpose, different image enhancement techniques were first investigated and 
then applied to generate different datasets. Then, a residual network was modelled and 
trained with these datasets in order to generate a new set of enhanced images. Although 
the evaluation metrics of the image sets generated by the residual network could 
be improved, the best values of test accuracy, loss and AUROC in classification were 
achieved with one of the datasets generated by the neural network, which is the princi-
pal objective.

Fig. 11 Training accuracy and loss plots of the DNN‑4. The X axis of the plots shows the number of epochs, 
while the Y axis shows the accuracy and the loss value respectively that was reached during the training. 
A Accuracy values obtained in every epoch at training time and B Loss values obtained in every epoch at 
training time
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Fig. 12 Some examples of detections and correct classification. A Shows a correctly labelled ctenophore, 
B shows a correctly labelled jellyfish, C shows a correctly labelled rockfish and D shows a correctly labelled 
hagfish

Fig. 13 Some examples of detections and incorrect classification. A Shows floating particles incorrectly 
labelled as ctenophore, B shows ground object incorrectly labelled as hagfish, C shows floating particles 
incorrectly labelled as jellyfish and D shows a jellyfish incorrectly labelled as objects
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The residual convolutional network shows some problems with some hues when gen-
erating new images. For example, orange colours have been generated with bluish hue, 
transforming them into pinks. This is probably because these colours do not appear very 
often in the whole set of images. The UIQM and UCIQE values were slightly higher for 
the input images of the network. This may be because the images generated by the net-
work are more blurred than the input images, as are the images transformed by applying 
techniques such as white balance, gamma correction and CLAHE. Similar studies, e.g. 
[88, 89], applied similar methods to pre-process the images, such as CLAHE, in order to 
obtain a mask on the Norway lobster (Nephrops norvegicus) detection, and then apply 
CV techniques and a Mask-RCNN for detection and segmentation comparison. Other 
studies in which the dataset was also obtained by an ROV, as in [69], we can observe that 
although the images are not as dark as those in the present paper, they do have that char-
acteristic blue-green colour of the water. The method proposed in [16] provides colour 
enhancement and restoration to marine images, and although they tested it on not very 
dark images to which turbidity has been added, it is intended for AUVs and ROVs. They 
obtained a PSNR value of 21.840 dB, while ours was 20.117 dB. In [78] authors present 
an image enhancement method in which they also apply CLAHE, as well as other tech-
niques, such as gray-level co-occurrence matrix (GLCM) feature extraction. However, 
the images they used were obtained from a dataset whose characteristics are totally dif-
ferent from the one used here, since it is collected by static cameras and at a shallower 
depth, since the images have natural light.

For the classification of marine species, two different types of methods were used in 
this study, i.e., classical algorithms and DL techniques. Data augmentation techniques 
were applied to the species with the most elements, and on the other hand, classes with 
insufficient number of elements were discarded. Similar studies also detected the advan-
tages of DL over ML methods in marine environments (X. [19, 80, 83, 95]. However, 
the datasets used by these studies were obtained in coral reef areas, where there is still 
some sunlight, while the dataset we used was obtained at depths of more than 800 m, 
where visibility is low. For deeper water applications mimicking environmental con-
ditions similar to those where the crawler is deployed, [88, 88, 89, 89] evidenced that 
advanced DL techniques, such as segmentation networks, can be an efficient tool for 
monitoring catches in pelagic fishery. In addition, the crawler generated clouds of sand 
and prevented the observation of species and objects on several occasions, which would 
not happen with a fixed camera.

For the test values, there are notable differences both among datasets and among neu-
ral networks. Regarding the classical algorithms, the RF2 was clearly the model that 
obtained the best results on all the datasets. With regard to the neural networks, it can 
be seen that, in the case of the CNNs, good results were not obtained, since CNN-1 
and CNN-2 networks obtained quite low validation accuracy and AUC values, while 
CNN-3 and CNN-4, due to the loss values, were probably over trained. The deep neu-
ral networks (DNN-1 to DNN-4) achieved better AUROC, accuracy and loss test val-
ues than other algorithms. However, the sequential networks DNN-1 and DNN-2 have 
performed rather poorly for datasets of 7 and 10 classes, reaching loss values as high as 
1.2662 and 1.4685 respectively. On the other hand, the other two deep networks (DNN-3 
and DNN-4), have had a good performance and result, obtaining the best value for the 
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test accuracy (0.6644) and the best value for the test loss (1.1330) for 7 classes datasets, 
while for the 10 classes dataset DNN-4 obtained a test accuracy value of 0.7578 and a 
test loss value of 0.8389.

In [88, 89] authors also used CV techniques for the classification of marine species, 
which they compared with the results obtained by a Mask R-CNN. In their case, they 
obtained higher results with CV techniques, although in a later work they improved 
their classification with the segmentation network in a dataset of four classes [88, 89]. 
In [78] authors performed classification on the enhanced images using SVM, DT and 
k-NN, among others. The SVM achieved an accuracy value of 79.66%, while the k-NN 
obtained a value of 72.96% and the DT of 64.03%. They also used a backpropagation neu-
ral network (BPNN), which achieved an accuracy of 93.73%. The values achieved in the 
present study were quite close to those, despite the fact that the dataset is totally differ-
ent, more complex and darker.

If we compare the results obtained for the 7 classes dataset and the 10 classes dataset, we 
can see that the best results were obtained for the dataset with more classes. This may be 
due to the fact that the classification pipeline in [57] detects the elements that move along 
the different images, and that these elements were not correctly classified because they did 
not correspond to any class. In the 10 classes dataset, these extra classes have been added 
and those elements can be assigned to a class and then be correctly classified.

Compared to the results of [57], the results here obtained achieved better metrics. 
As for the ML methods, RF2 was the algorithm that obtained the best test values for 
accuracy and AUROC in both investigations. In this paper the test values of 0.7568 for 
accuracy and 0.8691 for AUROC were reached, while in [57] the accuracy value for this 
algorithm was 0.6527 and that for AUROC was 0.8210. Regarding DL techniques, in [57] 
the network that obtained the highest values was the DNN-4, with test accuracy value of 
0.7140 and an AUROC value of 0.8503, whereas here higher values have been achieved 
with several networks. DNN-4 obtained a test accuracy value of 0.7578 and an AUROC 
value of 0.8389. DNN-3 also obtained, anyway, higher values than the previous paper. 
DNN-1 and DNN-2 also outperformed the previous results but obtained high error val-
ues. We can state definitely that the results obtained in this paper outperform those of 
[57].

The next technological application scenario

Marine robotics is creating platforms that can be transformed into intelligent tools for 
autonomous ecosystem monitoring needs [4], as is nowadays required for monitoring 
an increasing number of marine activities, e.g., oil extraction and mining [46, 87, 91]. 
Implementing routines for automated individual tracking and classification and later 
integrate all those component routines into an operational hardware and software prod-
uct, is a key aspect to improve the ecological monitoring functionality of all mobile plat-
forms, including the crawler [8, 35, 63, 98, 104]. The proposed approaches and results 
represent a first step toward the establishment of an autonomous software focused on 
image processing to be installed on-board of the crawler. This represents a critical bot-
tleneck for full autonomous monitoring of deep-sea ecosystem functions and services, 
by this class of IOVs.
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Extracting the essential information on species presence, counts (as an indicator for 
abundance) and derived spatiotemporal changes, picturing community dynamism, 
is a time-consuming manual process. The tasks proposed in this research with the 
state-of-the-art of CNN algorithms indicate the possibility to allow embedded pre-
processing of acquired images for object tracking via image quality enhancing/ren-
dering with CNN approaches. At the same time, a refinement of species classification 
procedure is available with the post-processing of imaging products on a server with 
the help of newly added morphological descriptors [1, 2]. Moreover, the integration of 
all the detection and classification connected with the video capture processes would 
allow to transmit and store only the frames where the algorithms detect some kind of 
labelled species.

Conclusions and future work
The designed neural network, in combination with the detection and classification pipe-
line, generated enhanced underwater images leading to a more accurate classification 
process. The improvement and enhancement of underwater images also play an impor-
tant role in feature detection, since a clear improvement of the images could reduce the 
subsequent work of feature detection and obtains better classification rates. We demon-
strated that a neural network is a good option for generating enhanced images automati-
cally, without the need to apply multiple techniques to an image. Due to their particular 
characteristics, enhancement of underwater images prior to detection and classification 
is indispensable for the improvement of classification results, regardless of the use of tra-
ditional classifiers or DL approaches.

As future work in this line of research, the current developed CNN for image enhance-
ment could be modified by adding or removing layers, modifying the number of units 
in each layer, or applying different parameter settings, i.e., modifying the number of 
epochs, the batch size or using different activation functions. Another step which would 
be of interest for practical applications would be the optimization of image quality vs. 
computational cost when applying these procedures to the original-sized (1600 × 1200 
pixel) images, in order to minimize the processing time without compromising the 
extracted amount of valuable information. As for classification, to improve the results, 
other strategies like transfer learning, or even object detection networks and segmenta-
tion networks could be used. However, the amount of floating particles in some images, 
and the small size of some species, could hinder the performance and results of this type 
of networks.
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