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Abstract 

Clustering a big dataset without knowing the number of clusters presents a big chal-
lenge to many existing clustering algorithms. In this paper, we propose a Random 
Sample Partition-based Centers Ensemble (RSPCE) algorithm to identify the number of 
clusters in a big dataset. In this algorithm, a set of disjoint random samples is selected 
from the big dataset, and the I-niceDP algorithm is used to identify the number of 
clusters and initial centers in each sample. Subsequently, a cluster ball model is pro-
posed to merge two clusters in the random samples that are likely sampled from the 
same cluster in the big dataset. Finally, based on the ball model, the RSPCE ensemble 
method is used to ensemble the results of all samples into the final result as a set of 
initial cluster centers in the big dataset. Intensive experiments were conducted on 
both synthetic and real datasets to validate the feasibility and effectiveness of the pro-
posed RSPCE algorithm. The experimental results show that the ensemble result from 
multiple random samples is a reliable approximation of the actual number of clusters, 
and the RSPCE algorithm is scalable to big data.

Keywords: Ensemble learning, Number of clusters, Random sample partition, Cluster 
ball model, Approximate computing

Introduction
In this paper, we propose an ensemble method for estimating the number of clusters in 
a big dataset, the most important parameter in many clustering algorithms like k-means. 
Because this parameter, often unknown in unlabeled data, is often guessed by the user, 
incorrect guesses result in inaccurate clustering results. Therefore, finding this number 
can improve the clustering result. However, automatic identification of the number of 
clusters in a big dataset is a challenge to the classical methods, e.g., Elbow [1], Silhouette 
[2], Gap statistic [3], and I-nice [4], due to the data size and the complexity of the inher-
ent clusters in the data. A strategy we take here is to use multiple samples of the big 
dataset to estimate several possible values of the number of clusters and then ensemble 
the multiple results to improve the final estimate.

Since it is hard or impractical to investigate a big dataset entirely, using a random sam-
ple to compute an approximate result for the whole big dataset often becomes imperative 
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[5, 6]. Random sampling is also a popular technique widely used by data scientists to 
quickly gain insights from a big dataset, despite theoretical and empirical evidence of the 
benefits of other sampling techniques [7]. However, sampling a big dataset is an error-
prone and inefficient process when the dataset cannot be held in memory. Furthermore, 
to obtain accurate approximations, it is essential to efficiently select random samples 
from a big dataset, and in the meantime, to guarantee the quality of selected samples. 
As such, we adopt the random sample partition (RSP) [8] data model to represent a big 
dataset, which allows the block-level sampling methods to be used to efficiently select 
multiple random samples from the big dataset. The critical technical challenges of parti-
tioning and sampling big datasets are highlighted in [9].

Ensemble approach is widely used to tackle the problems of clustering complex data. 
For clustering big complex datasets, developing scalable and appropriate ensemble 
methods is the main challenge. The classical clustering ensemble methods combine 
the outcomes from different models or algorithms on the same dataset to produce an 
ensemble result, but they are only appropriate for small or moderate-sized datasets. 
For ensemble clustering of a big dataset, it is required to ensemble the results obtained 
from different disjointed random samples of the big dataset. In this case, each object can 
only appear in one clustering result, and the object identifications in different cluster-
ing results are lost. The classical clustering ensemble methods are no longer applicable. 
Therefore, it is necessary to investigate an appropriate ensemble model with new inte-
gration functions to ensemble the clustering results from the disjoint random samples.

In response to this, in this paper, we investigate a new clustering ensemble method that 
is data-adaptive and approximate in estimating the number of clusters. For large-scale data 
clustering, we are aimed to developing a feasible distributed clustering algorithm that (i) 
incorporates with a scalable serial algorithm effectively, (ii) runs efficiently on the distributed 
platform, and (iii) does not require processing the entire dataset. To achieve this goal, we 
propose a new ensemble algorithm for estimating the number of clusters in a big dataset 
using multiple random samples. We name our algorithm RSPCE, representing the abbrevia-
tion of RSP-based Centers Ensemble. The RSPCE algorithm includes the following steps: (1) 
division of a big dataset into subsets of random samples, called RSP data blocks, which form 
the RSP data model; (2) random selection of a subset of RSP data blocks and identification of 
the number of clusters and the initial cluster centers in each RSP data block by the I-niceDP 
[10] algorithm; and (3) generation of the final ensemble result as a set of initial centers of K 
clusters by the RSPCE ensemble method that uses the cluster ball model to merge clusters in 
random samples which are likely sampled from the same cluster in the big dataset. Unlike the 
classical ensemble clustering methods, the RSPCE algorithm does not depend on common 
object ids to ensemble the component clustering results.

We conducted experiments on both synthetic and real-world datasets. The experi-
ment results have shown that the new method is computationally effective and efficient 
in finding the number of clusters in a big dataset and their initial cluster centers. The 
experiment results also show that the RSPCE algorithm produces good approximations 
of the actual numbers of clusters in both synthetic and real-world datasets.

The rest of the paper is organized as follows: In Sect.  Related work, we briefly dis-
cuss existing work on large-scale data clustering processes. In Sect. Ensemble method 
for estimating the number of clusters, we introduce preliminaries in the context of this 
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work. In Sect. The proposed RSPCE algorithm, we present the proposed RSPCE scheme. 
In Sect.  Experiments, we evaluate the performance of the proposed scheme through 
experimental results. Finally, Sect. Conclusions concludes the paper.

Related work
The number of clusters is an important parameter in many well-established clustering 
algorithms (e.g., k-means, k-medoids). This number is unknown in unlabeled datasets, 
and it is often guessed by the user. The Elbow [1], Silhouette coefficient [2], and Gap sta-
tistic [3] are well-known methods for finding the “right” number of clusters in a dataset. 
These methods identify the number of clusters in a dataset by measuring the quality of 
several clustering results with different numbers of clusters. However, these methods do 
not work well on big datasets with a large number of clusters, and they are computation-
ally expensive to use because multiple clustering results must be generated.

I-nice [4] is eminent among the density-based clustering algorithms for estimating 
the number of clusters that can produce high-quality initial seeds on small datasets. In 
the I-nice algorithm, the observation points are assigned to the data space for observ-
ing the dense regions of clusters in data through the distance distributions between the 
observation points and objects. Then, to find the number of peaks in a distance distribu-
tion, multiple gamma mixture models (GMMs) are built with different components, and 
the GMM is solved via the EM algorithm. The minimum Akaike information criterion 
(AICc) is used to select the best-fitted model and the observed largest number of com-
ponents as the number of clusters.

Automatic clustering algorithms are attracting more attention from the academic 
community, e.g., density-based clustering and data depth clustering [11, 12]. Density-
based algorithms, such as DBSCAN, can cluster datasets with convex shapes and noisy 
objects, but it is difficult to determine the density threshold [13]. The depth difference 
method [14] estimates the depth within clusters, the depth between clusters, and the 
depth difference to finalize the optimal value of K. However, for datasets with complex 
decision graphs, it is difficult to correctly identify clustering centers.

In practice, according to data preprocessing strategies, big data clustering processes 
can be classified as sampling-based, incremental, condensation-based, and divide-and-
conquer strategy-based. Sampling-based techniques typically select a subset of a given 
dataset, employ only the sampled subsets to find the number of clusters, and then allow 
the remaining data to obtain the final outcome [15, 16]. The success of sample-based 
methods depends on the premise that the chosen representative samples have significant 
information about the dataset. Incremental approaches, on the other hand, reduce the 
computation time by scanning the data points only once [17, 18]. For fast clustering, 
modified global k-means [19] and multiple medoids-based fuzzy clustering [17] meth-
ods have been developed based on the idea of incremental clustering. Condensation-
based methods speed up the performance by encapsulating the data into a special data 
structure, such as trees and graphs [20, 21]. Divide-and-conquer strategies split the big 
dataset into several subsets or sub-spaces that can fit into the memory. Later, the clus-
tering algorithms are applied to these subsets or sub-spaces independently (please see 
[22–24]). The final clustering results are obtained by merging the partial clusters of sub-
sets or sub-spaces.
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For big data clustering, a bootstrap method [25] was proposed to estimate the num-
ber of clusters, which minimizes the corresponding estimated clustering instability. The 
kluster [26] procedure takes randomly selected clusters as the initial seeds to determine 
the final number of clusters in a dataset in an iterative manner, which confirms the 
most frequent mean of the resulting clusters from the iterations as the optimal number 
of clusters. On the other hand, the X-means method [27] automatically determines the 
number of clusters based on Bayesian information criterion (BIC) scores. At each itera-
tion, this method executes local decisions about the selection of the current center split 
to better fit the data. In the same vein, coresets [28] have been constructed to scale to 
massive datasets with the distributed clustering idea.

Although many clustering ensemble techniques have been developed (such as [22, 
23, 29–31]), they either produce incorrect results or are inefficient for use in big data 
applications. The traditional methods [1–3] for finding the K value run the clustering 
algorithm several times with a different K value for each run, which is not suitable for 
big data analysis. We observe that there are two limitations to the traditional clustering 
approaches. First, in a typical scenario, the algorithms require the number of clusters in 
advance for the clustering process. Second, traditional algorithms operate at the object 
level and are incapable of dealing with clustering ensembles with big data and large 
ensemble sizes. Furthermore, the classical ensemble technique combines the results of 
different models or algorithms on the same dataset to produce a robust result, where a 
scalable method is required to identify the number of clusters in a big dataset. We focus 
on the data-subset clustering ensemble technique, which is an approximate computing 
method to estimate the correct clustering outcome from the subsets of a big dataset.

Ensemble method for estimating the number of clusters
In this section, we propose a new method that uses multiple random samples of a big 
dataset to identify the number of clusters. We first give the definition of a random sam-
ple from a big dataset and define the random sample partition data model to represent a 
big dataset as a partition of random samples. Then, we present the I-niceDP method for 
finding the number of clusters in a random sample. Finally, we propose a ball model for 
integrating the results of multiple random samples into the ensemble result as the num-
ber of clusters in the big dataset.

Multiple random samples of a big dataset

The existing methods are computationally infeasible for finding the number of clusters 
in a big dataset. Instead, using a random sample to estimate is an acceptable choice. 
However, a large sample could possibly result in an accurate estimate but will be com-
putationally expensive. An alternative is to use multiple random samples of smaller size 
for this purpose. In this case, we need to solve the problems of drawing multiple random 
samples from a big dataset effectively and efficiently, and ensemble the results of those 
multiple random samples into the final result.
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Definition 1 (Random sample of a big dataset) Let D be a subset of big dataset D , i.e., 
D ⊂ D . D is a random sample of D if

where F() is the cumulative distribution function.

The simple random sampling process can be used on D to generate D, which satisfies this 
definition. However, sampling a distributed big data file to generate multiple independ-
ent random samples is a time-consuming process. In this work, we use the random sam-
ple partition data model to represent a big dataset as a set of random sample data blocks, 
so the block-level sampling method is used to efficiently select multiple random samples.

The random sample partition (RSP) [8] is defined as follows:

Definition 2 (Random sample partition of a big dataset) Let D be a big dataset and 
{D1,D2, ...,Dm} be a set of m random samples of D . {D1,D2, ...,Dm} is a random sample 
partition of D if

• Di  = ∅

• Di ∩ Dj = ∅

• 
⋃m

i=1 Di = D

• F(Di) ≈ F(D), 1 ≤ i ≤ m

The first three conditions define a partition of D , whereas the last condition categorizes a 
random sample partition.

In the random sample partition, all RSP data blocks {D1,D2, ...,Dm} satisfy the defini-
tion of a random sample of D . To generate multiple random samples, we simply ran-
domly select a few RSP data blocks from the RSP data model without going through 
all the records of D several times. As a result, the sampling process of multiple random 
samples is improved significantly.

Finding the number of clusters in a random sample

Given a set of random samples as a set of RSP data blocks {D1,D2, ...,Db} where (b < m) , 
one important step is to find the number of clusters in each sample Di . In this work, we 
are not only interested in the number of clusters K, but also the initial centers of the K 
clusters in each subset Di . For this reason, we first use the density peak-based algorithm 
I-niceDP [10] to compute K and the initial centers of clusters in a random sample. Then, 
we use the k-means algorithm to cluster the random sample and refine the cluster cent-
ers. The I-niceDP operator is defined as follows:

(1)F(D) ≈ F(D)

(2)(ki,Ci) = I-niceDP (Di), 1 ≤ i ≤ b
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where I-niceDP is an operator on random sample Di , and (ki,Ci) are the two return val-
ues of the function. The first term is the number of clusters in Di , and the second term 
Ci = {ci, c2, ..., cki } is the set of centers of the k clusters.

After (ki,Ci) are obtained from Di , they are used as the input parameters to the 
k-means algorithm to compute k refined cluster centers in Di as follows:

where C∗
i = {c∗i , c

∗
2, ..., c

∗
ki
} is the set of the refined centers of ki clusters in Di.

Applying the two operators I-niceDP and k-means to all b random samples 
{D1,D2, ...,Db} , we obtain b sets of refined centers and make union of these sets to form 
a new set as

where C∗
i  is the result of k-means (ki,Ci,Di).

The set C∗ contains totally K =
∑b

i=1 ki cluster centers from b random samples. Since 
the random samples are taken from the same big dataset, they should have similar inher-
ent clusters. Therefore, the numbers of clusters in them should be very close to each 
other, and the centers of clusters in different random samples should also be located 
closely. Considering these properties, in the next subsection, we propose a method, 
called the ball model, to be used to aggregate the nearby centers in C∗ into an ensemble 
set of centers as the initial cluster centers in the big dataset.

Ball model for representing clusters

Given a random sample Di , the k-means operator of (3) generates a set of ki clusters. 
The centers of clusters in the same random sample should be separate, but the centers of 
clusters in different random samples can be very close to each other. In this case, the two 
clusters in the two random samples may represent the same cluster in the big dataset. 
Therefore, the two centers should be merged into one, indicating the same cluster of the 
big dataset. In this subsection, we will determine whether two clusters in two different 
random samples represent the same cluster in the big dataset.

Since the k-means clustering process produces spherical clusters, we propose a ball 
model to represent a spherical cluster as a ball. The main features of this ball model are 
defined below.

Definition 3 (Radius of a cluster ball) Let Ci be a cluster of n points, and ci the center 
of the cluster. The radius of the cluster ball, ri , is defined as the average of the distances 
between all points in Ci and its center ci below

where xi is an object in Ci.

(3)C∗
i = k-means (ki,Ci,Di), 1 ≤ i ≤ b

(4)C∗ = C∗
1 ∪ C∗

2 ∪ ... ∪ C∗
b ,

(5)ri =
1

n

n
∑

i=1

�d(ci − xi)�,
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We use the average distance to define the radius of cluster ball to reduce the impact of 
outliers, i.e., few points faraway from the cluster center.

Definition 4 (Cluster ball) Let Ci be a cluster. Its cluster ball, denoted as CBi , is defined 
as a 3-tuple

where ci and ri are the center and radius of cluster Ci , respectively. Note that, in the liter-
ature, “centers” and “centroids” are used, alternatively and represent the same meaning.

We can use cluster balls to determine whether two clusters are well separated or 
overlapping.

Definition 5 (Well-separate and overlapping clusters) Let CBi and CBj be two balls of 
clusters Ci and Cj , respectively. We say that Ci and Cj are well-separated if CBi and CBj are 
disjoint. If CBi and CBj intersect, we say that Ci and Cj are overlapping.

Figure 1 illustrates an example of merging the clusters from two random samples, RSP 
block i in Fig. 1a and RSP block j in Fig. 1b. Three clusters are found in each random 

(6)CBi = (Ci, ci, ri),

Fig. 1 Illustration of separate and overlapping cluster balls. a and b show the cluster balls of two RSP blocks, 
three cluster balls each; c the disjoint and intersection cluster balls from the two RSP blocks
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sample and represented as three cluster balls. Figure 1c shows clusters C1 and C6 inter-
sect, and clusters C3 and C5 intersect, whereas clusters C2 and C4 are separated from oth-
ers. Two overlapping clusters are likely to be the same cluster of the big dataset. The 
definition below defines a property to merge two overlapping clusters.

Definition 6 (12-ball intersection property) Let CBi and CBj be two cluster balls. We 
say that CBi and CBj have 12-ball intersection property if �ci − cj� ≤ 1

2 (ri + rj) , where 
(ri, rj > 0) . If two cluster balls have a 12-ball property, they are strongly proximal.

This property is used to determine whether two clusters found from different random 
samples indicate the same cluster of the big dataset. If so, they can be merged into one 
cluster. If two clusters indicate the same cluster in the big dataset, their cluster balls must 
intersect and satisfy the 12-ball intersection property. In this case, the intersected cluster 
balls in random samples are merged to obtain the optimal number of clusters in the big 
dataset. For example, in Fig. 1 (c), cluster balls CB1 and CB6 satisfy this property, so they 
are likely sampled from the same cluster of the big dataset and need to merge into one 
cluster.

Ensemble method for merging clusters with ball model

Using Definition 6, we can integrate the set of cluster centers in C∗ into the ensemble set 
of centers as the initial cluster centers of the big dataset. This process is carried out as 
follows: 

1 Randomly select a center c∗p from C∗ . Make the center c∗p as a candidate of the final 
centers in the set of CF , i.e., final set of centers. Compute the cluster ball CB∗

p and 
remove c∗p from C∗.

2 Randomly select a center c∗q from C∗ and compute the cluster ball CB∗
q.

3 Compute the 12-ball intersection property of the two cluster balls CB∗
p and CB∗

q.
4 If the two balls are disjoint, ignore the second ball CB∗

q and go to Step 2; otherwise, if 
the two balls do not satisfy the 12-ball intersection property of Definition 6, ignore the 
second ball CB∗

q and go to Step 2; otherwise, add the cluster ball in the set CF . If all 
centers in C∗ have been tested, go to next step; otherwise, go to Step 2.

5 Merge the centers in CF by computing the mean of the centers as the center of a clus-
ter in the big datset and go to Step 1 until the centers of all clusters in the big dataset 
are found.

Since we have included the radius of the cluster ball in the ball model, it is straightfor-
ward to test whether two cluster balls are disjoint or not. However, when two cluster 
balls intersect, Definition 6 plays an important role in determining the merge of two 
clusters. The intersection of two cluster balls satisfying the 12-ball intersection property 
is a much stronger indication that the two clusters could be the same cluster in the big 
dataset.
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The proposed RSPCE algorithm
In this section, we present the algorithms used in the basic steps of the RSPCE algorithm 
for estimating the number of clusters in a big dataset and finding the initial cluster cent-
ers. The basic steps are summarized as follows: 

1 Given a big dataset, generate its RSP data model for efficiently selecting multiple ran-
dom samples.

2 For each random sample, find the number of clusters and the centers of the clusters.
3 For given two clusters, use the ball model to determine whether two clusters could 

be the same cluster in the big dataset.
4 Use the ball model to integrate the clusters from multiple random samples into an 

ensemble set of clusters and initial cluster centers.

In the following, we present the algorithms in each step and give a complexity analysis of 
the RSPCE algorithm.

Algorithm for generating multiple samples

In this work, we use the random sample partition (RSP) data model to convert a big 
dataset into a set of disjoint random sample data blocks, so that each data block is used 
as a random sample of the big dataset. Therefore, to identify the number of clusters in a 
big dataset, we use Algorithm 1 to convert it to a set of RSP data block files for random 
sample selection.

The inputs of the algorithm are a big dataset D and the size of each RSP data block n. 
The output is a set of m RSP data blocks, where m = N/n , which are saved as a set of 
RSP data block files {D1,D2, ...,Dm}.

Algorithm 1 is executed as follows: Lines 2-3 compute the number of objects N and 
the number of RSP blocks m. Line 4 generates a sequence of N unique random numbers 
following a uniform distribution. Line 5 appends the sequence of random numbers as 
one additional id in D . Line 6 randomizes the records of D by sorting the records on the 
random number id. Lines 8-11 cut the sequence of the randomized records of D sequen-
tially into m sub-sequences, each being written as an RSP data block file.
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Algorithm for finding the number of clusters in a random sample

We model clusters in a big dataset as normal distributions where each cluster has a high 
density area, which is reflected as the density peak of the normal distribution. There-
fore, the number of clusters in a dataset is corresponding to the number of density peaks 
in the dataset. The I-niceDP algorithm [10] (i.e., an improved version of I-nice) was 
designed for identifying the number of clusters in a dataset by finding the number of 
density peaks in the distance distribution of objects in the dataset with respect to an 
observation point. Therefore, I-niceDP is chosen as the operator to identify the number 
of clusters in each random sample. The pseudo-code of the I-niceDP algorithm is pre-
sented in Algorithm 2. The input to the algorithm is an RSP data representation of a big 
dataset and the number of RSP data blocks b. The output is a set of b values indicating 
the numbers of clusters found in the b random samples and b sets of cluster centers.

The I-niceDP algorithm is explained below. First, Line 2 randomly selects b RSP data 
blocks. Starting from Line 3, each RSP data block is computed separately as follows: 

1 Line 4 generates an observation point as a reference for computing the distance dis-
tribution of objects.

2 Line 5 computes a set of distances between the observation point and the data points 
of an RSP sample to form the distance vector.

3 Line 6 computes the maximal number of GMM components Mmax using the kernel 
density estimation (KDE) method, where �1 and �2 are two thresholds that control 
the potential number of components.

4 Lines 7-10 compute a set of GMMs from the distance vector with the number of 
components smaller than or equal to the maximal number Mmax , and each GMM 
model is built using the EM algorithm.
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5 Lines 12-14 select the most fitted model based on the AICc criterion.
6 Lines 15–17 determine the high-density data points for each GMM component 

using the density peak mechanism, and these high-density data points are used as the 
initial cluster centers.

7 Finally, lines 18-19 assign the initial cluster centers to the k-means algorithm to clus-
ter the input data and refine the cluster centers as the output result of the random 
sample.

After all RSP data blocks are computed, the set of refined cluster centers as defined in 
Eq. (4) is generated.

Algorithm for identifying two clusters being one using ball model

The I-niceDP algorithm generates a set of clusters from b random samples. Some of 
these clusters are likely sampled from the same cluster of the big dataset, so they have 
to be merged into one cluster as an approximation of the true cluster in the big dataset. 
Algorithm 3 is designed to use the ball model to identify the two clusters which are likely 
to be one cluster in the big dataset.

The inputs to the algorithm are two clusters Ci and Cj and their cluster centers ci and 
cj . Line 2 computes the radii of the two clusters ri and rj . Lines 3-4 build two cluster 
balls CBi and CBj . Line 6 checks if the two balls are disjoint, set Merge = false . Lines 7-8 
check if the two balls overlap, set Merge = false ; otherwise, set Merge = true in Line 10. 
Output CBj if Merge = true ; otherwise, output nothing.

Algorithm for ensembling the numbers of clusters in multiple samples

Finally, the pseudo code of the RSPCE algorithm is illustrated in Algorithm 4. The inputs 
are a big dataset D and the sample size n. First, in Line 2,  Algorithm 1, shown as the 
operator RSP(), is called to convert D into a set of m RSP data blocks. Line 3 randomly 
selects b RSP blocks. Lines 4–8 call Algorithm  2 as operator I-niceDP () and operator 
k-means () to compute the set of initial cluster centers C∗ . Lines 11–13 call Algorithm 3 
to find the clusters which are likely to be the same cluster. Line 14 merges the clusters as 
one and adds it to the set of the final cluster centers. Line 16 counts the number of the 
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final cluster centers, CF. Finally, the algorithm outputs the number of clusters and the set 
of cluster centers.

Figure  2 illustrates the results of the three steps of the RSPCE algorithm. Figure  2a 
shows all refined centers found from 6 random samples of dataset DS1. We can see the 
sets of clusters from the 6 random samples are very similar. Figure 2b plots all cluster 
balls, and Fig. 2c shows the final set of cluster centers which are close to the true centers.

Complexity analysis

Given a big dataset with N objects, we have the following major parts that need to be 
considered: generating an RSP data representation, randomly selecting a subset of ran-
dom samples; finding the number of clusters of each random sample, using the k-means 
algorithm to refine the initial cluster centers of each random sample, and finally, using 
the ball model to ensemble the results of the multiple random samples.

Suppose the number of objects in each random sample is n, and b samples are ran-
domly selected from m, where b < m . The random sample generation operation has a 
complexity of O(n log(N/n)) . I-niceDP algorithm generates O one-dimensional data and 
density peaks, and hence the time complexity of this algorithm is O(bnOK ) , where O is 
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Fig. 2 Illustration of the results of three steps of the RSPCE algorithm from six random samples of dataset 
DS1. a Individual centers were obtained from the 6 randomly chosen samples by I-niceDP, b Cluster balls of 
the centers, c Ensemble centers of the 6 samples by the RSPCE algorithm
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the number of observation points. The complexity of k-means algorithm is O(bnTdK ) , 
where T is the maximum number of iterations. The time complexity of cluster ball 
learning process is O(bK ) . Therefore, the overall complexity of the RSPCE algorithm is 
O(n log(N/n)+ bnOK + bnTdK + bK ) = O(n log(N/n)+ (nO+ nTd + 1)bK ) , which 
is linear to the number of data blocks b.

The RSPCE algorithm is implemented in a distributed platform with Q nodes, 
the computational complexity of the RSPCE algorithm can be reduced to 
(O(n log(N/n)+ (nO + nTd + 1)bK ))/Q . Therefore, the proposed RSPCE algorithm is 
efficient and scalable.

Experiments
A series of experiments were conducted on both synthetic and real-world datasets to 
demonstrate the performance of the proposed RSPCE algorithm and show its practical 
efficiency. In this section, the datasets and the experiment settings are presented. Evalu-
ation measures are defined. The experiment results are analyzed, and the homogeneity 
of the results is discussed. Finally, the computational efficiency and scalability of the 
algorithm are demonstrated.

Datasets

The characteristics of the synthetic and real-world datasets used in the experiments are 
summarized in Table 1 and described below:

• Synthetic datasets. Five synthetic datasets, named DS1 to DS5, were generated in 
dimensions of 2 and 10 with different numbers of clusters in multivariate normal 
distributions. The numbers of clusters, the sizes of each cluster, the dimensions and 
total objects in these datasets are given in Table 1.

• Real-world datasets. Four real-world datasets used in the experiments are the follow-
ing: Covertype1 dataset with 581,012 objects describes 7 forest cover types in 54 dif-
ferent geographic measurements. There are 84% of objects in 2 types (type-1 36.5% 
and type-2 48.7%). The rest 16% of the objects are in other 5 types. KDD’99ID2 data-
set with about 5 million objects describes the connections of sequences of network 
intrusion detection. It has 23 classes, and 98.3% of the dataset belong to 3 classes 
(normal 19.6%, neptune 21.6%, and smurf 56.8%). PokerHand3 dataset has more than 
1 million objects, each being an example of a hand consisting of five playing cards 
drawn from a standard deck of 52. The dataset has 10 predictive features and 10 
classes with two dominant classes accounting for over 90% of the samples (nothing 
in hand 49.9% and one pair 42.4%). SUSY4 dataset was generated with Monte Carlo 
simulations. It has 5 million objects, 18 features and 2 classes.

1 https:// archi ve. ics. uci. edu/ ml/ datas ets/ cover type.
2 https:// www. kdd. org/ kdd- cup/ view/ kdd- cup- 1999/ Data.
3 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Poker+ Hand.
4 https:// archi ve. ics. uci. edu/ ml/ datas ets/ SUSY.

https://archive.ics.uci.edu/ml/datasets/covertype
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://archive.ics.uci.edu/ml/datasets/SUSY
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Table 1 Characteristics of the datasets (d: dimensions, N: number of objects, K: number of clusters 
or classes)

In the four real-world datasets, the K values in the middle column are the numbers of objects in K classes

The small classes are underlined

Dataset d Cluster/class sizes N K

DS1 2 3 clusters; each has 50,000 1,000,000 10

4 clusters; each has 100,000

3 clusters; each has 150,000

DS2 2 7 clusters; each has 25,000 1,000,000 20

1 cluster; has 30,000

1 cluster; has 45,000

6 clusters; each has 50,000

3 clusters; each has 75,000

1 cluster; has 100,000

1 cluster; has 125,000

DS3 10 3 clusters; each has 15,000 1,000,000 30

3 clusters; each has 20,000

11 clusters; each has 25,000

1 cluster; has 30,000

2 clusters; each has 35,000

4 clusters; each has 40,000

3 clusters; each has 50,000

1 cluster; has 60,000

2 clusters; each has 75,000

DS4 10 5 clusters; each has 5000 1,000,000 40

2 clusters; each has 10,000

4 clusters; each has 15,000

4 clusters; each has 20,000

16 clusters; each has 25,000

1 cluster; has 35,000

1 cluster; has 40,000

5 clusters; each has 50,000

1 cluster; has 60,000

1 cluster; has 75,000

DS5 10 1 cluster; has 10,000 1,000,000 50

19 clusters; each has 15,000

14 clusters; each has 20,000

13 clusters; each has 25,000

1 cluster; has 30,000

2 clusters; each has 35,000

Covertype 54 211,840 : 283,301 : 35,754 : 581,012 7

27,747 : 8483 : 17,367 : 20,510

KDD’99ID 41 972,781 : 2,807,886 : 1,072,017 : 4,940,000 23

53 : 979 : 264 : 21 : 2203 : 8 : 12 :

2 : 1020 : 20 : 7 : 4 : 30 : 9 : 10 :

3 : 12,481 : 15,892 : 2316 : 10,413

PokerHand 10 513,702 : 433,097 : 48,828: 3978 : 1,025,010 10

21,634 : 2050 : 1460 : 236 : 17 : 8

SUSY 18 2,712,173 : 2,287,827 5,000,000 2
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Experiment settings

In the experiments, all datasets were converted to RSP data representations, i.e., each 
dataset being transformed into a set of RSP data blocks. The left column of Table 2 shows 
the percentages of the total RSP blocks used to estimate the number of clusters. In the 
experiments, six different sizes of subsets of RSP blocks were used. The right column 
shows the two block sizes used to partition the synthetic datasets and the real-world 
dataset Covertype. The other three real-world datasets were partitioned with the block 
sizes of {1, 2, 5, 10, 15, and 20}% of the whole datasets. Therefore, each dataset is trans-
formed into more than one RSP representation.

Six existing methods were selected for comparison of the performance of the proposed 
RSPCE algorithm. They are nselectboot [25], kluster [26], X-means [27], Elbow [1], Sil-
houette [2], and Gap statistics [3]. The number of clusters K in the last four methods was 
assigned to K = 2 to 100 . For the bootstrap method of kluster, the number of the boot-
strap samples was set to 20.

The experiments were performed on three local nodes equipped with x64-based pro-
cessor, Intel(R) core i7–7700, CPU 3.60Hz, 8 GB of memory, and 1 TB of storage. The 
RSPCE algorithm was implemented in Python−3.7.3. with py2r, fpc, densityClust and 
clvalid R packages. Three observation points were used in the step of I-niceDP of the 
RSPCE algorithm.

Evaluation metrics

The internal and stability measures below were used to evaluate the results of the com-
parison methods and the RSPCE algorithm.

Internal measures

The following internal measures were used to evaluate the compactness, connectivity, 
and separation of the cluster partitions.

Inertia or within-cluster sum-of-squares (SSE) measures the internal coherence 
of objects in a cluster [32]. The lower the inertia value, the better the cluster. Zero is 
optimal.

The silhouette coefficient (SC) [2] evaluates the clustering quality by combining the 
ideas on how well the clusters are separated (i.e., separation) and how compact are the 
clusters (i.e., tightness). The SC of clusterings is computed as follows:

where a is the average distance between a cluster and all other data points in the same 
cluster, and b is the average distance between a cluster and all other data points in the 
nearest cluster. We can calculate the average SC as the mean of the SC for all samples. A 
higher score closer to 1 is related to a model with better-defined clusters.

(7)SC =
b− a

max(a, b)

Table 2 Parameter settings used in the experiments

Ensemble sizes (es) Sample sizes (n)

{5, 10, 20, 30, 40, 50}% A = 5000; B = 10,000
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Davies-Bouldin index (DBI) [33] is an internal evaluation metric, which is used to vali-
date the clustering process using quantities and data points residing in the dataset. The 
DBI for K clusters is defined as

where δ(Ci,Cj) is the inter-cluster distance, i.e., the distance between clusters Ci and Cj , 
�(Ci) is the intra-cluster distance of cluster Ci , i.e., distance within the cluster Ci . The 
lower the DBI value, the better the clustering result.

It is reasonable to define some intuitive metrics using conditional entropy analysis 
under the ground truth class assignments information. V-measure [34] is an entropy-
based measure that explicitly measures how successfully the criteria of homogeneity and 
completeness are satisfied. V-measure is computed as the harmonic mean of distinct 
homogeneity and completeness scores. Homogeneity captures only the information of 
the members in a single class for each cluster, whereas completeness captures the infor-
mation of all members of a given class assigned to the same cluster. V-measure is equiva-
lent to normalized mutual information (NMI) metric.

The adjusted rand index (ARI) [35] and the adjusted mutual information (AMI) [36] 
are also used to evaluate the performance of the RSPCE algorithm. These two measures 
are defined as follows:

Given the ground truth result P = {C1,C2, ...,Ck} with K clusters and the predicted 
result P′ = {C ′

1,C
′
2, ...,C

′
k ′ } with K ′ clusters, the adjusted rand index (ARI) [35] meas-

ures the similarity of the two assignments defined as

where

where i ∈ {1, ...,K }, j ∈ {1, ...,K ′}, n is the total number of data samples, and |.| denotes 
the cardinality of the cluster. ARI value varies between zero and one. The higher value 
indicates that the resulted clustering outcome is more close to the actual one.

AMI [36] is defined as

where

(8)DBI (K ) =
1

K

K
∑

i=1

max
i �=j

�(Ci)+�(Cj)

δ(Ci,Cj)

(9)ARI (P,P′) =

∑K
i=1

∑K ′

j=1

(

|Ci ∩ C ′
j |

2

)

− X3

1
2 (X1 + X2)− X3

(10)X1 =

K
∑

i=1

(

|Ci|

2

)

,X2 =

K ′
∑

j=1

(

|C ′
j |

2

)

,X3 =
2X1X2

n(n− 1)

(11)AMI (P,P′) =
NMImax(P,P

′)− E{ NMImax(P,P
′)}

1− E{ NMImax(P,P′)}

(12)NMI (P,P′) =
2ϕ(P;P′)

φ(P)+ φ(P′)
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AMI values are between 0 and 1. The higher the AMI value, the better the quality of 
clusters.

Stability measures

The average proportion of nonoverlap (APN) and the average distance between means 
(ADM) [32] were used to measure the stability and consistency of the results by com-
paring the ground truth of the entire dataset with the obtained number of clusters in a 
sample.

Let Ci represent the true clusters via an ideal clustering process, and C ′
j  be the clusters 

on the b random samples. Given the total number of clusters K, the APN measure is 
defined as

The APN resides in [0, 1], and the value close to zero corresponds to highly consistent 
clustering results.

The ADM computes the average distance between cluster centers determined based 
on the entire dataset and the random samples. It is defined as

where Ci is the mean of the objects in a cluster which contains object i on the entire 
dataset, and C ′

j  is the predicted one defined on the random samples. This metric is based 
on the Euclidean distance. It also has a value between 0 and 1, and smaller values are 
preferred.

Experiment results and analysis

Results of the number of clusters

The first set of experiments was to use five existing methods to identify the number of 
clusters from random samples of the five synthetic datasets in Table 1. Two sample sizes 
of 5000 points and 10,000 points were used. For each random sample in a synthetic data-
set, the number of clusters in the sample was discovered by the five methods. Since there 
are m random samples in one synthetic dataset for each sample size, m results of the 

(13)ϕ(P;P′) =
∑

i

∑

j

|Ci ∩ C ′
j |

n
log

n
∣

∣

∣
Ci ∩ C ′

j

∣

∣

∣

|Ci||C
′
j |

(14)φ(P) =−
∑

i

|Ci|

n
log

|Ci|

n

(15)φ(P′) =−
∑

j

|C ′
j |

n
log

|C ′
j |

n

(16)APN (P,P′) =
1

KK ′

K
∑

i=1

K ′
∑

j=1

(

1−
n(C ′

j ∩ Ci)

n(Ci)

)

.

(17)ADM (P,P′) =
1

KK ′

K
∑

i=1

K ′
∑

j=1

dist (Ci,C
′
j ).
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(a) DS1 with 10 clusters.
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(b) DS2 with 20 clusters.
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(c) DS3 with 30 clusters.
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(d) DS4 with 40 clusters.
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Fig. 3 Heatmaps of the results of the five methods on m random samples in the five synthetic datasets with 
two RSP representations n: 5000 and 10,000. The columns of each figure are the numbers of clusters, and 
the rows are the five methods. The dark color in a cell indicates that a high percentage of the m results were 
identified as the number of clusters by the column with the corresponding method
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number of clusters were found by each method. The heatmaps of the results of the five 
methods on m random samples in the five synthetic datasets with two RSP representa-
tions each are shown in Fig. 3. The columns of each figure are the numbers of clusters, 
and the rows are the five methods. The dark color in a cell indicates that a high per-
centage of the m results was identified as the number of clusters by the column with 
the corresponding method. For example, in the right figure of Fig. 3a, the dark cell of 
the second column from the right in the row of Gap statistic implies that the majority 
number of clusters identified by Gap statistic from 100 random samples of data DS1 is 
9. From Fig. 3, we can see that Gap statistic, Silhouette and X-means performed better 
than Elbow and I-niceDP in identifying the number of clusters from the random samples 
of a big dataset. Another observation is that a bigger sample size results in a more accu-
rate result.

Using the two-dimensional synthetic datasets of DS1 and DS2, we compared the true 
cluster centers with the cluster centers identified by the five methods from the random 
samples of the two datasets. The results are plotted in Fig. 4. We can see that the cluster 
centers identified by I-niceDP are closer to the true centers than those identified by the 
other four methods. These results indicate that I-niceDP is more capable in identifying 
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Fig. 4 Scatter plots of identified centers in random samples of different sizes, achieved by different 
algorithms from DS1 (a and b) and DS2 (c and d) datasets. The centers estimated by the algorithms are 
indicated by distinct symbols and colors
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better initial cluster centers than other existing methods, so it is chosen in the operator 
to identify the number of clusters from a random sample in the algorithm.

Figure  5 shows the performance of the RSPCE algorithm in identifying the number 
of clusters in the five synthetic datasets with two different sample sizes. The horizontal 
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(a) DS1 with 10 clusters.
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(b) DS2 with 20 clusters.
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(c) DS3 with 30 clusters.
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(d) DS4 with 40 clusters.
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Fig. 5 Performance of the RSPCE algorithm on five synthetic datasets on the maximal, average and minimal 
numbers of clusters over 20 runs against the number of RSP blocks used
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axis in each plot is the number of random samples used by the algorithm. The vertical 
axis shows the number of clusters identified. The horizontal straight line indicates the 
true number of clusters in each dataset. For the same number of random samples, the 
RSPCE algorithm was run 20 times on each RSP representation of a synthetic dataset. 
From Fig. 5, we can see that for the two-dimensional datasets DS1 and DS2 with fewer 
clusters, the RSPCE algorithm can easily identify the true number of clusters with a few 
random samples. For the high-dimensional dataset DS3 with fewer clusters, the RSPCE 
algorithm can also converge to the true number of clusters as the number of random 
samples increased. However, for the two high-dimensional datasets DS4 and DS5, the 
RSPCE algorithm needs more random samples to converge to the true number of clus-
ters. Another observation in the ensemble method is that smaller samples gave better 
results than the bigger samples. The reason may be that more smaller samples generate 
more diverse results, which can improve the final ensemble result. However, more inves-
tigations are required to give a firm conclusion on this observation.

Improvements of clustering results

Having obtained the number of clusters in each synthetic dataset and the initial cluster 
centers by the RSPCE algorithm, we used the k-means algorithm to cluster each random 
sample used in the RSPCE algorithm with the number of clusters and the initial cluster 
centers as input parameters. For each set of random samples, we used 8 internal meas-
ures to validate the clustering results. Table 3 shows all validation results of 5 synthetic 
datasets with 2 sample sizes and 6 different subsets of random samples listed in column 
es. We can see clearly that the clustering result was improved as more random samples 
were used by the RSPCE algorithm. Again, smaller random sample sizes resulted in bet-
ter clustering results. This observation is consistent with the one from Fig. 5.

We also investigated the stability and consistency performance of the RSPCE algo-
rithm in detecting cluster centers. The APN and ADM measures were used to evalu-
ate the clustering consistency by comparing the results obtained in different numbers of 
random samples. The results of APN and ADM scores are shown in Table 4. It appears 
that the APN and ADM scores tend to decrease as the number of random samples 
increases. Again, the RSPCE algorithm performed significantly better on the datasets 
with smaller numbers of clusters. The set of random samples containing 10 ∼ 20% of the 
big dataset gave the better results. These results also show that the RSPCE algorithm can 
generate stable cluster centers which are close to the centers of true clusters in the entire 
dataset.

In the experiments, we observed that small samples ( n < 2000 ) often miss mini-
clusters in the sample, or they do not have enough points to categorize small clusters. 
Increasing the random sample size can solve this problem, but the computing cost also 
increases. A tradeoff on the sample size needs considerations in practice.

Statistical homogeneity test

Homogeneity tests were conducted to verify the cluster centers discovered from ran-
dom samples. The distribution of the distances between these centers should be similar 
to the distribution of the distances of the true centers in the big dataset. We conducted 
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two-samples Kolmogorov-Smirnov (KS)-test and Z-test to compare the distance distri-
butions of cluster centers between the entire dataset G and random samples A.

The null-hypothesis is that G and A have the same distribution, whereas the alterna-
tive hypothesis implies that they have different distributions. We set h = 1 if we reject 
the null-hypothesis (i.e., the distributions are not the same); otherwise, we set h = 0 
in the case of accepting the null hypothesis. We tested at a significant level of 5%. The 
p-value is the probability of having a false rejection in the case of a null hypothesis. 
The corresponding test results are presented in Table  5. We can see that the null-
hypothesis is accepted in all cases. Figure 6 illustrates that the test CDFs (green, blue, 
cyan, magenta, yellow, and black) of random samples match the empirical CDF (red) 
of the whole dataset closely, and the highest difference is small.

Comparisons of RSPCE with other methods

We compared the results of the RSPCE algorithm in identifying the number of clusters 
from multiple random samples with the results of other methods in identify the number 
of clusters from one random sample. Table 6 shows the results of the synthetic datasets, 
and Table 7 shows the results of the real-world datasets. The sample size is 5,000 points. 
Different numbers of random samples, as shown in column es, were used in the RSPCE 
algorithm. For the same number of random samples, the RSPCE algorithm ran 20 times 
on different sets of random samples. Other methods were applied to each random sam-
ple to generate one result. The average value and the standard deviations from the mul-
tiple runs were calculated. We can see that the RSPCE algorithm performed the best in 
general for both synthetic datasets and real-world datasets.

Specifically, Silhouette, Gap statistic and the RSPCE algorithm are more accurate in 
identifying the number of clusters in all five synthetic datasets. Among them, the RSPCE 
algorithm performed best. kluster and Elbow performed well in DS1 but not well in other 
datasets. Neither nselectboot nor X-means performed well in all datasets. It seems that 
the advantage of the bootstrap method in nselectboot did not work well. nselectboot, 
X-means, and Gap statistics all overestimated the number of clusters. Elbow and kluster, 
on the other hand, underestimated the number of clusters in the last four datasets.

Moreover, RSPCE was able to identify the cluster centers more accurately. Except for 
the Silhouette and Gap statistic methods, none of them were able to identify the cluster 
centers of five synthetic datasets. The Silhouette and Gap statistic algorithms are Euclid-
ean distance-based, and hence computationally expensive.

We examined the effectiveness of the RSPCE algorithm on four real-world datasets. 
The number of classes in these datasets were used as the “true” number of clusters. The 
corresponding results are displayed in Table 7. The original numbers of classes and their 
estimated clusters are well correlated with the results obtained by the RSPCE algorithm.

Computational efficiency

In this section, we compare the computation efficiency of seven methods for identifying 
the number of clusters against different data sizes. The results are plotted in Fig. 7, with 
the execution time measured in minutes. We can see that comparatively, Gap statistic 
and Silhouette methods were inefficient. Other methods performed on these datasets 
similarly in execution time.
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Table 5 Results of two-samples KS-test and Z-test on two distance distributions among the actual 
cluster centers and the estimated cluster centers of the synthetic datasets by the RSPCE algorithm

Dataset n KS-test Z-test

es h k p h z p

DS1 A 5% 0 0.083 0.998 0 0.407 0.684

10% 0 0.111 0.930 0 − 0.712 0.476

20% 0 0.089 0.992 0 − 0.381 0.703

30% 0 0.089 0.992 0 − 0.461 0.645

40% 0 0.089 0.992 0 − 0.586 0.558

50% 0 0.111 0.930 0 − 0.518 0.605

B 5% 0 0.172 0.552 0 − 0.764 0.445

10% 0 0.144 0.766 0 − 0.932 0.352

20% 0 0.089 0.992 0 − 0.439 0.661

30% 0 0.089 0.992 0 − 0.419 0.675

40% 0 0.067 1.000 0 − 0.178 0.859

50% 0 0.067 1.000 0 − 0.090 0.928

DS2 A 5% 0 0.027 1.000 0 0.130 0.897

10% 0 0.047 0.981 0 − 0.422 0.673

20% 0 0.047 0.981 0 − 0.422 0.673

30% 0 0.047 0.981 0 − 0.427 0.670

40% 0 0.047 0.981 0 − 0.427 0.670

50% 0 0.037 0.999 0 − 0.356 0.722

B 5% 0 0.068 0.841 0 − 0.816 0.414

10% 0 0.036 1.000 0 0.126 0.900

20% 0 0.047 0.981 0 − 0.422 0.673

30% 0 0.053 0.950 0 − 0.445 0.656

40% 0 0.047 0.981 0 − 0.445 0.656

50% 0 0.042 0.995 0 − 0.424 0.672

DS3 A 5% 0 0.037 0.975 0 0.675 0.499

10% 0 0.029 0.998 0 − 0.250 0.802

20% 0 0.027 0.998 0 0.597 0.551

30% 0 0.027 0.998 0 0.597 0.551

40% 0 0.012 1.000 0 0.029 0.977

50% 0 0.018 1.000 0 0.088 0.930

B 5% 0 0.027 1.000 0 0.387 0.699

10% 0 0.043 0.935 0 0.793 0.428

20% 0 0.044 0.901 0 0.635 0.525

30% 0 0.057 0.606 0 1.277 0.202

40% 0 0.033 0.988 0 0.583 0.560

50% 0 0.022 1.000 0 0.092 0.927
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It is noteworthy that we adopt a subset of random samples from the big dataset to 
approximate results as the estimation of the entire dataset. Thus, the proposed RSPCE 
approach does not require to analyze the entire dataset altogether.

Conclusions
In this paper, we proposed a multiple random sample-based ensemble method to esti-
mate the number of clusters in a large dataset. We partitioned a big dataset into a set of 
RSP data blocks as random samples of the big dataset. Then, we randomly select a subset 
of data blocks and identify the number of clusters independently. Finally, we ensemble 
the results of the multiple random samples as an estimate of the entire dataset. Moreo-
ver, a cluster ball model was introduced to ensemble the clusters of the random samples 
that are likely sampled from the same cluster in the big dataset.

We conducted extensive experiments to investigate the effectiveness and stability of 
the RSPCE algorithm and further analyzed the impact of the sample size and the ensem-
ble size. The experimental results demonstrated that the proposed algorithm was capa-
ble of generating good approximations of the actual cluster centers in the big dataset 

Here, k and z refer to the test statistics for KS-test and Z-test, respectively. h = 0 indicates that the test does not reject the 
null hypothesis at the 5% significance level, and p-values are probabilities of the positive results

Table 5 (continued)

Dataset n KS-test Z-test

es h k p h z p

DS4 A 5% 0 0.044 0.811 0 − 0.986 0.324

10% 0 0.031 0.986 0 0.239 0.811

20% 0 0.038 0.795 0 0.928 0.353

30% 0 0.039 0.750 0 0.884 0.377

40% 0 0.022 0.998 0 0.117 0.907

50% 0 0.030 0.930 0 0.419 0.675

B 5% 0 0.073 0.382 0 1.347 0.178

10% 0 0.031 0.995 0 − 0.066 0.947

20% 0 0.046 0.833 0 − 0.788 0.431

30% 0 0.050 0.707 0 − 1.024 0.306

40% 0 0.036 0.939 0 − 0.243 0.808

50% 0 0.036 0.853 0 0.933 0.351

DS5 A 5% 0 0.017 1.000 0 0.002 0.999

10% 0 0.018 0.999 0 0.182 0.856

20% 0 0.013 1.000 0 − 0.140 0.889

30% 0 0.042 0.381 0 − 0.547 0.584

40% 0 0.024 0.947 0 − 1.639 0.101

50% 0 0.020 0.987 0 − 0.291 0.771

B 5% 0 0.022 1.000 0 0.086 0.931

10% 0 0.029 0.959 0 0.149 0.882

20% 0 0.022 0.988 0 0.481 0.631

30% 0 0.012 1.000 0 − 0.023 0.981

40% 0 0.024 0.965 0 0.354 0.723

50% 0 0.018 0.998 0 − 0.006 0.995
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from a few random samples. The experiment results also demonstrated that the RSPCE 
algorithm is scalable to big data and flexible for clustering large-scale data on single 
machines or a cluster.

One should note that our cluster ball model is only suitable for merging clusters in 
spherical shapes. This is a limit of the RSPCE algorithm when it is applied to the dataset 
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Fig. 6 The KS-test plots for comparison of actual centers’ distance distribution versus the distance 
distribution of the centers by the RSPCE algorithm. The left-plot uses sample size n = 5000, and the right-plot 
uses n = 10,000
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Table 6 Comparison of the estimated number of clusters produced by different methods on the 
synthetic datasets

Dataset K es nselectboot kluster X-means Elbow Silhouette Gap statistic RPSCE

DS1 10 5% 13.6 ± 1.6 
(0.36)

9.8 ± 0.4 
(0.03)

18.8 ± 3.3 
(0.83)

9.3 ± 1.2 
(0.09)

9.6 ± 0.6 
(0.05)

12.6 ± 1.2 
(0.26)

9.7 ± 0.8 
(0.07)

10% 13.3 ± 1.3 
(0.33)

9.8 ± 0.4 
(0.02)

22.2 ± 5.9 
(1.22)

9.8 ± 1.5 
(0.12)

9.8 ± 0.4 
(0.02)

12.3 ± 0.9 
(0.23)

10.0 ± 0.0 
(0.00)

20% 14.0 ± 1.4 
(0.40)

10.0 ± 0.0 
(0.00)

20.2 ± 4.8 
(1.02)

9.7 ± 1.6 
(0.13)

9.8 ± 0.5 
(0.03)

12.2 ± 1.1 
(0.22)

10.0 ± 0.0 
(0.00)

30% 13.8 ± 1.1 
(0.38)

10.0 ± 0.0 
(0.00)

23.2 ± 2.5 
(1.32)

8.5 ± 0.8 
(0.15)

9.8 ± 0.4 
(0.02)

11.7 ± 1.2 
(0.17)

10.0 ± 0.0 
(0.00)

40% 13.4 ± 1.5 
(0.34)

10.0 ± 0.0 
(0.00)

22.8 ± 3.8 
(1.28)

9.0 ± 1.3 
(0.10)

NA 12.8 ± 0.5 
(0.28)

10.0 ± 0.0 
(0.00)

50% 14.4 ± 0.9 
(0.44)

10.0 ± 0.0 
(0.00)

19.4 ± 1.9 
(0.94)

10.2 ± 0.8 
(0.05)

NA 12.5 ± 1.0 
(0.25)

10.0 ± 0.0 
(0.00)

DS2 20 5% 28.7 ± 1.1 
(0.47)

14.6 ± 0.5 
(0.28)

43.0 ± 2.5 
(1.15)

8.3 ± 1.3 
(0.59)

20.2 ± 0.7 
(0.02)

21.0 ± 0.7 
(0.06)

18.7 ± 1.3 
(0.11)

10% 29.3 ± 0.8 
(0.47)

14.8 ± 0.4 
(0.26)

43.8 ± 1.9 
(1.20)

8.0 ± 1.2 
(0.60)

19.8 ± 0.4 
(0.02)

20.6 ± 0.5 
(0.04)

19.6 ± 0.7 
(0.07)

20% 28.7 ± 0.8 
(0.44)

14.8 ± 0.4 
(0.26)

42.8 ± 3.7 
(1.14)

8.6 ± 1.8 
(0.57)

20.2 ± 0.4 
(0.02)

21.0 ± 0.7 
(0.07)

19.9 ± 0.8 
(0.02)

30% 29.5 ± 0.5 
(0.48)

15.0 ± 0.0 
(0.25)

42.6 ± 3.9 
(1.13)

9.0 ± 2.1 
(0.55)

NA 20.8 ± 0.4 
(0.06)

20.0 ± 0.0 
(0.01)

40% 29.0 ± 1.5 
(0.45)

15.0 ± 0.0 
(0.25)

46.8 ± 1.6 
(1.14)

8.5 ± 1.0 
(0.58)

NA 21.0 ± 0.7 
(0.07)

20.0 ± 0.0 
(0.00)

50% 29.2 ± 0.1 
(0.46)

15.0 ± 0.0 
(0.25)

40.8 ± 6.6 
(1.04)

9.2 ± 1.0 
(0.54)

NA 20.8 ± 0.4 
(0.06)

20.0 ± 0.0 
(0.00)

DS3 30 5% 39.6 ± 0.8 
(0.32)

14.3 ± 0.8 
(0.52)

40.1 ± 19.4 
(0.68)

7.3 ± 1.2 
(0.76)

21.3 ± 1.6 
(0.41)

31.7 ± 0.5 
(0.06)

23.1 ± 1.3 
(0.24)

10% 39.3 ± 0.7 
(0.31)

14.5 ± 0.5 
(0.51)

40.2 ± 19.1 
(0.66)

6.4 ± 1.3 
(0.79)

27.7 ± 0.9 
(0.08)

32.8 ± 1.6 
(0.09)

25.2 ± 1.2 
(0.16)

20% 38.8 ± 1.6 
(0.29)

14.7 ± 0.5 
(0.51)

40.4 ± 20.4 
(0.70)

6.9 ± 1.3 
(0.77)

25.5 ± 1.7 
(0.18)

31.2 ± 1.4 
(0.05)

27.7 ± 1.7 
(0.09)

30% 39.6 ± 0.5 
(0.32)

14.8 ± 0.4 
(0.51)

39.0 ± 20.4 
(0.70)

7.2 ± 0.4 
(0.76)

NA 32.6 ± 1.7 
(0.09)

28.1 ± 1.8 
(0.06)

40% 39.4 ± 0.9 
(0.31)

14.8 ± 0.5 
(0.51)

40.4 ± 20.4 
(0.70)

7.2 ± 1.3 
(0.76)

NA 31.8 ± 0.8 
(0.06)

28.4 ± 0.9 
(0.05)

50% 38.0 ± 1.2 
(0.27)

14.8 ± 0.4 
(0.51)

48.2 ± 3.5 
(0.61)

7.1 ± 1.4 
(0.75)

NA NA 29.3 ± 1.8 
(0.03)

DS4 40 5% 49.5 ± 0.7 
(0.24)

13.3 ± 1.9 
(0.66)

37.0 ± 24.2 
(0.38)

8.1 ± 0.9 
(0.80)

29.5 ± 4.1 
(0.36)

45.5 ± 3.5 
(0.12)

25.4 ± 1.1 
(0.37)

10% 48.6 ± 1.6 
(0.22)

13.8 ± 1.5 
(0.65)

36.7 ± 27.5 
(0.58)

8.4 ± 1.1 
(0.79)

42.3 ± 2.8 
(0.05)

43.8 ± 2.4 
(0.10)

27.2 ± 1.9 
(0.30)

20% 48.2 ± 1.6 
(0.21)

14.0 ± 1.3 
(0.65)

37.7 ± 25.7 
(0.61)

8.5 ± 0.5 
(0.79)

34.6 ± 2.7 
(0.15)

44.9 ± 1.8 
(0.11)

31.6 ± 2.2 
(0.22)

30% 47.8 ± 1.6 
(0.20)

14.5 ± 0.8 
(0.63)

41.3 ± 28.9 
(0.63)

9.5 ± 0.8 
(0.76)

36.7 ± 2.5 
(0.09)

45.3 ± 1.6 
(0.12)

34.2 ± 2.8 
(0.11)

40% 48.8 ± 1.1 
(0.22)

14.3 ± 1.2 
(0.64)

51.7 ± 21.1 
(0.55)

8.8 ± 1.3 
(0.78)

NA 45.3 ± 1.8 
(0.12)

36.6 ± 2.5 
(0.09)

50% 47.8 ± 1.5 
(0.20)

14.7 ± 0.5 
(0.63)

42.9 ± 26.7 
(0.64)

8.5 ± 1.0 
(0.79)

NA NA 38.1 ± 1.3 
(0.05)
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The average value of 20 runs is displayed together with “ ± ” standard deviation. The best and second best results are shown 
in bold and underlined, respectively. The values in parenthesis indicate the mean relative error

Sample size for RSPCE is n = 5000 ; K is the true number of clusters in the dataset; and es is the ensemble size. The 
percentage was selected randomly

NA indicates not available, i.e., the value cannot be computed

Table 6 (continued)

Dataset K es nselectboot kluster X-means Elbow Silhouette Gap statistic RPSCE

DS5 50 5% 58.4 ± 2.2 
(0.17)

14.3 ± 1.0 
(0.71)

35.9 ± 33.6 
(0.63)

7.3 ± 0.7 
(0.86)

41.3 ± 3.6 
(0.21)

53.6 ± 1.4 
(0.07)

37.2 ± 2.8 
(0.26)

10% 58.7 ± 1.5 
(0.17)

14.8 ± 0.4 
(0.70)

36.7 ± 30.2 
(0.59)

7.5 ± 0.8 
(0.85)

41.7 ± 4.5 
(0.20)

52.8 ± 2.5 
(0.05)

41.4 ± 1.9 
(0.21)

20% 58.6 ± 2.1 
(0.18)

14.5 ± 0.8 
(0.71)

30.4 ± 36.1 
(0.70)

7.5 ± 1.2 
(0.85)

52.1 ± 1.8 
(0.04)

54.4 ± 1.3 
(0.08)

43.8 ± 0.8 
(0.14)

30% 58.2 ± 2.2 
(0.16)

14.3 ± 1.0 
(0.71)

37.2 ± 36.0 
(0.69)

8.8 ± 0.9 
(0.83)

52.5 ± 4.2 
(0.04)

54.1 ± 0.9 
(0.05)

45.6 ± 1.5 
(0.10)

40% 59.2 ± 0.8 
(0.18)

14.7 ± 0.5 
(0.71)

32.3 ± 35.3 
(0.71)

8.8 ± 0.8 
(0.82)

NA NA 45.9 ± 0.8 
(0.09)

50% 57.4 ± 1.8 
(0.15)

14.8 ± 0.4 
(0.70)

20.6 ± 30.5 
(0.75)

7.3 ± 1.4 
(0.85)

NA NA 46.5 ± 1.1 
(0.07)

Table 7 Comparison of the estimated number of clusters produced by different methods on the 
real-world datasets

The average value of 20 runs is displayed together with “±” standard deviation

Sample size for RSPCE is n = 5000 ; K is the true number of classes in the dataset; and es is the ensemble size. The percentage 
was selected randomly

NA indicates not available, i.e., the value cannot be computed

Dataset K es nselectboot kluster X-means Elbow Silhouette Gap statistic RSPCE

Covertype 7 5% 2.8 ± 1.2 11.3 ± 0.5 2.1 ± 0.3 7.4 ± 1.2 2.1 ± 0.3 2.2 ± 0.3 4.6 ± 0.9

10% 4.0 ± 1.9 10.3 ± 1.0 2.3 ± 0.7 7.3 ± 1.3 2.3 ± 1.5 2.3 ± 0.3 6.0 ± 0.7

20% 6.6 ± 3.5 10.7 ± 0.5 2.2 ± 0.4 7.7 ± 0.8 2.2 ± 0.2 2.2 ± 0.2 7.1 ± 0.5

30% 8.4 ± 5.5 10.7 ± 1.0 2.2 ± 0.4 8.0 ± 0.7 2.4 ± 0.4 2.2 ± 0.1 7.8 ± 0.8

40% 9.4 ± 5.5 11.3 ± 1.0 2.2 ± 0.4 8.4 ± 1.4 NA 2.1 ± 0.1 8.2 ± 0.8

50% 9.8 ± 5.9 11.0 ± 0.6 2.1 ± 0.3 7.3 ± 0.9 NA 2.1 ± 0.1 8.2 ± 0.6

KDD’99ID 23 1% 6.8 ± 6.7 10.6 ± 0.9 53.6 ± 5.9 6.8 ± 0.9 4.3 ± 0.5 48.7 ± 0.6 2.9 ± 0.4

2% 5.8 ± 6.3 10.4 ± 0.5 51.2 ± 5.2 4.8 ± 0.7 3.6 ± 0.4 46.5 ± 1.4 3.0 ± 0.0

5% 6.8 ± 7.5 10.4 ± 0.5 53.0 ± 4.5 4.8 ± 0.6 3.6 ± 0.5 48.7 ± 0.6 3.0 ± 0.0

10% 7.3 ± 8.5 10.2 ± 0.4 53.0 ± 4.5 5.2 ± 0.8 3.4 ± 0.5 46.5 ± 1.7 3.0 ± 0.0

15% 8.0 ± 8.7 10.5 ± 0.6 53.5 ± 4.8 4.2 ± 0.8 NA NA 3.0 ± 0.0

20% 7.7 ± 8.1 10.4 ± 0.5 53.0 ± 4.5 4.4 ± 0.5 NA NA 3.0 ± 0.0

PokerHand 10 1% 3.2 ± 0.6 2.9 ± 0.3 17.8 ± 2.4 6.7 ± 1.7 4.5 ± 0.9 11.4 ± 1.3 3.5 ± 0.5

2% 3.4 ± 0.7 3.6 ± 0.4 18.3 ± 2.5 7.2 ± 1.9 4.7 ± 0.5 12.2 ± 0.9 3.7 ± 0.6

5% 2.7 ± 0.5 3.5 ± 0.6 17.9 ± 1.9 7.3 ± 1.2 3.9 ± 0.8 11.4 ± 2.3 3.9 ± 0.8

10% 2.3 ± 0.6 3.6 ± 0.5 19.4 ± 1.5 6.9 ± 1.8 4.8 ± 0.8 11.7 ± 1.2 3.9 ± 0.4

15% 2.4 ± 0.6 3.6 ± 0.4 18.1 ± 1.7 6.6 ± 1.3 NA NA 4.0 ± 0.0

20% 2.1 ± 0.8 3.8 ± 0.3 17.4 ± 1.4 6.8 ± 1.5 NA NA 4.0 ± 0.0

SUSY 2 1% 2.9 ± 0.4 8.3 ± 0.7 13.4 ± 1.3 4.3 ± 0.8 7.7 ± 0.8 4.5 ± 0.9 2.6 ± 0.6

2% 3.2 ± 0.6 8.4 ± 0.5 11.9 ± 2.5 4.6 ± 1.2 6.5 ± 2.1 5.0 ± 1.6 3.2 ± 0.4

5% 2.6 ± 0.7 9.2 ± 1.1 13.3 ± 2.1 5.1 ± 0.7 8.1 ± 1.5 5.2 ± 0.8 3.4 ± 0.5

10% 2.5 ± 0.5 8.6 ± 0.5 15.1 ± 0.9 6.7 ± 0.9 9.3 ± 1.2 6.1 ± 1.2 3.3 ± 0.5

15% 2.9 ± 1.1 9.2 ± 0.8 16.9 ± 1.2 7.7 ± 1.3 NA NA 3.7 ± 0.4

20% 2.8 ± 0.7 9.4 ± 0.6 15.4 ± 1.8 6.5 ± 0.8 NA NA 3.8 ± 0.4



Page 32 of 33Mahmud et al. Journal of Big Data           (2023) 10:40 

with clusters of irregular shapes. In future work, we will address this issue by adopting 
the graph ensemble for high-dimensional and complex non-linear manifold structure 
datasets, such as moon-shaped and Swiss-roll data. Besides, we will investigate a statisti-
cal framework to design an ensemble for distributed clustering that exercises both the 
weight information and the efficiency of multiple random samples.
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