
An approach to application‑layer DoS
detection
Cliff Kemp, Chad Calvert, Taghi M. Khoshgoftaar and Joffrey L. Leevy* 

Introduction
Network cyber-attacks have become commonplace in today’s world. These attacks have
become very sophisticated and challenging to prevent. Many stealthier attacks target
the application layer, where they take advantage of vulnerabilities in web servers [1].
Because web servers are open to the public, they are accessed frequently by many users.
The attackers’ goal is to simulate legitimate, normal traffic as closely as possible, which
they do well. The task for those defending the networks is to determine the difference
between normal and attack traffic. Making it even more of a challenge, the attackers are
constantly updating their attack methods. One approach to assisting network security
personnel is machine learning. Networks have enormous amounts of data they collect.

Abstract 

With the massive resources and strategies accessible to attackers, countering Denial
of Service (DoS) attacks is getting increasingly difficult. One of these techniques is
application-layer DoS. Due to these challenges, network security has become increas-
ingly more challenging to ensure. Hypertext Transfer Protocol (HTTP), Domain Name
Service (DNS), Simple Mail Transfer Protocol (SMTP), and other application protocols have
had increased attacks over the past several years. It is common for application-layer
attacks to concentrate on these protocols because attackers can exploit some weak-
nesses. Flood and “low and slow” attacks are examples of application-layer attacks. They
target weaknesses in HTTP, the most extensively used application-layer protocol on
the Internet. Our experiment proposes a generalized detection approach to identify
features for application-layer DoS attacks that is not specific to a single slow DoS
attack. We combine four application-layer DoS attack datasets: Slow Read, HTTP POST,
Slowloris, and Apache Range Header. We perform a feature-scaling technique that
applies a normalization filter to the combined dataset. We perform a feature extraction
technique, Principal Component Analysis (PCA), on the combined dataset to reduce
dimensionality. We examine ways to enhance machine learning techniques for detect-
ing slow application-layer DoS attacks that employ these methodologies. The machine
learners effectively identify multiple slow DoS attacks, according to our findings.
The experiment shows that classifiers are good predictors when combined with our
selected Netflow characteristics and feature selection techniques.

Keywords:  Application-layer DoS attack, Machine learning, HTTP GET, HTTP POST,
Slow read DoS, Netflow

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Kemp et al. Journal of Big Data (2023) 10:22
https://doi.org/10.1186/s40537-023-00699-3

Journal of Big Data

*Correspondence:
jleevy2017@fau.edu

Florida Atlantic University, 777
Glades Road, Boca Raton, FL
33431, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00699-3&domain=pdf

Page 2 of 30Kemp et al. Journal of Big Data (2023) 10:22

The data comes from various sources, such as logs, Full Packet Captures (FPCs), and
Netflow traffic. Machine learning can use data from these sources as input for machine
learning algorithms. Also, algorithms have many options that can optimize that algo-
rithm for a given scenario.

Additionally, there are techniques used to enhance the data before the machine
learning algorithm is applied. After collecting the data, the next step is data cleansing,
followed by the machine learning process. Selecting the most relevant attributes, com-
monly referred to as features, generally improves the machine learner’s performance.
One must keep in mind that a set of features that perform well with one machine learner
may not perform well with another machine learner. Discovering the correct set of fea-
tures for machine learning is referred to as feature selection. The goal of feature selection
is to determine characteristics that will produce the best accuracy and predictability for
the machine learner. Network attacks come in many varieties, each of which operates
at different layers, with slow Denial of Service (DoS) attacks operating at the applica-
tion layer as shown in Fig. 1. Our work concentrates on multiple application-layer DoS
attacks in this study. User applications receive network services from the application
layer. Protocols that operate with user data are known as network services. At the appli-
cation level, web browsers rely on the Hypertext Transfer Protocol (HTTP) protocol to
compress data sent to and received from a web page.

In recent years, DoS attacks targeting application protocols have been on the rise [2].
HTTP, Domain Name Service (DNS), Simple Mail Transfer Protocol (SMTP), and other
application protocols have increased attacks over the past several years. It is common
for application-layer attacks to concentrate on these protocols because attackers can
exploit some weaknesses [3]. Attacks targeting application resources can take various
forms, such as HTTP GET, HTTP POST, Slow Read, and Apache Header attacks. The

Fig. 1  Slow DoS at the application layer

Page 3 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

HTTP protocol contains weaknesses that attackers exploit when employing low-level
and slow-moving tactics. A low-and-slow attack targets application or server resources
with a modest stream of persistent traffic. Low and slow assaults, unlike more stand-
ard brute-force attacks, need extremely little bandwidth. They can be difficult to counter
since their attack traffic blends in nicely with normal traffic, making it impossible to dis-
cern between the two.

To circumvent intrusion detection systems, attackers employ a variety of evasion
techniques that expose the network’s DoS vulnerabilities. Evasive DoS techniques will
secretly affect ordinary online services without causing any alarms. The use of flow-
based (Netflow) analysis is one such option. Netflow, often known as session data, is
a high-level representation of network traffic. A conversation is represented by a five-
attribute network flow record. The IP addresses for the source and destination, as well
as the source and destination ports, are listed first, followed by the transport protocol
[4]. The System for Internet-Level Knowledge (SiLK) [5] is a collection of Netflow session
data generation and analysis tools. SiLK is capable of collecting Netflow data as well as
converting FPCs to Netflow. Netflow consumes a disproportionately smaller amount of
storage than FPCs. Due to the smaller size, it is possible to parse flows quickly and effec-
tively without requiring a lot of CPU power. Netflow is critical when it comes to server
memory and hard disk requirements. Netflow also makes use of well-designed features
to prevent attackers from using evasion techniques [6].

In this study, we made three distinct contributions. The first involves examining mul-
tiple application-layer DoS attacks using Netflow features and machine learning pre-
dictive models to detect them. Predictive models are built using these features with six
learners to detect evasive, slow application-layer DoS attempts. The six machine learn-
ing approaches are: Random Forest (RF), C4.5D and C4.5N decision trees, 5-Nearest
Neighbors (5NN), Naive Bayes (NB), and JRip, which uses repeated incremental pruning
to reduce errors. Based on our previous experience with network data and its diversity,
we selected these classifiers. The six machine learners provided us with a diverse set of
algorithms to integrate with our Netflow features. The Netflow features take advantage
of the Internet Protocol Flow Information Export (IPFIX) [7] protocol’s scalability and
adaptability to a variety of scenarios.

The integrity of our data is the subject of our second contribution. Other studies have
gathered data through the use of simulations, testbeds, and software-generated traffic
[8, 9]. We get data from a production computer network’s real-world network. Regular
traffic aids in the representation of outcomes in a live network context. Attacks were
produced on a functional, live platform. We created four application-layer DoS assaults
by modifying variables in each attack utilizing three tiers of concurrent connections, giv-
ing us a broad range of attacks with represented models that mirror real-world behav-
ior. Because we provide our data in a live setting rather than simulated environments
or testbeds, we can demonstrate its quality and integrity. When collecting data on a live
network, there are a few obstacles to overcome. The creation of sufficient normal data,
the concern for information privacy, the implementation of attacks on a live network
without disruption, computers required to attack at the same time, and network man-
agement are all challenges. Because of these difficulties, other related fields frequently
rely on publicly available databases [10, 11].

Page 4 of 30Kemp et al. Journal of Big Data (2023) 10:22

Feature selection is our third contribution. We employ selective feature evaluation and
investigate several methods used to specify the attribute evaluators and search meth-
ods. We evaluate the significance of a subset of attributes by a feature’s predictive ability
and the amount of duplication between them. Highly correlated feature subsets with the
class while having low intercorrelation are preferred. For this experiment, we chose the
Weka [12] feature selection methods CfsSubsetEval, ConsistencySubsetEval, and Clas-
sifierSubsetEval. We also used Weka functions for single-attribute evaluation, such as
ChiSquaredAttributeEval, GainRatioAttributeEval, and Principal Component Analysis
(PCA), which is a feature extraction technique. When combined with the Ranker search
method, ChiSquaredAttributeEval and Gain-RatioAttributeEval rank individual char-
acteristics according to their assessment. Unlike other single-attribute evaluators, PCA
transforms the given set of attributes into newly created subsets of its own.

The highlights of our research are as follows:

•	 Investigating DoS attack types using Netflow features and machine learning.
•	 Using real-world network data to build intrusion detection datasets.
•	 Showing that our models are good predictors of DoS attacks.

The following is how we ordered our paper. We go over standard slow application-layer
attack methods, tools, and data types in “Background” section. In “Related works” sec-
tion, we go over some of the other research that has been done on gathering and iden-
tifying delayed application-layer DoS HTTP attacks. Our data gathering techniques and
experimental designs are described in “Experimental procedure” section. “Results” sec-
tion is a discussion about our results, and “Conclusion” section is our conclusion and
future work.

Background
There are a variety of methods for enacting an application-layer DoS attack. Contingent
on the characteristics of the network, various types of attacks are chosen based on the
targeted traffic. In this section, we detail the slow application-layer attacks, data collec-
tion process, and Netflow traffic.

Application‑layer attack methods

DoS attacks are difficult to trace due to their evasive techniques. Attackers will imper-
sonate IP addresses to mask their origin, making DoS tracking difficult. Furthermore,
the number of attacks focusing on the application layer is expanding at an alarming rate.
When deploying a comprehensive Distributed Denial of Service (DDoS) defense, it is
important to understand all the aspects of the DDoS attack mechanism. Over the past
several years, researchers have offered numerous types of DoS attacks in their work.

Unlike high-bandwidth flooding assaults [13], low-bandwidth application-layer
attacks focus on staying below the radar to evade discovery. Application-layer
attacks do not require a huge number of bots and can be carried out on a single
computer. When compared to traditional flooding attacks [14], these attacks use less
bandwidth. The network traffic seems to be valid when a web browser is used to
create a connection to servers using HTTP request messages. The server will then

Page 5 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

accept the connection and respond to HTTP queries with HTTP response messages.
It’s difficult to tell the difference between an attack and typical traffic, and it takes
experience in the field.

HTTP POST or HTTP GET queries are popular methods used in attacks on the
application layer, exhausting web servers’ resources. The routers assess the entire
transmission to see whether there has been a sudden increase in the detection of
DDoS flood attacks. After locating the problematic router or server, administra-
tors take steps to remove the threat. Attackers increasingly target HTTP, DNS, and
SMTP services. Some of these attacks can be successful as compared to others if
they require fewer network connections.

Regular expression DoS or ReDoS attacks employ a specifically constructed mes-
sage to exploit a flaw in a server-side software library. The flaw allows the server to
spend its resources while computing a regular expression from user input or per-
forming a sophisticated regular expression attack.

Hash collision attacks are designed to exploit common security flaws in Web appli-
cation frameworks. Hash tables are created on application servers to index POST
session parameters. When returning comparable hash values, application servers
must manage hash collisions. Collision resolution operations consume additional
CPU time, such as when an attacker submits a POST message with a high number of
arguments in a hash collision DoS attack scenario. Collisions of a Hash DoS attacks
are extremely successful and may be performed from just one machine, gradually
depleting the resources of the server.

Slow application-layer DoS attacks focus on services and vulnerabilities, enabling
the attack to cause a denial of service without being discovered. The attack is based
on a short burst of traffic that targets application or server resources. Application-
layer attacks performed with the Transmission Control Protocol (TCP) connec-
tion enable the attack through regular network traffic as a valid connection. TCP
is a dependable protocol that checks for mistakes and assesses if packets have been
received throughout the communication between two machines. By receiving the
server’s response gradually and employing a short TCP window size, slow appli-
cation-layer DoS attacks maintain an open line of connection. The TCP protocol’s
Request for Comments (RFC) 1122 [15], in which the receiver advertises zero-byte
windows. The sender does not need to provide any further data to keep the commu-
nication tunnel open. By activating a zero-byte connection window, the target has
created a vulnerability for a slow application-layer DoS attack.

While large-scale DDoS assaults are more likely to be identified immediately, low
and slow level attacks can go undetected for lengthy periods of time while deny-
ing or degrading service to legitimate customers. Customers who purchase products
and require access to internet accounts at anytime of day expect networks to have
fast and efficient accessibility for their daily operations. Because of the widespread
reliance on this access in today’s networks, malevolent attackers have turned their
attention to this type of server. DoS attacks are designed to prevent customers and
employees from receiving services. The methods utilized in application-layer DDoS
assaults are listed below.

Page 6 of 30Kemp et al. Journal of Big Data (2023) 10:22

HTTP flood attack

HTTP flood attacks are the most common DDoS attacks targeting application
resources. These attacks look like normal HTTP GET or POST requests to a victim’s
Web server, rendering them difficult to identify. HTTP flood attacks often include
numerous computers (bots). These bots repeatedly request pages from the target site,
triggering a DoS condition. The High Orbit Ion Cannon (HOIC) tool enables the exe-
cution of multi-threaded HTTP flood assaults in an easy-to-use manner.

HTTP GET requests attack

A malicious HTTP GET request monopolizes the server’s capabilities by using a large
number of open connections. The available connections eliminate the requirement
for services to consumers to establish authentic relationships. The attacker produces
and transmits partial HTTP GET requests to the server, causing each connection
request to be opened in a separate thread. The attacker transmits HTTP header data
infrequently to ensure connections remain open and do not time out. Because the
transmission occurs slowly, the server has to wait indefinitely, emptying the connec-
tion table and resulting in a DoS. HTTP GET-based attacks are easier to generate and
can more efficiently scale in a botnet scenario.

Another attacking approach in this content is the Slowloris attack. The Slowloris
attack bases itself on the weakness of an HTTP GET request. A delaying method is
used in an HTTP GET header assault to alter timing. The attacker will not transmit all
HTTP GET request headers concurrently, but rather divide and send each line sepa-
rately. The server establishes communication with the malicious attacker and allots
time for dialogue.

HTTP POST requests attack

Application-layer DoS attacks like Slowloris, Slow HTTP POST, Slow Read, and Apache
Range Header drain the concurrent connections pool, leading the server to use a lot of
memory and CPU. Most thread process-based HTTP servers (e.g., Apache) are vulner-
able to this type of attack. Attackers can perform Slow HTTP POST attacks by issuing a
lot of concurrent POST requests, and each of them will slowly send the POST body [16].
The attacker detects forms on the web server and sends HTTP POST requests to the
web server via the forms and applies the Slow HTTP POST attack. Instead of being sent
in bulk, POST requests are delivered one byte at a time. When an attacker sends a slow
HTTP GET request, the attacker keeps the vulnerable connection open by progressively
sending fresh bytes of POST data at regular intervals. Given the length of the HTTP
POST request’s content, the server is forced to wait for the entire POST request to be
received. The attacker repeats this activity in parallel, never closing a connection that
is open. After several hundred connections are established, the target server becomes
incapable of handling new requests, resulting in a DoS issue.

Apache range header attack

The Apache Range Header attack takes advantage of an Apache HTTP Server’s binary
filter, allowing a malicious attack to launch a DoS attack through a range header

Page 7 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

expressing numerous intersecting scales [17]. A remote attacker can slow down or
exhaust the resources of the service or server, rendering it incapable of responding
to legitimate clients in a timely manner. The result of this vulnerability produces the
result of a DoS. The server is unable to service any requests and refuses any addi-
tional connections. Using the SlowHTTPTest tool [18], a simple command generates
a HEAD request with a header range of 0-, x-1, x-2, x-3, x-y where x is set by -a argu-
ment, y is set by -b argument and increments by 1 byte. The test works with various
connection rates and numbers over Secure Sockets Layer (SSL).

Attack tools

This subsection briefly presents an overview of the primary attack tools used to exe-
cute application-layer attacks while staying under the radar. The development of spe-
cific attack tools focuses on performing attacks more efficiently and quickly.

The Orbit Ion Cannon is an offensive weapon available in two configurations: high
and low. Both simplify the execution of multi-threaded HTTP flood assaults. Low
Orbit Ion Cannon (LOIC) [19] can produce a substantial volume of TCP, User Data-
gram Protocol (UDP), or HTTP traffic that can overload a server and bring down a
network. HOIC [20] is a software tool that leverages a simple Graphical User Interface
(GUI) to inject HTTP POST and HTTP GET requests. An attacker can build Uniform
Resource Locator (URL) lists and specify content for HOIC to traverse through as it
produces DoS attacks by employing scripts. As a result, defending against these kinds
of attacks becomes slightly more difficult. HTTP headers are transmitted to the desti-
nation server in tiny chunks.

R U Dead Yet (RUDY) [21] is a tool similar to Slowloris. RUDY launches a DoS
attack by submitting HTTP POST requests using a field from the long-form field
instead of HTTP headers injecting data into the POST field one byte at a time, result-
ing in a significant bottleneck of application threads. The long “Content-Length” field
prevents the server from closing the connection. An attacker can create several con-
nections when communicating with a server, eventually emptying the connection
table, thus resulting in a DoS condition.

Botnets aid DDoS tools in launching attacks from a distributed network of comput-
ers. Whether there are hundreds, thousands, or millions of botnets, they dramatically
increase the possibility of a DoS attack. Botnets are widely used by attackers. Bot-
nets are massive networks of infected computers, frequently dubbed “zombies.” This
enables an attacker to exert control over them. Botnet operators can command and
control botnet devices by delivering commands to perform harmful acts using a cov-
ert channel, such as Internet Relay Chat (IRC). DDoS attacks, spam mail distribution,
and information theft are all examples of such actions.

The attack methods previously stated can be carried out using the SlowHTTPTest
software [22]. Slowloris, Slow HTTP POST, Slow Read, and Apache Range Header
are among the application-layer DoS techniques that it effectively implements. Slow
application-layer attacks target web servers that do not enforce connection timeouts.
Concurrent connections are what bring the server down in the end. The SlowHTTPT-
est utility is seen in Fig. 2 enacting a Slow Read DoS attack.

Page 8 of 30Kemp et al. Journal of Big Data (2023) 10:22

Data collection and analysis

There are numerous tools available for capturing, parsing, and analyzing both FPC
and Netflow data. T-shark [23] is a network protocol analyzer that comes included
with Wireshark. T-Shark collects and analyzes network traffic (pcap files). Pcap is
an application programming interface for network traffic capture. Tcpdump [24] is
a popular packet analyzer that shows packets sent or received across a computer’s
network connections. Additionally, Tcpdump allows for the saving of packet contents
to a file for later examination. Cisco’s products use Netflow version 9 [25] for network
traffic accounting, security, DoS monitoring, and general network monitoring.

Another open-source product used for Netflow collection is Nfdump [26]. The
subset of software tools in Nfdump can collect and process Netflow data. It collects
Netflow data via Nfcapd-stored records and analyzes as per the parameters specified.
Nfdump supports Netflow versions v1, v5, v7, v9, and IPFIX. In our experiment, we
used Dumpcap [27] and the SiLK tool suite for collecting FPC and Netflow data.

Related works
Zargar et al. [28] classify distinct types of DDoS flooding at the application layer.
At the Open Systems Interconnection (OSI) network and transport layers, flooding
attacks based on reflection amplification occur. The strategies used in these attacks

Fig. 2  Slow application-layer attack with SlowHTTPTest tool

Page 9 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

are the same as those used during application-layer attacks. HTTP flooding attacks
consume a greater portion of the attacker’s session connection request rates than
legitimate user requests. HTTP GET/POST flooding is a well-known example of this
type of attack, wherein the attackers send a large number of legitimate GET/POST
requests to the targeted web server. Attackers submit sessions with more requests
than normal, leading to a DDoS flood attack disabling the server.

Attackers utilizing image processing methods breach CAPTCHA codes [29]. The noise
in the background is eliminated from the CAPTCHA image before it is separated for
verification. These images consisting of background noise make them difficult to detect
by machine-based recognition. But such material often renders photos hard to read by
people. The consequence of these actions can cause legitimate users to grow irritated,
and services given may be restricted.

Publicly available datasets have been used in research on application-layer DDoS like
[30–32], but they are outdated logs. The authors of all three studies collected the first
and second logs in 1995 for 7 days. Other captured public datasets were collected in
1998. As a result, it is devoid of traffic generated by new apps or abnormalities. [10]
focus on backbone traffic anomaly detectors and provides labeled backbone traffic in the
absence of packet payloads and flows that are incomplete or asymmetric. Their approach
aims to mitigate undiscovered hostile traffic that masquerades as legitimate traffic and
to design a customized anti-DDoS module for general and specific DDoS tool attacks by
incorporating a taught classifier into a random tree machine learning method.

Chengxu et al. [33] developed and provided a publicly available dataset, representing
one 24-h day of log-only traffic. One day is just a snapshot of what was happening that
day. Multiple-day logs would have to be collected and averaged for better results to rep-
resent what took place accurately. Also, this dataset is just a log and does not represent a
full packet capture, which would help in a more in-depth analysis.

Simulations at layer seven (of the OSI) and application-layer DoS attacks sometimes
employ valid IP addresses and imitate lawful queries [34]. By injecting malicious pay-
loads into their dataset, [35] formalize their assault and normal traffic on the server.
The authors demonstrate the capacity of the statistical model checker PVeStA to thwart
application-layer DDoS attacks using a defense mechanism and a computational system
called Maude.

Vijayalakshmi et al. [34] conducted application-layer DoS attacks via packet header
processing. These assaults typically employ genuine IP addresses, imitate normal
requests, attack or destroy the server with a damaging payload, and use worms to form
a botnet. Their work is being implemented in the National Technical Research Organi-
zation’s Smart and Secure Environment Test Bed. Classification is performed using
non-flooding application-layer attacks on simulated models. To utilize the Mahalano-
bis distance, we compare two statistical distributions. This is a standard distance metric.
They then compute the distance between the newly observed payload’s byte distribution
and the profile computed from the model for the relevant length range. The greater the
distance score, the more suspicious this payload is.

Yadav et al. [36] used HTTP requests which attack the nitt.edu web server with the
same attack dataset used in their testbed. A switch is utilized, connecting approximately
100 PCs to the webserver as two bots use Java LOIC and Golden Eye Master for the

Page 10 of 30Kemp et al. Journal of Big Data (2023) 10:22

attack. All incoming traffic towards the webserver is captured using traffic capture soft-
ware. This provides them with three various attacks. Though they should be compli-
mented for their work, we believe improvements can be made by collecting attacks and
normal traffic in a live environment instead of a testbed. This would provide a better rep-
resentation of overall traffic for the datasets. In addition, along with logs from the server,
full packet captures would give more in-depth datasets to use for analysis on their own
and as a comparison to log datasets.

Durcekova et al. [37] discussed the use of HTTP GET and POST to exploit the HTTP
protocol’s weaknesses. The attacker sends a large number of malicious HTTP GET
requests to the target server in this sort of attack. Due to the fact that these packets
contain genuine HTTP payloads, vulnerable servers are unable to discriminate between
legitimate HTTP GET requests and malicious queries. As a result, servers must handle
all requests as normal requests, eventually exhausting their resources.

Stevanovic et al. [38] initiated three possibilities of assault. Initially, the attacker com-
piles a list of directly available websites from the website’s home page via a single URL.
Following that, the attacker generates a surfing sequence by selecting randomly from
this list of pages. The second attack estimates the popularity of a page by contacting
the Google search engine. The third stage builds an attack sequence from the website’s
index.html page and subsequent pages. They are ordered randomly via a connection
between web pages.

Devi et al. [39] proposed a scheme to defend against DDoS attacks in the application
layer and schedule the flash crowd during these attacks. Their main goal is to stop sus-
picious traffic and provide services to legitimate users. HTTP GET flood requests and
perform massive file downloads from the victim server.

An architectural improvement, known as CALD that defends Web servers from mul-
tiple DDoS attacks masked as flash crowds, is described by Wen et al. [40]. The first
assault, dubbed “repeated request DDoS”, organizes numerous infected computers by
continually sending queries to the website’s homepage. MyDoom and Code Red are
all examples of this type of DDoS attack. The second method creates a list of premium
pages and picks one at random for every HTTP GET request. The third method targets
HTTP GET queries. This DDoS attack with recurring loads requires less effort from the
attacker as well as being harder to detect.

Chwalinski et al. [30] used HTTP GET attacks using sequences of requests to limit
the accessibility of web servers. They assume that sequences of requests provide enough
information for detection. Therefore, numerous methods have been developed that
attempt to learn legitimate behavior from weblogs. The authors also define a clustering
algorithm used for legitimate sequence grouping. Attacking host techniques are shown
that closely resemble human agents. This clustering algorithm’s performance is hard to
emulate. Statistical measurements to identify attacker hosts are then presented, along
with their detection accuracy.

Xu et al. [41] utilized a unique user behavior-based detection approach to detect appli-
cation-layer asymmetric DoS attacks. Asymmetric attacks deliver requests that require a
lot of work, such as dynamic interactive pages, database queries, and sophisticated script
requests. A more covert attack occurs when attackers manage numerous workstations
spread across a large area, use legitimate high workload requests, and use the actual IP

Page 11 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

address. The rate of request attacks is not always greater than that of authorized users.
Their requests are frequently disguised as normal ones. Asymmetric attacks are difficult
to detect using present approaches.

Singh et al. [42] investigated the effect of application-layer DDoS attacks on web ser-
vices utilizing the NS2 simulator’s web cache model. They launch an application-layer
DDoS attack against the webserver with an NS2 simulation using the webcache/webtraf
model. Twenty attackers start at a short random time. The 20 clients are regarded as bots
capable of making HTTP request/response traffic at 800-s intervals. The duration of the
whole attack is 700 s, i.e., the attack runs from 800 to 1500 s. NS2 simulations lack a real-
world environment that would provide an accurate picture and reliable data from actual
networks.

Vlajic and Slopek [43] used so-called Puppetnets to launch application-layer DDoS
attacks. Their other attack spreads web bugs via email. Puppetnets are a collection of
HTML/JavaScript commands that are inserted into the HTML/JavaScript code of a
high-traffic, otherwise legitimate-looking website. DDoS attacks employ spam email
with web bugs to hijack the browsers of legitimate people. A web bug inserted in an
email enables the sender to track the precise time the email was opened for the first time
and then revisited.

Stevanovic et al. [44] conducted three synthesized attacks categorized and employed
in their work. “Trivial Attacks” use bots to send standalone HTTP requests with uniden-
tified and banned User Agent Strings (UAS). The exploit distributes independent HTTP
requests that contain faked UASs with a harmless crawler. Slow Read and Slow POST
are known examples of such attack methods. A semi-random series of HTTP requests
from each bot appears to have been produced by a valid Web browser.

Dantas et al. [35] used Maude’s computational tool [45] to launch two distinct DDoS
attacks. Maude is a logic-based tool for specifying and analyzing real-time systems in a
formal manner. The attacks studied were HTTP PRAGMA as well as an HTTP POST.
The PRAGMA HTTP header field is meant for HTTP protocol requests. Updated mod-
els of formerly required resources are made accessible to the application and any inter-
mediary libraries. The application receives PRAGMA messages that reset timeouts,
allowing the connection to continue, and the receiver’s connection is kept open in the
program’s memory. After a client completes the form’s input, the HTTP POST attack
sends a request. Its purpose is to tell the webserver about the form’s data input. On
getting a POST request, the webserver accepts the form’s content. The attacker sends
a POST request to the website providing the data size. Rather than transmitting large
chunks of the entry, as legitimate clients would, the attacker sends a little bit of data
every message, using the application’s resources for a prolonged period of time.

None of the related works examine multiple application-layer DoS attacks using Net-
flow features and machine learning predictive models. In addition, we are the first to use
feature selection and PCA for application-layer DoS detection.

Experimental procedure
This section summarizes our experiments involving four slow application-layer attacks,
including the data collection approach, dataset aggregation, machine learning algo-
rithms, metrics, data pre-processing, as well as feature selection.

Page 12 of 30Kemp et al. Journal of Big Data (2023) 10:22

Data collection process

The gathering of Netflow data requires the use of hardware and software to gather,
categorize, and save information for processing and tracking. Figure 3 exhibits the
network architecture that enables us to carry out attacks on a real-world network
with a large number of active users. Downloads, uploads, website navigation, and
other web server communications are all considered normal network traffic. They can
access course materials from our server both locally and remotely. A firewall protects
data and network resources against unauthorized access. On the Apache webserver,
student resources have been put up as a target for our attacks. Dumpcap [27], a com-
ponent of the Wireshark software suite, is used to capture packets on a Linux-based
server. Dumpcap is software designed to capture packets from a network and save it
to storage. Dumpcap continuously monitors packets and archives recorded packets
for later analysis and is frequently the major source of data utilized to analyze net-
work traffic.

Our Netflow data is collected and stored with the SiLk software suite. SiLK col-
lects FPCs and builds network flows. SiLK can convert FPC files to SiLK network flow
records and export them as Comma-Separated Values (CSV) datasets for machine
learning [46]. Our controlled attacks NetFlow data is analyzed to identify attack clas-
sifiers utilizing IP addresses that performed the attack and the remainder as normal.
Netflow data does not offer the amount of forensic detail discovered in FPC data.
Still, the small size allows it to be retained for a much longer time, which is incred-
ibly valuable when performing an analysis [6]. Netflow provides a lot of flexibility and
functionalities that assist with detecting anomalies with flows that have proven effec-
tive in detecting DoS evasion strategies. Prior to identifying our data records, a data
purification step was required.

Fig. 3  Network architecture

Page 13 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

Application‑layer attack frameworks

We used three datasets (HTTP POST, Slowloris, Slow Read) from previous research
and one attack (Apache Range Header) newly created from this study. These four
separate attacks represent variations in attack duration ranging from 5 to 60 min
time frames. Our study focuses on capturing multiple application-layer DoS attacks
against our web server. Our acquired attack data is easily identifiable because the
attacks come from the IP addresses we performed in the attack. An attackers’ IP
address uniquely identifies (labels) attack traffic, whereas all other instances are con-
sidered normal. By integrating controlled attacks, the labeling ensures correct attack
labeling. We complete the data cleansing procedure by processing the data using SiLK
and exporting it as a CSV file, using Pandas [47] to validate it.

Slowloris attacks are performed on a physical host machine rather than simu-
lated. We choose to use the Slowloris.py attack script for our tests. It was easy to
set up and had several attack choices [48]. Our Slow Post attack tool was OWASP
Switch-blade 4.0 from the Open Web Application Security Project (OWASP) [49]. We
investigated popular alternative tools and settled on OWASP Switchblade due to its
flexibility. Instead of a distributed attack, we employed a single physical host machine
with numerous connections [48]. Slow Read attacks are performed on a physical host
machine with the SlowHTTPTest tool [22]. Variations in settings used by SlowHTT-
PTest are applied to give us different results and valuable information on the attack
thresholds [46, 50]. The SlowHTTPTest tool was also used for the Apache Range
Header attack. For more in-depth information on the dataset collection process and
environment, please refer to each of these cited works.

Aggregation of datasets

All four datasets, Slowloris, Slow Post, Slow Read, and Apache Range Header, were
collected by our research team. The aggregated features of the four datasets produced
the new dataset for our experiment. The aggregated slow attack dataset has 828,510
instances consisting of 34,097 attacks and 794,413 normal traffic. When compar-
ing each previous dataset to the aggregated dataset, there was no significant impact
on performance due to the imbalance in the data. We removed the “attribute” fea-
ture because it was an insignificant factor in previous datasets. The difference in the
results both with and without the attribute feature was negligible. Eliminating it can
also help with overfitting. Table 1 below names and describes the multiple slow attack
feature set produced from the four datasets used for our experiments.

Potential attack instances correlate to the InitialFlags symbol “S.” The letter “S”
stands for “SYN,” which denotes the start of a TCP connection. The letter “P” stands
for “PSH,” which means “received packets” rather than “buffering.” Instead of buff-
ering packets, the “URG” flag instructs the receiver to process them. The letter “A”
stands for “ACK” and signifies that the message has been received successfully. After
a connection is ended, the value “F” indicates that the sender has ceased transmitting
more data. The value “R” stands for “RST,” and it is delivered to reconnect the two
parties. The properties for the session and initial flags are made up of eight TCP flags
given in Table 2.

Page 14 of 30Kemp et al. Journal of Big Data (2023) 10:22

Machine learning

Six classification techniques were chosen to develop predictive models using the data-
sets we collected. The classifiers used in our work belong to various machine learning
families of algorithms and are widely considered to be reliable. We developed all of
the models using the machine learning tools Weka [51] from the Waikato Environ-
ment for Knowledge Analysis. Weka is a data analysis framework that contains visu-
alization tools and algorithms.

C4.5 is a decision tree learning method that can help with classification and deci-
sion tree construction. When training, the classifiers form a hierarchy and learn
parameters from the data model. We used two versions of C4.5: one with WEKA’s
default parameter values (dubbed C4.5D) and another with Laplace smoothing turned
on, and tree-pruning turned off (dubbed C4.5N). Laplace adds a small number to each
of the counts in the frequency table, ensuring a greater than zero probability for the
features in each class. Deactivating tree pruning allows the tree to perfectly classify
the training set, which supports Laplace smoothing.

By selecting randomly from a set of features, RF produces several decision trees. RF
uses more decision trees than other standard classification algorithms and has lower
prediction errors.

Table 1  Aggregated slow attack feature set

Feature name Description

Protocol Protocol

Packets Number of packets

Bytes Number of bytes

Flags TCP flags

InitialFlags Initial TCP flags

SessionFlags Session TCP flags

Durmsec Duration in milliseconds

PayloadInBytes Payload in bytes

PayloadRate Payload/second

PacketsPerSecond Packets/second

BytesPerSecond Bytes/second

BytesPerPacket Bytes per packet

Classifiers (Attack/normal)

Table 2  TCP flags

TCP flag Description

ACK Acknowledge of a packet

FIN Finished send more

URG​ Urgent packets

PSH Process packets no buffering

RST Reset connection

ECE Explicit congestion notification

CWR​ Congestion window reduced

NS Nonce sum

Page 15 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

k-Nearest Neighbors (kNN) employs a distance function to discover most examples
similar to the current instance. The distance function for our work is Euclidean. This
study uses majority voting with k = 5. Thus there are no ties. After running trials with K
equaling 1, 3, 5, and 7, k = 5 produced the best results.

NB is a classification algorithm that uses Bayesian inference. The algorithm is designed
to be feature autonomous. In our experiment, we made one adjustment from the default
settings. We chose to enable “useSupervisedDiscretization” in Weka. We use super-
vised discretization to convert numeric attributes to nominal ones. NB uses a “binning”
approach for data smoothing. Binning sorts the data and then distributes the sorted val-
ues into several buckets known as bins. Binning methods refer to the neighborhood of
values, replacing each value in a bin with the mean, median, or closest boundary. The
last machine learner used in our experimental process is JRip. This rule-learning tech-
nique assigns a single class to data samples and looks for a set of rules that appropriately
classify the data points. The class’s original ruleset produces fewer errors as the rules
expand in scope.

Evaluation metrics

Cross-validation with four rounds uses the same proportion of observations groupings
to produce average performance values and reduce random selection bias. The Area
Under the Receiver Operating Characteristic (ROC) Curve (AUC) values denote the
probability that a classifier will distinguish between a randomly chosen positive instance
(correctly classified) and a randomly chosen negative instance (incorrectly classified).
The data is divided into non-overlapping sections by cross-validation, which keeps the
original class proportions in each fold. In each round, one element is retained as test
data and the rest as training data. The AUC values for each of the five data points are cal-
culated by averaging the AUC values of the assessed models. In other words, the number
of models created to compute the average is 5 (folds) multiplied by 4 (iterations) will
equal 20 models.

In machine learning, the statistical classification uses a confusion matrix table layout
that allows visualization of the performance of an algorithm. The confusion matrix has
the following four values. True Positives (TPs) is the number of positive instances cor-
rectly predicted as positive, True Negatives (TNs) is the number of negative instances
correctly predicted as negative, False Positives (FPs) is the number of negative instances
incorrectly predicted as positive, and False Negatives (FNs) the number of positive
instances incorrectly predicted as negative.

The AUC and precision-recall of each model are calculated as follows. Precision
(positive predictive value) in machine learning refers to the proportion of relevant
occurrences among the recovered instances. Whereas, recall (sensitivity) refers to
the proportion of pertinent instances that are retrieved. The True Positive Rate
(TPR) and False Positive Rate (FPR) are plotted using the AUC. TPR is the percent-
age of slow attack incidents that are accurately anticipated as attacks. FPR is the pro-
portion of normal data that was mislabeled as “attack.” As the decision threshold for
the classifier is modified, the AUC curve is created. As the values of AUC increase,
so does TPR while FPR decreases, producing acceptable results. Operating points in

Page 16 of 30Kemp et al. Journal of Big Data (2023) 10:22

our metrics focus on minimizing Type II errors in absolute terms to the lowest value
while maintaining above 90% F-measure scores and 95% or better AUC results.

There are two kinds of errors we use for metrics. Type I errors are false positives.
False positives are a nuisance for machine-learning systems and account for roughly
40% of the alerts that cybersecurity teams receive daily [52]. Training a new device
or software is standard practice on the network for a predetermined duration [53].
Type II errors are false negatives. They are both essential misclassification errors
that should be minimized, but the emphasis should be more on the Type II error.
Minimizing Type II errors is the most important focus of our experiment. It is more
important not to miss an attack on a network than to identify an attack that is not.
If a Type II error occurs, an attack has not been identified. The network is thus
compromised, whereas mislabeling normal traffic as an attack is not as severe as a
missed attack.

The F-measure is calculated from the confusion matrix in Weka using a weighted
average. F-measure uses threshold measures for testing accuracy and weighted har-
monic mean for precision-recall tests, conveying balances among precision-recall. An
F-measure’s best value is 1 (perfect precision and recall), and the worst value is 0.
High scores demonstrate that the classifier has accurate results, high precision, and
positive results in a high recall. Results with high recall and low precision produce
predictions that are inaccurate as they relate to training sets. High precision and low
recall produce few results, and its predicted sets are accurate compared to training
sets. A perfect scenario is demonstrated with high precision and high recall, return-
ing many results, with all results labeled correctly. Equation 1 shows the F-measure
equation.

Analysis of variance (ANOVA) is used to compare the variability in AUC and AUC
Standard Deviation (Std) averages. The AUC Std value is calculated using the AUC val-
ues obtained for each learner. The F-distribution compares two independent groups’
means. We search for two equal means when testing the null hypothesis. A positive
result indicates that the means of the AUC and AUC Std are not identical. The output
from the ANOVA results in Table 5 is labeled as follows. The Df column indicates the
individual variable’s degrees of freedom, which are determined as follows. The residuals
take the total number of observations minus one, in the sum of squares between groups,
as well as the entire mean described by such a variable, the Sum Sq. The Mean Sq equals
the mean of the sum of squares. The F-measure value represents the mean square of
each independent variable. A significant F-measure raises the risk that independent vari-
able change is not an anomaly. The F-statistic p-value is represented as Pr(> F). Testing
the null hypothesis without any difference between group means, we use the p-value.

The AUC averages were analyzed using ANOVA to see if there were any statisti-
cally significant differences in the detection of multiple application-layer DoS attacks
among the six learners. Our data was also subjected to Tukey’s Honestly Significant
Difference (HSD) post-hoc tests [54]. This test examines every possible pair of means
to see whether they differ.

(1)F-measure = 2×
precision× recall

precision+ recall

Page 17 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

Feature selection

Selective feature evaluation uses several methods to specify the attribute evaluator and
search methods. Attribute selection searches the space of attribute subsets, evaluat-
ing each one by combining one of the six attribute subset evaluators with one of the
ten search methods. Feature subset evaluators process a subset of attributes and return
numerical measures that guide the search. For our research, we employ the Weka func-
tions CfsSubsetEval, ClassifierSubsetEval, and ConsistencySubsetEval. Additionally, we
used the Weka functions ChiSquaredAttributeEval and Gain-RatioAttributeEval to eval-
uate single attributes. To create a ranked list, the ChiSquaredAttributeEvaluation and
Gain-RatioAttributeEvaluation algorithms combine with the Ranker search strategy.

CfsSubsetEval evaluates a subset of attributes by examining the individual predictive
ability of each feature and the redundancy between them. Feature subsets that have a
high class correlation and low intercorrelation are preferred. ClassifierSubsetEval evalu-
ates a subset of attributes on training data or a hold-out set. This method uses a classifier
to estimate the worth of a set of attributes.

The ConsistencySubsetEval evaluator measures the consistency of class values after
the training instances [55]. Subsets of highly correlated features with the class while hav-
ing low intercorrelation (among the features in the subset) are preferred. Consistent sub-
sets of features can not ever result in a lower total set of features. We use this subset
analyzer to search for a minimal subgroup with a similar consistency to the complete
collection of attributes. The association of subsets bases itself on merits between 0 and 1.
The merit function will have larger values for attribute subsets that have attributes with
strong class-attribute correlation and weak attribute-attribute correlation.

Single-Attribute assessors utilize their search method to build ranked lists with a
search technique called “Ranker.” Ranker is a ranking technique for individual traits, not
a search tool for subsets. It classifies features according to their ratings and conducts
supervised learning by deleting the lower-level values.

The algorithm poses an initial hypothesis that a class and a feature are unrelated. Then,
it works towards disproving the initial hypothesis. The Information Gain (IG) score for
a particular feature is normalized by the attribute’s entropy, also known as the “Infor-
mation Split Value” [56]. The algorithm determines the range of a feature in terms of a
class’s entropy. Excellent qualities maximize a class’s entropy. The IG ranking results are
normalized by the attribute and class entropy values in the Symmetric Uncertainty rank-
ing technique. A good feature should have a high score.

As previously stated, PCA modifies and transforms the set of qualities. New attrib-
utes rank in order of their eigenvalues. The eigenvalue measures the amount of variance
retained by each principal component. A subset chooses a sufficient number of eigen-
vectors that compensate for a specified percentage of its baseline variance of 95%. The
dimensionality of our dataset is reduced by compressing it onto a new feature subspace.
We accomplish this by selecting the subset of the eigenvectors, otherwise known as prin-
cipal components, which contain most of the information that makes up the variance.
The eigenvalues define the magnitude of the eigenvectors. We then sort the eigenvalues
in decreasing order and focus on the top k eigenvectors based on their corresponding
eigenvalues. PCA also helps us process our data for a T-distributed Stochastic Neigh-
bor Embedding (SNE) that visualizes high-dimensional data by giving each data point

Page 18 of 30Kemp et al. Journal of Big Data (2023) 10:22

a location on a two or three-dimensional map [57]. The simplified variant of SNE sig-
nificantly enhances visuals by reducing the inclination for points to cluster on the map.
Maaten et al. [58] suggest that t-SNE effectively creates a single map that reveals struc-
ture at many different scales.

Data processing

Our first step was to remove and impute missing values from the dataset. If a value is
missing, we represent it with a single question mark. Therefore, no missing data values
exist in our dataset. Our next step was to get the categorical data ready for our machine
learning algorithms. We used the normalization approach to bring different numerical
features onto the same scale. We rescale these numerical features using the min–max
scaling equation shown in Eq. 2 that is created by rescaling the range of features to [0, 1]
or [− 1, 1]. Our categorical features are flags, InitialFlags, and SessionFlags as shown in
Fig. 4.

Results
Our results for feature selection and machine learner performance are shown in the sec-
tions below. We present four different feature selection methods by comparing feature
selection methods using six machine learning models. As previously mentioned, the
Aggregated Slow Attack dataset has 828,510 instances consisting of 34,097 attacks and
794,413 normal traffic. Our goal is to achieve the same performance or better than the
twelve-feature set using feature selection methods. Feature selection does this by focus-
ing on the total number of Type I and Type II errors, with more focus on minimizing
the total number of Type II errors. Maximizing the detection of the 34,097 attacks is
critical because an incorrect prediction results in a successful attack. Therefore, we focus
on operating points by expressing Type II errors in absolute terms to minimize Type II
errors to the lowest value while maintaining above 90% F-measure scores and 95% or
better AUC results.

Initial results

Overall, our Netflow dataset results show that Netflow features can distinguish between
normal and attack traffic, with five out of six predictive models detecting multiple slow

(2)x́ =
x −min(x)

max(x)−min(x)

Fig. 4  Flag values

Page 19 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

application-layer attacks. Consistent results demonstrate that when paired with Netflow
data, classifiers are sufficiently selective to detect multiple slow application-layer attacks.

Normalization creates different features on the same scale via key features. Although
values obtained are characteristic of enabled attack types, there is a possibility that our
learners may place too much weight on the specific values obtained rather than the over-
all behavior of the feature in question. Tables 3 and 4 compare slow application-layer
attack results before and after normalization. Figures 5 and 6 show the effects on the
same branch of a decision trees rule with C4.5D.

Table 3  Pre-normalization results

Classifier AUC​ F measure Correctly classified (%) Type II

RF 0.981 0.982 98.42 13,022

C4.5N 0.982 0.982 98.40 13,027

C4.5D 0.981 0.982 98.40 13,038

JRip 0.656 0.965 97.17 23,354

5NN 0.981 0.982 98.40 13,060

NB 0.949 0.902 86.65 1724

Table 4  Normalized results

Classifier AUC​ F measure Correctly classified (%) Type II

RF 0.981 0.982 98.41 13,021

C4.5N 0.982 0.982 98.40 13,052

C4.5D 0.981 0.982 98.40 13,074

JRip 0.656 0.965 97.17 23,355

5NN 0.982 0.982 98.40 13,060

NB 0.976 0.932 91.11 1246

Fig. 5  Pre-normalized C4.5D tree branch

Page 20 of 30Kemp et al. Journal of Big Data (2023) 10:22

Our classifiers’ AUC and F-measure findings demonstrate that all but JRip had good
outcomes. All learners except JRip had similar AUC values of 0.981, 0.982, 0.981,
0.981, and 0.949 for both pre-normalized and normalized datasets, respectively. The
significant and critical difference reflected in NB produces a better result for Type II
errors with only 1246. Table 4 shows the other four top performers had over 13,000
Type II errors.

When examining both C4.5 trees, each tree structure determined which flags to
display at the starting node of the tree. The flags are one of the most important ele-
ments of a successful slow application-layer DoS attack. C4.5’s decision trees divide
data across two or more branches, depending on one or more attributes. The top-
level branch structure is a reliable source for finding distinguishing characteristics for
normal and attack data. Duration in milliseconds or Durmsec is an example of distin-
guishing characteristics at the top-level branch that produced Figs. 5 and 6.

We see the rules generated by C4.5D in Figs. 7, 8, and 9, illustrating three decision
tree examples. Durmsec is the only behavior that is consistent between the two. The
Durmsec feature is used at the top tier of each of the three trees in the C4.5D model.
We can tell the difference between regular and attack flows by their distinct behav-
ior. Shown in Fig. 7, a rule detects an attack when Durmsec has a value greater than

Fig. 6  Normalized C4.5D tree branch

Fig. 7  C4.5D model tree 1

Page 21 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

0.040121, packets are greater than 0.001076, and the sessionFlags combination = PA
and bytesPerPacket ¡ = 0.01029. Figure 8 has a shorter branch, with Durmsec again
being greater than 0.040121 and packets greater than 0.001076, followed by a ses-
sion flag combination of Finish, Reset, Push, Acknowledgment (FRPA). There are 3492
attack instances. Figure 9 starts again with Durmsec greater than 0.040121, bytesPer-
Sec greater than 0.007724, sessionFlags producing PA, packetsPerSec not more than
or equivalent to 0.006304, bytes equal to or more than 0.00079, and packetsPerSec
less than or equal to 0.005616, identifying 2879 attacks. Figures 7 and 8 are similar,
except for the different values for session flags on the third node. Figure 7 has a Push,
Acknowledgment (PA) value with one more node (bytesPerPacket) and Fig. 8 has an
FRPA value and ends there.

Fig. 8  C4.5D model tree 2

Fig. 9  C4.5D model tree 3

Table 5  ANOVA initial statistics

DF SS MS F-value Pr > F

Models 5 0.0226 0.002265 120.89 Pr < 6.6e−16

Residuals 18 0.0187 0.000187

Page 22 of 30Kemp et al. Journal of Big Data (2023) 10:22

ANOVA was used to determine whether or not there were statistically significant
differences between the means of our six models. As indicated in Table 5, our F-value
is 120.8825, and the p-value is less than 6.62e−15, indicating a significant difference
between the groups. Based on the 95% confidence interval, our findings show that
variation in mean values amongst classifiers has more weight than variation in mean
values for all models.

As a result, the null hypothesis is rejected. Statistics show a link among learners and
slow application-layer DoS attack detection, demonstrating differences are statistically
significant. A Tukey’s HSD post-hoc test was used to identify the statistically significant
differences between learners. To categorize our models, we used a Tukey’s test. Table 6
shows the top five learners in Group A and JRip in Group B. The classifiers and percent-
ages associated with the various letter clusters are different. This identifies two levels (A
and B) of performance groupings within the machine learners. Group A learners, RF,
C45N, C45D, 5NN, and NB were significantly better than the other learner JRip from
Group B.

Feature selection results

The following section shows the results of our experiment when applying the Weka fea-
ture selection functions CfsSubsetEval, ConsistencySubsetEval, Single-Attribute, and
ClassifierSubsetEval methods.

The Correlated-based feature selection (CFS) assessors employed Rank Search Chi-
Squared (RSCS), Greedy Stepwise-Forward (GSF), Greedy Stepwise-Backward (GSB),
Rank Search Gain Ratio (RSGR), Best First-Forward (BFF), and First-Backward (BFB).
Table 7 contains the results for CFS evaluators. Both generated a subset of flags with
three features: bytesPerPacket, bytesPerPacket, and Durmsec. The three-feature set
performs well, with AUC values of 0.650 for the five Group A classifiers and 0.650 for

Table 6  Tukey’s HSD group initial results

Model AUC​ AUC StD Group

RF 0.981321 0.0000056 A

C45N 0.982419 0.0000078 A

C45D 0.981376 0.0000049 A

5NN 0.982128 0.0000066 A

NB 0.976344 0.0000056 A

JRip 0.656214 0.3458021 B

Table 7  CfsSubsetEval results

Classifier AUC​ F measure Correctly classified (%) Type II errors

RF 0.979 0.981 98.33 13,060

C4.5N 0.978 0.980 98.20 14,777

C4.5D 0.977 0.980 98.20 14,788

JRip 0.650 0.963 97.00 23,967

5NN 0.970 0.961 96.50 14,750

NB 0.977 0.979 98.15 14,390

Page 23 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

our Group B classifier, JRip. The F-measure had similar results for all the models, with
JRip as the lowest with 0.963. The performance metrics of C4.5N and C4.5D had similar
Type II errors with 14,777 and 14,788 for the three-feature set. NB and 5NN had slightly
fewer Type II errors, with 14,390 and 14,750, respectively. RF had the least amount of
Type II errors overall, with 13,060. By condensing the feature space to the most relevant
features, the CFS feature selection technique achieves effective performance with fewer
features, reduces the likelihood of overfitting, and speeds up processing. Five out of six
classifiers are effective at detecting slow application-layer attacks using the three-feature
subset.

Our second attribute subset evaluator, ConsistencySubsetEval, used two search
methods [Random Search (RS) and Exhaustive Search (ES)] and two options (forward
and backward search). We denote these methods as, BFF, BFB, ES, and RS. Consisten-
cySubsetEval had favorable AUC results with the six classifiers as shown in Table 8. The
10-feature subset includes Packets, Bytes, SessionFlags, Flags, Durmsec, PayloadInBytes,
PayloadRate, PacketsPerSec, BytesPerSec, and BytesPerPacket. The F-measure and cor-
rectly classified instances had similar results for all the models, verifying the predictabil-
ity. NB had a significantly lower number of Type II errors with 1168, followed by C4.5D,
C4.5N, RF, and the highest number of errors for JRip at 23,354. As mentioned previ-
ously in this paper, Type II errors are critical for predicting attacks on a network. With
this ten-feature dataset, NB distances itself from the rest of the classifiers for detecting
attacks on a network. The Consistency Feature selection substantially reduces the num-
ber of features that can differentiate among normal and attack data in relation to the
four slow application-layer attacks: Slowloris, Slow Post, Slow Read, and Apache Range
Header.

The four single-attribute evaluators, Gain Ratio (GR), Chi-Squared, Symmetric-Uncer-
tainty, and IG, created a ten-feature set. The ten-feature set includes Packets, Bytes,
Flags, InitialFlags, SessionFlags, Durmsec, PayloadInBytes, PacketsPerSec BytesPerSec,
and BytesPerPacket. The difference between this ten-feature set and the previous is two
features. The previous set included PayloadRate but not InitialFlags as compared to this
ten-feature set. In reference to the four single-attribute evaluators, Chi-Squared pro-
duced the most favorable results, which are shown in Table 9. The ten-feature set per-
forms well, with AUC values for the Group A classifiers and slightly less for the Group
B classifier, JRip. The F-measure and correctly classified instances had similar results for
all the models. NB again had a significantly lower number of Type II errors than all other
machine learners with 607, followed by C4.5D, C4.5N, RF, and the highest number of

Table 8  ConsistencySubsetEval results

Classifier AUC​ F measure Correctly classified (%) Type II errors

RF 0.981 0.982 98.42 13,021

C4.5N 0.982 0.982 98.41 13,054

C4.5D 0.981 0.982 98.40 13,076

JRip 0.656 0.965 97.17 23,354

5NN 0.982 0.982 98.40 13,060

NB 0.976 0.932 91.10 1168

Page 24 of 30Kemp et al. Journal of Big Data (2023) 10:22

errors for JRip 23,360. As mentioned previously in this paper, Type II errors are critical
for predicting attacks on a network. NB had its best performance for Type II errors with
607.

The Classifier Subset evaluator performed well with ten features as shown Table 10.
They are Packets, Bytes, InitialFlags, Flags, Durmsec, PayloadInBytes, PayloadRate,
PacketsPerSec, BytesPerSec, BytesPerPacket. This ten-feature set eliminated Session-
Flags as compared to the previous two ten-features sets. The ten-feature set also shows
good performance with AUC values for Group A classifiers, followed by Group B classi-
fier JRip 0.656. The F-measure had similar results for all the models. Again, the perfor-
mance metrics for C4.5N and C4.5D were similar. C4.5N had a slightly lower number of
Type II errors than C4.5D, with 13,026 and 13,050 for the ten-feature set. RF and 5NN
had slightly fewer Type II errors, with 13,025 and 13,060, respectively. NB consistently
has the least amount of Type II errors overall, with 1085, while maintaining similar AUC
and F-measure results.

Table 9  Single-attribute evaluator results

Classifier AUC​ F measure Correctly classified (%) Type II errors

RF 0.981 0.982 98.40 13,022

C4.5N 0.982 0.982 98.40 13,038

C4.5D 0.980 0.982 98.40 13,039

JRip 0.656 0.965 97.13 23,360

5NN 0.982 0.982 98.40 13,060

NB 0.979 0.933 91.32 607

Table 10  Classifier subset evaluator results

Classifier AUC​ F measure Correctly classified (%) Type II errors

RF 0.982 0.982 98.42 13,025

C4.5N 0.982 0.982 98.40 13,026

C4.5D 0.981 0.982 98.41 13,050

JRip 0.656 0.965 97.17 23,354

5NN 0.981 0.982 98.40 13,060

NB 0.975 0.932 91.13 1085

Table 11  PCA results

Classifier AUC​ F measure Correctly classified (%) Type II error

RF 0.981 0.982 98.41 13,049

C4.5N 0.982 0.982 98.40 13,088

C4.5D 0.972 0.976 98.40 13,101

JRip 0.770 0.977 98.00 15,770

5NN 0.972 0.980 97.80 13,091

NB 0.981 0.934 91.37 554

Page 25 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

PCA results

Table 11 displays the results of six classifiers using PCA. We sorted the eigenvalues by
decreasing significance and selected the eigenvectors based on the largest eigenvalues
representing 95% of the variance in our dataset. We then used the new feature subspace
from PCA with our six learners.

The PCA dataset had the best results with NB. It had the lowest value for Type
II errors with 554 and slightly improved its AUC and FPR at 0.981 and 0.089. NB
performs substantially better than all other learners in minimizing false negatives,
demonstrating that it can better protect a network. PCA produced some notewor-
thy results. JRip, which had been significantly high with Type II errors, was similar
to RF, C4.5N, and C4.5D, and 5NN had an improved AUC of 0.774, though it was
the lowest. C4.5N, C4.5D, RF, and 5NN had similar Type I and Type II errors. False
alarms account for roughly 40% of the alerts that cybersecurity teams receive daily.
This number of false alarms can be overwhelming, as well as an enormous waste of
time [53]. Training a new device and software is standard practice on the network for
a predetermined duration [52].

ANOVA was used to examine statistically meaningful disparities among the six
classifiers’ AUC values for multiple slow application-layer attacks. The F-value for
Table 12 ANOVA is 739.874 and the p-value is less than 1.0446e−10. As with the
initial AUC results, our results suggest that the variance of means between differ-
ent learners is significantly more relevant than the fluctuation in mean values for all
models.

We reject the null hypothesis once more. Our PCA results show that the differences
between learners and multiple slow application-layer DoS attack detection are statis-
tically significant. As illustrated in Table 13, the majority of groupings produced close
pairings, with our models, RF, C45N, C45D, 5NN, and NB being assigned to Group A
and JRip to Group B.

Table 14 displays how our five feature selection methods and Group A classifier
performed using feature selection methods against the original twelve features. The

Table 12  ANOVA PCA statistics

DF SS MS F-value Pr > F

Models 5 0.0266 0.026690 739.74 Pr < 1.4e−15

Residuals 18 0.0036 0.000361

Table 13  Tukey’s PCA statistics

Model AUC​ AUC StD Group

RF 0.981229 0.0000063 A

C45N 0.982214 0.0000066 A

C45D 0.972182 0.0000081 A

5NN 0.972263 0.0000076 A

NB 0.981364 0.0000054 A

JRip 0.770082 0.0000210 B

Page 26 of 30Kemp et al. Journal of Big Data (2023) 10:22

acronyms from the table are CFS, Consistency Subset Selection (CON), Single-Attrib-
ute Selection (SA), and Classifier Subset Selection (CLS). NB had the best performance
regarding Type II errors in four out of five feature selection methods. NB performed
very well with SA and PCA for Type II errors with 607 and 554, respectively. These
results reflect a significant difference as compared to the other five learners. When
comparing NB results against the original twelve features, it more than cut in half the
number of Type II errors when applying the PCA method. NB with PCA had the best
overall performance for detecting multiple application-layer DoS attacks.

Discussion

We collected all traffic on a live network using a Linux web server in order to analyze our
aggregation of slow application-layer DoS attacks using Netflow data for the purpose of
detecting slow DoS attempts. The capture generated Netflow data, which was examined
by six machine learners to determine their ability to predict multiple slow application-
layer DoS attempts. After that, we applied feature selection algorithms that proved effec-
tive performance with fewer features for discriminating between normal and attack data
with our DoS attacks. As the findings demonstrate, feature selection datasets produced
favorable performance ratings. When comparing Type II errors using feature selection
approaches, there was a significant difference between NB and the rest of the Group “A”
models.

In summary, Netflow can play a significant role in a network monitoring solution
for multiple slow DoS attacks. One benefit of using Netflow is the speed at which an
attack can be detected in real-time. This is critical and increases the chance of purg-
ing an attack before it does any damage. Netflow data is modest in size, which reduces
processing time and makes it easier to read, analyze, and warn network managers when
abnormalities and statistics are detected. If a learner achieves the same detection level
with less data, this reduces the demand for CPU resources, increasing computational
efficiency. Additionally, as a network scales in size, this becomes critical when using Net-
flow data. Combining Netflow with machine learners is efficient in detecting and alert-
ing network security for multiple slow DoS attacks.

We realize that our methodology was not implemented and validated in real-time.
This is one limitation that will be addressed in future work. Another limitation is the use
of only one feature extraction method PCA. Future work will compare the use of PCA
with other methods of feature extraction.

Table 14  Top feature selection method with classifier results

Classifier/FS AUC​ F measure Correctly classified (%) Type II error

CFS/RF 0.979 0.981 98.33 13,655

CON/NB 0.976 0.932 91.10 1168

SA/NB 0.979 0.933 91.32 607

CLS/NB 0.975 0.932 91.13 1085

PCA/NB 0.981 0.934 91.37 554

Page 27 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

Conclusion
We suggested a method for detecting multiple application-layer slow DoS attacks by suc-
cessfully utilizing machine learning and Netflow data. Four rounds of stratified five-fold
cross-validation were used to calculate performance metrics. This research produces
normal and attack traffic on a publicly accessible web server that is accessed by the cam-
pus community and the public at large. We give a more accurate depiction of the genuine
network environment than previous testbeds by expanding our capture and including
actual attacks alongside normal network traffic. Additionally, this strategy strengthens
the integrity of our data by utilizing real-world traffic rather than related works that are
not. We used the SlowHTTPTest software to conduct four unique attacks with varying
modifications on each. The purpose of this experiment is to determine whether features
aggregated from four separate slow DoS attacks are effective at detecting them.

Our investigation demonstrates that this technique for detecting multiple slow appli-
cation-layer DoS attacks using features from Netflow data has a high AUC and a low
percentage of false positives and negatives. For identifying multiple slow application-
layer attacks, NB has the lowest Type II error rate. When we used feature selection
approaches, we observed that the five Group A models had comparable acauc values and
fewer Type II errors. NB used PCA to extract features from the original twelve features,
resulting in the lowest Type II errors, and F-measure score of more than 90%, and an
AUC value of 95% or greater.

Additionally, we demonstrated that all six learners performed admirably with Netflow
data in detecting multiple application-layer slow DoS attack traffic, with five of them
outperforming the remaining learner. As a result, machine learning models trained
using Netflow features may successfully discern attack and normal network data across
slow multiple application-layer DoS attacks.

Future work will conduct a cumulative and comparative evaluation of the detection
and discrimination of multiple slow application-layer attacks using multi-classifiers and
Netflow data. We will also further evaluate the impact that threshold adjustments can
have on other performance metrics. In addition, the real-time implementation and vali-
dation of our approach will be investigated. Finally, future work will compare the use
of PCA with other feature extraction methods to evaluate different intrusion detection
models.

Abbreviations
5NN	� 5-Nearest Neighbors
ANOVA	� Analysis of variance
API	� Application programming interface
AUC​	� Area Under the Receiver Operating Characteristic (ROC) Curve
BFB	� Best first-backward
BFF	� Best First-Forward
CFS	� Correlated-based feature selection
CLS	� Classifier Subset Selection
CON	� Consistency Subset Selection
CSV	� Comma-Separated Values
DDoS	� Distributed Denial of Service
DNS	� Domain Name Service
DoS	� Denial of Service
ES	� Exhaustive Search
FN	� False negative
FNR	� False negative rate
FP	� False positive

Page 28 of 30Kemp et al. Journal of Big Data (2023) 10:22

FPC	� Full packet capture
FPR	� False Positive Rate
FRPA	� Finish, Reset, Push, Acknowledgment
GSB	� Greedy Stepwise-Backward
GR	� Gain Ratio
GSF	� Greedy Stepwise-Forward
GUI	� Graphical User Interface
HOIC	� High Orbit Ion Cannon
HSD	� Honestly Significant Difference
HTTP	� Hypertext Transfer Protocol
IG	� Information Gain
IPFIX	� Internet Protocol Flow Information Export
IRC	� Internet Relay Chat
kNN	� K-Nearest Neighbors
LOIC	� Low Orbit Ion Cannon
NB	� Naive Bayes
OSI	� Open Systems Interconnection
OWASP	� Open Web Application Security Project
PA	� Push, Acknowledgment
PCA	� Principal Component Analysis
RF	� Random Forest
RFC	� Request for Comments
RS	� Random Search
RSCS	� Rank Search Chi-Squared
RSGR	� Rank Search Gain Ratio
RUDY	� R U Dead Yet
SA	� Single-Attribute Selection
SiLK	� System for Internet-Level Knowledge
SMTP	� Simple Mail Transfer Protocol
SNE	� Stochastic Neighbor Embedding
SSL	� Secure Sockets Layer
Std	� Standard Deviation
TCP	� Transmission Control Protocol
TN	� True Negative
TNR	� True negative rate
TP	� True Positive
TPR	� True Positive Rate
UDP	� User Datagram Protocol
URL	� Uniform Resource Locator
UAS	� User Agent Strings

Acknowledgements
We would like to thank the reviewers in the Data Mining and Machine Learning Laboratory at Florida Atlantic University.

Author contributions
TMK introduced this topic to CK, who prepared the manuscript and the primary literary review for this work. All authors
provided feedback to CK and helped to shape and finalize the research. All authors read and approved the final
manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 June 2022 Accepted: 2 February 2023

Page 29 of 30Kemp et al. Journal of Big Data (2023) 10:22 	

References
	1.	 Zuech R, Hancock J, Khoshgoftaar TM. Detecting web attacks using random undersampling and ensemble learners.

J Big Data. 2021;8(1):1–20.
	2.	 Leevy JL, Khoshgoftaar TM. A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 big data.

J Big Data. 2020;7(1):1–19.
	3.	 Demoulin HM, Pedisich I, Vasilakis N, Liu V, Loo BT, Phan LTX. Detecting asymmetric application-layer denial-of-

service attacks in-flight with finelame. In: Proceedings of the 2019 USENIX conference on Usenix annual technical
conference; 2019. p. 693–707.

	4.	 Mankier. nfcapd netflow capture daemon; 2009. https://​www.​manki​er.​com/1/​nfcapd.
	5.	 CERT: SiLK; 2022. https://​tools.​netsa.​cert.​org/​silk/​index.​html.
	6.	 Sanders C, Smith J. Applied network security monitoring: collection, detection, and analysis. Amsterdam: Else-

vier; 2013.
	7.	 Claise B, Trammell B, Zurich E, Aitken P. Specification of the IP flow information export (IPFIX) protocol for the

exchange of flow information (RFC 7011). 2013. https://​tools.​ietf.​org/​search/​rfc70​11.
	8.	 Benzel T, Braden B, Faber T, Mirkovic J, Schwab S, Sollins K, Wroclawski J. Current developments in deter cyberse-

curity testbed technology. In: Conference for homeland security, 2009. CATCH’09. Cybersecurity Applications &
Technology. IEEE; 2009. p. 57–70.

	9.	 Peterson L, Bavier A, Fiuczynski ME, Muir S. Experiences building planetlab. In: Proceedings of the 7th sympo-
sium on operating systems design and implementation. USENIX Association; 2006. p. 351–66.

	10.	 Ndibwile JD, Govardhan A, Okada K, Kadobayashi Y. Web server protection against application layer DDoS
attacks using machine learning and traffic authentication. In: 2015 IEEE 39th annual computer software and
applications conference (COMPSAC), vol. 3. IEEE; 2015. p. 261–7.

	11.	 Saravanan R, Shanmuganathan S, Palanichamy Y. Behavior-based detection of application layer distributed
denial of service attacks during flash events. Turk J Electr Eng Comput Sci. 2016;24(2):510–23.

	12.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update.
ACM SIGKDD Explor Newsl. 2009;11:10–8.

	13.	 Radware. Radware’s DDoS handbook: the ultimate guide to everything you need to know about DDoS attacks.
2020. https://​www.​radwa​re.​com/​social/​ddosh​andbo​ok/.

	14.	 Zeifman I. Global DDoS threat landscape Q3 2017. 2017. https://​www.​incap​sula.​com/​ddos-​report/​ddos-​report-​
q3-​2017.​html.

	15.	 Braden R. Probing zero windows. 1989. https://​tools.​ietf.​org/​html/​rfc11​22#​page-​92.
	16.	 Calvert C, Kemp C, Khoshgoftaar TM, Najafabadi M. Detecting slow http post dos attacks using netflow features.

In: The thirty-second international FLAIRS conference. 2019.
	17.	 CVE. CVE-2011-3192. 2011. https://​www.​cvede​tails.​com/​cve/​CVE-​2011-​3192/.
	18.	 BlackmoreOps. DoS website using slowhttptest in Kali Linux slowloris, slow HTTP POST and slow read attack in

one tool. 2015. https://​www.​black​moreo​ps.​com/​2015/​06/​07/​attack-​websi​te-​using-​slowh​ttpte​st-​in-​kali-​linux/.
	19.	 SourceForge. Low orbit ion cannon. 2016. https://​sourc​eforge.​net/​proje​cts/​loic/.
	20.	 SourceForge. High orbit ion cannon. 2016. https://​sourc​eforge.​net/​proje​cts/​high-​orbit-​ion-​cannon/.
	21.	 SourceForge. r-u-dead-yet. 2016. https://​sourc​eforge.​net/​proje​cts/​high-​orbit-​ion-​cannon/.
	22.	 OffSec. Slowhttptest—penetration testing tools. 2021. https://​tools.​kali.​org/​stress-​testi​ng/​slowh​ttpte​st.
	23.	 Wireshark. tshark—Dump and analyze network traffic. 2021. https://​www.​wires​hark.​org/​docs/​man-​pages/​

tshark.​html.
	24.	 Tcpdump. tcpdump—dump traffic on a network. 2022. https://​www.​tcpdu​mp.​org/​manpa​ges/​tcpdu​mp.1.​html.
	25.	 Cisco. NetFlow version 9 flow-record format. 2011. https://​www.​cisco.​com/​en/​US/​techn​ologi​es/​tk648/​tk362/​

techn​ologi​es_​white_​paper​09186​a0080​0a3db9.​html.
	26.	 Mankier. nfdump netflow display and analyze program. 2009. https://​www.​manki​er.​com/1/​nfdump.
	27.	 Wireshark. dumpcap Dump network traffic. 2021. https://​www.​wires​hark.​org/​docs/​man-​pages/​dumpc​ap.​html.
	28.	 Zargar ST, Joshi J, Tipper D. A survey of defense mechanisms against distributed denial of service (DDoS) flood-

ing attacks. IEEE Commun Surv Tutor. 2013;15(4):2046–69.
	29.	 Singh VP, Pal P. Survey of different types of captcha. Int J Comput Sci Inf Technol. 2014;5(2):2242–5.
	30.	 Chwalinski P, Belavkin R, Cheng X. Detection of application layer ddos attack with clustering and likelihood

analysis. In: 2013 IEEE Globecom Workshops (GC Wkshps), 2013. p. 217–222. IEEE
	31.	 Chwalinski P, Belavkin R, Cheng X. Detection of application layer DDoS attacks with clustering and Bayes factors.

In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE; 2013. p. 156–61.
	32.	 Liao Q, Li H, Kang S, Liu C. Feature extraction and construction of application layer DDoS attack based on user

behavior. In: Proceedings of the 33rd Chinese control conference. IEEE; 2014. p. 5492–7.
	33.	 Ye C, Zheng K, She C. Application layer DDoS detection using clustering analysis. In: Proceedings of 2012 2nd

international conference on computer science and network technology. IEEE; 2012. p. 1038–41.
	34.	 Vijayalakshmi M, Shalinie SM, Pragash AA. IP traceback system for network and application layer attacks. In: 2012

international conference on recent trends in information technology. IEEE; 2012. p. 439–44.
	35.	 Dantas YG, Nigam V, Fonseca IE. A selective defense for application layer DDoS attacks. In: 2014 IEEE joint intel-

ligence and security informatics conference. IEEE; 2014. p. 75–82.
	36.	 Yadav S, Selvakumar S. Detection of application layer DDoS attack by modeling user behavior using logistic

regression. In: 2015 4th international conference on reliability, Infocom technologies and optimization (ICRITO)
(trends and future directions). IEEE; 2015. p. 1–6.

	37.	 Durcekova V, Schwartz L, Shahmehri N. Sophisticated denial of service attacks aimed at application layer. In:
2012 ELEKTRO. IEEE; 2012. p. 55–60.

	38.	 Stevanovic D, Vlajic N. Application-layer DDoS in dynamic web-domains: building defenses against next-genera-
tion attack behavior. In: 2014 IEEE conference on communications and network security. IEEE; 2014. p. 490–1.

	39.	 Devi SR, Yogesh P. An effective approach to counter application layer DDoS attacks. In: 2012 third international
conference on computing, communication and networking technologies (ICCCNT’12). IEEE; 2012. p. 1–4.

https://www.mankier.com/1/nfcapd
https://tools.netsa.cert.org/silk/index.html
https://tools.ietf.org/search/rfc7011
https://www.radware.com/social/ddoshandbook/
https://www.incapsula.com/ddos-report/ddos-report-q3-2017.html
https://www.incapsula.com/ddos-report/ddos-report-q3-2017.html
https://tools.ietf.org/html/rfc1122#page-92
https://www.cvedetails.com/cve/CVE-2011-3192/
https://www.blackmoreops.com/2015/06/07/attack-website-using-slowhttptest-in-kali-linux/
https://sourceforge.net/projects/loic/
https://sourceforge.net/projects/high-orbit-ion-cannon/
https://sourceforge.net/projects/high-orbit-ion-cannon/
https://tools.kali.org/stress-testing/slowhttptest
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
https://www.mankier.com/1/nfdump
https://www.wireshark.org/docs/man-pages/dumpcap.html

Page 30 of 30Kemp et al. Journal of Big Data (2023) 10:22

	40.	 Wen S, Jia W, Zhou W, Zhou W, Xu C. CALD: surviving various application-layer DDoS attacks that mimic flash
crowd. In: 2010 fourth international conference on network and system security. IEEE; 2010. p. 247–54.

	41.	 Xu C, Zhao G, Xie G, Yu S. Detection on application layer DDoS using random walk model. In: 2014 IEEE interna-
tional conference on communications (ICC). IEEE; 2014. p. 707–12.

	42.	 Singh B, Kumar K, Bhandari A. Simulation study of application layer DDoS attack. In: 2015 international confer-
ence on green computing and internet of things (ICGCIoT). IEEE; 2015. p. 893–8.

	43.	 Vlajic N, Slopek A. Performance and economies of bot-less application-layer DDoS attacks. In: The 9th interna-
tional conference for internet technology and secured transactions (ICITST-2014). IEEE; 2014. p. 318–23.

	44.	 Stevanovic D, Vlajic N. Next generation application-layer DDoS defences: applying the concepts of outlier detection
in data streams with concept drift. In: 2014 13th international conference on machine learning and applications.
IEEE; 2014. p. 456–62.

	45.	 Clavel M, Durán F, Eker S, Lincoln P, Martí-Oliet N, Meseguer J, Talcott C. All about Maude—a high-performance logi-
cal framework: how to specify, program, and verify systems in rewriting logic, vol. 4350. Berlin: Springer; 2007.

	46.	 Kemp C, Calvert C, Khoshgoftaar TM. Detection methods of slow read dos using full packet capture data. In: 2020
IEEE 21st international conference on information reuse and integration for data science (IRI). IEEE; 2020. p. 9–16.

	47.	 Raschka S, Mirjalili V. Python machine learning. 2nd ed. Birmingham: Packt Publishing; 2017.
	48.	 Calvert C, Khoshgoftaar TM, Kemp C, Najafabadi MM. Detection of slowloris attacks using netflow traffic. In: 24th

ISSAT international conference on reliability and quality in design, 2018. p. 191–6.
	49.	 OWASP. OWASP foundation. 2021. https://​owasp.​org/.
	50.	 Kemp C, Calvert C, Khoshgoftaar T. Utilizing netflow data to detect slow read attacks. In: 2018 IEEE international

conference on information reuse and integration (IRI). IEEE; 2018. p. 108–16.
	51.	 Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. Cambridge: Mor-

gan Kaufmann; 2016.
	52.	 Lemos R. 3 steps to keep down security’s false-positive workload. 2013. https://​www.​darkr​eading.​com/​analy​tics/​

secur​ity-​monit​oring/3-​steps-​to-​keep-​down-​secur​itys-​false-​posit​ive-​workl​oad/d/​d-​id/​11405​13.
	53.	 Infocyte. Cybersecurity 101: what you need to know about false positives and false negatives. 2021. https://​www.​

infoc​yte.​com/​blog/​2019/​02/​16/​cyber​secur​ity-​101-​what-​you-​need-​to-​know-​about-/​false-​posit​ives-​and-​false-​negat​
ives/.

	54.	 Laerd. One-way ANOVA. 2021. https://​stati​stics.​laerd.​com/​stati​stical-​guides/​one-​way-​anova-​stati​stical-​guide-4.​php.
	55.	 Liu H, Setiono R. A probabilistic approach to feature selection—a filter solution. In: 13th international conference on

machine learning; 1996. p. 319–27.
	56.	 Surendiran B, Sreekanth P, Keerthi ESH, Praneetha M, Swetha D, Arulmurugaselvi N. Feature subset selection for

cancer detection using various rank-based algorithms. Int J Med Eng Inform. 2021;13(4):346–57.
	57.	 Roweis ST, Saul LK, Hinton GE. Global coordination of local linear models. In: Advances in neural information pro-

cessing systems; 2002. p. 889–96.
	58.	 Maaten Lvd, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(Nov):2579–605.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://owasp.org/
https://www.darkreading.com/analytics/security-monitoring/3-steps-to-keep-down-securitys-false-positive-workload/d/d-id/1140513
https://www.darkreading.com/analytics/security-monitoring/3-steps-to-keep-down-securitys-false-positive-workload/d/d-id/1140513
https://www.infocyte.com/blog/2019/02/16/cybersecurity-101-what-you-need-to-know-about-/false-positives-and-false-negatives/
https://www.infocyte.com/blog/2019/02/16/cybersecurity-101-what-you-need-to-know-about-/false-positives-and-false-negatives/
https://www.infocyte.com/blog/2019/02/16/cybersecurity-101-what-you-need-to-know-about-/false-positives-and-false-negatives/
https://statistics.laerd.com/statistical-guides/one-way-anova-statistical-guide-4.php

	An approach to application-layer DoS detection
	Abstract
	Introduction
	Background
	Application-layer attack methods
	HTTP flood attack
	HTTP GET requests attack
	HTTP POST requests attack
	Apache range header attack

	Attack tools
	Data collection and analysis

	Related works
	Experimental procedure
	Data collection process
	Application-layer attack frameworks
	Aggregation of datasets
	Machine learning
	Evaluation metrics
	Feature selection
	Data processing

	Results
	Initial results
	Feature selection results
	PCA results
	Discussion

	Conclusion
	Acknowledgements
	References

