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Introduction
Network cyber-attacks have become commonplace in today’s world. These attacks have 
become very sophisticated and challenging to prevent. Many stealthier attacks target 
the application layer, where they take advantage of vulnerabilities in web servers [1]. 
Because web servers are open to the public, they are accessed frequently by many users. 
The attackers’ goal is to simulate legitimate, normal traffic as closely as possible, which 
they do well. The task for those defending the networks is to determine the difference 
between normal and attack traffic. Making it even more of a challenge, the attackers are 
constantly updating their attack methods. One approach to assisting network security 
personnel is machine learning. Networks have enormous amounts of data they collect. 
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The data comes from various sources, such as logs, Full Packet Captures (FPCs), and 
Netflow traffic. Machine learning can use data from these sources as input for machine 
learning algorithms. Also, algorithms have many options that can optimize that algo-
rithm for a given scenario.

Additionally, there are techniques used to enhance the data before the machine 
learning algorithm is applied. After collecting the data, the next step is data cleansing, 
followed by the machine learning process. Selecting the most relevant attributes, com-
monly referred to as features, generally improves the machine learner’s performance. 
One must keep in mind that a set of features that perform well with one machine learner 
may not perform well with another machine learner. Discovering the correct set of fea-
tures for machine learning is referred to as feature selection. The goal of feature selection 
is to determine characteristics that will produce the best accuracy and predictability for 
the machine learner. Network attacks come in many varieties, each of which operates 
at different layers, with slow Denial of Service (DoS) attacks operating at the applica-
tion layer as shown in Fig. 1. Our work concentrates on multiple application-layer DoS 
attacks in this study. User applications receive network services from the application 
layer. Protocols that operate with user data are known as network services. At the appli-
cation level, web browsers rely on the Hypertext Transfer Protocol (HTTP) protocol to 
compress data sent to and received from a web page.

In recent years, DoS attacks targeting application protocols have been on the rise [2]. 
HTTP, Domain Name Service (DNS), Simple Mail Transfer Protocol (SMTP), and other 
application protocols have increased attacks over the past several years. It is common 
for application-layer attacks to concentrate on these protocols because attackers can 
exploit some weaknesses [3]. Attacks targeting application resources can take various 
forms, such as HTTP GET, HTTP POST, Slow Read, and Apache Header attacks. The 

Fig. 1  Slow DoS at the application layer
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HTTP protocol contains weaknesses that attackers exploit when employing low-level 
and slow-moving tactics. A low-and-slow attack targets application or server resources 
with a modest stream of persistent traffic. Low and slow assaults, unlike more stand-
ard brute-force attacks, need extremely little bandwidth. They can be difficult to counter 
since their attack traffic blends in nicely with normal traffic, making it impossible to dis-
cern between the two.

To circumvent intrusion detection systems, attackers employ a variety of evasion 
techniques that expose the network’s DoS vulnerabilities. Evasive DoS techniques will 
secretly affect ordinary online services without causing any alarms. The use of flow-
based (Netflow) analysis is one such option. Netflow, often known as session data, is 
a high-level representation of network traffic. A conversation is represented by a five-
attribute network flow record. The IP addresses for the source and destination, as well 
as the source and destination ports, are listed first, followed by the transport protocol 
[4]. The System for Internet-Level Knowledge (SiLK) [5] is a collection of Netflow session 
data generation and analysis tools. SiLK is capable of collecting Netflow data as well as 
converting FPCs to Netflow. Netflow consumes a disproportionately smaller amount of 
storage than FPCs. Due to the smaller size, it is possible to parse flows quickly and effec-
tively without requiring a lot of CPU power. Netflow is critical when it comes to server 
memory and hard disk requirements. Netflow also makes use of well-designed features 
to prevent attackers from using evasion techniques [6].

In this study, we made three distinct contributions. The first involves examining mul-
tiple application-layer DoS attacks using Netflow features and machine learning pre-
dictive models to detect them. Predictive models are built using these features with six 
learners to detect evasive, slow application-layer DoS attempts. The six machine learn-
ing approaches are: Random Forest (RF), C4.5D and C4.5N decision trees, 5-Nearest 
Neighbors (5NN), Naive Bayes (NB), and JRip, which uses repeated incremental pruning 
to reduce errors. Based on our previous experience with network data and its diversity, 
we selected these classifiers. The six machine learners provided us with a diverse set of 
algorithms to integrate with our Netflow features. The Netflow features take advantage 
of the Internet Protocol Flow Information Export (IPFIX) [7] protocol’s scalability and 
adaptability to a variety of scenarios.

The integrity of our data is the subject of our second contribution. Other studies have 
gathered data through the use of simulations, testbeds, and software-generated traffic 
[8, 9]. We get data from a production computer network’s real-world network. Regular 
traffic aids in the representation of outcomes in a live network context. Attacks were 
produced on a functional, live platform. We created four application-layer DoS assaults 
by modifying variables in each attack utilizing three tiers of concurrent connections, giv-
ing us a broad range of attacks with represented models that mirror real-world behav-
ior. Because we provide our data in a live setting rather than simulated environments 
or testbeds, we can demonstrate its quality and integrity. When collecting data on a live 
network, there are a few obstacles to overcome. The creation of sufficient normal data, 
the concern for information privacy, the implementation of attacks on a live network 
without disruption, computers required to attack at the same time, and network man-
agement are all challenges. Because of these difficulties, other related fields frequently 
rely on publicly available databases [10, 11].
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Feature selection is our third contribution. We employ selective feature evaluation and 
investigate several methods used to specify the attribute evaluators and search meth-
ods. We evaluate the significance of a subset of attributes by a feature’s predictive ability 
and the amount of duplication between them. Highly correlated feature subsets with the 
class while having low intercorrelation are preferred. For this experiment, we chose the 
Weka [12] feature selection methods CfsSubsetEval, ConsistencySubsetEval, and Clas-
sifierSubsetEval. We also used Weka functions for single-attribute evaluation, such as 
ChiSquaredAttributeEval, GainRatioAttributeEval, and Principal Component Analysis 
(PCA), which is a feature extraction technique. When combined with the Ranker search 
method, ChiSquaredAttributeEval and Gain-RatioAttributeEval rank individual char-
acteristics according to their assessment. Unlike other single-attribute evaluators, PCA 
transforms the given set of attributes into newly created subsets of its own.

The highlights of our research are as follows:

•	 Investigating DoS attack types using Netflow features and machine learning.
•	 Using real-world network data to build intrusion detection datasets.
•	 Showing that our models are good predictors of DoS attacks.

The following is how we ordered our paper. We go over standard slow application-layer 
attack methods, tools, and data types in “Background” section. In “Related works” sec-
tion, we go over some of the other research that has been done on gathering and iden-
tifying delayed application-layer DoS HTTP attacks. Our data gathering techniques and 
experimental designs are described in “Experimental procedure” section. “Results” sec-
tion is a discussion about our results, and “Conclusion” section is our conclusion and 
future work.

Background
There are a variety of methods for enacting an application-layer DoS attack. Contingent 
on the characteristics of the network, various types of attacks are chosen based on the 
targeted traffic. In this section, we detail the slow application-layer attacks, data collec-
tion process, and Netflow traffic.

Application‑layer attack methods

DoS attacks are difficult to trace due to their evasive techniques. Attackers will imper-
sonate IP addresses to mask their origin, making DoS tracking difficult. Furthermore, 
the number of attacks focusing on the application layer is expanding at an alarming rate. 
When deploying a comprehensive Distributed Denial of Service (DDoS) defense, it is 
important to understand all the aspects of the DDoS attack mechanism. Over the past 
several years, researchers have offered numerous types of DoS attacks in their work.

Unlike high-bandwidth flooding assaults [13], low-bandwidth application-layer 
attacks focus on staying below the radar to evade discovery. Application-layer 
attacks do not require a huge number of bots and can be carried out on a single 
computer. When compared to traditional flooding attacks [14], these attacks use less 
bandwidth. The network traffic seems to be valid when a web browser is used to 
create a connection to servers using HTTP request messages. The server will then 
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accept the connection and respond to HTTP queries with HTTP response messages. 
It’s difficult to tell the difference between an attack and typical traffic, and it takes 
experience in the field.

HTTP POST or HTTP GET queries are popular methods used in attacks on the 
application layer, exhausting web servers’ resources. The routers assess the entire 
transmission to see whether there has been a sudden increase in the detection of 
DDoS flood attacks. After locating the problematic router or server, administra-
tors take steps to remove the threat. Attackers increasingly target HTTP, DNS, and 
SMTP services. Some of these attacks can be successful as compared to others if 
they require fewer network connections.

Regular expression DoS or ReDoS attacks employ a specifically constructed mes-
sage to exploit a flaw in a server-side software library. The flaw allows the server to 
spend its resources while computing a regular expression from user input or per-
forming a sophisticated regular expression attack.

Hash collision attacks are designed to exploit common security flaws in Web appli-
cation frameworks. Hash tables are created on application servers to index POST 
session parameters. When returning comparable hash values, application servers 
must manage hash collisions. Collision resolution operations consume additional 
CPU time, such as when an attacker submits a POST message with a high number of 
arguments in a hash collision DoS attack scenario. Collisions of a Hash DoS attacks 
are extremely successful and may be performed from just one machine, gradually 
depleting the resources of the server.

Slow application-layer DoS attacks focus on services and vulnerabilities, enabling 
the attack to cause a denial of service without being discovered. The attack is based 
on a short burst of traffic that targets application or server resources. Application-
layer attacks performed with the Transmission Control Protocol (TCP) connec-
tion enable the attack through regular network traffic as a valid connection. TCP 
is a dependable protocol that checks for mistakes and assesses if packets have been 
received throughout the communication between two machines. By receiving the 
server’s response gradually and employing a short TCP window size, slow appli-
cation-layer DoS attacks maintain an open line of connection. The TCP protocol’s 
Request for Comments (RFC) 1122 [15], in which the receiver advertises zero-byte 
windows. The sender does not need to provide any further data to keep the commu-
nication tunnel open. By activating a zero-byte connection window, the target has 
created a vulnerability for a slow application-layer DoS attack.

While large-scale DDoS assaults are more likely to be identified immediately, low 
and slow level attacks can go undetected for lengthy periods of time while deny-
ing or degrading service to legitimate customers. Customers who purchase products 
and require access to internet accounts at anytime of day expect networks to have 
fast and efficient accessibility for their daily operations. Because of the widespread 
reliance on this access in today’s networks, malevolent attackers have turned their 
attention to this type of server. DoS attacks are designed to prevent customers and 
employees from receiving services. The methods utilized in application-layer DDoS 
assaults are listed below.
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HTTP flood attack

HTTP flood attacks are the most common DDoS attacks targeting application 
resources. These attacks look like normal HTTP GET or POST requests to a victim’s 
Web server, rendering them difficult to identify. HTTP flood attacks often include 
numerous computers (bots). These bots repeatedly request pages from the target site, 
triggering a DoS condition. The High Orbit Ion Cannon (HOIC) tool enables the exe-
cution of multi-threaded HTTP flood assaults in an easy-to-use manner.

HTTP GET requests attack

A malicious HTTP GET request monopolizes the server’s capabilities by using a large 
number of open connections. The available connections eliminate the requirement 
for services to consumers to establish authentic relationships. The attacker produces 
and transmits partial HTTP GET requests to the server, causing each connection 
request to be opened in a separate thread. The attacker transmits HTTP header data 
infrequently to ensure connections remain open and do not time out. Because the 
transmission occurs slowly, the server has to wait indefinitely, emptying the connec-
tion table and resulting in a DoS. HTTP GET-based attacks are easier to generate and 
can more efficiently scale in a botnet scenario.

Another attacking approach in this content is the Slowloris attack. The Slowloris 
attack bases itself on the weakness of an HTTP GET request. A delaying method is 
used in an HTTP GET header assault to alter timing. The attacker will not transmit all 
HTTP GET request headers concurrently, but rather divide and send each line sepa-
rately. The server establishes communication with the malicious attacker and allots 
time for dialogue.

HTTP POST requests attack

Application-layer DoS attacks like Slowloris, Slow HTTP POST, Slow Read, and Apache 
Range Header drain the concurrent connections pool, leading the server to use a lot of 
memory and CPU. Most thread process-based HTTP servers (e.g., Apache) are vulner-
able to this type of attack. Attackers can perform Slow HTTP POST attacks by issuing a 
lot of concurrent POST requests, and each of them will slowly send the POST body [16]. 
The attacker detects forms on the web server and sends HTTP POST requests to the 
web server via the forms and applies the Slow HTTP POST attack. Instead of being sent 
in bulk, POST requests are delivered one byte at a time. When an attacker sends a slow 
HTTP GET request, the attacker keeps the vulnerable connection open by progressively 
sending fresh bytes of POST data at regular intervals. Given the length of the HTTP 
POST request’s content, the server is forced to wait for the entire POST request to be 
received. The attacker repeats this activity in parallel, never closing a connection that 
is open. After several hundred connections are established, the target server becomes 
incapable of handling new requests, resulting in a DoS issue.

Apache range header attack

The Apache Range Header attack takes advantage of an Apache HTTP Server’s binary 
filter, allowing a malicious attack to launch a DoS attack through a range header 
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expressing numerous intersecting scales [17]. A remote attacker can slow down or 
exhaust the resources of the service or server, rendering it incapable of responding 
to legitimate clients in a timely manner. The result of this vulnerability produces the 
result of a DoS. The server is unable to service any requests and refuses any addi-
tional connections. Using the SlowHTTPTest tool [18], a simple command generates 
a HEAD request with a header range of 0-, x-1, x-2, x-3, x-y where x is set by -a argu-
ment, y is set by -b argument and increments by 1 byte. The test works with various 
connection rates and numbers over Secure Sockets Layer (SSL).

Attack tools

This subsection briefly presents an overview of the primary attack tools used to exe-
cute application-layer attacks while staying under the radar. The development of spe-
cific attack tools focuses on performing attacks more efficiently and quickly.

The Orbit Ion Cannon is an offensive weapon available in two configurations: high 
and low. Both simplify the execution of multi-threaded HTTP flood assaults. Low 
Orbit Ion Cannon (LOIC) [19] can produce a substantial volume of TCP, User Data-
gram Protocol (UDP), or HTTP traffic that can overload a server and bring down a 
network. HOIC [20] is a software tool that leverages a simple Graphical User Interface 
(GUI) to inject HTTP POST and HTTP GET requests. An attacker can build Uniform 
Resource Locator (URL) lists and specify content for HOIC to traverse through as it 
produces DoS attacks by employing scripts. As a result, defending against these kinds 
of attacks becomes slightly more difficult. HTTP headers are transmitted to the desti-
nation server in tiny chunks.

R U Dead Yet (RUDY) [21] is a tool similar to Slowloris. RUDY launches a DoS 
attack by submitting HTTP POST requests using a field from the long-form field 
instead of HTTP headers injecting data into the POST field one byte at a time, result-
ing in a significant bottleneck of application threads. The long “Content-Length” field 
prevents the server from closing the connection. An attacker can create several con-
nections when communicating with a server, eventually emptying the connection 
table, thus resulting in a DoS condition.

Botnets aid DDoS tools in launching attacks from a distributed network of comput-
ers. Whether there are hundreds, thousands, or millions of botnets, they dramatically 
increase the possibility of a DoS attack. Botnets are widely used by attackers. Bot-
nets are massive networks of infected computers, frequently dubbed “zombies.” This 
enables an attacker to exert control over them. Botnet operators can command and 
control botnet devices by delivering commands to perform harmful acts using a cov-
ert channel, such as Internet Relay Chat (IRC). DDoS attacks, spam mail distribution, 
and information theft are all examples of such actions.

The attack methods previously stated can be carried out using the SlowHTTPTest 
software [22]. Slowloris, Slow HTTP POST, Slow Read, and Apache Range Header 
are among the application-layer DoS techniques that it effectively implements. Slow 
application-layer attacks target web servers that do not enforce connection timeouts. 
Concurrent connections are what bring the server down in the end. The SlowHTTPT-
est utility is seen in Fig. 2 enacting a Slow Read DoS attack.
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Data collection and analysis

There are numerous tools available for capturing, parsing, and analyzing both FPC 
and Netflow data. T-shark [23] is a network protocol analyzer that comes included 
with Wireshark. T-Shark collects and analyzes network traffic (pcap files). Pcap is 
an application programming interface for network traffic capture. Tcpdump [24] is 
a popular packet analyzer that shows packets sent or received across a computer’s 
network connections. Additionally, Tcpdump allows for the saving of packet contents 
to a file for later examination. Cisco’s products use Netflow version 9 [25] for network 
traffic accounting, security, DoS monitoring, and general network monitoring.

Another open-source product used for Netflow collection is Nfdump [26]. The 
subset of software tools in Nfdump can collect and process Netflow data. It collects 
Netflow data via Nfcapd-stored records and analyzes as per the parameters specified. 
Nfdump supports Netflow versions v1, v5, v7, v9, and IPFIX. In our experiment, we 
used Dumpcap [27] and the SiLK tool suite for collecting FPC and Netflow data.

Related works
Zargar et  al. [28] classify distinct types of DDoS flooding at the application layer. 
At the Open Systems Interconnection (OSI) network and transport layers, flooding 
attacks based on reflection amplification occur. The strategies used in these attacks 

Fig. 2  Slow application-layer attack with SlowHTTPTest tool
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are the same as those used during application-layer attacks. HTTP flooding attacks 
consume a greater portion of the attacker’s session connection request rates than 
legitimate user requests. HTTP GET/POST flooding is a well-known example of this 
type of attack, wherein the attackers send a large number of legitimate GET/POST 
requests to the targeted web server. Attackers submit sessions with more requests 
than normal, leading to a DDoS flood attack disabling the server.

Attackers utilizing image processing methods breach CAPTCHA codes [29]. The noise 
in the background is eliminated from the CAPTCHA image before it is separated for 
verification. These images consisting of background noise make them difficult to detect 
by machine-based recognition. But such material often renders photos hard to read by 
people. The consequence of these actions can cause legitimate users to grow irritated, 
and services given may be restricted.

Publicly available datasets have been used in research on application-layer DDoS like 
[30–32], but they are outdated logs. The authors of all three studies collected the first 
and second logs in 1995 for 7  days. Other captured public datasets were collected in 
1998. As a result, it is devoid of traffic generated by new apps or abnormalities. [10] 
focus on backbone traffic anomaly detectors and provides labeled backbone traffic in the 
absence of packet payloads and flows that are incomplete or asymmetric. Their approach 
aims to mitigate undiscovered hostile traffic that masquerades as legitimate traffic and 
to design a customized anti-DDoS module for general and specific DDoS tool attacks by 
incorporating a taught classifier into a random tree machine learning method.

Chengxu et al. [33] developed and provided a publicly available dataset, representing 
one 24-h day of log-only traffic. One day is just a snapshot of what was happening that 
day. Multiple-day logs would have to be collected and averaged for better results to rep-
resent what took place accurately. Also, this dataset is just a log and does not represent a 
full packet capture, which would help in a more in-depth analysis.

Simulations at layer seven (of the OSI) and application-layer DoS attacks sometimes 
employ valid IP addresses and imitate lawful queries [34]. By injecting malicious pay-
loads into their dataset, [35] formalize their assault and normal traffic on the server. 
The authors demonstrate the capacity of the statistical model checker PVeStA to thwart 
application-layer DDoS attacks using a defense mechanism and a computational system 
called Maude.

Vijayalakshmi et  al. [34] conducted application-layer DoS attacks via packet header 
processing. These assaults typically employ genuine IP addresses, imitate normal 
requests, attack or destroy the server with a damaging payload, and use worms to form 
a botnet. Their work is being implemented in the National Technical Research Organi-
zation’s Smart and Secure Environment Test Bed. Classification is performed using 
non-flooding application-layer attacks on simulated models. To utilize the Mahalano-
bis distance, we compare two statistical distributions. This is a standard distance metric. 
They then compute the distance between the newly observed payload’s byte distribution 
and the profile computed from the model for the relevant length range. The greater the 
distance score, the more suspicious this payload is.

Yadav et al. [36] used HTTP requests which attack the nitt.edu web server with the 
same attack dataset used in their testbed. A switch is utilized, connecting approximately 
100 PCs to the webserver as two bots use Java LOIC and Golden Eye Master for the 
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attack. All incoming traffic towards the webserver is captured using traffic capture soft-
ware. This provides them with three various attacks. Though they should be compli-
mented for their work, we believe improvements can be made by collecting attacks and 
normal traffic in a live environment instead of a testbed. This would provide a better rep-
resentation of overall traffic for the datasets. In addition, along with logs from the server, 
full packet captures would give more in-depth datasets to use for analysis on their own 
and as a comparison to log datasets.

Durcekova et al. [37] discussed the use of HTTP GET and POST to exploit the HTTP 
protocol’s weaknesses. The attacker sends a large number of malicious HTTP GET 
requests to the target server in this sort of attack. Due to the fact that these packets 
contain genuine HTTP payloads, vulnerable servers are unable to discriminate between 
legitimate HTTP GET requests and malicious queries. As a result, servers must handle 
all requests as normal requests, eventually exhausting their resources.

Stevanovic et al. [38] initiated three possibilities of assault. Initially, the attacker com-
piles a list of directly available websites from the website’s home page via a single URL. 
Following that, the attacker generates a surfing sequence by selecting randomly from 
this list of pages. The second attack estimates the popularity of a page by contacting 
the Google search engine. The third stage builds an attack sequence from the website’s 
index.html page and subsequent pages. They are ordered randomly via a connection 
between web pages.

Devi et al. [39] proposed a scheme to defend against DDoS attacks in the application 
layer and schedule the flash crowd during these attacks. Their main goal is to stop sus-
picious traffic and provide services to legitimate users. HTTP GET flood requests and 
perform massive file downloads from the victim server.

An architectural improvement, known as CALD that defends Web servers from mul-
tiple DDoS attacks masked as flash crowds, is described by Wen et  al. [40]. The first 
assault, dubbed “repeated request DDoS”, organizes numerous infected computers by 
continually sending queries to the website’s homepage. MyDoom and Code Red are 
all examples of this type of DDoS attack. The second method creates a list of premium 
pages and picks one at random for every HTTP GET request. The third method targets 
HTTP GET queries. This DDoS attack with recurring loads requires less effort from the 
attacker as well as being harder to detect.

Chwalinski et  al. [30] used HTTP GET attacks using sequences of requests to limit 
the accessibility of web servers. They assume that sequences of requests provide enough 
information for detection. Therefore, numerous methods have been developed that 
attempt to learn legitimate behavior from weblogs. The authors also define a clustering 
algorithm used for legitimate sequence grouping. Attacking host techniques are shown 
that closely resemble human agents. This clustering algorithm’s performance is hard to 
emulate. Statistical measurements to identify attacker hosts are then presented, along 
with their detection accuracy.

Xu et al. [41] utilized a unique user behavior-based detection approach to detect appli-
cation-layer asymmetric DoS attacks. Asymmetric attacks deliver requests that require a 
lot of work, such as dynamic interactive pages, database queries, and sophisticated script 
requests. A more covert attack occurs when attackers manage numerous workstations 
spread across a large area, use legitimate high workload requests, and use the actual IP 
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address. The rate of request attacks is not always greater than that of authorized users. 
Their requests are frequently disguised as normal ones. Asymmetric attacks are difficult 
to detect using present approaches.

Singh et al. [42] investigated the effect of application-layer DDoS attacks on web ser-
vices utilizing the NS2 simulator’s web cache model. They launch an application-layer 
DDoS attack against the webserver with an NS2 simulation using the webcache/webtraf 
model. Twenty attackers start at a short random time. The 20 clients are regarded as bots 
capable of making HTTP request/response traffic at 800-s intervals. The duration of the 
whole attack is 700 s, i.e., the attack runs from 800 to 1500 s. NS2 simulations lack a real-
world environment that would provide an accurate picture and reliable data from actual 
networks.

Vlajic and Slopek [43] used so-called Puppetnets to launch application-layer DDoS 
attacks. Their other attack spreads web bugs via email. Puppetnets are a collection of 
HTML/JavaScript commands that are inserted into the HTML/JavaScript code of a 
high-traffic, otherwise legitimate-looking website. DDoS attacks employ spam email 
with web bugs to hijack the browsers of legitimate people. A web bug inserted in an 
email enables the sender to track the precise time the email was opened for the first time 
and then revisited.

Stevanovic et al. [44] conducted three synthesized attacks categorized and employed 
in their work. “Trivial Attacks” use bots to send standalone HTTP requests with uniden-
tified and banned User Agent Strings (UAS). The exploit distributes independent HTTP 
requests that contain faked UASs with a harmless crawler. Slow Read and Slow POST 
are known examples of such attack methods. A semi-random series of HTTP requests 
from each bot appears to have been produced by a valid Web browser.

Dantas et al. [35] used Maude’s computational tool [45] to launch two distinct DDoS 
attacks. Maude is a logic-based tool for specifying and analyzing real-time systems in a 
formal manner. The attacks studied were HTTP PRAGMA as well as an HTTP POST. 
The PRAGMA HTTP header field is meant for HTTP protocol requests. Updated mod-
els of formerly required resources are made accessible to the application and any inter-
mediary libraries. The application receives PRAGMA messages that reset timeouts, 
allowing the connection to continue, and the receiver’s connection is kept open in the 
program’s memory. After a client completes the form’s input, the HTTP POST attack 
sends a request. Its purpose is to tell the webserver about the form’s data input. On 
getting a POST request, the webserver accepts the form’s content. The attacker sends 
a POST request to the website providing the data size. Rather than transmitting large 
chunks of the entry, as legitimate clients would, the attacker sends a little bit of data 
every message, using the application’s resources for a prolonged period of time.

None of the related works examine multiple application-layer DoS attacks using Net-
flow features and machine learning predictive models. In addition, we are the first to use 
feature selection and PCA for application-layer DoS detection.

Experimental procedure
This section summarizes our experiments involving four slow application-layer attacks, 
including the data collection approach, dataset aggregation, machine learning algo-
rithms, metrics, data pre-processing, as well as feature selection.
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Data collection process

The gathering of Netflow data requires the use of hardware and software to gather, 
categorize, and save information for processing and tracking. Figure  3 exhibits the 
network architecture that enables us to carry out attacks on a real-world network 
with a large number of active users. Downloads, uploads, website navigation, and 
other web server communications are all considered normal network traffic. They can 
access course materials from our server both locally and remotely. A firewall protects 
data and network resources against unauthorized access. On the Apache webserver, 
student resources have been put up as a target for our attacks. Dumpcap [27], a com-
ponent of the Wireshark software suite, is used to capture packets on a Linux-based 
server. Dumpcap is software designed to capture packets from a network and save it 
to storage. Dumpcap continuously monitors packets and archives recorded packets 
for later analysis and is frequently the major source of data utilized to analyze net-
work traffic.

Our Netflow data is collected and stored with the SiLk software suite. SiLK col-
lects FPCs and builds network flows. SiLK can convert FPC files to SiLK network flow 
records and export them as Comma-Separated Values (CSV) datasets for machine 
learning [46]. Our controlled attacks NetFlow data is analyzed to identify attack clas-
sifiers utilizing IP addresses that performed the attack and the remainder as normal. 
Netflow data does not offer the amount of forensic detail discovered in FPC data. 
Still, the small size allows it to be retained for a much longer time, which is incred-
ibly valuable when performing an analysis [6]. Netflow provides a lot of flexibility and 
functionalities that assist with detecting anomalies with flows that have proven effec-
tive in detecting DoS evasion strategies. Prior to identifying our data records, a data 
purification step was required.

Fig. 3  Network architecture
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Application‑layer attack frameworks

We used three datasets (HTTP POST, Slowloris, Slow Read) from previous research 
and one attack (Apache Range Header) newly created from this study. These four 
separate attacks represent variations in attack duration ranging from 5 to 60  min 
time frames. Our study focuses on capturing multiple application-layer DoS attacks 
against our web server. Our acquired attack data is easily identifiable because the 
attacks come from the IP addresses we performed in the attack. An attackers’ IP 
address uniquely identifies (labels) attack traffic, whereas all other instances are con-
sidered normal. By integrating controlled attacks, the labeling ensures correct attack 
labeling. We complete the data cleansing procedure by processing the data using SiLK 
and exporting it as a CSV file, using Pandas [47] to validate it.

Slowloris attacks are performed on a physical host machine rather than simu-
lated. We choose to use the Slowloris.py attack script for our tests. It was easy to 
set up and had several attack choices [48]. Our Slow Post attack tool was OWASP 
Switch-blade 4.0 from the Open Web Application Security Project (OWASP) [49]. We 
investigated popular alternative tools and settled on OWASP Switchblade due to its 
flexibility. Instead of a distributed attack, we employed a single physical host machine 
with numerous connections [48]. Slow Read attacks are performed on a physical host 
machine with the SlowHTTPTest tool [22]. Variations in settings used by SlowHTT-
PTest are applied to give us different results and valuable information on the attack 
thresholds [46, 50]. The SlowHTTPTest tool was also used for the Apache Range 
Header attack. For more in-depth information on the dataset collection process and 
environment, please refer to each of these cited works.

Aggregation of datasets

All four datasets, Slowloris, Slow Post, Slow Read, and Apache Range Header, were 
collected by our research team. The aggregated features of the four datasets produced 
the new dataset for our experiment. The aggregated slow attack dataset has 828,510 
instances consisting of 34,097 attacks and 794,413 normal traffic. When compar-
ing each previous dataset to the aggregated dataset, there was no significant impact 
on performance due to the imbalance in the data. We removed the “attribute” fea-
ture because it was an insignificant factor in previous datasets. The difference in the 
results both with and without the attribute feature was negligible. Eliminating it can 
also help with overfitting. Table 1 below names and describes the multiple slow attack 
feature set produced from the four datasets used for our experiments.

Potential attack instances correlate to the InitialFlags symbol “S.” The letter “S” 
stands for “SYN,” which denotes the start of a TCP connection. The letter “P” stands 
for “PSH,” which means “received packets” rather than “buffering.” Instead of buff-
ering packets, the “URG” flag instructs the receiver to process them. The letter “A” 
stands for “ACK” and signifies that the message has been received successfully. After 
a connection is ended, the value “F” indicates that the sender has ceased transmitting 
more data. The value “R” stands for “RST,” and it is delivered to reconnect the two 
parties. The properties for the session and initial flags are made up of eight TCP flags 
given in Table 2.
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Machine learning

Six classification techniques were chosen to develop predictive models using the data-
sets we collected. The classifiers used in our work belong to various machine learning 
families of algorithms and are widely considered to be reliable. We developed all of 
the models using the machine learning tools Weka [51] from the Waikato Environ-
ment for Knowledge Analysis. Weka is a data analysis framework that contains visu-
alization tools and algorithms.

C4.5 is a decision tree learning method that can help with classification and deci-
sion tree construction. When training, the classifiers form a hierarchy and learn 
parameters from the data model. We used two versions of C4.5: one with WEKA’s 
default parameter values (dubbed C4.5D) and another with Laplace smoothing turned 
on, and tree-pruning turned off (dubbed C4.5N). Laplace adds a small number to each 
of the counts in the frequency table, ensuring a greater than zero probability for the 
features in each class. Deactivating tree pruning allows the tree to perfectly classify 
the training set, which supports Laplace smoothing.

By selecting randomly from a set of features, RF produces several decision trees. RF 
uses more decision trees than other standard classification algorithms and has lower 
prediction errors.

Table 1  Aggregated slow attack feature set

Feature name Description

Protocol Protocol

Packets Number of packets

Bytes Number of bytes

Flags TCP flags

InitialFlags Initial TCP flags

SessionFlags Session TCP flags

Durmsec Duration in milliseconds

PayloadInBytes Payload in bytes

PayloadRate Payload/second

PacketsPerSecond Packets/second

BytesPerSecond Bytes/second

BytesPerPacket Bytes per packet

Classifiers (Attack/normal)

Table 2  TCP flags

TCP flag Description

ACK Acknowledge of a packet

FIN Finished send more

URG​ Urgent packets

PSH Process packets no buffering

RST Reset connection

ECE Explicit congestion notification

CWR​ Congestion window reduced

NS Nonce sum
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k-Nearest Neighbors (kNN) employs a distance function to discover most examples 
similar to the current instance. The distance function for our work is Euclidean. This 
study uses majority voting with k = 5. Thus there are no ties. After running trials with K 
equaling 1, 3, 5, and 7, k = 5 produced the best results.

NB is a classification algorithm that uses Bayesian inference. The algorithm is designed 
to be feature autonomous. In our experiment, we made one adjustment from the default 
settings. We chose to enable “useSupervisedDiscretization” in Weka. We use super-
vised discretization to convert numeric attributes to nominal ones. NB uses a “binning” 
approach for data smoothing. Binning sorts the data and then distributes the sorted val-
ues into several buckets known as bins. Binning methods refer to the neighborhood of 
values, replacing each value in a bin with the mean, median, or closest boundary. The 
last machine learner used in our experimental process is JRip. This rule-learning tech-
nique assigns a single class to data samples and looks for a set of rules that appropriately 
classify the data points. The class’s original ruleset produces fewer errors as the rules 
expand in scope.

Evaluation metrics

Cross-validation with four rounds uses the same proportion of observations groupings 
to produce average performance values and reduce random selection bias. The Area 
Under the Receiver Operating Characteristic (ROC) Curve (AUC) values denote the 
probability that a classifier will distinguish between a randomly chosen positive instance 
(correctly classified) and a randomly chosen negative instance (incorrectly classified). 
The data is divided into non-overlapping sections by cross-validation, which keeps the 
original class proportions in each fold. In each round, one element is retained as test 
data and the rest as training data. The AUC values for each of the five data points are cal-
culated by averaging the AUC values of the assessed models. In other words, the number 
of models created to compute the average is 5 (folds) multiplied by 4 (iterations) will 
equal 20 models.

In machine learning, the statistical classification uses a confusion matrix table layout 
that allows visualization of the performance of an algorithm. The confusion matrix has 
the following four values. True Positives (TPs) is the number of positive instances cor-
rectly predicted as positive, True Negatives (TNs) is the number of negative instances 
correctly predicted as negative, False Positives (FPs) is the number of negative instances 
incorrectly predicted as positive, and False Negatives (FNs) the number of positive 
instances incorrectly predicted as negative.

The AUC and precision-recall of each model are calculated as follows. Precision 
(positive predictive value) in machine learning refers to the proportion of relevant 
occurrences among the recovered instances. Whereas, recall (sensitivity) refers to 
the proportion of pertinent instances that are retrieved. The True Positive Rate 
(TPR) and False Positive Rate (FPR) are plotted using the AUC. TPR is the percent-
age of slow attack incidents that are accurately anticipated as attacks. FPR is the pro-
portion of normal data that was mislabeled as “attack.” As the decision threshold for 
the classifier is modified, the AUC curve is created. As the values of AUC increase, 
so does TPR while FPR decreases, producing acceptable results. Operating points in 
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our metrics focus on minimizing Type II errors in absolute terms to the lowest value 
while maintaining above 90% F-measure scores and 95% or better AUC results.

There are two kinds of errors we use for metrics. Type I errors are false positives. 
False positives are a nuisance for machine-learning systems and account for roughly 
40% of the alerts that cybersecurity teams receive daily [52]. Training a new device 
or software is standard practice on the network for a predetermined duration [53]. 
Type II errors are false negatives. They are both essential misclassification errors 
that should be minimized, but the emphasis should be more on the Type II error. 
Minimizing Type II errors is the most important focus of our experiment. It is more 
important not to miss an attack on a network than to identify an attack that is not. 
If a Type II error occurs, an attack has not been identified. The network is thus 
compromised, whereas mislabeling normal traffic as an attack is not as severe as a 
missed attack.

The F-measure is calculated from the confusion matrix in Weka using a weighted 
average. F-measure uses threshold measures for testing accuracy and weighted har-
monic mean for precision-recall tests, conveying balances among precision-recall. An 
F-measure’s best value is 1 (perfect precision and recall), and the worst value is 0. 
High scores demonstrate that the classifier has accurate results, high precision, and 
positive results in a high recall. Results with high recall and low precision produce 
predictions that are inaccurate as they relate to training sets. High precision and low 
recall produce few results, and its predicted sets are accurate compared to training 
sets. A perfect scenario is demonstrated with high precision and high recall, return-
ing many results, with all results labeled correctly. Equation 1 shows the F-measure 
equation.

Analysis of variance (ANOVA) is used to compare the variability in AUC and AUC 
Standard Deviation (Std) averages. The AUC Std value is calculated using the AUC val-
ues obtained for each learner. The F-distribution compares two independent groups’ 
means. We search for two equal means when testing the null hypothesis. A positive 
result indicates that the means of the AUC and AUC Std are not identical. The output 
from the ANOVA results in Table 5 is labeled as follows. The Df column indicates the 
individual variable’s degrees of freedom, which are determined as follows. The residuals 
take the total number of observations minus one, in the sum of squares between groups, 
as well as the entire mean described by such a variable, the Sum Sq. The Mean Sq equals 
the mean of the sum of squares. The F-measure value represents the mean square of 
each independent variable. A significant F-measure raises the risk that independent vari-
able change is not an anomaly. The F-statistic p-value is represented as Pr(> F). Testing 
the null hypothesis without any difference between group means, we use the p-value.

The AUC averages were analyzed using ANOVA to see if there were any statisti-
cally significant differences in the detection of multiple application-layer DoS attacks 
among the six learners. Our data was also subjected to Tukey’s Honestly Significant 
Difference (HSD) post-hoc tests [54]. This test examines every possible pair of means 
to see whether they differ.

(1)F-measure = 2×
precision× recall

precision+ recall
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Feature selection

Selective feature evaluation uses several methods to specify the attribute evaluator and 
search methods. Attribute selection searches the space of attribute subsets, evaluat-
ing each one by combining one of the six attribute subset evaluators with one of the 
ten search methods. Feature subset evaluators process a subset of attributes and return 
numerical measures that guide the search. For our research, we employ the Weka func-
tions CfsSubsetEval, ClassifierSubsetEval, and ConsistencySubsetEval. Additionally, we 
used the Weka functions ChiSquaredAttributeEval and Gain-RatioAttributeEval to eval-
uate single attributes. To create a ranked list, the ChiSquaredAttributeEvaluation and 
Gain-RatioAttributeEvaluation algorithms combine with the Ranker search strategy.

CfsSubsetEval evaluates a subset of attributes by examining the individual predictive 
ability of each feature and the redundancy between them. Feature subsets that have a 
high class correlation and low intercorrelation are preferred. ClassifierSubsetEval evalu-
ates a subset of attributes on training data or a hold-out set. This method uses a classifier 
to estimate the worth of a set of attributes.

The ConsistencySubsetEval evaluator measures the consistency of class values after 
the training instances [55]. Subsets of highly correlated features with the class while hav-
ing low intercorrelation (among the features in the subset) are preferred. Consistent sub-
sets of features can not ever result in a lower total set of features. We use this subset 
analyzer to search for a minimal subgroup with a similar consistency to the complete 
collection of attributes. The association of subsets bases itself on merits between 0 and 1. 
The merit function will have larger values for attribute subsets that have attributes with 
strong class-attribute correlation and weak attribute-attribute correlation.

Single-Attribute assessors utilize their search method to build ranked lists with a 
search technique called “Ranker.” Ranker is a ranking technique for individual traits, not 
a search tool for subsets. It classifies features according to their ratings and conducts 
supervised learning by deleting the lower-level values.

The algorithm poses an initial hypothesis that a class and a feature are unrelated. Then, 
it works towards disproving the initial hypothesis. The Information Gain (IG) score for 
a particular feature is normalized by the attribute’s entropy, also known as the “Infor-
mation Split Value” [56]. The algorithm determines the range of a feature in terms of a 
class’s entropy. Excellent qualities maximize a class’s entropy. The IG ranking results are 
normalized by the attribute and class entropy values in the Symmetric Uncertainty rank-
ing technique. A good feature should have a high score.

As previously stated, PCA modifies and transforms the set of qualities. New attrib-
utes rank in order of their eigenvalues. The eigenvalue measures the amount of variance 
retained by each principal component. A subset chooses a sufficient number of eigen-
vectors that compensate for a specified percentage of its baseline variance of 95%. The 
dimensionality of our dataset is reduced by compressing it onto a new feature subspace. 
We accomplish this by selecting the subset of the eigenvectors, otherwise known as prin-
cipal components, which contain most of the information that makes up the variance. 
The eigenvalues define the magnitude of the eigenvectors. We then sort the eigenvalues 
in decreasing order and focus on the top k eigenvectors based on their corresponding 
eigenvalues. PCA also helps us process our data for a T-distributed Stochastic Neigh-
bor Embedding (SNE) that visualizes high-dimensional data by giving each data point 
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a location on a two or three-dimensional map [57]. The simplified variant of SNE sig-
nificantly enhances visuals by reducing the inclination for points to cluster on the map. 
Maaten et al. [58] suggest that t-SNE effectively creates a single map that reveals struc-
ture at many different scales.

Data processing

Our first step was to remove and impute missing values from the dataset. If a value is 
missing, we represent it with a single question mark. Therefore, no missing data values 
exist in our dataset. Our next step was to get the categorical data ready for our machine 
learning algorithms. We used the normalization approach to bring different numerical 
features onto the same scale. We rescale these numerical features using the min–max 
scaling equation shown in Eq. 2 that is created by rescaling the range of features to [0, 1] 
or [− 1, 1]. Our categorical features are flags, InitialFlags, and SessionFlags as shown in 
Fig. 4.

Results
Our results for feature selection and machine learner performance are shown in the sec-
tions below. We present four different feature selection methods by comparing feature 
selection methods using six machine learning models. As previously mentioned, the 
Aggregated Slow Attack dataset has 828,510 instances consisting of 34,097 attacks and 
794,413 normal traffic. Our goal is to achieve the same performance or better than the 
twelve-feature set using feature selection methods. Feature selection does this by focus-
ing on the total number of Type I and Type II errors, with more focus on minimizing 
the total number of Type II errors. Maximizing the detection of the 34,097 attacks is 
critical because an incorrect prediction results in a successful attack. Therefore, we focus 
on operating points by expressing Type II errors in absolute terms to minimize Type II 
errors to the lowest value while maintaining above 90% F-measure scores and 95% or 
better AUC results.

Initial results

Overall, our Netflow dataset results show that Netflow features can distinguish between 
normal and attack traffic, with five out of six predictive models detecting multiple slow 

(2)x́ =
x −min(x)

max(x)−min(x)

Fig. 4  Flag values
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application-layer attacks. Consistent results demonstrate that when paired with Netflow 
data, classifiers are sufficiently selective to detect multiple slow application-layer attacks.

Normalization creates different features on the same scale via key features. Although 
values obtained are characteristic of enabled attack types, there is a possibility that our 
learners may place too much weight on the specific values obtained rather than the over-
all behavior of the feature in question. Tables  3 and 4 compare slow application-layer 
attack results before and after normalization. Figures  5 and 6 show the effects on the 
same branch of a decision trees rule with C4.5D.

Table 3  Pre-normalization results

Classifier AUC​ F measure Correctly classified (%) Type II

RF 0.981 0.982 98.42 13,022

C4.5N 0.982 0.982 98.40 13,027

C4.5D 0.981 0.982 98.40 13,038

JRip 0.656 0.965 97.17 23,354

5NN 0.981 0.982 98.40 13,060

NB 0.949 0.902 86.65 1724

Table 4  Normalized results

Classifier AUC​ F measure Correctly classified (%) Type II

RF 0.981 0.982 98.41 13,021

C4.5N 0.982 0.982 98.40 13,052

C4.5D 0.981 0.982 98.40 13,074

JRip 0.656 0.965 97.17 23,355

5NN 0.982 0.982 98.40 13,060

NB 0.976 0.932 91.11 1246

Fig. 5  Pre-normalized C4.5D tree branch



Page 20 of 30Kemp et al. Journal of Big Data           (2023) 10:22 

Our classifiers’ AUC and F-measure findings demonstrate that all but JRip had good 
outcomes. All learners except JRip had similar AUC values of 0.981, 0.982, 0.981, 
0.981, and 0.949 for both pre-normalized and normalized datasets, respectively. The 
significant and critical difference reflected in NB produces a better result for Type II 
errors with only 1246. Table 4 shows the other four top performers had over 13,000 
Type II errors.

When examining both C4.5 trees, each tree structure determined which flags to 
display at the starting node of the tree. The flags are one of the most important ele-
ments of a successful slow application-layer DoS attack. C4.5’s decision trees divide 
data across two or more branches, depending on one or more attributes. The top-
level branch structure is a reliable source for finding distinguishing characteristics for 
normal and attack data. Duration in milliseconds or Durmsec is an example of distin-
guishing characteristics at the top-level branch that produced Figs. 5 and 6.

We see the rules generated by C4.5D in Figs. 7, 8, and 9, illustrating three decision 
tree examples. Durmsec is the only behavior that is consistent between the two. The 
Durmsec feature is used at the top tier of each of the three trees in the C4.5D model. 
We can tell the difference between regular and attack flows by their distinct behav-
ior. Shown in Fig. 7, a rule detects an attack when Durmsec has a value greater than 

Fig. 6  Normalized C4.5D tree branch

Fig. 7  C4.5D model tree 1
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0.040121, packets are greater than 0.001076, and the sessionFlags combination = PA 
and bytesPerPacket ¡ = 0.01029. Figure  8 has a shorter branch, with Durmsec again 
being greater than 0.040121 and packets greater than 0.001076, followed by a ses-
sion flag combination of Finish, Reset, Push, Acknowledgment (FRPA). There are 3492 
attack instances. Figure 9 starts again with Durmsec greater than 0.040121, bytesPer-
Sec greater than 0.007724, sessionFlags producing PA, packetsPerSec not more than 
or equivalent to 0.006304, bytes equal to or more than 0.00079, and packetsPerSec 
less than or equal to 0.005616, identifying 2879 attacks. Figures 7 and 8 are similar, 
except for the different values for session flags on the third node. Figure 7 has a Push, 
Acknowledgment (PA) value with one more node (bytesPerPacket) and Fig. 8 has an 
FRPA value and ends there.

Fig. 8  C4.5D model tree 2

Fig. 9  C4.5D model tree 3

Table 5  ANOVA initial statistics

DF SS MS F-value Pr > F

Models 5 0.0226 0.002265 120.89 Pr < 6.6e−16

Residuals 18 0.0187 0.000187
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ANOVA was used to determine whether or not there were statistically significant 
differences between the means of our six models. As indicated in Table 5, our F-value 
is 120.8825, and the p-value is less than 6.62e−15, indicating a significant difference 
between the groups. Based on the 95% confidence interval, our findings show that 
variation in mean values amongst classifiers has more weight than variation in mean 
values for all models.

As a result, the null hypothesis is rejected. Statistics show a link among learners and 
slow application-layer DoS attack detection, demonstrating differences are statistically 
significant. A Tukey’s HSD post-hoc test was used to identify the statistically significant 
differences between learners. To categorize our models, we used a Tukey’s test. Table 6 
shows the top five learners in Group A and JRip in Group B. The classifiers and percent-
ages associated with the various letter clusters are different. This identifies two levels (A 
and B) of performance groupings within the machine learners. Group A learners, RF, 
C45N, C45D, 5NN, and NB were significantly better than the other learner JRip from 
Group B.

Feature selection results

The following section shows the results of our experiment when applying the Weka fea-
ture selection functions CfsSubsetEval, ConsistencySubsetEval, Single-Attribute, and 
ClassifierSubsetEval methods.

The Correlated-based feature selection (CFS) assessors employed Rank Search Chi-
Squared (RSCS), Greedy Stepwise-Forward (GSF), Greedy Stepwise-Backward (GSB), 
Rank Search Gain Ratio (RSGR), Best First-Forward (BFF), and First-Backward (BFB). 
Table  7 contains the results for CFS evaluators. Both generated a subset of flags with 
three features: bytesPerPacket, bytesPerPacket, and Durmsec. The three-feature set 
performs well, with AUC values of 0.650 for the five Group A classifiers and 0.650 for 

Table 6  Tukey’s HSD group initial results

Model AUC​ AUC StD Group

RF 0.981321 0.0000056 A

C45N 0.982419 0.0000078 A

C45D 0.981376 0.0000049 A

5NN 0.982128 0.0000066 A

NB 0.976344 0.0000056 A

JRip 0.656214 0.3458021 B

Table 7  CfsSubsetEval results

Classifier AUC​ F measure Correctly classified (%) Type II errors

RF 0.979 0.981 98.33 13,060

C4.5N 0.978 0.980 98.20 14,777

C4.5D 0.977 0.980 98.20 14,788

JRip 0.650 0.963 97.00 23,967

5NN 0.970 0.961 96.50 14,750

NB 0.977 0.979 98.15 14,390
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our Group B classifier, JRip. The F-measure had similar results for all the models, with 
JRip as the lowest with 0.963. The performance metrics of C4.5N and C4.5D had similar 
Type II errors with 14,777 and 14,788 for the three-feature set. NB and 5NN had slightly 
fewer Type II errors, with 14,390 and 14,750, respectively. RF had the least amount of 
Type II errors overall, with 13,060. By condensing the feature space to the most relevant 
features, the CFS feature selection technique achieves effective performance with fewer 
features, reduces the likelihood of overfitting, and speeds up processing. Five out of six 
classifiers are effective at detecting slow application-layer attacks using the three-feature 
subset.

Our second attribute subset evaluator, ConsistencySubsetEval, used two search 
methods [Random Search (RS) and Exhaustive Search (ES)] and two options (forward 
and backward search). We denote these methods as, BFF, BFB, ES, and RS. Consisten-
cySubsetEval had favorable AUC results with the six classifiers as shown in Table 8. The 
10-feature subset includes Packets, Bytes, SessionFlags, Flags, Durmsec, PayloadInBytes, 
PayloadRate, PacketsPerSec, BytesPerSec, and BytesPerPacket. The F-measure and cor-
rectly classified instances had similar results for all the models, verifying the predictabil-
ity. NB had a significantly lower number of Type II errors with 1168, followed by C4.5D, 
C4.5N, RF, and the highest number of errors for JRip at 23,354. As mentioned previ-
ously in this paper, Type II errors are critical for predicting attacks on a network. With 
this ten-feature dataset, NB distances itself from the rest of the classifiers for detecting 
attacks on a network. The Consistency Feature selection substantially reduces the num-
ber of features that can differentiate among normal and attack data in relation to the 
four slow application-layer attacks: Slowloris, Slow Post, Slow Read, and Apache Range 
Header.

The four single-attribute evaluators, Gain Ratio (GR), Chi-Squared, Symmetric-Uncer-
tainty, and IG, created a ten-feature set. The ten-feature set includes Packets, Bytes, 
Flags, InitialFlags, SessionFlags, Durmsec, PayloadInBytes, PacketsPerSec BytesPerSec, 
and BytesPerPacket. The difference between this ten-feature set and the previous is two 
features. The previous set included PayloadRate but not InitialFlags as compared to this 
ten-feature set. In reference to the four single-attribute evaluators, Chi-Squared pro-
duced the most favorable results, which are shown in Table 9. The ten-feature set per-
forms well, with AUC values for the Group A classifiers and slightly less for the Group 
B classifier, JRip. The F-measure and correctly classified instances had similar results for 
all the models. NB again had a significantly lower number of Type II errors than all other 
machine learners with 607, followed by C4.5D, C4.5N, RF, and the highest number of 

Table 8  ConsistencySubsetEval results

Classifier AUC​ F measure Correctly classified (%) Type II errors

RF 0.981 0.982 98.42 13,021

C4.5N 0.982 0.982 98.41 13,054

C4.5D 0.981 0.982 98.40 13,076

JRip 0.656 0.965 97.17 23,354

5NN 0.982 0.982 98.40 13,060

NB 0.976 0.932 91.10 1168
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errors for JRip 23,360. As mentioned previously in this paper, Type II errors are critical 
for predicting attacks on a network. NB had its best performance for Type II errors with 
607.

The Classifier Subset evaluator performed well with ten features as shown Table 10. 
They are Packets, Bytes, InitialFlags, Flags, Durmsec, PayloadInBytes, PayloadRate, 
PacketsPerSec, BytesPerSec, BytesPerPacket. This ten-feature set eliminated Session-
Flags as compared to the previous two ten-features sets. The ten-feature set also shows 
good performance with AUC values for Group A classifiers, followed by Group B classi-
fier JRip 0.656. The F-measure had similar results for all the models. Again, the perfor-
mance metrics for C4.5N and C4.5D were similar. C4.5N had a slightly lower number of 
Type II errors than C4.5D, with 13,026 and 13,050 for the ten-feature set. RF and 5NN 
had slightly fewer Type II errors, with 13,025 and 13,060, respectively. NB consistently 
has the least amount of Type II errors overall, with 1085, while maintaining similar AUC 
and F-measure results.

Table 9  Single-attribute evaluator results

Classifier AUC​ F measure Correctly classified (%) Type II errors

RF 0.981 0.982 98.40 13,022

C4.5N 0.982 0.982 98.40 13,038

C4.5D 0.980 0.982 98.40 13,039

JRip 0.656 0.965 97.13 23,360

5NN 0.982 0.982 98.40 13,060

NB 0.979 0.933 91.32 607

Table 10  Classifier subset evaluator results

Classifier AUC​ F measure Correctly classified (%) Type II errors

RF 0.982 0.982 98.42 13,025

C4.5N 0.982 0.982 98.40 13,026

C4.5D 0.981 0.982 98.41 13,050

JRip 0.656 0.965 97.17 23,354

5NN 0.981 0.982 98.40 13,060

NB 0.975 0.932 91.13 1085

Table 11  PCA results

Classifier AUC​ F measure Correctly classified (%) Type II error

RF 0.981 0.982 98.41 13,049

C4.5N 0.982 0.982 98.40 13,088

C4.5D 0.972 0.976 98.40 13,101

JRip 0.770 0.977 98.00 15,770

5NN 0.972 0.980 97.80 13,091

NB 0.981 0.934 91.37 554
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PCA results

Table 11 displays the results of six classifiers using PCA. We sorted the eigenvalues by 
decreasing significance and selected the eigenvectors based on the largest eigenvalues 
representing 95% of the variance in our dataset. We then used the new feature subspace 
from PCA with our six learners.

The PCA dataset had the best results with NB. It had the lowest value for Type 
II errors with 554 and slightly improved its AUC and FPR at 0.981 and 0.089. NB 
performs substantially better than all other learners in minimizing false negatives, 
demonstrating that it can better protect a network. PCA produced some notewor-
thy results. JRip, which had been significantly high with Type II errors, was similar 
to RF, C4.5N, and C4.5D, and 5NN had an improved AUC of 0.774, though it was 
the lowest. C4.5N, C4.5D, RF, and 5NN had similar Type I and Type II errors. False 
alarms account for roughly 40% of the alerts that cybersecurity teams receive daily. 
This number of false alarms can be overwhelming, as well as an enormous waste of 
time [53]. Training a new device and software is standard practice on the network for 
a predetermined duration [52].

ANOVA was used to examine statistically meaningful disparities among the six 
classifiers’ AUC values for multiple slow application-layer attacks. The F-value for 
Table  12 ANOVA is 739.874 and the p-value is less than 1.0446e−10. As with the 
initial AUC results, our results suggest that the variance of means between differ-
ent learners is significantly more relevant than the fluctuation in mean values for all 
models.

We reject the null hypothesis once more. Our PCA results show that the differences 
between learners and multiple slow application-layer DoS attack detection are statis-
tically significant. As illustrated in Table 13, the majority of groupings produced close 
pairings, with our models, RF, C45N, C45D, 5NN, and NB being assigned to Group A 
and JRip to Group B.

Table  14 displays how our five feature selection methods and Group A classifier 
performed using feature selection methods against the original twelve features. The 

Table 12  ANOVA PCA statistics

DF SS MS F-value Pr > F

Models 5 0.0266 0.026690 739.74 Pr < 1.4e−15

Residuals 18 0.0036 0.000361

Table 13  Tukey’s PCA statistics

Model AUC​ AUC StD Group

RF 0.981229 0.0000063 A

C45N 0.982214 0.0000066 A

C45D 0.972182 0.0000081 A

5NN 0.972263 0.0000076 A

NB 0.981364 0.0000054 A

JRip 0.770082 0.0000210 B
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acronyms from the table are CFS, Consistency Subset Selection (CON), Single-Attrib-
ute Selection (SA), and Classifier Subset Selection (CLS). NB had the best performance 
regarding Type II errors in four out of five feature selection methods. NB performed 
very well with SA and PCA for Type II errors with 607 and 554, respectively. These 
results reflect a significant difference as compared to the other five learners. When 
comparing NB results against the original twelve features, it more than cut in half the 
number of Type II errors when applying the PCA method. NB with PCA had the best 
overall performance for detecting multiple application-layer DoS attacks.

Discussion

We collected all traffic on a live network using a Linux web server in order to analyze our 
aggregation of slow application-layer DoS attacks using Netflow data for the purpose of 
detecting slow DoS attempts. The capture generated Netflow data, which was examined 
by six machine learners to determine their ability to predict multiple slow application-
layer DoS attempts. After that, we applied feature selection algorithms that proved effec-
tive performance with fewer features for discriminating between normal and attack data 
with our DoS attacks. As the findings demonstrate, feature selection datasets produced 
favorable performance ratings. When comparing Type II errors using feature selection 
approaches, there was a significant difference between NB and the rest of the Group “A” 
models.

In summary, Netflow can play a significant role in a network monitoring solution 
for multiple slow DoS attacks. One benefit of using Netflow is the speed at which an 
attack can be detected in real-time. This is critical and increases the chance of purg-
ing an attack before it does any damage. Netflow data is modest in size, which reduces 
processing time and makes it easier to read, analyze, and warn network managers when 
abnormalities and statistics are detected. If a learner achieves the same detection level 
with less data, this reduces the demand for CPU resources, increasing computational 
efficiency. Additionally, as a network scales in size, this becomes critical when using Net-
flow data. Combining Netflow with machine learners is efficient in detecting and alert-
ing network security for multiple slow DoS attacks.

We realize that our methodology was not implemented and validated in real-time. 
This is one limitation that will be addressed in future work. Another limitation is the use 
of only one feature extraction method PCA. Future work will compare the use of PCA 
with other methods of feature extraction.

Table 14  Top feature selection method with classifier results

Classifier/FS AUC​ F measure Correctly classified (%) Type II error

CFS/RF 0.979 0.981 98.33 13,655

CON/NB 0.976 0.932 91.10 1168

SA/NB 0.979 0.933 91.32 607

CLS/NB 0.975 0.932 91.13 1085

PCA/NB 0.981 0.934 91.37 554
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Conclusion
We suggested a method for detecting multiple application-layer slow DoS attacks by suc-
cessfully utilizing machine learning and Netflow data. Four rounds of stratified five-fold 
cross-validation were used to calculate performance metrics. This research produces 
normal and attack traffic on a publicly accessible web server that is accessed by the cam-
pus community and the public at large. We give a more accurate depiction of the genuine 
network environment than previous testbeds by expanding our capture and including 
actual attacks alongside normal network traffic. Additionally, this strategy strengthens 
the integrity of our data by utilizing real-world traffic rather than related works that are 
not. We used the SlowHTTPTest software to conduct four unique attacks with varying 
modifications on each. The purpose of this experiment is to determine whether features 
aggregated from four separate slow DoS attacks are effective at detecting them.

Our investigation demonstrates that this technique for detecting multiple slow appli-
cation-layer DoS attacks using features from Netflow data has a high AUC and a low 
percentage of false positives and negatives. For identifying multiple slow application-
layer attacks, NB has the lowest Type II error rate. When we used feature selection 
approaches, we observed that the five Group A models had comparable acauc values and 
fewer Type II errors. NB used PCA to extract features from the original twelve features, 
resulting in the lowest Type II errors, and F-measure score of more than 90%, and an 
AUC value of 95% or greater.

Additionally, we demonstrated that all six learners performed admirably with Netflow 
data in detecting multiple application-layer slow DoS attack traffic, with five of them 
outperforming the remaining learner. As a result, machine learning models trained 
using Netflow features may successfully discern attack and normal network data across 
slow multiple application-layer DoS attacks.

Future work will conduct a cumulative and comparative evaluation of the detection 
and discrimination of multiple slow application-layer attacks using multi-classifiers and 
Netflow data. We will also further evaluate the impact that threshold adjustments can 
have on other performance metrics. In addition, the real-time implementation and vali-
dation of our approach will be investigated. Finally, future work will compare the use 
of PCA with other feature extraction methods to evaluate different intrusion detection 
models.
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