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Abstract 

In an attempt to mitigate emissions and road traffic, a significant interest has been 
recently noted in expanding the use of shared vehicles to replace private modes of 
transport. However, one outstanding issue has been the hesitancy of passengers to 
use shared vehicles due to the substandard levels of interior cleanliness, as a result of 
leftover items from previous users. The current research focuses on developing a novel 
prediction model using computer vision capable of detecting various types of trash 
and valuables from a vehicle interior in a timely manner to enhance ambience and 
passenger comfort. The interior state is captured by a stationary wide-angled camera 
unit located above the seating area. The acquired images are preprocessed to remove 
unwanted areas and subjected to a convolutional neural network (CNN) capable of 
predicting the type and location of leftover items. The algorithm was validated using 
data collected from two research vehicles under varying conditions of light and 
shadow levels. The experiments yielded an accuracy of 89% over distinct classes of left-
over items and an accuracy of 91% among the general classes of trash and valuables. 
The average execution time was 65 s from image acquisition in the vehicle to display-
ing the results in a remote server. A custom dataset of 1379 raw images was also made 
publicly available for future development work. Additionally, an indoor air quality (IAQ) 
unit capable of detecting specific air pollutants inside the vehicle was implemented. 
Based on the pilots conducted for air quality monitoring within the vehicle cabin, an 
IAQ index was derived which corresponded to a 6-level scale in which each level was 
associated with the explicit state of interior odour. Future work will focus on integrat-
ing the two systems (item detection and air quality monitoring) explicitly to produce 
a discrete level of cleanliness. The current dataset will also be expanded by collecting 
data from real shared vehicles in operation.

Keywords:  Prediction model, Computer vision, Convolutional neural network, Indoor 
air quality, Shared vehicles, Interior cleanliness

*Correspondence:   
nilusha.jayawickrama@aalto.fi

1 Department of Mechanical 
Engineering, Aalto University, 
Espoo, Finland
2 Department in Mechanical 
Engineering, Laboratory 
of Microsystems 
and Nanotechnology, 
Polytechnical University 
of Catalonia, Barcelona, Spain
3 Faculty of Agriculture 
and Forestry, Helsinki University, 
Helsinki, Finland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00696-6&domain=pdf


Page 2 of 31Jayawickrama et al. Journal of Big Data           (2023) 10:13 

Introduction
The use of shared vehicles has notably increased over the recent past. In terms of market 
expansion, the estimated number of carsharing users is expected to reach 36 million by 
the year 2025 [1]. The annual growth rate is estimated to be at 45% by 2025 [2]. Although 
the increased use of shared vehicles will result in a sedate growth of vehicle sales, this 
will also provide highly valued opportunities for automobile manufacturers, suppliers 
as well as mobility services. Consequently, the growth of global vehicle-sales, although 
slower, will not be reversed [3]. Based on the statistics in [4], it was evident that within 
Europe, carsharing has comprised a total of up to 2 million users sharing approximately 
26,000 vehicles. Carsharing also paves the way for current issues with respect to changes 
in consumer expectations as shared cars would provide users with effective choices to 
enhance the accessibility of vehicles as well as improve the reliability and comfort of 
travel [5].

To ensure continuous growth of carsharing, it is important to ensure that vehicles sub-
jected to this service maintain elevated levels of interior cleanliness to maximise comfort 
for the travellers. A lack of maintenance witnessed the demise of Autolibs’ carsharing 
service which operated in the French capital between 2011 and 2018 [6]. Moreover, 
research conducted in Berlin [7] suggests that car sharing operators lack information 
on the condition of their fleet during operation. Although the users in this case had the 
option of rating the cleanliness of the vehicles, it does not prevent the exposure of dirty 
vehicle interiors to immediate new users. Negative customer reviews were generated 
with pictures of unclean interiors which mostly contained cigarette butts, food wrap-
pings and other types of waste. Additionally, there had also been complaints about losing 
certain types of belongings as well as finding those of someone else. Overall, 38% of vehi-
cle interiors within the city of Berlin were deemed to be unpleasant, messy or very dirty 
[7]. The importance of cleanliness in carsharing is further highlighted under the current 
Covid pandemic situation with users urged to always remove dirt and dust after use [8].

Moving on to the main research contributions in this paper, we propose a novel vision-
based architecture to predict the interior cleanliness state of a vehicle cabin. The method 
is intended for shared vehicles but can also be applied for other passenger vehicles. 
Thus, the system proposed aims on ensuring the elimination of leftover passenger items, 
including trash and valuables, in a timely manner. Specifically, two modular sensor 
units will be designed and installed within designated locations of the vehicle interior: 
a camera module to capture images of the rear seating area and an indoor air quality 
monitoring (IAQ) unit. A vision-based prediction model (in the form of a EfficientDet 
convolutional neural network(CNN) [9]) will be developed to identify distinct types of 
leftover items in the seating area from each image received from the camera unit. More-
over, a dataset of custom images containing leftover items within vehicle interiors will be 
made available for public use. In the scope of the current study, we will not consider sce-
narios with dark external settings such as nighttime operation. The IAQ unit will deter-
mine the concentrations of specific air pollutants within the vehicle cabin and generate a 
corresponding air quality index. Zero detections from the vision-based prediction model 
and minimum yields of air pollutant concentrations from the IAQ unit will, together, 
correspond to the cleanest state of the vehicle interior. Note however that the current 
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research article has a higher weight-age (from the implementation and analysis points of 
view) on the vision-based detection system over the IAQ unit.

Furthermore, to ensure secure data transmission and communication, a suitable com-
munication architecture will be implemented and tested to validate an efficient flow of 
information and display of the predicted results. In particular, a centralised server com-
prising the prediction model will be expected to link all shared cars within the system in 
terms of storage and execution.

State‑of‑the‑art
Vision‑based detection and prediction

To the best of our knowledge, the computer vision related work carried out here is the 
sole initiative of the use of a camera-based unit in shared vehicles to monitor the state 
of a car interior for the purposes of cleanliness. However, similar systems have been uti-
lised for other purposes within vehicles such as driver and occupant-monitoring as evi-
dent in [10, 11].

With respect to vision-based solutions, it is important to initially create an image 
database when dealing with special purpose applications. For the current study, existing 
image databases including Trashnet [12] and Kaggle [13] could be utilised. The first data-
base of the forementioned options correspond to trash items while the latter comprises 
images of consumer belongings (valuables).

Detection and classification of trash using computer vision has been studied in a mul-
titude of previous research applications. Thung and Yang presented a fine-tuned CNN 
for the classification of garbage with respect to their Trashnet dataset [12]. The classi-
fication accuracy of their prediction model was 22% as a result of suboptimal hyperpa-
rameter training. Tharani et al. [14] presented a method of detecting trash items which 
could be visually identified on water surfaces. Their study proposed the use of a novel 
attention layer in conjunction with a series of state-of-the-art neural network architec-
tures. The results indicated that the YOLO-v3 [15] model outperforms the remaining 
networks which were analysed with an average precision of 48.1% on their dataset. Liu 
and Jiang [16] presented an article which focused on autonomous identification and 
classification of commonly found garbage types. Their system consisted of a Raspberry 
Pi which comprised their prediction model in the form of a convolutional neural net-
work (CNN). The paper presented the analysis of a total of four trained pre-built CNN 
architectures and concluded that the highest performance was shown by the Vgg16 [17] 
model with an accuracy of 74%. A similar approach of using a CNN was presented in the 
study conducted by Adedeji and Wang [18] in which a pretrained ResNet-50 [19] was 
used to develop a waste material classification system. The model was trained with the 
trash image database in [12] resulting in it successfully yielding a final test accuracy of 
87% over four different categories of trash in the dataset. Zhihong et al. [20] also studied 
and demonstrated the use of CNNs to enable autonomous garbage sorting via a robotic 
grasping mechanism. Their study presented the application of a Vgg16 model for image 
classification and Region Proposed Generation (RPN) [21] for object detection. The 
results from the study recorded an average model execution time of 220 ms with missed 
and false detection rates as 3% and 9%, respectively.
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Monitoring the explicit cleanliness with the utilisation of computer vision has also 
been studied in previous research applications. Rad et al. [22] presented the applica-
tion of CNNs to locate and identify various types of trash items on the streets. The 
system presented in their study was tested and validated by attaching a camera unit 
to a street sweeping machine to gather data which would subsequently be used to 
train the prediction models. The qualitative assessment of their concept presented 
results of false positive and missed detections of small trash sources such as leaves 
or, in some cases, cigarette butts, but additionally highlighted that their system had 
the capability of detecting multiple and overlapping trash items. A cleanliness analy-
sis was also utilised in the studies conducted by Alfarrarjeh et al. [23] and Ghildiyal 
et al. [24]. The first research in [23] explored the application of the Caffe architecture 
in the form of a CNN which produced an F1 score [25] of 0.78. The latter research 
(in [24]) was comparatively a lower scale model which however once again utilised 
CNNs, but this time in the form of Vgg19 [17] and Inception-v3 [26] models. The 
models were tested to analyse their capability of categorising an image scene into one 
of three possible outcomes: poor, average, and good. The study concluded that the use 
of CNNs with properly tuned parameters for each feature could perform general clas-
sifications in such custom applications, but with noticeable misclassifications. Con-
trary to the approach of detection, Jayasinghe et  al. [27] developed a study focused 
on classifying a given image (corresponding to a particular scene) to one of predeter-
mined categories. The research was conducted to evaluate the real-time cleanliness of 
a public restroom. The prediction model in their system comprised the application of 
principle component analysis (PCA) together with selected CNN architectures. The 
research compared the performance of three CNNs: Vgg16 [17], ResNet-50 [19] and 
Inception-v3 [26]. The proposed method of classification in their research ultimately 
yielded an accuracy of 90.52% with an inference time of 2.87  s per image. Further-
more, Ojala et al. [28] developed a method to monitor the cleanliness in public trans-
portation vehicles such as trams and metros. A laboratory prototype of a tram interior 
was used in their study for data collection during which images were captured using a 
stationary wide-angled camera unit. The results, presented in Fig. 1, depicted that the 

Fig. 1  Garbage detection in a lab replica of a metro. Source: Adapted from [28]
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use of Single-Shot Multibox Detector [29] yielded an average accuracy of 95% on the 
test set of images.

Unlike certain related applications in previous studies, the current research must 
tackle environmental variations, such as changes of lighting and shadow levels in the 
images (which is due to the simple fact that light enters the vehicle during operation). 
Cuhadar et al. [30] theorized how the effect of lighting conditions on the performance of 
CNNs as they seem to corrupt the detection accuracy of the model. Fu et al. [31] stud-
ied on-road vehicle detection under varying lighting and weather conditions in which 
the concept was validated using a CNN model and a target-oriented scene classification 
module to co-adapt scene classifiers using a vehicle detector. The research concluded 
that the developed framework could be utilised in rainy, snowy, and foggy weather 
conditions.

Indoor air quality monitoring

During daily activities, more than 1  h is spent in enclosed vehicles with the relatively 
small interior of vehicles contributing to higher concentrations of pollutants and parti-
cles which may potentially compromise the health and comfort of the passengers [32]. 
Thus, in recent years, it is not surprising that the air quality within vehicle cabins has 
become a relatively hot topic for researchers, public authorities, and industry partners 
as evident in [33–35]. It is important to note that most odours related to a potential bad 
smell indoors are as a result of one or more VOCs [36]. In the context of the current 
research, where the subjective environment is a vehicle cabin, even a smell which maybe 
considered by certain individuals as a pleasant smell (such as the smell of certain food 
items) is also considered to be unacceptable. This is because VOCs is an indicator for 
both pleasant and unpleasant smells. Essentially, the sensor unit will not differentiate 
between good and bad smells. Thus, if the concentration of VOCs is high, we know that 
there is a change in odour and action needs to be taken.

In the scope of the current study, we focus on a holistic approach with respect to the 
two key indicators carbon dioxide (CO2 ) and volatile organic compounds (VOCs). Previ-
ous studies have concluded that information regarding in-vehicle air quality can be suc-
cessfully conveyed using the concentrations of CO2 and VOCs together with indicators 
mapping the thermal conditions inside the vehicle (temperature and relative humidity) 
[37]. While CO2 is directly related to the human occupation indoors, VOCs are a family 
of chemical compounds which can be emitted in the environment by multiple sources 
including interior materials, human metabolism and food [38]. These compounds are 
a main factor for pleasant and unpleasant odours in an enclosed environment and high 
concentrations of these pollutants can compromise the health of passengers. Based on 
the signals corresponding to the concentrations of CO2 and VOCs, air quality can be 
classified into different categories ranging from good to poor air quality conditions as 
presented in [39] and [40]. Some previous research studies already conducted an evalu-
ation of CO2 concentration and other indoor pollutants, based on different ventilation 
settings [41]. Although there are studies that have evaluated the automotive suitability 
of an indoor air quality-monitoring system as evident in [42–44], there has not been a 
concrete implementation of the concept in shared vehicles.
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Additionally, the monitoring of other gases (such as NOx, CO, NO2 and PM10) have 
traditionally been of importance to ensure an acceptable indoor air quality. However, 
sources of these pollutants are mainly found in the outdoor environment. Hence, they 
can be mitigated with proper air filtering and ventilation techniques. Due to recent 
advancements in car air filters such as [45] and [46], we decided not to consider the 
influence of exterior pollutants within the vehicle cabin in the current scope of the 
research. With this assumption, IAQ levels were determined solely by monitoring CO2 
and VOCs levels.

Research gap

A research gap is apparent in the lack of a system capable of detecting items within the 
cabins of passenger vehicles to determine the state of their interior cleanliness. Further-
more, it is essential that the system is capable of remotely and securely relaying informa-
tion pertaining to the indices of cleanliness (leftover items and state of odour) from the 
vehicle. To carry this out, vision-based predictions should be formed via a suitable inter-
face, and the results displayed to pursue corresponding maintenance routines in ensur-
ing clean vehicle cabins. With respect to odour-monitoring, there is a lack of a holistic 
study evaluating the effect of different HVAC settings in the concentrations of both CO2 
and VOCs emitted by vehicle occupants.

Methods
Camera module

Based on previous studies in similar application domains of image recognition, it was 
evident that a camera-based system would best meet our requirements of system input 
with respect to reliability, accuracy and efficacy. Therefore, the methodology of the sys-
tem could fundamentally be considered to be three-fold; a camera module to obtain the 
input status of the vehicle, algorithm development to create the prediction model which 
will determine the state of cleanliness and a system architecture for secure data trans-
mission, execution and storage.

The research established specific requirements for the camera module to suit its scope 
of application. The detection area for the current study was limited to the rear seating 
area of the vehicle as indicated in Fig. 2, which depicts the boundaries of two obtained 
images. The location of the camera module had to be such that it avoided the top centre 
portion of the vehicle (as some vehicles have a sunroof). Consequently, it was decided 
to locate the camera on one side of the vehicle above the rear seat. Since the goal was 
to capture the entirety of the seating area (including the floor and backrest) using a sin-
gle camera on one side of the rear interior, the lens had to be wide-angled. In addition, 
the camera module had to be compact (since its existence should not affect the ambi-
ence within the cabin), modular and durable for long term use. The unit also had to be 
optimised for effortless installation, component replacement, troubleshooting and cost. 
Additionally, in the possible event of a circuit failure or spark, the design had to consider 
fire safety with the unit being able to isolate itself and not spread the fire to the exterior 
of the housing.

With the requirements in mind, the housing of the camera module was designed 
using CAD software to optimise its dimensions for size as we intended the module to 
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be simultaneously compact and capable of effortlessly replacing components if needed. 
The final unit consisted of three parts: main housing, base and the lens cover. The main 
housing and base were 3D printed using a fireproof material PA2241FR, while the lens 
cover was constructed by milling a clear acrylic sheet of 3 mm thickness. The labelled 
components of the assembly are shown in Fig. 3.

Figure 4 depicts the manufactured housing. The main housing comprises much of the 
circuit housing and is therefore primarily responsible for containing the circuit compo-
nents. The lens cover protects the camera lens from possible damage by exterior sources 
during operation, which is essential as scratches or other forms of damage to the camera 
lens could result in hindering the camera’s ability to obtain undistorted images. The base 
attaches to the roof of the vehicle interior on the top end, and to the main housing on 
the bottom end. With this design, the main housing could simply be unscrewed from the 
base (which is permanently attached to the roof of the vehicle) in the event of having to 
modify or replace the circuitry inside the housing (e.g., fuse replacement).

The goal of the electrical design was to use a minimum number of components 
for reliable operation, safety, and cost efficiency. Considering the proposed design 
together with the fore mentioned requirements of the scope of detection, a stationary 

Fig. 2  Scope of detection with respect to the camera location of the two vehicles: a SEAT MII b Aalto Ford 
Focus

Fig. 3  Labelled CAD model of the camera unit housing
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wide-angled (160°) Raspberry Pi camera was used to capture images. It was paired 
with a single board computer, the Raspberry Pi Zero W, which had dimensions of 
66  mm by 30.5  mm (the smallest in the Raspberry Pi series). The functions of the 
Raspberry Pi Zero W were to trigger the camera for image capture and temporar-
ily store the images before transmission to the server for analysis. Since the input 
power to the camera module was provided by the 12 VDC outlet of the car (as a 
measure to prevent an additional inclusion of a power source), a buck converter was 
used as a step-down module to reduce the input voltage to 5 V for safe operation of 
the Raspberry Pi unit.

In addition to the protection that the single board computer receives from the 
buck converter, an external fuse was included as it would be easier and cheaper to 
replace this fuse in the case of a voltage surge. Figure  5 presents the final circuit 
schematic and Fig.  6 illustrates the internal assembly of the circuit with the base 
removed. Note that in this diagram the power chord outlet has been sealed using an 
internal knot of the power cable itself to ensure that the unit is dust-proof as well as 
to safeguard the circuit against unintended or sudden cable jerks from the exterior.

Fig. 4  Manufactured and assembled camera housing

Fig. 5  Circuit schematic of the in-car camera module
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Dataset for detection using computer vision

The research conducted in this paper focused on detecting trash and valuables within 
the vehicle cabin by utilising a self-obtained dataset, integrated with images imported 
from Kaggle [13] and the Trashnet [12]. Kaggle is an open-source platform which pro-
vides access to existing datasets that can be utilised to train custom prediction mod-
els. Trashnet is a dataset developed by Thung and Yang in Stanford [12] and aimed at 
training algorithmic models capable of trash detection.

With respect to the self-gathered data, we obtained images from two camera mod-
ules. One of the modules (depicted earlier in Fig.  4) was installed in a concept car 
located at the SEAT facilities in Barcelona. The other module was locally installed 
inside one of Aalto University’s research cars. Figure  7 presents the two installed 
camera modules. Note in the figure that the locally installed camera module has 
exterior dimensions which differ from the module installed in the SEAT concept car. 
The reason for the difference is due to the practical requirements with respect to the 

Fig. 6  Internal circuitry of the camera unit (as viewed from the top)

Fig. 7  Camera module installations in the SEAT concept car (top) and Aalto research vehicle (bottom)
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installed locations. Despite this difference, the circuit schematic and the components 
used were the same for both camera modules.

A time interval for the measurements was applicable for taking empty images 
(images with no trash or other external items in the vehicle). Essentially, the process 
was to park the vehicle in different locations during the day and activate the rasp-
berry pi to capture images periodically (every 30  min or every hour depending on 
the weather conditions) without the requirement of human intervention. On the 
other hand, for obtaining images with items inside the vehicle, there was no fixed 
time interval between the captures as the objective was to capture as many images 
(falling under the image classes considered within the scope of the current research) 
at different times of the day and varying external conditions (such as external light-
ing and shadows). Data quality control was conducted through visual inspection of 
the authors and members of the research consortium in Aalto (Espoo) and SEAT 
(Barcelona).

Figure 8 illustrates the breakdown of the classes in the training images. Note in this 
Figure that “trash” refers to miscellaneous trash items (such as plastic food cartons, 
food wrappers, trash bags and crushed paper) and “valuable” refers to different types of 
mobile phones and wallets. The following link corresponds to the current version of the 
self-gathered dataset of 1379 raw images which was made publicly available for future 
use in similar research applications: https://github.com/nilushacj/Clean-Mobility.git.

Furthermore, it was ensured that the images obtained from the two vehicles had 
varying levels of light intensity as well as shadows. The purpose here was to ensure 
that during the training process the accuracy of the predictions would not be hin-
dered due to these external sources of variation in the images. To accomplish this, 
images were obtained at different times of the year under different weather condi-
tions. It is also important to highlight that the purpose of integrating external images 
into the training dataset was to expand the dataset and enhance its ability to general-
ise better to different types of images in a particular class. Additionally, the quantities 
of images imported from Kaggle was managed in such a way that there was a quanti-
tative balance across all image classes.

Fig. 8  Distribution of the image classes across the training dataset (quantities excluding augmentation, 
clean images and test data)
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Once all the images for the training process were locally stored, each of the images 
were manually annotated with the respective image labels (corresponding to the classes 
in Fig. 8). The annotations were applied by using the LabelImg tool written in python. 
The bounding boxes were carefully drawn to ensure that the edges touched the out-
ermost pixels of the labelled object and that the boundaries of the object were subse-
quently never outside the bounding box. At the end of all the annotations, each labelled 
image consisted of its own text file in Pascal format (.xml).

Vision‑based algorithm

The implemented prediction model builds upon the Efficientdet object detection model. 
The main advantages of using this model is that its architecture comprises a weighted 
bi-directional feature pyramid network (BiFPN) that enables optimized feature fusion 
which allows easy and fast multiscale feature fusion. Additionally, it also provides the 
capability of uniformly scaling the resolution, depth, and width of the backbone, feature 
network and prediction network given in Figure  3 in [9] simultaneously. The perfor-
mance metrics of the Efficientdet architecture (in comparison to other detection models) 
presented in Table 2 in [9] and the required application context of the current research 
together motivated us to choose this model to generate the vision-based predictions. In 
the current study, the model was developed in TensorFlow 2.5.0—Keras-nightly 2.5.0 
[47] and open-source computer vision library OpenCV 4.5.3 [48]. The version of the Effi-
cientdet object detection model used for the current study has been originally trained on 
the COCO dataset [49] with approximately 170 classes across 100,000 images. However, 
the classes we require in achieving the prediction goals of the current system are highly 
application specific as opposed to the more general classes in COCO. Therefore, it was 
not possible to establish a direct application of the Efficientdet detection model in our 
system. The execution speed of the model is registered as 54 ms and a COCO mean 
average precision (mAP) of 38.4, both of which are relatively similar to other commonly 
used prediction models such as SSD [29].

More importantly, our model uses input images of size 640 by 640 as input which, in 
comparison to other existing detection models, is high with respect to neural network 
processing. In the current application, it was important to ensure that the input resolu-
tion was high since a single camera located at one end of the interior (along the width of 
the vehicle) was intended to capture all the details of the rear seating area. With lower 
resolutions, certain details would be lost especially in low-light conditions as well as in 
scenarios in which the object lacked contrast with its neighbouring background (e.g., 
black mobile on black carpet located at the furthest end of the camera). With respect to 
the important parameter types of the model’s training configuration developed for the 
current study, the predictions were intended across 6 image classes as shown in Fig. 8. 
The image pixels were mapped to the feature space using the bi-directional feature pyra-
mid network technique as it optimises the traditional implementations of feature rec-
ognition in terms of computation and, in turn, time consumption. Regularization in the 
form of l2 [50] was utilised to reduce overfitting during the training process. A lack of 
regularization evidently resulted in a decline of the model’s ability to generalise for new 
data. The model also uses state-of-the-art activation in the form of Swish activation as 
this function was reported to outperform the more commonly used ReLu activation [51].
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Additionally, the model was trained in a GPU machine. Its architecture was of type 
Tesla V100 with a memory of up to 32 GB. Therefore, it was possible to train the predic-
tion model with a relatively higher batch size of 16 images. The ability to enable larger 
batch sizes provides the advantage of applying high speeds during the training process 
while maintaining the stability of the learning process. Data augmentation was also ena-
bled within the training configuration in the form of arbitrary image manipulation (such 
as scaling, cropping and flipping). Augmentation of the images helped to add more train-
ing data, thereby further reducing overfitting of the model. Furthermore, it was essential 
to include an optimizer capable of efficiently reducing the losses during the training pro-
cess by iteratively updating the hyperparameters. This functionality was achieved using 
an optimizer of type Stochastic Gradient Descent (SGD) with momentum [52] with a 
cosine decay in learning rate. Finally, the model was trained for a total of 50,000 steps (as 
this was experimentally found to be a good value until the loss saturated and the model 
did not improve any further).

The algorithm was implemented within the TensorFlow object detection API. It was 
formerly stated (at the end of the previous subsection) that each training image had a 
corresponding text file to represent its labelled features. This was essentially the first step 
in optimising the training process as the input sizes were considerably reduced (from 
an image in jpg format being up to 4 MB, to an xml file which is less than 1 kB). In the 
next step, the data from all xml files were concatenated to two Tensorflow record files. 
The two files represented the training data and the testing data with sizes of 1.1 GB and 
196.4 MB respectively. Therefore, the overall computation overhead of the model’s train-
ing input was optimised in this manner.

Indoor air quality (IAQ) unit

The current work developed a new indoor air quality-monitoring system for shared 
vehicles. Compared to previous studies, our work created a holistic IAQ index, based 
on the evaluation of the concentrations of CO2 and VOCs at different HVAC settings 
and occupation of the vehicle. SPG40 and SCD4x miniaturised sensing kits were pur-
chased from SENSIRION for the monitoring of the concentrations of both VOCs and 
CO2 respectively. Both sensors were included in a compact and modular housing unit 
as shown in Fig. 9 and included the elements presented in Fig. 10. Airflow was enabled 
within the housing by strategically placed inlets and exhaust outlets in combination with 
a small fan.

Six data outputs signals were considered from the IAQ module for each test: (i) 
raw VOC concentration (#1); (ii) VOCs relative index (#2); (iii) raw CO2 concentra-
tion (#3); (iv) interior temperature (#4); (v) relative humidity (#5); and (vi) timestamp 
(#6). The raw concentration of VOCs was provided in ‘ticks’, an indicator used by the 
provider SENSIRION which is proportional to the electrical impedance of the sensor. 
The higher the number of ticks, the lower the concentration of VOCs. The magni-
tude is therefore given directly given by SENSIRION. The calibration curves of the 
VOCs sensor unit, which define the relationship between ticks and the actual con-
centration of VOCs (in ppm) can be found in Figure 2 of the datasheet of the sensor 
[53]. Thus, the VOC relative index is directly calculated by the sensor unit and it is 
given as an output parameter as presented in section 3.2 in [53]. The raw data signal 
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of VOC sensor unit was used to analyse baseline interior air conditions before pas-
senger occupation in the vehicle. Once occupation began, the VOCs index was used 
to capture relative changes in the concentration of VOCs, provided by passengers’ 
activity, in comparison to baseline conditions. The raw concentration of CO2 was dis-
played in parts per million (ppm) and was only considered during occupation of the 
vehicle. The VOCs index measures relative changes in the VOCs concentration com-
pared to baseline conditions. Hence, it is well-appreciated that baseline conditions 
inside the vehicle will affect this relative measurement. The empirical study of the 
current research will define the reference baseline conditions (to which the concen-
trations of CO2 and VOCs should be within prior to occupation of the vehicle and the 

Fig. 9  Designed, implemented and assembled components of the IAQ unit

Fig. 10  High level diagram representing the connectivity of the IAQ monitoring system
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calculation of the relative VOCs index). The IAQ unit was installed in the SEAT MII 
concept car as shown in Fig. 11 (this vehicle had no sunroof ). The position of instal-
lation shown in the figure was optimum to detect changes in air quality in both the 
front and rear seating areas.

System architecture for content visualization

To manage the overall functionality of the detection system with respect to maximum 
efficiency, no interference and ease of troubleshooting, it was crucial to ensure that 
all entities of the system architecture are conveniently linked in accordance with their 
roles. Subsequently, the architecture had to meet the requirements of data transmis-
sion, data storage, program execution, information access and visualization, all within 
a secure network. Thus, it was decided that there would be three main entities among 
which communication would occur: the sensor units, remote server, and interface client. 
Henceforth, these entities will be communicating within a VPN network (Wireguard) 
[54]. Figure 12 illustrates the communication architecture of the current research.

Starting from the front end of the detection system (the vehicle cabin), the Raspberry 
Pi Zero W is connected to an onboard Wi-Fi source enabled by a Huawei Wingle. Since 
it is not possible to guarantee the strength of the service provider’s signal at all locations, 
the Raspberry Pi Zero W is capable of storing the images until it detects a signal suffi-
ciently strong for the transmission of the image to the server. Additionally, in accordance 
with the privacy law corresponding to obtaining pictures with passengers, the unit will 
only process images which have no travellers. The remote server was purchased from 
Linode, a cloud computing service, which consisted of 2 CPU cores, 80 GB of storage 
and 4 GB of RAM. The specifications of the server were selected to best suit our applica-
tion and balance the cost of usage. The server runs 24/7 and is a headless version of the 
Ubuntu operating system (no graphical user interface). The server contains the predic-
tion model which will be executed on receiving an image from the camera unit in the 
vehicle cabin. Once the image is processed, the results (including the jpeg version of the 
image, detected objects and certainty level of detection) will be transferred to the inter-
face client for visualization and adopting corresponding maintenance action. Addition-
ally, bash scripts were written to enable client access to the server and the Raspberry Pi 

Fig. 11  Test setup of the IAQ module in the SEAT MII concept car
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for system operation as well as for development purposes (such as updating software 
and modifying program contents). Communication protocols including secure copy 
protocol (SCP) and secure shell (SSH) were utilized here.

Results
Vision‑based detection unit

To evaluate the performance and viability of the implemented algorithm and its execu-
tion platform, we primarily focused on the prediction accuracies from camera modules 
in both vehicles. In addition, the false predictions were further broken down into catego-
ries comprising misclassifications, false negatives, and false positives. The overall predic-
tion accuracy of the model will be determined by the mean Average Precision (mAP), F1 
score and a confusion matrix for the batch of test images. Furthermore, the execution 
speeds were analysed to identify the viability of implementing the proposed architecture 
in shared vehicles.

For the images acquired from the camera modules of the two vehicles, it was essential 
to have a preprocessing stage prior to inference. Preprocessing would occur in the form 
of rectangular crop. The parameters for the script which performs preprocessing for 
each image input were calibrated for each vehicle at installation. Preprocessing of this 
nature was required to eliminate visually redundant areas of the images such as exterior 
details of the car and unwanted corners. Existence of such features hindered the perfor-
mance of the prediction model as it tended to detect unwanted features with incorrect 
class labels.

Figure 13 presents the breakdown of the results from a pilot conducted for the concept 
car in Seat. The testing included capturing images in five distinct parked locations at two 
times of the day to ensure varying light intensities and shadows in the images. The pilot 
was aimed at examining the execution speeds (from image capture to executing the pre-
diction model and displaying the results). The observed execution speeds are presented 

Fig. 12  Communication setup of the detection system
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in Fig. 14. The inference time was precise in all trials and the main contributor of the 
variation in the total execution time was the image transfer from the camera unit to the 
server (which depended on the strength of the local network connection).

Figure 15 presents the precision and recall plots for the final trained prediction model. 
The graphs show that the mAP and recall reached 0.87 and 0.85, respectively. Figure 16 
presents the confusion matrix for the test batch of images. The final entry of the matrix 
represents the empty images in the test set which were accurately detected. Therefore, 
with the exception of this entry, the last row and the last column corresponded to the 
false positives and false negatives respectively. Based on the confusion matrix, the accu-
racy of the detections from the test batch was 89%, with a corresponding F1 score of 
0.96.

Indoor air quality‑monitoring unit

A series of pilots were conducted with the SEAT concept car to establish IAQ indexes 
based on specific air pollutants. The initial pilots was conducted to establish baseline 
conditions, prior to passenger occupation and when there were no external sources 

Fig. 13  Prediction breakdown from a pilot session conducted with the SEAT concept car yielded an accuracy 
of 89%

Fig. 14  Execution speeds for each test image from the pilot session conducted with the SEAT concept car 
(Mean: 65 s, Max: 178 s, Min: 47 s)
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of odour compromising the environment. Trials were performed using different envi-
ronmental conditions which were the only sources of signal variance for both CO2 
and VOCs. Hence, the tests were executed to define good or excellent indoor air qual-
ity conditions, which should be targeted by the IAQ module before passenger occupa-
tion. The temperature was maintained between 19 ◦ C and 22 ◦ C and relative humidity 
between 50% and 55%. The ventilation setting inside the vehicle was set to ‘auto’. As 
shown in Fig.  17, the concentration of VOCs remained between 30,500 ticks and 
32,500 ticks and the concentration of CO2 between 425 ppm and 450 ppm.

Variations of the VOC conditions were mainly caused by slight variations in envi-
ronmental conditions (such as temperature and humidity). An increase in inte-
rior temperature also led to an increase in VOCs emitted by the surfaces within the 

Fig. 15  Precision (left) and recall (right) curves for the batch of test images compiled from images taken 
with the two research vehicles. The faded curves presents the exact plot values while the darker colour 
correspond to the averaged (smoothed) curves

Fig. 16  Confusion matrix for the test batch of images captured with the two research vehicles
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vehicle cabin. Thus, a smaller number of ticks is obtained with a higher tempera-
ture. Regarding CO2 concentration, with no occupants in the vehicle this should be 
restrained below 450 ppm.

It was already presented that the ambient temperature can contribute to the rise 
of VOC levels inside the vehicle when empty. There is a direct correlation between 
temperature and VOCs emitted by the surfaces inside the vehicle: the higher the 
temperature, the higher the concentration of VOCs. This behaviour was observed 
by exposing the vehicle to sunlight for a prolonged period. The temperature inside 
the vehicle cabin increased from 23 ◦ C to 35 ◦ C after 2  h of exposure. Ventilation 

Fig. 17  IAQ output signals in empty vehicle conditions. Differences between VOC signals are due to slight 
variations in temperature or relative humidity
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and air conditioning systems inside the vehicle were switched off during the trials. 
As depicted in Fig. 18, changes in VOC levels due to variations in interior tempera-
ture were depicted by only analysing the raw concentration of VOCs over time. The 
increase in temperature inside the vehicle caused an increase in VOC concentration 
and a decrease in the number of ticks below acceptable reference conditions (< 30,000 
ticks), showing a slight deterioration of air quality over time. One observation gained 
from this first set of tests was the importance of controlling the temperature inside 
the vehicle cabin. This parameter impacted the air quality measurements inside the 
vehicle cabin and needed to be restrained. To achieve this, a recommended solution 
was to activate ventilation and climatic actuators until environmental conditions 
reached an optimum point (19–22 ◦C). Only after this, can the baseline conditions 
be established, and one can ensure that the condition of air is good for the occupants.

After establishing reference baseline conditions, indoor air quality was monitored 
according to passenger occupation. The vehicle was empty until good or excellent 
indoor air quality conditions were met after which occupation was initiated and 
maintained for a period of 5–10 min. Relevant output signals in this case were the raw 
concentration of CO2 and the relative change in VOC levels (VOCs index) triggered 
by occupants. An increase in this index represented a worsening of the interior air 
quality. In the high-occupation scenario, the vehicle was occupied with 4 passengers 
and ventilation was kept to a minimum. In the low-occupation scenario, only 2 occu-
pants were inside the vehicle and the cabin was well ventilated for the whole period. 
The results are shown in Fig. 19.

With high occupation, there was a period before occupation during which both 
VOC and CO2 levels remained stable at reference conditions (VOCs index was 
approximately 100 and the CO2 levels were less than 450 ppm). After occupation, 
both signals significantly increased, due to low ventilation and high occupation, 
revealing a worsening of indoor air quality over time. At low occupation, there was an 

Fig. 18  Concentration of VOCs due to variations in interior vehicle temperature (23–35 ◦C)
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increase in CO2 and VOC levels, but the increase was more subtle and sustained over 
time due to good ventilation of the interior (CO2 < 600 ppm and VOCs index < 250).

The final pilot was devoted to a scenario in which there was an external source of 
odour generated by sources such as food remains, smoking, care products, vomit and 
animal hairs. For the trials, Ethyl Acetate was selected as a representative compound 
since it has a strong and pungent odour. Drops of Ethyl Acetate (2 ml) were poured into 
a small recipient, placed in the vehicle and left for a certain time period at nominal ven-
tilation conditions. Temperature and relative humidity were maintained within the opti-
mum range during the trials. Figure 20 shows that the CO2 levels remained constant and 

Fig. 19  IAQ output signals at (a) low occupation and (b) high occupation of the vehicle
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at acceptable levels. Only VOC levels were recorded to dramatically increase, indicating 
a serious worsening of interior air quality caused by the external source. This situation 
should be reverted with corresponding supervisory action.

Discussion
Based on the results, it is evident that the implemented vision-based system was able to 
detect the presence of items in the rear seating area of the vehicle. Figure 21 presents a 
set of sample images with successful detections. However, it is interesting to dive into 
the specific accuracies with respect to the trained classes of objects, external sources of 
variation including light levels and shadows, vehicle type and camera locations.

Figure 22 shows the confusion matrices of the predictions from each vehicle used 
to compile the test batch of images. Note that the confusion matrix for the Aalto 
research vehicle is based on two camera modules: the camera unit used in the current 
research and test images from an old camera unit which was used in [55]. The accura-
cies of detections were 92% and 88% for the SEAT and Aalto research vehicles respec-
tively. Therefore, the results prove that there is no significant drop in the accuracies 
of the prediction model of both the vehicles, which indicates the generalisability of 
the algorithm for passenger vehicles of other types. There were also notable sources 
of specific errors in the results. First, it was important to ensure that the images were 
taken when there was sufficient daylight to ensure that the captured images were not 
too dark to hinder the visibility of any object in the car. Figure 23 presents an instance 
in which items (bottle on the floor and wallet on the seat) were left undetected due to 
a lack of visibility. Essentially, these were instances of false negatives due to the lack 
of contrast between a particular object and its neighbouring background pixels. The 
confusion matrix in Fig.  16 proves that the percentage of false negatives was 6.00% 
with a total of 22 instances in which objects were left undetected. However, there 
were only 6 instances of false positives (ratio of 1.55%) observed to primarily exist due 

Fig. 20  Pilot 4: IAQ output signals of a malodour event
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Fig. 21  Examples of successful detections

Fig. 22  Confusion matrices for test images obtained from the SEAT concept car (left) and Aalto research 
vehicle (right)



Page 23 of 31Jayawickrama et al. Journal of Big Data           (2023) 10:13 	

to shadows. Figure 24 (left) presents an instance in which the shape of the shadow is 
misinterpreted by the prediction model as being a valuable.

Based on the results, the binary classification accuracy (detected vs undetected) was 
93%. Consequently, if the manner of removing items from the vehicle is unique across 
all items, it is already useful information to the maintenance personnel that the algo-
rithm detected the presence of an item (regardless of the classification).

The remaining errors in the confusion matrix were misclassifications in which the pre-
diction model classified the detected objects incorrectly shown in Fig. 24 (trash classi-
fied as a bottle). The total number of misclassified instances was 12 which corresponds 
to a percentage of 3.11%. Table 1 presents the breakdown of prediction accuracies for 
each class for which the prediction model was trained. The row wise data of the table 
correspond the ratio of the self-gathered (captured) training images, ratio of the total 
training images and the final test accuracy respectively. The table suggests that the accu-
racy values are low for the classes which have the lowest ratio of instances in the dataset. 
From Fig. 8 it was evident that the class with the lowest quantity of images was “keys” 
with a mere total of 45 images due to practical difficulties in obtaining unique images of 
key sets. Thus, this category also has the lowest accuracy with respect to the detections. 
On the other hand, the best image classes with respect to quantity and variety (valu-
ables, bottles and cans) had the highest relative accuracies.

Fig. 23  Predicted test image lacking visibility. Red dotted circles correspond to the undetected items

Table 1  Breakdown of prediction accuracies for each applicable item class

Val Keys Bag Bottle Can Trash

Ratio (capture) 0.20 0.06 0.04 0.34 0.33 0.03

Ratio (total) 0.22 0.04 0.13 0.21 0.20 0.21

Acc (%) 85.90 55.00 71.43 98.67 95.52 55.56
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Additionally, the use of images from open-source platforms, such as Kaggle [13], 
proved successful in balancing the quantities among most classes for better training. The 
“keys” class was an exception since no images were available for this class from pub-
lic datasets. It was especially useful to employ this technique, of importing images to 
expand the training dataset, for the “trash” class since it was not practical to repeatedly 
litter the inside of the vehicle.

Furthermore, it is notable that most of the self-gathered images of trash items are cans 
and bottles. Although these were trained as separate classes, they essentially belong to 
the miscellaneous “trash” category. Therefore, misclassifications among these classes are 
technically harmless with respect to the final use-case scenarios. The confusion matrix 
in Fig. 25 presents the results of merging these three classes into a single category. Based 
on this, the accuracy has now elevated to 91%.

In addition, two sources of error were observed from the results of the prediction 
model which were dependent on the placement of the items. First, false negatives were 

Fig. 24  Predicted test images of a false positive as a result of (a) a shadow and a misclassification in which 
(b) a miscellaneous trash item was classified as a bottle

Fig. 25  Confusion matrix with respect to the three fundamental classes
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evident in a few images due to overlapping of items in which objects were left unclassi-
fied as depicted in Fig. 26.

Yet, the model does generate a bounding box over the dominant item in terms of the 
area of visibility, which is a positive trait since, when alerted, the maintenance personnel 
can eliminate all the items.

Additionally, there were a couple of instances when the bounding box merged when 
two similar items were placed close together as shown in Fig. 27. However, this was not 
identified as an error since the desired outcome of detection was achieved.

Moreover, there were instances of false negatives when there was a large quantity of 
different items scrambled across the seating area as depicted in Fig. 28. This was identi-
fied as the biggest source of error in the prediction model. However, images constituting 
of items from the trash class produced successful results despite the objects overlapping 
and being placed in high quantities as shown in Fig. 29.

Moving on to indoor air quality monitoring, the pilots conducted with the IAQ unit 
enabled us to define an IAQ index calculated with respect to the CO2 and VOC lev-
els within the vehicle. Prior to passenger occupation, the IAQ index was calculated 
with the raw concentration of VOCs to ensure that its initial conditions are low. Once 

Fig. 26  False negatives of two predicted images in which key sets are left undetected due to overlapping

Fig. 27  Two instances of the bounding box merging for items placed in close proximity to each other. The 
image in a depicts items from the same trained class and the image in b depicts items from two different 
trained classes
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reference conditions were stable, relative changes in the concentration of VOCs were 
considered, since it was useful to capture changes in the environment caused by the 
activity of passengers. Hence, the IAQ index considered the raw concentration of CO2 
and VOC levels, as well as the relative change in VOCs in comparison to clean condi-
tions of air which was the baseline or reference level.

Figure 30 provides a summary of the data outputs and relevant supervisory infor-
mation considered for each IAQ index derived from the results of our research. The 
threshold values were derived from the empirical results obtained in the current 
research, together with the information provided in the IAQ guidelines of indoor 
environments previously studied by organizations such as the German Environmental 
Agency [56] and the US Environmental Protection Agency [38].

Note that the bars in the figure have been associated with the data labels as their 
lengths are not drawn to scale in the chart. More importantly, the legend in the figure 
corresponds to the IAQ index based on the quantitative results of the three indica-
tors. Table 2 presents an elaborated series of actions and messages that should be sent 
to relevant operators or actuators (such as the HVAC unit) in the vehicle cabin.

Based on the analysis of the results obtained, we were able to determine the aspects 
of improving and advancing the developed system. The most significant next step was 

Fig. 28  Two examples of predicted images with a high quantity of items scattered across the seating area. 
Red dotted circles correspond to instances of undetected items (a bag and b keys)

Fig. 29  Two examples of scattering a high quantity of trash items across the seating area
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identified as the explicit fusion of the vision-based prediction model and the IAQ 
unit. The outputs of the two currently independent systems will be combined to yield 
an overall cleanliness level on a discrete predetermined scale. Figure  31 presents a 
potential instance of this expected outcome.

Moreover, we intend to expand the dataset of images for improving the prediction 
model with respect to identifying more types of leftover items. Essentially, the limita-
tion of the dataset quantity in the current research is due to the requirement of manually 
placing items in the vehicle and capturing images for training the model. The process of 
manual item placement is tedious, repetitive and consumes a lot of time. To overcome 
this, we intend to install the camera module in a real-world shared vehicle and acquire 
images when it is in operation. The captured images could then be used to expand the 
training dataset and improve the prediction model. Having said this, we can confidently 
deduce that the magnitude of the current dataset was sufficient within the scope of this 
research as we were able to prove the viability of the application as originally intended.

Conclusion
The paper presented an architecture for determining the cleanliness status in shared pas-
senger vehicles. An in-car camera unit was implemented to obtain images corresponding 
to the rear seating area of the vehicle. An indoor odour monitoring unit was developed 

Fig. 30  Derived IAQ index for the air quality assessment in the vehicle cabin

Table 2  IAQ index evaluation

IAQ index Air quality evaluation Actions required

≤ 1.99 No appreciable changes None

2.0–2.99 Negligible changes None

3.0–3.99 Noticeable changes Minor increase in ventilation

4.0–4.99 Slight deterioration in air Increase in ventilation

5.0–5.99 Significant deterioration in air Significant increase in ventilation. Search for external sources 
recommended

≥ 6.0 Severe deterioration in air Mandatory refresh of air. Mandatory search for external sources
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to sense the concentrations of specific air pollutants within the vehicle. The sensor data 
from the vehicle were transmitted to a remote server, upon request, for processing.

The developed algorithm was built upon the architecture of the Efficientdet CNN-
based object detection model. The trained prediction model in the current research 
yielded an overall accuracy of 89% across six distinct classes and a binary classification 
accuracy of 93%. From a practical standpoint, the overall accuracy of classifying between 
an empty image, an image containing trash and an image containing valuables is 91%. 
Therefore, the model proved to successfully work for the trained nature of images which 
included variation in ambient lighting and shadows. The existing sources of error with 
respect to the output of the prediction model were concretely analysed. Furthermore, 
the average execution time from capturing an image to displaying the results of detec-
tion on screen was experimentally obtained as 65 s. The target at the start of the research 
was 1 min. Thus, the obtained outcome was acceptable.

With respect to the indoor air quality-monitoring unit, an IAQ index was derived 
based on the results of four pilot categories. The index comprised 6 levels based on 
three indicators of air corresponding to the concentration of carbon dioxide and voltage 
organic compounds. Each index was associated with its definition of the interior envi-
ronment and recommended actions (if any).

Although the system produced the desired research results, the final product of imple-
mentation is further expected to be near ideal in reliability due to the nature of the 
application. To yield a higher accuracy for more types of leftover items, the best form of 

Fig. 31  A sample of the expected outcome of the future integration between the vision-based detection 
system and IAQ monitoring unit
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improving the prediction model was recognised as an expansion of the dataset for train-
ing by obtaining images from a shared vehicle in real-time operation (including the cap-
ture of images during nighttime or when the exterior is dark and requires illumination). 
Furthermore, the preprocessing stage of the detection unit will be integrated with a per-
son detection algorithm which eliminates images containing one or more people in the 
vehicle, thereby preventing the transmission of such images to the server. Future work 
will further examine the possibility of improving the interior sensor units of the vehicle 
to be more modular with the potential the plug-and-play feature. This would enable the 
users to fit and remove the detection system into and from their vehicles as intended 
without disrupting the existing interior. Additionally, a separate article will be formu-
lated and published to cover the in-depth architecture with respect to the specifics of the 
IAQ unit covering the applicable literature, lab experiments and odour evaluation. More 
importantly, the two systems of vision-based prediction and air quality monitoring will 
be explicitly integrated to generate an overall (and discrete) cleanliness level.

Abbreviations
CNN	� Convolutional neural network
IAQ	� Indoor air quality monitoring
VOCs	� Volatile organic compounds
mAP	� Mean average precision
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