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Abstract 

Deep learning algorithms provide visual tracking robustness at an unprecedented 
level, but realizing an acceptable performance is still challenging because of the 
natural continuous changes in the features of foreground and background objects 
over videos. One of the factors that most affects the robustness of tracking algorithms 
is the choice of network architecture parameters, especially the depth. A robust visual 
tracking model using a very deep generator (RTDG) was proposed in this study. We 
constructed our model on an ordinary convolutional neural network (CNN), which 
consists of feature extraction and binary classifier networks. We integrated a generative 
adversarial network (GAN) into the CNN to enhance the tracking results through an 
adversarial learning process performed during the training phase. We used the discrim‑
inator as a classifier and the generator as a store that produces unlabeled feature-level 
data with different appearances by applying masks to the extracted features. In this 
study, we investigated the role of increasing the number of fully connected (FC) layers 
in adversarial generative networks and their impact on robustness. We used a very 
deep FC network with 22 layers as a high-performance generator for the first time. This 
generator is used via adversarial learning to augment the positive samples to reduce 
the gap between the hungry deep learning algorithm and the available training data 
to achieve robust visual tracking. The experiments showed that the proposed frame‑
work performed well against state-of-the-art trackers on OTB-100, VOT2019, LaSOT and 
UAVDT benchmark datasets.
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Introduction
Visual tracking is the process of locating a sequence of locations of a target object in 
each frame of a video, given its position in the first frame only. Visual tracking is one of 
the most attractive research areas in the computer vision field because it is applied to 
videos instead of fixed images, and also it has widespread use in different applications, 
like self-driving cars [1], surveillance and security [2], handwritten recognition [3], sur-
gery [4], and augmented reality [5], to name a few.

The only way to achieve the most robust visual tracking results is to win the race to 
extract the features that precisely describe the target object. Over many years, machine 
learning (ML) algorithms have been used to extract different types of features such as 
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color, texture, shape, thermal, and audio. Researchers have mainly concentrated on inte-
grating two or more ML algorithms to cover most features and achieve good tracking 
results [6]. In the last few years, researchers have shifted their procedure to deep learn-
ing (DL) algorithms, which have achieved remarkable performance compared to ML 
algorithms. There are three main reasons why DL approaches are more robust than ML 
approaches are. First, deep features are extracted automatically through the layers of 
the deep neural network; usually, spatial features are extracted in the lower layers and 
semantic features are extracted in the higher layers. This is unlike handcrafted features, 
which need to be collected from different decisions from different integrated algorithms. 
Second, deep features can present the multi-level characteristics of the target. Therefore, 
they are more invariant to diverse appearance variations, which are considered the most 
significant challenge the tracking algorithms suffer. Third, deep features are more dis-
criminative because they can capture high-level dynamic information than handcrafted 
features, which can only capture low-level static information.

Problem and motivation
Although DL-based tracking approaches have achieved significant success in recent 
years, they face two significant challenges. The first challenge is the dynamic nature of 
the environment in visual tracking applications. The appearance of both the foreground 
and background objects continuously changes throughout the video. The tracker’s pri-
mary purpose is to extract the features of the target object and hence recognize the 
object and localize it. The dynamic nature of videos makes the features partially differ-
ent from one frame to another. Therefore, the visual tracker must follow different fea-
ture maps that belong to the same object, depending on the standard one given in the 
first frame. As shown in Fig. 1, various appearance variations significantly affect tracking 
robustness. If we extracted the feature maps of the images on the left and right sides, 
they would mostly be different. Our mission is to discover whether the two different fea-
ture maps belong to the same object.

The second challenge faced by DL tracking approaches is a lack of training data. 
Although DL approaches are more robust than ML approaches, DL algorithms are 
more data hungry. They require a large amount of training data to realize their 
expected roles. One of the most well-known architectures exploited by DL tracking 
methods is CNN [7, 8]. Despite being extensively used in several DL tracking algo-
rithms, CNNs have not achieved in visual tracking the same success in image classi-
fication [9]. CNN tracking algorithms have only one source of data, positive samples 
in the first video frames. Therefore, this sample in each video does not contain suf-
ficient data for the hungry DL tracking algorithms. One of the most successful CNN 
structures attempts is MDNet [10], which has achieved state-of-the-art performance 
in most tracking benchmark studies. It presents a multi-domain convolutional neu-
ral network consisting of five shared layers in the first stage and one domain-specific 
layer in the second stage. However, two problems have not yet been resolved. First, it 
faces the problem of model degradation caused by online sample updates, which the 
MDNet algorithm exploits during the classification stage. These updates are noisy 
and unreliable for robust tracking purposes. Second, the training samples are not 
sufficiently diverse to face the challenge of changing the appearances of the sample 
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during the tracking operation, such as occlusion and object deformation. This lack 
of data diversity severely degrades the performance of visual tracking algorithms.

Our RTDG model uses generative adversarial learning to solve this lack of data 
diversity by producing feature maps that contain the most robust and long-lasting 
properties of the tracked object. Unlike the discriminator networks that just dif-
ferentiate between the synthesized and the real data distributions, the generators 
should represent all the information inside the scene to approximate the target dis-
tribution. Because the spaces of deep representations are more informative than 
those of pixels to capture semantic aspects of images, we used a very deep gener-
ator model (22 layers). This deep architecture makes the generator network more 
able to identify the most discriminative features required to achieve hopeful track-
ing robustness. The proposed model realized a competitive performance against the 
state-of-the-art trackers on three benchmark datasets.

(a) Tracking failure due to occlusion and background clutter

(b) Tracking failure due to illumination and scale variations

(c) Tracking failure due to motion blur, rotation, and background clutter

Fig. 1  Three examples show the bad effect of different appearance variations on the tracking results
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Related work
In many comprehensive surveys, visual tracking is one of the most computer vision top-
ics extensively studied in the last decade [11–13]. This section first reviews some deep 
visual tracking approaches in the literature and discusses visual tracking methods that 
use generative adversarial networks (GANs).

Deep visual tracking

According to the network structure, DL visual trackers are categorized into two main 
types of model: generative (or one-stage regression) and discriminative (or two-stage 
detection) methods. The generative models consider only the information about the tar-
get object, whereas the discriminative models consider the information about both the 
foreground objects and their background.

The most well-known generative deep trackers are correlation filter (CF)-based net-
works and Siamese neural networks. In [14], the authors applied trained correlation 
filters in each convolutional layer in a CNN to encode the appearances of the tracked 
object. They then used the maximum response in each layer to locate an object. Danell-
jan et al. [15] used a new formulation to overcome the restriction of using discriminative 
convolution filters with single-resolution feature maps by integrating multi-resolution 
feature maps for more robust tracking results. Galoogahi et al. [16] introduced a com-
putationally efficient and robust visual tracker by exploiting a correlation filter that is 
aware of foreground and background objects using handcrafted features. Spatial tem-
poral regularized correlation filter (STRCF) can handle the unwanted boundary effects 
by integrating temporal and spatial regularization [17]. Li et al. presented a dual-regres-
sion framework that fuses a discriminative fully convolutional module and fine-grained 
correlation filter component to realize robust and accurate visual tracking results [18]. 
After the widespread use of correlation filters, Siamese neural networks have become 
the focus of generative tracking approaches in recent years owing to their high perfor-
mance and efficiency. Some Siamese based networks exploit the output of two parallel 
networks to indicate the location of an object [19, 20]. In [21], the authors integrated 
correlation filters and a Siamese network to propose a self-supervised learning-based 
visual tracker. They applied a multi-cycle consistency loss as self-supervised informa-
tion to learn the feature extractor from adjacent video frames. Li. B. et al. proposed the 
SIAMRPN +  + model, which uses a very deep neural network, ResNet [22]. In [23], 
the authors introduced a novel noise-aware (NA) window customized for visual track-
ing and used the particle filter to improve the signal-to-noise ratio (SNR) of windowed 
region of interest (ROIs). In [24], they exploited deep convolutional features with a small 
number of particles in a novel hierarchical particle filter, which formulates correlation 
filters as observation models and decomposes the standard particle filter framework into 
two constituent particle layers. In [25], the authors presented a multi-level similarity 
model, one for the global semantic similarity and the other for the local structural simi-
larity of the thermal infrared object. This model was based on the Siamese framework. 
In [26–28], the authors presented three thermal infrared (TIR) tracking methods which 
treat the tracking problem as a classification task. Fan et  al. integrated alignment and 
aggregation modules into a Siamese-based network [29]. The feature-alignment module 
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calibrates the search region to handle severe pose variations. A shallow-level and high-
level aggregation module was developed to handle the severe appearance variations of 
an object.

In contrast, tracking-by-detection methods discriminate the boundaries of the target 
object from the background after excluding negative candidate samples. A CNN is one 
of the main structures representing this type of deep tracker. The general structure of a 
CNN comprises two parts: feature extraction and classification. The output of the fea-
ture extraction stage is a two-dimensional (2D) plane, called a feature map. It contains 
features that the network can extract to represent the target object in the input image. 
This feature map is fed into the classifier to generate a score for each candidate sam-
ple, and finally indicates the target object. Shunli et al. integrated a fuzzy least-squares 
support vector machine (SVM) with metric learning to improve the adaptation of an 
appearance model to different video sequences [30]. A convolutional network without 
training (CNT) tracker [31] is an adaptive algorithm that uses a particle filter framework 
to adapt to the appearance variation during the tracking process. Hong et al. constructed 
a target-specific saliency map using a CNN pre-trained on a large-scale repository with 
SVM guidance [32]. They proved their method’s effectiveness based on a classification 
dataset, which is unreliable for the tracking task. One of the most successful networks 
used for visual tracking is the MDNet [10]. It consisted of five shared layers (three con-
volutional layers and two fully connected (FC) layers) and one domain-specific FC layer. 
The shared layers extract general representation features, and the domain-specific layer 
is responsible for identifying a particular target in a specific domain. In [33], the authors 
presented a model-free tracking system that can automatically locate many objects 
with the same spatial and motion structure, and update the structure without previous 
acknowledgement. Yang, Y. et al. suggested enhancing tracking accuracy through online 
training [34]. On the one hand, duplicated training data were compressed by examining 
the dataset’s distribution in low-level feature space. In contrast, they developed statisti-
cally-based losses to enhance inter-class distance while minimizing intra-class variation 
for high-level semantic characteristics. In [35], they developed an attribute-based CNN 
with numerous branches, each of which is responsible for classifying the target accord-
ing to a particular attribute. In [36], they suggested adaptively employing the level set 
segmentation and bounding box regression techniques to achieve a tight enclosing box, 
and designing a CNN to determine if the target is occluded. Recent attempts [37–41] 
have been made to realize higher performance of object tracking by using new schemes.

Despite the strengths of CNNs and their wide use in computer vision applications, 
there is still a large gap between the amount of labeled data required by the tracking 
frameworks and the amount of training data used by CNNs. CNNs mainly suffer from 
two problems: the high spatial overlap between the positive candidate samples and the 
lack of diversity in the training data, which is required for the different appearance vari-
ations that occur in the object during the video. One approach that was recently used to 
provide the required amount and diversity of data is adversarial learning.

Deep visual tracking using GANs

Generative adversarial networks (GANs) were introduced by Goodfellow et  al. [42] in 
2014. The most remarkable point with this network is that it is not consistent with the 
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existing amount and diversity of real data. In contrast, it attempts to mimic real-world 
data distribution and generate similar fake samples. This network consists of two sub-
networks: a generator and discriminator. The generator learns to produce synthetic 
instances by mapping from the latent space to a particular distribution that belongs to 
real data. The adversarial discriminator distinguishes between real and fake data, and 
sends feedback to the generator to generate more realistic samples. The promising per-
formance of GANs has encouraged researchers to propose different improvements, 
such as WGAN [43], DCGAN [44], StarGAN [45], cGAN [46], StyleGAN [47], cycle-
GAN [48], and many other models in the GAN family. They have been widely utilized 
in recent years to achieve better performance in different computer vision applications, 
such as object detection [49, 49], image-to-image translation [51], super-resolution [52], 
and object tracking [53–57].

GANs are not familiar with visual tracking because visual tracking is a supervised 
learning algorithm that uses labeled data, whereas GANs are unsupervised learning 
algorithms that use unlabeled data. Although their use with visual tracking is not wide-
spread, GANs are used as CNN assistants to achieve high-performance results. The 
VITAL network [53] utilized adversarial learning via a CNN to augment the positive 
samples in the feature space by generating a wide variety of appearances of the same 
mode over a temporal span. However, the architecture of their generator had only two 
layers which was insufficient to cover all the details of the input images. Therefore, we 
averted this drawback by replacing their architecture with a very deep one (22 layers). 
Also, we changed number of neurons in each layer and used the LeakyReLU activation 
function instead of ReLU to take into account both positive and negative weights. The 
SINT +  + framework [54] proposed a massive amount of deformation in hard positive 
samples, and the results were then optimized by deep reinforcement learning. Zhao et al. 
[55] introduced a framework for both regression and classification. They used a fully 
convolutional SNN for regression and discriminative classifier for classification. They 
then used adversarial learning to optimize both results. Han et  al. [56] utilized GANs 
once in the sample space, which carries a diversity of deformation and motion blur, and 
once in the feature space that uses occlusion masks. Yin et al. [57] integrated GANs into 
a tracking-by-detection network to enrich the extracted convolutional samples to cap-
ture a variety of object appearances.

Contributions
The main task of visual tracking is to search for features that are most similar to the 
ground-truth features in each frame in the video. In this study, we introduce a novel 
network that integrates GAN with a tracking CNN model to extract a particular distri-
bution of unlabeled data via adversarial learning to produce further synthesized training 
data to reduce the overfitting effect on the tracking results. We discuss an important 
aspect related to the architecture of generative models in GANs, namely, its depth. We 
fixed all parameters related to the architecture and increased the number of fully con-
nected (FC) layers to determine their impact on robustness. After several trials, we 
found that 22 FC layers were the best architecture for the generator to obtain the best 
training results. Using this strong generator, we produced masks applied to the input 
feature maps to obtain other versions of the feature maps containing more diversified 
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appearances. Subsequently, our model chooses a mask that helps to include the most 
robust features that last for a long time. This training scheme makes our framework 
robust to expected appearance circumstances. We evaluated the proposed framework 
on OTB-100, VOT2019, LaSOT and UAVDT benchmark datasets and found that it per-
formed well against state-of-the-art trackers.

Paper organization
The rest of the paper is organized as follows. "Deep fully connected network architec-
ture" describes the properties of the FC network structure and the effect of the size and 
depth of layers on the network’s robustness. "Methodology" introduces the proposed 
method during both the training and the tracking phases. The implementation and vali-
dation of the proposed method based on two state-of-the-art benchmark datasets are 
presented in "Experimental results and validation". Finally, conclusions and suggested 
future search trends are presented in "Conclusions and future work".

Deep fully connected network architecture
A fully connected network [58] is a feed-forward neural network architecture in which 
all nodes in each layer are connected to all nodes in the adjacent layers. It consists of 
three types of layers: input, hidden, and output. The input layer receives the input image 
to be processed and the output layer is responsible for the classification task. The hidden 
layers are the real computational engines in the FC network, and most of the processing 
is performed through them. FCs were designed to solve non-linear mapping problems. 
Therefore, each node in the network performs a nonlinear activation function. In our 
case, we used the LeakyReLU activation function for all hidden nodes, except the last 
one.

The hidden layers did not have specific sizes or depths. Their sizes depended on the 
tasks performed. No theory yet indicates how many layers or nodes are required to per-
form a certain task. Traditionally, the most common method for selecting the hyperpa-
rameters of the hidden layers is based on trial and error. However, choosing a suitable 
depth is one of the most critical factors that lead to high-performance deep networks, 
as proven in [59–61]. Our architecture achieved the best robustness with 22 hidden lay-
ers, which is considered a very deep fully connected neural network. It is common to 
use very deep convolutional networks to enhance classification performance, but we 
are using for the first time a very deep, fully connected network to improve adversarial 
learning performance. [62, 63] represented a detailed visualization and understanding 
of what happened in the neurons of the deep generator networks. Their study showed 
that the neurons of the first layers in the generator had information about the small parts 
which composed the objects. The neurons of the middle layers had semantic informa-
tion about the objects in the scene. The later layers had low-level information about the 
materials, textures and colors of the items in the scene. Therefore, the very deep genera-
tor could be more robust in generating the semantic output with more low-level details.

During the training phase, the hidden layers perform the primary role of generalizing 
features learned from the input features. In addition, they can later recognize any feature 
belonging to a feature class that is generalized from the input features. Therefore, we 
used the FC network as the generator model, which is responsible for generating masks 
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during the adversarial learning process in our model. Traditionally, some of the exist-
ing generator architectures use convolutional layers only and eliminate or minimize fully 
connected layers as in the DCGAN [44]. Typically, conventional networks use one fully 
connected layer in the generator to receive input noise and one layer in the discrimina-
tor to map the extracted features to a lower-dimensional space for classification. Unlike 
convolutional layers that extract spatial features, FC layers can extract general informa-
tion that lasts for a long time span [64]. In addition, FC layers can generate subtle vari-
ations in the input features in different spatial zones which can cover the entire image 
because their mapping is non-spatial. These properties make it better to generate dif-
ferent variations of the target object in the feature space, thereby augmenting the train-
ing data. Thus, it is considered an essential step to capture the diverse appearances that 
occur through the video, and as a result, achieve more robust tracking.

Methodology
As discussed in Sec. I: GANs are unfamiliar with visual tracking. Therefore, it is always 
used as an assistant in CNN frameworks to achieve better results. In our framework 
(RTDG), we used the VGG-M network [61] as the backbone CNN network. A generator 
network was inserted between the feature extraction and classification stages. The gen-
erator augments the input feature maps by producing masks that represent different var-
iations in appearance via adversarial learning. The classifier then distinguishes between 
the discriminative features in individual frames and the features that last for a long time. 
Our framework comprises three main stages during the training process: feature extrac-
tion, adversarial feature generation, and binary classification.

Feature extraction

Feature extraction in visual tracking tasks acts as the first gate through which the algo-
rithm’s success passes. If the extracted features fail to describe the tracked object prop-
erly, the next steps in the tracking framework cannot compensate for this failure. Feature 
extraction converts raw data into a numerical form, which machine learning and deep 
learning algorithms can deal with. Thus, it extracts a group of pixels with similar spec-
tral, spatial, or textural attributes. The architecture of the feature extractor in our frame-
work is similar to that used in a VGG-M network [12], as shown in Fig. 2. We used only 
the first three convolutional layers in the VGG-M model with internal pooling layers-
similar to the feature extractor in the MDNet model [10]. We used different sizes of fea-
ture maps that were adjusted using our 107 × 107 input image, as shown in Fig. 2. The 
convolutional layers are equipped with a rectification (ReLU) function with filter sizes 
of 7, 5, and 3 for Conv.1, Conv. 2, and Conv.3 layers, respectively. The max-pooling lay-
ers were performed over 3 × 3 pixel filters with a stride of 2. Each layer worked with 256 
positive and negative samples that were used for better adversarial learning results. The 
output of the feature extraction stage was a 3 × 3 feature map with 512 channels. Map 
C is then flattened to 4608 elements, which will be the input to the following core stage: 
the adversarial learning. The following two subsections explain the adversarial learning 
stage during the training phase.
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Adversarial feature generation

Feature map (C) generated by the pre-trained feature extractor mentioned in the pre-
vious subsection contains both robust and discriminative features. Hence, the natural 
question is what the difference between robust and discriminative features is. Robust 
features are general features that describe an object over a long temporal span. These 
are the main features that do not change from frame to frame. However, discriminative 
features are specific features that describe the object precisely only in individual situ-
ations, and they do not last for more frames. They are related to particular conditions 
of the object owing to some appearance variations. Overfitting would occur if the clas-
sifier depended on them. Most tracking-by-detection algorithms cannot extract robust 
features and leave discriminative features. The adversarial learning procedure can col-
lect the most robust features by augmenting positive samples by generating diverse input 
variations in the feature space. Using these augmented feature maps makes the algo-
rithm more robust to variations in appearance during tracking.

We placed the adversarial feature generator network (G) between the feature extrac-
tion and classification networks, as shown in Fig. 3. The G network uses the feature map 
C of the first frame of the video as an input and generates nine masks (G(C) or M*). 
All masks had the same size as the input feature map (3 × 3) with only one channel, 
and each mask represented one of the appearance variations. The nine different masks 
cover almost all expected appearance variations. The mask is split into nine equal parts, 
where only one part is assigned 1, and the others are assigned 0 s in turn. This operation 
was performed to ensure that the generated masks were applied to the diversified ver-
sions of each input feature. The weights of these masks were randomly initialized and 
then gradually updated during training. The generated masks (M*) were applied to the 
extracted features (C) to create a CO feature map. (CO) is defined in (1), and this opera-
tion is defined as the dropout operation.

(1)∁Oijk = ∁ijkM
∗
ij

Input Image
3@107×107

Conv. 1
96@51×51

Max-pool. 1
96@25×25

Conv. 2
256@11×11

Max-pool. 2
256@5×5 Conv. 3

512@3×3

Flattened input 
feature map (C)

4608

Fig. 2  The architecture of the feature extraction stage
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where (∁Oijk) is the feature (C) after the dropout operation with the corresponding gen-
erated mask (M*) of the element (i,j). Mask M* has 3 × 3 values, zeros, and ones after 
thresholding. M∗

ij represents the value at the i-th row and j-th column in the mask, and 
∁ijk represents the value at locations i and j in channel k in the input feature map. ∁Oijk 
contains only features in ∁ijk whose corresponding values are ones in M∗

ij . This operation 
reduces the weights of the most discriminative features, which is a known method for 
solving the regularization problem and for reducing overfitting. (CO) can be considered 
a modified feature map that is passed to the classifier or discriminative network (D). 
During the training of G, a mask is gradually recognized, which reduces the performance 
of the classifier. G is optimized by using the mean square error loss (MSE) to measure 
the difference between the estimated map (positive and negative samples of images 
based on the output probability of the generator) and the ground truth map (positive 
and negative samples of images based on the output probability of the discriminator).

Traditionally, very deep convolutional networks have been used in deep learning algo-
rithms to achieve more robust results in classification and tracking tasks. The VITAL 
model uses only two fully connected layers as the generator network. In our model, 
we used 22 FC layers in the generator, as illustrated in Fig.  4. The architecture of our 

Fig. 3  The architecture of RTDG tracking framework which uses 22-FC generative model in the training

Fig. 4  The architecture of the FC-22 (RTDG) generator network
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generator consists of 22 FC hidden layers equipped with a LeakyReLU activation func-
tion with a slope of 0.2, except for the final layer, which uses the Tanh function. We used 
the trial-and-error method to obtain the best number of layers that yield the best track-
ing robustness. The sizes of the 22 layers are as following: 10240, 6144, 3848, 3600, 3352, 
3104, 2856, 2608, 2360, 2112, 1864, 1616, 1368, 1120, 872, 624, 376, 128, 256, 512, 1024, 
and 9. We used stochastic gradient descent (SGD) as the optimizer with the generator. 
Batch normalization was not used because it did not improve the results.

Binary classification

GANs use semi-supervised learning, which means that they can extract structures from 
unlabeled data to augment data sets with additional training data to regularize the classi-
fier. In traditional adversarial learning, G uses a random noise vector z from an easy-to-
sample distribution Pnoise(z) as an input and outputs an image G(z). The discriminator D 
takes either a real image x with a distribution Pdata(x) or G(z) as an input and outputs the 
classification probability to detect whether it is a real or fake image. Specifically, the loss 
function of the GAN calculates the similarity between the generated data distribution 
pnoise and the real sample distribution pdata using the Jensen-Shannon (JS) divergence 
equation as follows in (2):

This function is based on cross-entropy loss theory. D and G were trained synchro-
nously. In the proposed model, D is trained once, and G is trained based on the results 
of training D. In each iteration, the feature map C is entered into G to generate mask M*, 
which is used in a dropout operation. The result of this operation is then entered into D, 
which uses this unlabeled data as additional training data to be invariant to appearance 
variations. The architecture of the discriminator in our model consisted of three fully 
connected layers, as shown in Fig. 3.

D measured the prediction scores for positive samples (target object) and negative 
samples (background) using (CO). The prediction score was used to calculate the loss 
that was derived from the objective function in (2). This loss was optimized to minimize 
using a stochastic gradient descent (SGD) optimizer. This loss is described in (3).

The discriminator is implemented by optimizing the maximum E(C ,M)∼P(C ,M) [logD(M.C)] 
and EC∼P(C) [log(1− D(G(C).C))] . On the other hand, G is trained to maximize the 
probability that D produces a fake example; consequently, to minimize the two terms, 
EC∼P(C) [log(1− D(G(C).C))] and �E(C ,M)∼P(C ,M)

�G(C)−M�2 . Once the generator is 
trained to its optimum value (pg = pr), the discriminator’s loss reaches the highest value. 
In this case, the corresponding mask is the actual mask, M, which is used to update M in 
(3).

(2)
min

G

max

D
L(D,G) = Ex∼pdata(x)[logD(x)]+ Ez∼pnoise(z)[log(1− D(G(z)))]

(3)

L =
min
G

max
D

E(C ,M)∼P(C ,M) [logD(M.C)]

+ EC∼P(C) [log(1− D(G(C).C))]

+ �E(C ,M)∼P(C ,M)
�G(C)−M�2
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We compute the cost-sensitive loss (4) to reduce the effect of a large number of easy 
negative samples and reformulate our final loss as in (5). This final loss function receives 
the discriminator output prediction score as the input and computes the loss value that 
is optimized for the lowest. Based on the cost-sensitive loss equation, which is based on 
entropy loss,

we reformulate the loss function in (3) as:

where K1 = 1− D(M.C) and K2 = D(G(C).C) are the modulating factors that balance 
training sample loss.

Online tracking

After the training phase was completed, the test phase was started. In this phase, the 
generator network is eliminated, and the model becomes an ordinary tracking-by-detec-
tion model consisting of feature extraction and classification networks. In the training 
stage, we pre-trained the network offline based on the positive and negative samples 
used in the MDnet model [10]. The training stage is applied only to the first frame of the 
input sequence. Throughout the training period, hard-negative samples were excluded.

In the tracking scheme, every time a new frame arrives, positive and negative sam-
ple candidates are generated around the previous target position and fed into the binary 
classifier to generate a prediction score for each of them. Finally, the candidate with the 
highest prediction score is chosen as the new state of the target. We continuously update 
our model with a short-term tracking update (when a failure occurs) and a regular long-
term tracking update (every 10 frames).

Experimental results and validation
This section presents an empirical analysis of the impact of increasing the number of FC 
layers in the generator network. We study how this impact increases the robustness of 
a tracking-by-detection network augmented with a GAN via adversarial learning. We 
compared the proposed framework with state-of-the-art frameworks, such as VITAL 
[53] and MDNet [10], which are two of the top frameworks in the survey paper pub-
lished in 2021 [12]. The VITAL algorithm uses a GAN model similar to ours to augment 
the positive samples with synthesized ones except that they use only two fully connected 
layers generators. In our experiment, we tried different architectures of the generator to 
show the impact of using very deep FC layers compared with non-deep networks. There-
fore, we studied the robustness of the tracker based on the following architectures for 
the generator: two FC layers, as in the VITAL network (VITAL), five FC layers (FC-5), 

(4)L
(

p, y
)

= −
(

y.(1− p).log(p)+
(

1− y
)

.p.log(1− p)
)

(5)

L =
min
G

max
D

E(C ,M)∼P(C ,M) [K1.logD(M.C)]

+ EC∼P(C) [K2.log(1− D(G(C).C))]

+ �E(C ,M)∼P(C ,M)
�G(C)−M�2
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and 22 FC layers (RTDG). The learning rates for training the generator and discrimina-
tor networks in all the models were 0.2 × 10− 3 and 0.5 × 10− 3, respectively.

Hardware

All implementations were written in PyTorch and run on a Fluidstack-based Linux cloud 
server. The cloud server had the following specifications: Ubuntu 18.04.5 LT, RAM: 
114 GB, GPU: Nvidia RTX 2080, CPU: Intel(R) Xeon(R) Silver 4208 CPU @ 2.10G.

For more effective experimentation, we show the results of three of the most common 
tracking datasets: OTB-100 [65], VOT2019 [66], LaSOT [67] and UAVDT [68].

OTB evaluation

The OTB-100 dataset [65] contained approximately 100 videos. For supervised learning, 
the videos were labeled with bounding box annotations. This dataset includes illumina-
tion variations, low resolution, scale variation, fast motion, background clutter, deforma-
tion, occlusion, out-of-view, motion blur, in-plane rotation, and out-of-plane rotation, 
among other appearance variations that challenge visual tracking applications (11 attrib-
utes). The training samples in the OTB dataset are the first frames in each of the 100 
sequences, as is a typical practice. As a result, we obtained 100 photos for the training 
set and augmented them to be more robust via an adversarial learning process. All the 
remaining frames from the 100 sequences were included in the test set.

Ablation study

In RTDG, we used 22 FC layers in a generator via adversarial learning to produce syn-
thesized positive samples that help the tracking model to be more robust to appearance 
variations. We introduce this study in Fig. 5 to validate the influence of using both adver-
sarial learning and a very deep FC generator. First, we performed random generation 
of masks without adversarial learning and found that the success and precision on the 
OTB-100 dataset were severely affected, leading to inferior performance. As shown in 
Fig. 5, the performance in the case of using adversarial learning is increased by 18.63%. 
We then tried different depths of FC generators to observe the impact of increasing 
the number of FC layers in the generator network. We tested FC-2 (VITAL), FC-5, and 
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Fig. 5  Ablation Study. Precision and success plots on the OTB-2015 dataset using OPE evaluation
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FC-22 (RTDG) generators, where 2, 5, and 22 refer to the number of layers in the gener-
ator. When we increased the number of FC layers, the performance in terms of both suc-
cess and precision improved. The performance in the case of FC-5 increased by 0.19% 
compared with FC-2, and RTDG increased by 0.53% compared with FC-5. This infer-
ence implies that the very deep generator can produce distributions that are more simi-
lar to the input feature distributions and has an excellent capability to capture robust 
non-spatial features. As a result, RTDG was the best for augmenting the positive sam-
ples and realizing the best tracking robustness compared to shallow FC generators.

Quantitative evaluation

We used standard evaluation metrics followed by the OTB-100 benchmark dataset. We 
employed one-pass evaluation (OPE), which starts tracking the ground-truth state in the 
first frame and provides the average precision and success rates in subsequent frames.

The precision of the trackers was measured using the Euclidean distance between 
the centers of the estimated bounding box and manually labeled ground-truth bound-
ing box. However, when the target was lost, the distance was calculated randomly. As 
a result, it is preferable to count the number of successful frames in which the distance 
between the assessed and ground-truth bounding boxes is less than a certain threshold 
(x-axis of the plot, in pixels), as shown in the precision plot (Fig. 6). To show the track-
ers’ overall performance, we use the area under the curve (AUC) or success rate. Suc-
cess plots are preferred over precision plots because precision only considers bounding 
box positions and ignores the size and overlap. The success rate changes when the over-
lap score threshold on the x-axis fluctuates between 0 and 1, and the resultant curve is 
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Fig. 6  Precision and success plots on the OTB-2015 dataset using OPE evaluation

Table 1  Comparison of the state-of-the-art trackers in terms of precision, AUC, and FPS on OTB 
dataset

The bolded values are the best ones and the underlined values are in the second order

Tracker VITAL FC-5 MDNet SiamCorners CF_ML USOT RTDG (ours)

Precision 0.853 0.854 0.861 0.832 0.853 0.813 0.857

AUC​ 0.711 0.714 0.714 0.715 0.699 0.682 0.719
FPS 3.351 3.841 4.051 44.3 58.9 37.7 3.197
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illustrated in Fig. 6. In addition, we calculated the average numerical values of precision 
and success for the 100 videos, which are listed in Table 1. We used in our comparison 
some state-of-the-art trackers like VITAL and MDNet, and some recent visual trackers 
like SiamCorners [69], CF_ML [70] and USOT [71].

As shown in Fig. 6 and Table 1, the overall performance of the RTDG architecture is 
superior to that of state-of-the-art trackers. It is at the first place according to the suc-
cess rate and second place according to the precision. Our RTDG framework has the 
capability to capture a variety of lasting features, which gives the classifier the ability 
to recognize an object even if it is deformed under several appearance circumstances. 
It is clear from the results that the depth of the FC generator is an essential factor that 
severely affects tracking robustness. As shown, the results of the HDTG generator (22 
FC layers) are better than the 5 FC layers generator, and the 5 FC layers generator has 
better results than 2 FC layers generator (VITAL). In addition, the MDNet framework 
has a lower success rate than ours, indicating that our tracker is more robust. Table 2 
shows values of success rates against each of the OTB attributes for a detailed analysis 
of the capabilities of the state-of-the-art tackers against the different appearance varia-
tions. This indicates that the HDTG tracker was the most robust to the following eight 
attributes: IV, SV, OCC, DEF, MB, OPR, OV, and BC. It is also second with the remain-
ing three attributes: FM, IPR, and LR.

Although the deep generator network is more robust than the shallow ones, but this 
depth negatively affects the speed of the tracker. As shown in Table  1, the proposed 
model is slow compared with the other models which have less number of layers.

Qualitative evaluation

Figures 7, 8, 9, 10, 11 show the qualitative evaluation of the five sequences of the OTB 
dataset covering most of the attributes. The MDNet tracker does not perform well in 
severe deformation cases, such as occlusion, out-of-view, and out-of-plane attrib-
utes, which require considerable coverage in the training phase using an extensive and 

Table 2  The success scores of the state-of-the-art trackers with different appearnce variations in 
OTB-100 dataset

The bolded values are the best ones and the underlined values are in the second order

Tracker 

Attribute VITAL FC-5 MDNet Siam-corners CF_ML USOT RTDG (ours)

IV (25) 529.714 547.347 531.187 538.865 545.348 521.704 573.497
SV (28) 509.614 506.877 501.294 501.434 495.876 505.348 533.942
OCC (29) 478.240 510.816 513.198 487.930 527.209 514.452 535.058
DEF (19) 309.759 316.120 327.642 323.448 319.457 317.357 330.967
MB (12) 413.080 394.773 389.127 405.435 375.984 417.279 421.667
FM (17) 361.024 326.807 315.745 327.832 302.560 345.812 344.812

IPR (31) 461.357 427.843 427.071 456.096 409.289 416.374 445.652

OPR (39) 467.530 481.221 485.065 478.489 453.698 457.053 503.952
OV (6) 519.680 529.673 520.047 509.233 491.024 526.285 544.707
BC (21) 432.522 467.596 454.673 475.680 452.982 447.764 490.763
LR (4) 446.804 432.323 376.085 436.342 367.921 428.354 440.225



Page 16 of 26AlBasiouny et al. Journal of Big Data            (2023) 10:3 

diversified training set. It is apparent in Figs. 7, 8, 11 that MDNet lost the target com-
pletely, and it was not sufficiently accurate to locate the object in Figs. 9, 10. The training 
samples in the MDNet method are insufficiently diversified to meet the severe changes 
in the samples’ appearances or even get out of the scene during the tracking operation, 
which leads to an overfitting problem. The other three trackers all use adversarial learn-
ing by augmenting positive samples, which is performed by generating masks using FC 
generators. They can extract the most stable features to be more robust to changes in 
appearance, but it is obvious that the depth of the FC generator affects the ability to 
extract robust features. The VITAL tracker, which has a 2 FC generator, completely 
lost the target, as shown in Figs.  9, 10, and did not identify the precise locations and 

(a) MDNet

(b) VITAL

(c) FC-5

(d) RTDG (Ours)

       Ground truth                                                                              The proposed algorithm

Fig. 7  Tracking results of the compared trackers on the ’Suv’ video (frames: 562 to 566)

(a) MDNet

(b) VITAL

(c) FC-5

(d) RTDG (Ours)

Ground truth The proposed algorithm

Fig. 8  Tracking results of the compared trackers on the ’Bird 1’ video (frames: 280 to 284)
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sizes in Figs.  9, 10. The framework with the FC-5 generator performed slightly better 
than VITAL. However, its performance was still lower than that of the proposed FC-22 
(RTDG), as shown in Figs. 9, 10. Finally, it is evident from the figures that the proposed 
RTDG, which has the deepest FC generator, is the best among the state-of-the-art track-
ers on the five sequences, which have the most challenging attributes.

VOT2019 evaluation

The VOT2019 dataset is considered the seventh visual object tracking dataset in the 
VOT family. There are four different challenges in VOT2019 dataset based on the nature 

(a) MDNet

(b) VITAL

(c) FC-5

(d) RTDG (Ours)
Ground truth                                                                            The proposed algorithm

Fig. 9  Tracking results of the compared trackers on the ’Board’ video (frames: 547 to 551)

(a) MDNet

(b) VITAL

(c) FC-5

(d) RTDG (Ours)

Ground truth The proposed algorithm

Fig. 10  Tracking results of the compared trackers on the ’Panda’ video (frames: 739 to 743)
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of the tracker. Our tracker operates with short-term sequences. Therefore, we tested our 
tracker against state-of-the-art trackers on the VOT-ST2019 challenge. It contains 60 
sequences with the following attributes: occlusion, illumination change, motion change, 
size change, and camera motion. The training sample set contains 60 images which 
are the first frames in the 60 videos. As this training set is not big enough, we used the 
adversarial learning by generating masks help to train the tracking model on the most 
robust features. First, the tracker is initialized on the first frame of a sequence, and it 
resets each time the overlap between the expected and ground truth bounding boxes is 
reduced to zero. Subsequently, the accuracy (A), robustness (R), and expected average 
overlap (EAO) measures were calculated. Accuracy (A) measures how closely the track-
er’s anticipated bounding box overlaps with the ground-truth bounding box. In a frame, 
the overlap is defined as the intersection over the union between the calculated and 
ground-truth bounding boxes. Robustness (R) is a measure of the frequency of tracker 
failures. The evaluation process was as follows: at the start of the sequence, a tracker 
was initialized and allowed to track until the overlap between the predicted region and 
the ground-truth annotation was larger than zero. After five frames, the tracker is re-
initialized when the overlap decreases to zero, which is considered a tracker failure. The 
number of failures is counted over all sequences in the dataset and denoted as F, whereas 
the total number of frames is denoted as M. Robustness (R) was defined as follows:

where S is the sensitivity parameter, and robustness denotes the probability that the 
tracker will not fail after S frames. Finally, EAO is a combination of accuracy and robust-
ness metrics, and is the primary metric that specifies the performance of the tracker. It 
evaluates average overlaps across a

(6)R = exp(−S ∗ (F/M))

(a) MDNet

(b) VITAL

(c) FC-5

(d) RTDG (Ours)
Ground truth The proposed algorithm

Fig. 11  Tracking results of the compared trackers on the ’Basketball’ video (frames: 484 to 488)
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large number of Ns-frame-long sequences over a range of sequence lengths, including 
zero overlaps ( ∅Ns ). The overall EAO ( ∅ ) is computed by averaging the EAO values in 
the range of [Nlo; Nhi] frames in short-term videos.

The range boundaries are the places closest to the left and right of the mode, where 
p(Nlo) ≈ p(Nhi) and the integral of the probability density function is within the range 
of 0.5. Table  3 presents the results of RTDG, VITAL, FC-5, A3CTD [72], TADT [73], 
SiamRPNpp [22], CSRDCF [74] and MDNet on the VOT2019 dataset in terms of accu-
racy, robustness, and EAO. The results show that RTDG has the best robustness, and the 
second-best in terms of EAO and accuracy.

LaSOT evaluation

We evaluated the proposed tracker with the state-of-the-art trackers on a high-quality 
benchmark for large-scale single object tracking (LaSOT) [67]. This dataset is for long-
term tracking videos. It contains 1400 videos that had between 1000 and 11397 frames 
per video. The test dataset comprises 280 videos and the training dataset contains 1120 
videos.

Table 4 shows the results of the proposed framework (RTDG) compared with VITAL, 
FC-5, A3CTD, TADT, SiamRPNpp, CSRDCF, MDNet, SiamCorners, CF_ML and USOT 
on the LaSOT dataset in terms of success, precision, and normalized precision. RTDG 
scored the second one in terms of precision and the third position in terms of suc-
cess and normalized precision, making it a strong competitor to SiamRPNpp tracker, 
although it does not use long-term strategies.

UAVDT evaluation

The unmanned aerial vehicle for detection and visual tracking benchmark dataset 
(UAVDT) [68] is a large scale benchmark which contains 100 sequences that consist of 
about 80,000 frames with over 0.8 million bounding boxes selected from 10 h raw vid-
eos. The dataset is interested in vehicles (cars, buses and trucks) over urban areas and 
focuses on complex scenarios (e.g., flying altitude, weather condition, camera view and 
occlusion). This UAVDT dataset was collected for three computer vision tasks: object 
detection, single object tracking and multiple object tracking. For single object tracking, 
the one related to our method, there are eight challenging attributes: background clutter 
(BC), camera rotation (CR), Object rotation (OR), small object (SO), illumination vari-
ation (IV), object blur (OB), scale variation (SV), and large occlusion (LO). It uses the 

(7)∅ =
1

Nhi − Nlw

∑

Ns=Nlo:Nhi

∅Ns

Table 3  Comparison of the state-of-the-art trackers on VOT2019 dataset

The bolded values are the best ones and the underlined values are in the second order

Tracker VITAL FC-5 MDNet A3CTD TADT SiamRPNpp CSRDCF RTDG (Ours)

Accuracy 0.51 0.51 0.51 0.451 0.516 0.599 0.496 0.52

Robustness 85 95 99 243 117 100 132 83
EAO 0.294 0.264 0.274 0.165 0.207 0.285 0.201 0.286
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common one-pass evaluation (OPE) scheme used by OTB and LaSOT datasets that cal-
culates success and precision scores to evaluate the tracking performance. A comparison 
was performed on some state-of-the-art trackers like MDNet, VITAL, SiamFC [75], KCF 
[76], STRCF [17], CREST [77] and ECO [78], and other three of the most recent track-
ers; MS-Faster [79], MRCF [80] and DR2Track [81]. Table 5 and Fig. 12 show that our 
RTDG method has a favorable performance compared with the state-of-the-art trackers 
on UAVDT dataset. It achieved the best precision and the third one in terms of suc-
cess after MDNet and MRCF trackers. Accordingly, RTDG is a significant competitor to 
state-of-the-art trackers on OTB-100, VOT2019, LaSOT and UAVDT datasets.

Conclusions and future work
In recent years, adversarial learning has achieved significant success in the field of deep 
learning. In this study, we introduce a novel deep FC structure of the generator that is 
used in the tracking network via an adversarial learning process. We augmented a track-
ing-by-detection framework using our RTDG generator that produces masks in the 
feature space that can distinguish between the most robust features and the discrimi-
native features in individual frames. This augmentation enriches the training set from 
the perspective of sample diversity to decrease the gap between the data-hungry deep 
learning algorithms and ordinary CNN networks. According to the experiments that we 
performed on four datasets to compare the RTDG algorithm with other state-of-the-art 
algorithms, the empirical results showed that RTDG has an effective robustness com-
pared to the others. In addition, we compared different depths of FC generators and 
found that depth is a vital factor that influences generator performance. As the depth 
increases, the ability to generate more robust masks that train the framework to be 
robust against different appearance variations also increases.

The GAN family has a new birth of new models with more capabilities every day. 
Therefore, the selection of a suitable architecture for GANs integrated with CNNs 
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Fig. 12  Precision and success plots on the UAVDT dataset using OPE evaluation
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remains an open research area. In addition, the generated masks can be designed to have 
more advanced properties and sizes.
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CR	� Camera rotation
OR	� Object rotation
SO	� Small object
OB	� Object blur
LO	� Large occlusion
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