
Detection and prevention of SQLI attacks
and developing compressive framework using
machine learning and hybrid techniques
Wubetu Barud Demilie1* and Fitsum Gizachew Deriba2 

Abstract 

A web application is a software system that provides an interface to its users through
a web browser on any operating system (OS). Despite their growing popularity, web
application security threats have become more diverse, resulting in more severe dam-
age. Malware attacks, particularly SQLI attacks, are common in poorly designed web
applications. This vulnerability has been known for more than two decades and is still
a source of concern. Accordingly, different techniques have been proposed to coun-
ter SQLI attacks. However, the majority of them either fail to cover the entire scope
of the problem. The structured query language injection (SQLI) attack is among the
most harmful online application attacks and often happens when the attacker(s) alter
(modify), remove (delete), read, and copy data from database servers. All facets of secu-
rity, including confidentiality, data integrity, and data availability, can be impacted by a
successful SQLI attack. This paper investigates common SQLI attack forms, mechanisms,
and a method of identifying, detecting, and preventing them based on the existence
of the SQL query. Here, we have developed a comprehensive framework for detecting
and preventing the effectiveness of techniques that address specific issues following
the essence of the SQLI attacks by using traditional Navies Bayes (NB), Decision Trees
(DT), Support Vectors Machine (SVM), Random Forests (RF), Logistic Regression (LR),
and Neural Networks Based on Multilayer Perceptron (MLP), and hybrid approach are
used for our study. The machine learning (ML) algorithms were implemented using the
Keras library, while the classical methods were implemented using the Tensor Flow-
Learn package. For this proposed research work, we gathered 54,306 pieces of data
from weblogs, cookies, session usage, and from HTTP (S) request files to train and test
our model. The performance evaluation results for training set in metrics such as the
hybrid approach (ANN and SVM) perform better accuracies in precision (99.05% and
99.54%), recall (99.65% and 99.61%), f1-score (99.35% and 99.57%), and training set
(99.20% and 99.60%) respectively than other ML approaches. However, their training
time is too high (i.e., 19.62 and 26.16 s respectively) for NB and RF. Accordingly, the NB
technique performs poorly in accuracy, precision, recall, f1-score, training set evalua-
tion metrics, and best in training time. Additionally, the performance evaluation results
for test set in metrics such as hybrid approach (ANN and SVM) perform better accura-
cies in precision (98.87% and 99.20%), recall (99.13% and 99.47%), f1-score (99.00%
and 99.33%) and test set (98.70% and 99.40%) respectively than other ML approaches.

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Demilie and Deriba ﻿Journal of Big Data (2022) 9:124
https://doi.org/10.1186/s40537-022-00678-0

Journal of Big Data

*Correspondence:
wubetubarud@gmail.com;
wubetuB@wcu.edu.et

1 Department of Information
Technology, Wachemo
University, Hossana, Ethiopia
2 Department of Computer
Science, Wachemo University,
Hossana, Ethiopia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-022-00678-0&domain=pdf

Page 2 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

However, their test time is too high (i.e., 11.76 and 15.33 ms respectively). Accordingly,
the NB technique performs poorly in accuracy, precision, recall, f1-score, test set evalu-
ation metrics, and best in training time. Here, among the implemented ML techniques,
SVM and ANN are weak learners. The achieved performance evaluation results indi-
cated that the proposed SQLI attack detection and prevention mechanism has been
improved over the previously implemented techniques in the theme. Finally, in this
paper, we aimed to keep researchers up-to-date, with contributions, and recommen-
dations to the understanding of the intersection between SQLI attacks and prevention
in the artificial intelligence (AI) field.

Keywords:  Deep learning, Detection, Hybrid, Machine learning, Prevention, SQLI
attack, Web application

Introduction
Malware attacks, particularly SQLI attacks, are common in poorly designed web applica-
tions. This vulnerability has been known for more than two decades and is still a source
of concern [1]. For many years, structured query language (SQL) has been the indus-
try standard for dealing with relational database management systems (DBMS). Since
the majority of applications for cyber-physical systems are safety–critical; misbehavior
brought on by random errors or online attacks can severely limit their development [2,
3]. Therefore, it’s crucial to safeguard cyber-physical systems from suffering this kind of
attack.

SQLI attacks on data-driven web applications and systems, also known as
SQLI attacks, have been a serious problem since it became common for internet web
applications and SQL databases to be connected [4, 5, 6]. An SQLI attack occurs when
an attacker takes advantage of a flaw in the web application’s SQL implementation by
submitting a malicious SQL statement through a fillable field. In other words, the
attacker will insert code into a field to dump or alter data or gain access to the backend.
As explained by [6] and [7], SQLI is a common attack vector that allows malicious SQL
code to access hidden information by manipulating database backends and is regarded
as one of the most dangerous injection attacks because it jeopardizes the main security
services such as confidentiality, authentication, authorization, and integrity [8, 9]. This
information could include sensitive business information, private customer information,
or user lists. A successful SQLI attacker can lead to the deletion of entire databases, the
unauthorized use of sensitive data, and the unintentional grant of administrative rights
to a database.

The increased development and spread of web applications have also increased the
number and severity of web attacks [10, 11]. According to [12], the most common vul-
nerability in web applications is injection. Injection attacks take advantage of a variety of
flaws to deliver untrusted user input, which is then processed by a web application [13].
The SQLI attacks entail injecting (inserting) malicious SQL commands into input forms
or queries to gain access to a database or manipulate its data (e.g. send the database con-
tents to the attacker, modify or delete the database content, etc.) [14, 15]. Undeniably,
most web applications today rely on a back-end database to store data collected from
users and/or to retrieve information selected by users [16].

Forms and cookies are commonly used to interact with these users. Different hackers
attempt to exploit this feature by injecting malicious code into the user inputs that will

Page 3 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

later be used to construct the SQL queries. Improper validation of user inputs can result
in the success of the SQLI attack, which can have disastrous consequences such as the
deletion of the database or the collection of sensitive and confidential data from web
application clients [17]. Several research works have addressed the SQLI attack due to its
sensitive impact. Some of these works only attempt to detect SQLI after it has occurred
and other works have attempted to prevent it from happening in the first place.

In this study, we looked at SQLI attacks that try to bypass the web application fire-
wall and gain unauthorized access to confidential data. These attacks target the HTTP
or HTTPS protocol. The victim system is normally not prepared to handle this input,
which frequently leads to data leakage and/or the attacker receiving unauthorized
access. In this instance, the attacker has access to and/or control over the data, which
has an impact on all areas of security, including data availability, confidentiality, and
integrity [2].

The SQL query that was maliciously injected is intended to extract or modify data
from the database server. Successful injection can cause data loss and/or the total data-
base to be destroyed, as well as authentication, bypass, and modifications to the data-
base by inserting, changing, and/or deleting data. Additionally, such an assault could
take control of the hosted OS and run commands on it, usually having greater negative
effects [2, 18]. Therefore, organizations are seriously threatened by SQLI assaults.

Even though several techniques have been proposed to combat SQLI attacks, none
of these solutions have addressed the full scope of the attacks. As a result, there were
no solutions that can prevent or detect all types of SQLI attacks. Recently, researchers
have attempted to with AI integrated techniques including deep learning (DL), machine
learning (ML), and hybrid techniques to propose more sophisticated solutions [19].

Here, learning from past data reflecting an attack and/or regular data is typically used
to build AI approaches to help with threat detection and prevention. Historical informa-
tion can be used to interpret detected traffic, identify attack patterns, and even forecast
future assaults before they happen [2, 20].

To grasp how SQL language can be abused, SQLI attackers and defenders need to
understand how it functions [2]. The queries must be prepared in the SQL language and
adhere to a specified syntax to retrieve data from databases or modify the data, such as:

The aforementioned search will provide all books with book_name "Advanced Data-
base Systems." The queries are typically typed into a web browser and sent to the data-
base management system [2].

What if the attacker in this case extends the original SQL query?
For example:

Page 4 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

The above query will return all book names in the database, not just the book names
labeled as "Advanced Database Systems," because the sentence ‘1 = 1’ is always true. If
the stored list of book names is not a secret and the previous example might not pose
a problem [2]. If successful, it might return sensitive data, such as passwords, bank
accounts, trade secrets, and personal information, which might be regarded as a privacy
breach among other negative effects. However, it could be applied to value using differ-
ent syntax.

According to certain studies, inserting code using ’OR’ and a ‘TRUE’ assertion, such
as ’1 = 1’, is referred to as "tautology" [21]. Other techniques besides tautology can be
used, like when an attacker purposefully inserts an incorrect query to make the data-
base server return a default error page. This default error page may contain important
information that can help an attacker comprehend the database and craft a more sophis-
ticated attack [2, 21]. In addition to numerous other techniques based on the same con-
cept, incorrectly employing SQL syntax to extract or even edit the data in the targeted
database, ‘UNION’ can also be used to extract information.

Given that SQLI operates in this manner, the question is how to recognize and stop
this kind of attack by using DL, ML, and hybrid techniques. By instructing a classifier
to develop the ability to recognize, detect, and subsequently prevent an attack, it can be
used to support the detection and prevention of SQLI attacks. The classifier can be used
to categorize new data, including traffic or data from log files, and is trained using vari-
ous models. If the classifier is active, it will block data from reaching the database server;
if it is passive, it will inform the administrator. Accordingly, three alternative learning
techniques have been used to train the classifier to recognize and detect SQLI attacks [2,
22].

The first technique was unsupervised learning (UL), in which features were taken from
data that had not been categorized, or data that had neither normal nor pathological
labels. The classifier finds hidden structures in the unclassified dataset using information
and the Bayesian probability theory. When data are unclassified, it is unclear if they are
normal or abnormal (malicious). The UL can make use of a variety of methods, including
clustering and density estimation [2, 22].

The classifier was trained using the second technique, supervised learning (SL), using
a set of labeled training data. The output was known in advance because the input data
were marked, i.e., normal or aberrant. To attain an acceptable classification accuracy, the
procedure first comprises a straightforward mapping between the input training data
and the known output, which was followed by continuous algorithm and weight change.
The classifier was then tested using a test set of data; if the results were within an accept-
able range of accuracy, the classifier was then ready to recognize novel data or data that
had not been used in training or testing [2].

The fundamental problem with the SL was the time it took to create and label the
training and test sets of data, especially for sophisticated attacks. The classification and
regression techniques were used to classify the SL. The Bayesian networks, DT, SVM,
K-nearest neighbors, and neural networks are some of the most used SL techniques. The
third technique, known as semi-supervised learning, combines SL and UL techniques [2,
22]. Accordingly, by using SQLI, the attackers can alter the SQL statement by replacing
the user’s supplied data with their own data as depicted in Fig. 1.

Page 5 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

For this proposed research work, we gathered 54,306 pieces of data from weblogs,
cookies, session usage, and from HTTP (S) request files to train and test our model. We
divided the acquired data into sections for our model’s testing (30%) and training (70%).
We used 38,014 of the total dataset for training and 16,292 for model testing. Among the
datasets, 47,343 are genuine queries and 6,963 are malicious queries.

Accordingly, this work has the following major contributions.

•	 Review the recommended and state-of-the-art research works in DL, ML, and hybrid
techniques for SQLI attacks that have been published in reputable databases.

•	 The different SQLI attack detection and prevention countermeasures are classified
and discussed.

•	 Studying and identifying the nature of SQLI attacks and proposing prevention and
detection mechanisms.

•	 Newly proposed solutions are described and discussed, such as those based on DL,
ML, and hybrid techniques.

•	 Keep the researchers up-to-date, with contributions, and recommendations to the
understanding of the intersection between SQLI attacks and prevention in the AI
field.

Accordingly, the primary goal of this paper is to examine current SQLI attacks, iden-
tify their methodologies, strengths, and weaknesses, and finally propose a thorough
detection and prevention method.

The rest of the paper is organized into different but interrelated sub-sections. The
paper begins by discussing the related works in the “Related works” section, the SQLI
query attacks overview in the "SQLI query attacks overview" section, existing methods
for SQLI detection and prevention in the "Existing methods for SQLI detection and
prevention" section, developing a web-based framework for SQLI attacks detection and

Fig. 1  The SQLI attacks [23]

Page 6 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

prevention in "Developing a web-based framework for SQLI attacks detection and pre-
vention" section, most common attacks on SQLI in "Most common attacks on SQLI"
section, proposed frameworks for SQLI detection and prevention in "Proposed frame-
works for SQLI detection and prevention" section, result and discussion in "Result and
discussion" section, and the conclusion and recommendation in "Conclusion and recom-
mendation" section.

Related works
In this section, different published research works have been considered and included to
indicate the research gaps in the area. The paper typically reviews and includes studies
that have been published in reputable databases. Many researchers have demonstrated
the use of DL, ML, and hybrid techniques to detect SQLI attacks [23].

A review of SQLI prevention in web applications has been presented in [1]. The
authors have provided a summary of 14 different varieties of SQLI attacks and how they
affect online applications. Their research’s main objective was to investigate alternative
SQLI prevention strategies and to offer an analysis of the most effective defense against
SQLI attacks.

Authors in [2] have conducted a systematic literature review of 36 articles related to
research on SQLI attacks and ML techniques. To classify different varieties of SQLI
attacks, they have identified the most widely used ML techniques. Their finding revealed
that few studies generated new SQLI attack datasets using ML tools and techniques.
Similarly, their results showed that only a few studies focused only on using mutation
operators to generate adversarial SQLI attack queries. In future work, the researchers
aimed to cover the use of other ML and DL techniques to generate and detect SQLI
attacks.

A comprehensive study on SQLI attacks, their mode, detection, and prevention has
been presented in [4]. The authors have identified how attackers of this kind might
exploit such a weakness and execute weak code as well as a strategy to mitigate such
detrimental effects on database systems. The researchers’ investigation revealed that
web operations were frequently used for online administrations ranging from high
levels of informal communication to managing transaction accounts and dealing with
sensitive user data. The real issue, however, was that this data was exposed to attacks
because of unauthorized access, where the attackers gained entry to the system using
various hacking and cracking techniques with very malicious motives. The attacker can
use more sophisticated queries and creative tactics to get around authentication while
also gaining total control over both the server and the web application. Many cutting-
edge algorithms have been developed up to this point to encrypt data queries to defend
against such attacks by structuring desirable query modification plans. In the paper, they
worked together to discuss the history of injection attacks, different forms of injection
attacks, various case studies, and defenses against SQLI attacks, along with an appropri-
ate illustration.

In the work of [5], a survey on SQLI attack detection and prevention has been pre-
sented. The research, according to the authors, might help laypeople comprehend SQL
and its hazards. It also helps researchers and programmers who wanted to learn about
all the problems that still plague web applications and what strategies can be employed

Page 7 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

to stop SQLI attacks. From the researcher’s perspective, it was anticipated that if web
application developers adhered to the strategies provided in their study, the online appli-
cations would be safe from such damaging attacks.

Detecting web attacks with end-to-end DL was presented in [10]. Three new insights
into the study of autonomous intrusion detection systems have come from this work.
Firstly, they assessed whether a method based on the resilient software modeling tool
(RSMT), which autonomously monitors and describes the runtime behavior of web
applications, was feasible for detecting web attacks. A low-dimensional representation
of the raw features with unlabeled request data was used to recognize anomalies by com-
puting the reconstruction error of the request data, and they have also described how
RSMT trains a stacked denoising autoencoder to encode and reconstruct the call graph
for end-to-end DL.

Secondly, they have described how RSMT trains a stacked denoising autoencoder
to encode and reconstruct the call graph for end-to-end DL, where a low-dimensional
representation of the raw features with unlabeled request data is used to recognize
anomalies by computing the reconstruction error of the request data. Thirdly, they have
examined the outcomes of empirically testing RSMT on artificial datasets as well as
real-world applications that have been intentionally made vulnerable. Finally, the find-
ings demonstrated that the suggested method could efficiently and accurately iden-
tify attacks, such as SQLI, cross-site scripting, and deserialization, with a minimum of
labeled training data and domain knowledge.

According to [11], SQLI is a common and challenging network attack that can cause
inestimable loop-breaking and loss to the database, and how to detect SQLI statements
was one of the current research hotspots. Here, how to detect SQLI statements was
one of the current research hotspots. As described by the authors, SQLI is a frequent
and difficult network assault that can result in immeasurable loop-breaking and loss to
the database. An SQLI detection model and technique based on deep neural networks
were developed based on the data properties of SQL statements. The main technique
used in this case was word pausing the data to turn it into word vectors, then forming a
sparse matrix and feeding it into the model for training. Next, a multi-hidden layer deep
neural network model with the ReLU function was built, the traditional loss function
was optimized, and a dropout method was added to increase the generalizability of this
model and over 96% of the final model’s accuracy was achieved. Finally, the proposed
technique successfully addressed the issues of overfitting in ML and the requirement
for manual screening to extract features, which significantly increases the accuracy of
SQLI detection by comparing the experimental results with conventional ML and LSTM
algorithms.

Black-box detection of XQuery injection and parameter tampering vulnerabilities in
web applications has been presented in [8]. To identify XQuery injection and parameter
tampering vulnerabilities in online applications powered by native extensible markup
language (XML) databases, a black-box fuzzing approach has been proposed. A work-
ing prototype of XiParam was created and put to the test on weak web applications that
used BaseX, a native XML database, as their backend. The experimental analysis amply
proved that the prototype was successful in preventing both XQuery injection and
parameter tampering vulnerabilities from being detected.

Page 8 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

In the work of [16], an SQLI attack detection and prevention technique using DL has
been presented. Based on extensive local and international research, the authors have
suggested an SQLI detection method that uses NLP and DL frameworks and does not
rely on a background rule base. By allowing the machine to automatically pick up on
the language model characteristics of SQLI attacks, the strategy has increased accuracy,
decreased false alarm rates, and provided some protection against attacks that were
never discovered in advance.

Detection of SQLI attacks has been presented, tested, and compared to 23 ML classi-
fiers using MATLAB [23]. They generated their own datasets, into which they injected
abnormal SQL syntax. They checked and manually verified the SQL statements. A total
of 616 SQL statements were used to train the test classifiers. They have used ML tech-
niques such as “coarse KNN, bagged trees, linear SVM, fine KNN, medium KNN, RUS
boosted trees, subspace discriminant, boosted trees, weighted KNN, cubic KNN, linear
discriminant, medium tree, subspace KNN, simple tree, quadratic discriminant, cubic
SVM, fine Gaussian SVM, cosine KNN, complex tree, logistic regression, coarse Gauss-
ian SVM, medium Gaussian, and SVM”. The five best models in terms of accuracy were
determined to be ensemble boosted, bagged trees, linear discriminant, cubic SVM, and
fine Gaussian SVM. They have tested their proposed technique and the results showed
that their technique was able to detect the SQLI attack with an accuracy of 93.8%.

The authors of [24] have proposed a model called ATTAR to detect SQLI attacks by
analyzing web access logs to extract SQLI attack features. The features were chosen
based on access behavior mining and a grammar pattern recognizer. The main target of
this model was the detection of unknown SQLI statements that had not been previously
used in the training data. Five ML techniques were used for training: NB, random forest,
SVM, ID3, and k-means. The experimental results showed that the accuracy of the mod-
els based on random forest and ID3 achieved the best results in detecting SQLI attacks.

The authors of [25] have proposed a hybrid CNN-BiLSTM-based model for SQLI
attack detection. The authors presented a detailed comparative analysis of different
types of ML techniques used for the detection of SQLI attacks. The CNN-BiLSTM
approach provided an accuracy of approximately 98%, compared with other described
ML techniques.

The authors of [26] have presented an ML classifier to detect SQLI vulnerabilities in
PHP code. Multiple ML techniques were trained and evaluated, including random for-
est, logistic regression, SVM, multilayer perceptron (MLP), LSTM, and CNN. The
authors have found that CNN provided the best precision of 95.4%, while a model based
on MLP achieved the highest recall 63.7%, and the highest f-measure of 74.6%.

The authors of [27] have proposed an adaptive deep forest model (ADF) with the inte-
gration of the AdaBoost technique. AdaBoost stands for adaptive boosting, which is a
statistical classification technique, and the deep forest model is a layered model based on
a deep neural network. The adaptive deep forest model proposed in [25] achieved high
efficiency, comparable to that of traditional ML models, such as decision trees, and bet-
ter performance compared with regular deep neural network models, such as RNN and
CNN.

The authors of [28] have created a dataset using symbolic finite automata to train
a classifier to detect SQLI attacks. The generated data were labeled, and training was

Page 9 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

conducted with an SL model with ML techniques of two-class support vector machine
(TC SVM) and two-class logistic regression (TC LR). The generated models were evalu-
ated using a receiver operating characteristic (ROC) curve.

The authors of [29] have proposed an SQLI detection method using ensemble learn-
ing techniques and NLP to generate a bag-of-words model used to train a random forest
classifier. The prediction was also considered in this research to improve the detection
ability of the classifier. In this study, DT, NB, SVM, and KNN classification models were
also trained to classify the same testing dataset, and their performances were compared
with that of the proposed method. The experimental results showed that the proposed
method achieved better accuracy, higher TPR, and lower FNR than the other four classi-
fiers. The evaluation metrics were used to measure the performance of the classifier. The
measurements were based on a confusion matrix, accuracy, precision, true-positive rate,
false-positive rate, true-negative rate, false-negative rate, receiver operating characteris-
tic curve, and area under the curve.

The authors of [30] have developed a dataset by gathering and combining a large num-
ber of smaller datasets. The generated dataset was labeled, and the learning model was
SL. They trained seven ML models: DT, AdaBoost, random forest, optimized linear, Ten-
sorFlow linear, deep ANN, and a boosted trees classifier. Then, they compared the seven
techniques in terms of performance and accuracy. The results showed that the random
forest classifier outperformed all other classifiers and achieved an accuracy of 99.8%. The
paper also compared the performance of different ML models in detecting SQLI attacks.

The authors of [31] have proposed a novel approach to the detection of SQLI attacks
using human agent knowledge transfer (HAT) and TD ML techniques. In this model, an
ML agent acted as a maze game to differentiate between normal SQL queries and mali-
cious SQL queries. If the incoming SQL query was an SQLI attack query, then it gained
more rewards and was deemed an SQLI attack query before achieving the final state.
Finally, the ML technique has achieved an accuracy of 95%.

The authors of [32] have proposed a detection system based on two techniques. The
first detection method was based on pattern matching, which is the same as a signature-
based detection system whereby the classifier has a database of SQL attack signatures
and only inspects the HTTP URL in an attempt to find a match. The second detection
method used was based on ML techniques. To build this model, the authors have col-
lected malicious data and trained the classifier with these data by extracting the features
representing attacks. They have used techniques such as SVM, NB, and K-nearest neigh-
bor. The performance of the classifier was measured using the total cost ratio (TCR).

The authors of [33] have trained an SVM to detect malicious SQL queries by modeling
the WHERE clause of a query as an interaction network of tokens and computing the
centrality of the nodes. Node centralities were used to quantify the degree of importance
or centrality of a node in the network. The experimental results obtained on a dataset
collected from five web applications using some automated attack tools confirmed that
three of the centrality measures used in this study can effectively detect SQLI attacks
with minimal impact on performance.

The authors of [15] have proposed an LSTM-based SQLI attack detection method,
which can automatically learn the effective representation of data and has a strong
advantage to confront complex high-dimensional massive data. Additionally, from the

Page 10 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

standpoint of penetration, this paper has provided an injection sample development
method based on data transmission channels. This technique can produce legitimate
positive samples and explicitly simulate SQLI attacks. The strategy, in the researcher’s
opinion, can successfully address the over-fitting issue brought on by a lack of sufficient
positive samples. The experimental findings revealed that the suggested method out-
performed numerous similar classical ML techniques and widely used DL techniques
in terms of improving the accuracy of the SQLI attack detection and reducing the false
positive rate. Finally, the experimental results showed that the accuracy, precision, and
f1-score of the proposed method were all above 92%.

The authors of [34] have proposed a framework for SQLI prevention via server-side
scripting using ML and compiler platforms. A dataset of 1100 samples of SQL com-
mands were trained in four ML techniques such as boosted decision tree, DT, SVM, and
an artificial neural network. The results indicated that the DT technique has achieved
the highest prediction efficiency among the tested models.

The author of [35] has used the AdaBoost technique to detect SQLI attacks. In this
study, the data were converted into stumps, which were classified as weak stumps pro-
viding less weight to the output, or strong stumps providing the highest weight in the
overall output. The experimental result showed that the proposed technique accurately
and effectively detected injection attacks.

The authors of [36] have proposed a method for classifying dynamic SQL queries as
either attacks or normal based on a web profile prepared during the training phase. NB,
SVM, and parse tree techniques were used for the classification process. The overall
detection rate using the two datasets was 91% and 90%, respectively.

The author of [37] has designed a method to detect malicious SQL queries. The DT
technique was used for the classification processes to detect different levels of SQLI. The
proposed model maintained an accuracy of more than 98% in detecting SQLI attacks
and an accuracy of 92% in classifying the level of attack as simple, unified, or lateral.

The authors of [38] have presented a simple method for SQLI attack detection based
on an artificial neural network. First, a large amount of SQLI data were analyzed to
extract the relevant features. Then, a variety of neural network models, such as MLP and
LSTM, were trained. The experimental results showed that the detection rate of MLP
was better than that of LSTM.

The authors of [39] have automatized the process of exploiting SQLI attacks through
reinforcement learning agents. In this study, the problem was modeled as a Markov deci-
sion process. The experimental results showed that reinforcement learning agents can be
used in the future to perform security assessment and penetration testing.

The authors of [40] have presented a detection method by modeling SQL queries as a
graph of tokens and utilized the centrality measure of tokens to train single and multiple
SVM classifiers. The system was tested using directed and undirected graphs with differ-
ent SVM classifiers. The experimental results demonstrated that the proposed technique
can effectively identify malicious SQL queries.

The authors of [41] have presented a model of a two-class support vector machine
(TCSVM) to predict binary labeled outcomes concerning whether an SQLI attack was
positive or negative in a web request. This model has intercepted web requests at the
proxy level and applied ML predictive analytics to predict SQLI attacks.

Page 11 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

The authors of [42] have presented a novel approach for classifying SQL queries.
A gap-weighted string subsequence kernel technique was used to compute the simi-
larity metric between the query strings. Then, the SVM was trained on the similar-
ity metrics to determine whether the query strings were normal or malicious. The
proposed approach was evaluated using many datasets and achieved an accuracy of
92.48%.

The authors of [43] have presented a new approach to the construction of a dataset
with a NoSQL query database. Six classification techniques were trained and evalu-
ated to identify SQLI attacks, which included: DT, SVM, random forest, KNN, neural
network, and multilayer perceptron. The experimental results showed that the last
two techniques obtained an accuracy of 97.6%.

The authors of [44] have trained a progressive neural network model with an NB
classifier to successfully detect SQLI attacks. Progressive neural networks were
trained using parameters such as error-based, time-based, SQL query, and union-
based SQLI attacks. The proposed method has achieved an accuracy of 97.897%.

The authors of [45] have proposed a hybrid approach using tree-vector kernels in
SVM to learn SQL statements. The authors used both the parse tree structure of SQL
queries and the query value similarity characteristic to distinguish between malicious
and benign queries. The results confirmed the benefit of incorporation to efficiently
and accurately identify abnormal queries.

The work [14] has presented the detection of SQLI behaviors using word vectors and
long short-term memory (LSTM). A unique technique for detecting SQLI attacks based
on a word vector of SQL tokens and LSTM neural networks was presented in this paper.
In the suggested approach, SQL query strings were first syntactically broken down into
tokens, after which a word vector of SQL tokens was built using the likelihood ratio
test, and finally, an LSTM model was trained using sequences of token word vectors.
They created a tool called WOVSQLI to implement the suggested method, and it was
tested using a set of data from several sources. The performed experiments showed that
WOVSQLI was capable of reliably detecting SQLI attacks. Finally, the results of the
experiment showed that the proposed tool achieved an accuracy of 98.60%.

The authors of [46] have proposed a DL-based approach to detect SQLI attacks in
network traffic. The proposed approach selected only the target features needed by
the model to be trained using a deep belief network (DBN) model. The authors also
employed test data to test the performance of different models, including LSTM, CNN,
and MLP. According to the experimental results, DBN achieved an accuracy of 96%.

The authors of [47] have proposed a framework that combined the EDADT (efficient
data adaptive decision tree) technique and the SVM classification technique to detect
SQLI attacks. The used dataset was created using the MovieLens dataset system for
movie recommendations, which included user login and movie details. The experimen-
tal results showed that the proposed approach achieved an accuracy of 99.87%.

The authors of [48] have proposed a method for detecting SQLI using the NB ML
technique. The authors have applied a tokenization process to break the query into
meaningful elements called tokens. Then, the list of tokens became an input for fur-
ther classification processes. The result of the NB technique was analyzed using preci-
sion, recall, and accuracy.

Page 12 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

Evading web application firewalls through adversarial machine learning has been pre-
sented in [49]. They have presented WAF-A-MoLE, a tool that models the presence of an
adversary. This tool leverages a set of mutation operators that alter the syntax of a pay-
load without affecting the original semantics. The researchers have evaluated the per-
formance of the tool against existing WAFs, which they have trained using their publicly
available SQL query dataset. Finally, they showed that WAF-A-MoLE bypasses all the
considered ML-based WAFs.

Deep semantic learning for testing SQLI has been presented in [50]. The paper has
proposed a deep natural language processing-based tool, dubbed DeepSQLI, to gener-
ate test cases for detecting SQLI vulnerabilities. Through adopting DL based neural lan-
guage model and sequence of words prediction, DeepSQLI was equipped with the ability
to learn the semantic knowledge embedded in SQLI attacks, allowing it to translate user
inputs (or a test case) into a new test case, which was semantically related and poten-
tially more sophisticated. The experiments were conducted to compare DeepSQLI with
SQLmap, a state-of-the-art SQLI testing automation tool, on six real-world web applica-
tions that were of different scales, characteristics, and domains. The empirical results
demonstrated the effectiveness and the remarkable superiority of DeepSQLI over SQL-
map, such that more SQLI vulnerabilities can be identified by using a less number of test
cases, whilst running much faster.

Behind an application firewall, are we safe from SQLI attacks has been presented in
[51]. The paper was focused on web application firewalls and SQLI attacks. They have
presented an ML-based testing approach to detect holes in firewalls that let SQLIattacks
bypass. In the beginning, the approach can automatically generate diverse attack pay-
loads, which can be seeded into inputs of web-based applications, and then submit them
to a system that was protected by a firewall. Incrementally learning from the tests that
were blocked or passed by the firewall, their approach can then select tests that exhibit
characteristics associated with bypassing the firewall and mutate them to efficiently gen-
erate new bypassing attacks. In the race against cyber attacks, time was vital. Being able
to learn and anticipate more attacks that can circumvent a firewall promptly was very
important to quickly fix or fine-tune the firewall. They have developed a tool that imple-
ments the approach and evaluated it on ModSecurity, a widely used application firewall.
The results they obtained suggest good performance and efficiency in detecting holes in
the firewall that could let SQLI attacks go undetected.

Automatic detection of NoSQLI using SL has been presented in [52]. They have
developed a tool for detecting NoSQLI using SL. To the best of their knowledge, their
developed training dataset on NoSQLI was the first of its kind. They manually designed
important features and apply various SL techniques. Their tool has achieved a 93.00
f1-score as established by tenfold cross-validation. They also applied their tools to a
NoSQLI generating tool, NoSQLMap, and find that their tool outperforms Sqreen, the
only available NoSQLI detection tool, by 36.25% in terms of detection rate. The pro-
posed technique was also shown to be database-agnostic achieving similar performance
with injection on MongoDB and CouchDB databases.

A framework for SQLI investigations detection, investigation, and forensics has been
presented in [53]. This paper has proposed a framework of SQLI investigation archi-
tecture and has proved its feasibility in fighting against SQLI attacks. An effective and

Page 13 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

efficient approach was also proposed to prosecute SQLI aggressors and keep them away
from abusing the database.

The development of a compressive framework using ML Approaches for SQLI attacks
has been presented in [54]. The paper investigates the most common SQLI attack forms,
their mechanisms, and a method of identifying them based on the existence of the SQL
query. Furthermore, they have proposed a comprehensive framework for determining
the effectiveness of the proposed techniques in addressing a variety of issues based on
the type of attack using DL, ML, and hybrid techniques. A thorough examination of the
model using a test set revealed that the hybrid approach and ANN outperform NB, SVM,
and DT in terms of classifying injected queries. The NB, on the other hand, outperforms
the other approaches in terms of web loading time during testing. The results showed an
accuracy of 99.16% for ANN and the hybrid technique has an accuracy of 99.6%, mak-
ing it the best trained among the others. As a result, the proposed method improved the
detection and prevention of SQLI attacks. They used a small dataset for training and
testing in this study, but maximizing the dataset and implementing the model in practice
was recommended for future researchers.

The development of a compressive framework using ML Approaches for SQLI attacks
has been presented in [54]. The paper investigates the most common SQLI attack forms,
their mechanisms, and a method of identifying them based on the existence of the SQL
query. Furthermore, they have proposed a comprehensive framework for determining
the effectiveness of the proposed techniques in addressing a variety of issues based on
the type of attack using DL, ML, and hybrid techniques. A thorough examination of the
model using a test set revealed that the hybrid approach and ANN outperform NB, SVM,
and DT in terms of classifying injected queries. The NB, on the other hand, outperforms
the other approaches in terms of web loading time during testing. The results showed an
accuracy of 99.16% for ANN and the hybrid technique has an accuracy of 99.6%, mak-
ing it the best trained among the others. As a result, the proposed method improved the
detection and prevention of SQLI attacks. They used a small dataset for training and
testing in this study, but maximizing the dataset and implementing the model in practice
was recommended for future researchers.

According to the recommendation of [54], the detection and prevention rate of the
system can be improved by increasing the training and testing dataset and by using the
recommended techniques. So, we have proposed this research work to increase the sys-
tems detection and prevention rate of SQLI attacks in different web applications.

SQLI query attacks overview
An SQL is a language developed to manage data stored in relational databases [12]. It
allows users to access, modify, and delete data. Many web applications and websites keep
all of their data in SQL databases. SQL commands can also be used to run OS com-
mands in some cases.

Web attacks are one of the major topics to be investigated in this study. Even though
there are numerous web attacks, SQLI is one of the most common and will be among
the top five web attacks in 2021, according to the OWASP report [55, 56]. This attack
grants attackers complete access to databases containing sensitive information [1, 10, 57,
58]. As in a common understanding, a web application has three levels [54]: The first

Page 14 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

presentation layer collects user feedback and shows the user the processing results. The
presentation layer directly communicates with the user. The second control layer, the
server script, processes data entered by the user and sends the results to the database
layer. The database layer sends the processed data to the control layer, which then sends
it to the presentation layer for the user to view [59–62]. As a result, data processing
occurs on the control layer in the web application, which can be implemented in a vari-
ety of server scripting languages. The database (DB) layer finally saves and retrieves the
data. The database stores and manages all sensitive web application data. Because this
layer is directly connected to the control layer and has no security checks, if the con-
trol layer is successfully attacked, data in the database can be exposed and modified. The
general concept of web-based architecture is depicted in Fig. 2.

The difficulty in perceiving the injected query at the database layer necessitates a
system that controls and filters the query at the presentation layer based on predeter-
mined parameters [63]. Various studies have been conducted to identify and prevent the
injected queries. The bulk of them, however, do not identify all types of SQLI, but they
fared better on a handful in the statistical or dynamic portions. Vulnerabilities in web
applications can exist if the sanitization function does not correctly sanitize user input.
The static analysis cannot tell whether or not the input has been sanitized properly. The
vulnerabilities often go unnoticed due to such flaws in static assessments.

The SQL prevent checks produced queries for those parameters and provides an alarm
when a hypertext transfer protocol (s) (HTTP (S)) request parameter influences the syn-
tax structure of a query [64]. Different techniques are used to track user inputs, and a
profile of caring queries has been created. This technique has a high rate of false posi-
tives and false negatives due to the inability of the application that generates the query
to encapsulate input [65]. As a result, there is still a gap in the SQLI attack forms. Here,
we have proposed this work to fill such gaps by using the recommended techniques and
state-of-the-art research works accordingly.

Existing techniques for SQLI detection and prevention
Several techniques for detecting and preventing SQLI have been proposed, with some
focusing on statistical analysis [4, 66, 67, 68, 69, 70] or dynamic analysis[71, 72], others
on Hybrid approach [32, 73]. These techniques are used for web application vulnerability

Fig. 2  Web application architecture [54]

Page 15 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

analysis, scanning, detection and prevention, mitigation, and attack avoidance. Numer-
ous studies have been conducted to investigate vulnerability analysis by conducting a
thorough examination of a web application’s security flaws [74]. It has also been investi-
gated in previous studies by vulnerability scanning tools used in [75]. Many authors have
recognized detection and prevention are the best way to avoid attacks from web applica-
tions [76]. The detection and prevention of attacks were successfully established by vari-
ous techniques including DL, ML, and hybrid. The techniques have been described in
the following sections.

DL techniques

SQLI is a common and difficult attack on web applications, systems, and network secu-
rity issues. Deep or convolutional neural networks (CNN), can be used in a wide vari-
ety of threat detection and prevention scenarios [10, 11]. Code injection is the most
common and damaging attack, ranking first on the OWASP vulnerabilities list [16, 17].
Accordingly, the detection and prevention of code injection attacks, which were previ-
ously done using signature or pattern-based recognition techniques, has recently been
supplemented by the use of advanced ML techniques.

ML techniques

Several types of research implied that ML techniques [12, 77–79] can be employed
to develop vulnerability predictors. The goal, regardless of the technique used, is to
learn data associated with injection, which can then be used to predict vulnerability to
new injections. A vulnerability analysis method needs to be able to adapt when more
advanced security threats are discovered. The ML technique allows for re-training to
respond to new vulnerability trends [16].

Hybrid techniques

The hybrid injection detection and prevention system (HIDPS) uses both ML classifiers
and other statistical techniques to prevent and detect the rescues of SQLI attacks from
different web applications and systems [32]. Accordingly, some of the previous research
has used hybrid techniques [64, 73, 80]. This can be done by comparing the structure of
the queries to detect attacks. Initially, it detected if a dynamically generated query has a
different structure or grammar that meets certain requirements like data length, range,
and form by input validation and input purification by allowing only predefined charac-
ters and refusing all others, including those with unique significance to the interpreter
than a static query were followed. A new approach is therefore needed for SQLI attacks
[18, 81].

Developing a web‑based framework for SQLI attacks detection and prevention
Frameworks have become an essential part of web development because, as web appli-
cation standards rise, so does the complexity of the technology required [82]. It’s com-
pletely unreasonable to reinvent the wheel with such sophisticated techniques. As a
result, using frameworks endorsed by thousands of developers worldwide is a very sound
approach to developing rich and interactive web applications. Because a web applica-
tion has a backend (server-side) and a frontend (client-side) for both the backend and

Page 16 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

frontend frameworks. Many frameworks such as [53, 83, 84] have been developed and
tested with various parameters.

Authors of [85] proposed a framework based on misuse and anomaly detection tech-
niques to detect SQLI attacks. The research of [86] discusses a secure mechanism for
protecting web applications from SQLI attacks by using a framework and database fire-
wall. An author of [81] presents a framework that can be used to handle tautology-based
SQLI attacks using the post-deployment monitoring technique. The authors of [87] eval-
uate runtime monitoring frameworks to detect and prevent SQLI attacks on web appli-
cations. The authors of [88] present a cloud computing adoption framework (CCAF)
security suitable for business clouds. The authors of [89] propose SQLI intrusion detec-
tion framework as a service for SaaS providers, structured query language injection iden-
tity as a service (SQLI IDaaS), which allows a SaaS provider to detect structured query
language injection attacks (SQLIAs) targeting several SaaS applications without read-
ing, analyzing, or modifying the source code. To raise the tenants’ awareness of the seri-
ousness of SQLIAs. The research work of [83] introduces a novel traffic-based SQLIA
detection and vulnerability analysis framework named (DIAVA), which can proactively
send warnings to tenants promptly. Some of them perform well on the given parameters,
while others do not. As a result, while these frameworks detect injected queries, they
have no control over them. However, a closer examination of the literature on the afore-
mentioned SQLI attack reveals numerous gaps and shortcomings.

Most common attacks on SQLI
As we know, SQL is a programming language that is used to create, update, and access
data in a database. A hacker can intentionally cause the application to fail, delete data,
steal data, or gain unauthorized access by carefully crafting SQL commands [90]. To
address the aforementioned issue, we provide a detailed overview of the various types
of SQLI attacks discovered to date. For each type of attack, we provide explanations and
examples of how such attacks can be carried out, as well as explicit mitigation mecha-
nisms. Finally, we propose a comprehensive framework that is resistant to all types of
attacks for detection and prevention.

Tautology attack

The attacker attempts to use a conditional query argument to test always true in the tau-
tology attack, such as (1 = 1) or (− −). The attacker injects the condition and transforms
it into a tautology that is always valid using the WHERE clause [91, 92]. This type of
attack is commonly used to access databases without requiring authentication on web-
sites [1].

For example:

The most common type of tautology attack, the nature of the attack, and the approach
used to detect them are described below in Table 1.

Page 17 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

Accordingly, the SQL query results turn the original condition into a tautology,
allowing an unauthorized user, for example, to access all records in the database
table. Guardium detects and prevents many variants of tautological statements in
database requests. Previous studies were limited to investigating the most com-
mon tautology attack, but it is still necessary to investigate all types of tautology
attacks that lead to injectables. As a result, the study investigates the different types
of attacks and recommends a strategy for each one.

Union query

In this category of attack, the UNION operator is only used if both queries have the
same form, the attacker constructs a SELECT statement that is similar to the origi-
nal query [1, [79]. To do so, it must be known that the correct table name, as well
as the number of columns and their data types from the first query. As a result, two
conditions may be satisfied, or an attack on the union query will be launched, and
each query returns the same number of columns [92, 93]. If the data type of a col-
umn is incompatible with string data, the injected query will fail.

For example:

Based on the nature of the attack the suggested approach is described below in
Table 2. Mostly the second query in a union is malicious [94], and for instance, the
text after (–) is ignored since it acts as a comment for the SQL parser. Taking advan-
tage of this, the attacker uses this query to target the online application or website.

Table 1  Common tautology attacks [54]

Type of injection Nature of attack Approach
for
detection

String SQLI Bypassing authentication, identifying injectable parameters using string data
type, extracting data

Rule-based

Numeric SQLI Bypassing authentication, identifying injectable parameters using numeric
data type extracting data

Rule-based

Comment attack Bypassing authentication, identifying injectable parameters using the com-
ment form, extracting data

Rule-based

Table 2  Union injection attack [54]

Type of injection Nature of attack Recommended techniques

Union query attack Bypassing authentication, extracting data using union
operation

Rule-based

Page 18 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

Piggybacked query

The piggybacked query attack concatenates more query statements onto the initial query
“;” [1]. This technique is especially risky since it enables an attacker to insert virtually
any SQL command. Data extraction, addition or modification of data, denial of service
(DoS), and remote command execution are all examples of determined attacks [16]. In
this type of attack, an attacker attempts to inject additional queries into the original
query. Unlike other forms, attackers attempt to add new and distinct queries that "pig-
gyback" on the original query rather than changing it [92, 95, 96].

For example:

As a result, several SQL queries are sent to the database. Table 3 states the nature
and appropriate approach used for the attack. These types of criminal behavior can be
avoided by first locating the correct SQL query through appropriate validation or by
employing various detection mechanisms. This type of attack can be avoided using static
analysis and no run-time monitoring is required.

Illegal or incorrect query

This kind of attacker takes advantage of a database query that was improperly executed
[1]. It will show database error messages, which frequently provide crucial facts that
enable an attacker to learn the application’s database specifics. The attack goal includes
identifying injectable parameters, performing database fingerprinting, and extract-
ing data. This attack assists an attacker in gathering critical information concerning the
nature and function of the back-end database of a web application [86, 92]. The attack
is thought to be a practice run for future attacks aimed at gathering information. This
attack takes advantage of the fact that the default error pages on application servers are
frequently excessively descriptive [97].

For example:

Due to that the recommended approach is shown in Table 4.
In general, this attack takes advantage of the error message produced by the database

when a query is wrong.

Table 3  Piggybacked query [54]

Type of injection Nature of attack Recommended technique

Piggybacked query Adding or altering data, performing DoS, and executing
remote commands are all examples of data extraction

ML

Page 19 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

Stored procedure query

Here, an attacker can use this technique to modify the database’s stored procedures
[1]. Both authorized and unauthorized users will receive true or false results from the
process. The users can save their features and use them whenever they want. A col-
lection of SQL queries are provided with the feature to use it. The intruder uses mali-
cious SQL codes to execute the database’s built-in stored procedures [92, 98]. This
leads to cause the cached stored procedure query plans being recompiled. A stored
procedure’s constraint is that it can only be used in the database.

For example:

The best method to overcome this attack is described below in Table 5.

Inference query

In this attack, the query is recast as an operation and executed based on the answer
to a true or false question about database data values [92, 99, 100]. For this method
of injection, attackers attempt to break into a site that has been sufficiently protected
that when an injection is successful and there is no accessible feedback in the form
of database error messages. Since database error messages are not available to pro-
vide feedback and attackers must rely on another approach to get a response from the
database.

For example:Consider (malicious parameter (inference attack on SQL server. Here, 1;
if SYSTEM_USER=’sa’ SELECT 1/0 ELSE SELECT 5) [101].
QUERY GENERATED (two possible outcomes for the injected IF).

Table 4  Illegal or incorrect query [54]

Type of injection Nature of attack Recommended technique

Illegal/incorrect Query Error messages ignored by the client are used to locate
useful data, allowing the backend database to be injected
more easily

ML

Table 5  Stored procedure query [54]

Type of injection Nature of attack Recommended techniques

Stored procedure Query Performing privilege escalation, denial of service, and
remote command execution

Rule-based

Page 20 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

Different forms of attack under inference query are shown in Table 6.

Alternative encoding query

In this attack, the injected text is changed to avoid detection by protective coding prac-
tices as well as several automated prevention techniques. This attack is used in conjunc-
tion with others [92, 102]. To intend their attack they use the regular expression [76].
Authors in [92] have explained this type of SQLI attack with examples. This implies that
they do not provide a unique way to target an application; rather, they are an enabling
technology that allows attackers to circumvent detection and prevention strategies and
exploit the vulnerabilities depicted in Table 7.

Proposed frameworks for SQLI detection and prevention
Because of the nature of the attack and the need for detection and prevention mecha-
nisms, a more systematic and theoretical analysis of SQLI attacks is required. To develop
our framework, we have investigated existing techniques, as well as their attacking
methods and flaws accordingly. As a result, we propose a comprehensive framework
that addresses all vulnerabilities identified in the previous research works. To carry
out the activity, the attacker must first open his browser and if the application is open,
the intruder either enters his password into the application or requests authorization
to access the web service via the internet. The intruder must first get past the firewall
checker to proceed. The web server then accepts user input through various mecha-
nisms, such as user input validation, and uses the input to generate queries to an under-
lying database [64, 93]. This can be accomplished by identifying injection parameters,
determining the type and version of a web application’s database, and determining the
database schema. If the attacker was granted permission based on the request, he will
request application server access again. However, in this case, we proposed a model

Table 6  Common inference query attack [54]

Types of attack Nature of attack Recommended
technique

Blind SQLI [91] Collect valuable data by inferring from the page’s answers after
asking the server a set of true/false questions

ML

Timing Attack[96] Observe the response time, which will assist the attacker in mak-
ing an informed decision about which injection approach to use

ML

Database Backdoor Attack Set a trigger to collect the user’s feedback and send it to his or her
e-mail address

ML

Command SQLI Injecting and executing system-level commands via a vulnerable
program is the essence of the attack

Rule-based

Table 7  Alternative encoding query [54]

Type of Injection Nature of Attack Recommended Technique

Alternative Encoding Query Safe protective coding and automatic prevention
systems are used to keep it from being detected

ML

Page 21 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

for the detection and prevention of determining whether or not the requested access
involves SQLI, as shown in Fig. 3.

There were several stages preceding the classification of SQL queries. The first feature
extraction is done by comparing the static and dynamic analysis to see if the requested
queries are injected with either approach. Based on the query, the classifier accepts it
and matches it with the trained dataset. The extracted feature is then accepted by the
ML classifier, which trains the model to identify the injected query. The SVM [103, 104],
DT, NB [73, 105, 106], and other algorithms in ML techniques [75, 107–111] are used to
solve classification algorithms. The trained model passes all stages such as preprocessing
and feature extraction.

As a result, during the feature extraction steps, the classifiers will be trained to rec-
ognize various types of SQLI attacks based on the given trained ML model and hybrid
approach. Based on the trained pre-fetched and trained dataset, the model matches the
pattern of each line query requested. If the SQL query contains one or more qualified
attacks, the model will either reject the request or send it to the application and data-
base servers to perform the requested operation if the query is pure SQL with no injec-
tion. As a result, we propose developing a new architecture based on ML and hybrid
approaches to achieve the best possible results when dealing with SQLI query attacks.

Result and discussion
In this study, we used three injection parameters in various forms. The first is through
a user input field, which allows a web application to use HTTP (S) POST and GET
to request information from a backend database, and the second is through cook-
ies, which can be used to restore a client’s state information when they return to a
web application. An attacker can exploit this vulnerability to change cookies and sub-
mit them to the database server if a web application uses the contents of cookies to
construct SQL queries. Finally, a server variable can be created by analyzing session
usage information and recognizing browsing behaviors. Because attackers can forge
the values in HTTP (S) and network headers by entering malicious input into the

Fig. 3  Proposed framework for SQLI attack detection and prevention [54]

Page 22 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

application’s client-end or by crafting their request to the server, logging these vari-
ables to a database without sanitization could result in SQLI vulnerability. Accord-
ingly, all the attacks sent to the server are logged and saved as attack log data in the
database. Furthermore, attack log data is divided into two categories: attacks and nor-
mal data.

Using various ML techniques, we trained and assessed vulnerability classifier mod-
els to determine which approach performed the best. The set of algorithms includes
traditional NB, DT, SVM, RF, LR, and Neural Networks Based on MLP and hybrid
techniques that are used for our study. The ML algorithms were implemented using
the Keras library, while the classical methods were implemented using the Tensor
Flow-Learn package.

We evaluated the performance of the models using ten-fold cross-validations,
where the dataset was divided into ten different partitions and the final accuracy
result was recorded.

During the training and testing of the selected techniques, we can get multiple clas-
sifiers, and we need to evaluate the performance of each classifier using appropriate
evaluation metrics, from which the best one is selected. The samples can be combined
according to the real target category and the category predicted by the classification
model to obtain the following four cases:

Table 8  Performance evaluation for the training set

No Techniques Evaluation Metrics

Precision Recall F1-score Training set
accuracy

Training
time (in
sec.)

NB 88.33% 87.89% 88.11% 89.40% 08.73

DT 93.09% 92.75% 92.92% 95.70% 53.01

SVM 97.15% 98.02% 97.58% 98.80% 19.06

RF 97.28% 96.00% 96.64% 95.30% 09.48

ANN 99.05% 99.65% 99.35% 99.20% 19.62

Hybrid 99.54% 99.61% 99.57% 99.60% 26.15

Table 9  Performance evaluation for test set

No Techniques Evaluation Metrics

Precision Recall F1-score Test set accuracy Testing time
(in msec.)

NB 87.53% 86.37% 86.95% 87.20% 01.73

DT 91.72% 90.84% 91.28% 94.80% 06.87

SVM 96.40% 95.61% 96.00% 97.30% 03.8

RF 94.35% 93.06% 93.70% 93.40% 05.19

ANN 98.87% 99.13% 99.00% 98.70% 11.76

Hybrid 99.20% 99.47% 99.33% 99.40% 15.33

Page 23 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). Let TP, TN, FN, and FP denote their corresponding sample numbers, then obvi-
ously TP + TN + FN + FP = the total number of samples.

The confusion matrix of the classification results by taking each class as positive
samples separately is shown in Tables 8 and 9.

For classification models, the evaluation criteria are precision, recall, f1-score, and
training/test set accuracy as described in Eqs. (1–4). Since positive and negative sample
imbalance is very common in the field of SQLI attack detection and prevention, it is
unreasonable to use only accuracy rate as the evaluation metric, so the evaluation met-
ric used is f1-score as the detection and prevention classifier performance in addition
to detection accuracy (accuracy), check-all rate (recall), and check-accuracy rate (preci-
sion). the f1-score is used as a comprehensive evaluation criterion for classifier perfor-
mance [11].

The results of techniques in the training and testing phases are described in Tables 8
and 9 respectively.

According to the study shown in Table 8 and Fig. 4, the hybrid approach (ANN and
SVM) performs better accuracies in precision (99.05% and 99.54%), recall (99.65% and

(1)Accuracy =
TP + TN

TP + TN + FN + FP

(2)Precision =
TP

TP + FP

(3)Recall =
TP + TN

TP + FN

(4)F1− score =
2 ∗ (Precision ∗ Recall)

Precision+ Recall

88
.3

3

93
.0

9

97
.1

5

97
.2

8

99
.0

5

99
.5

4

87
.8

9

92
.7

5

98
.0

2

96 99
.6

5

99
.6

1

88
.1

1

92
.9

2

97
.5

8

96
.6

4

99
.3

5

99
.5

7

89
.4 95

.7 98
.8

95
.3 99

.2

99
.6

8.
73

53
.0

1

19
.0

6

9.
48

19
.6

2

26
.1

5

NB DT SVM RF ANN HYBRID

Precision (in %) Recall (in %) F1-score (in %)

Training set accuracy (in %) Training time (in sec.)

Fig. 4  Performance evaluation for the training set

Page 24 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

99.61%), f1-score (99.35% and 99.57%), and training set (99.20% and 99.60%) respec-
tively than other ML approaches. However, their training time is too high (i.e., 19.62 and
26.16 s respectively) for NB and RF. Accordingly, the NB technique performs poorly in
accuracy, precision, recall, f1-score, training set evaluation metrics, and best in training
time.

From all the implemented techniques for SQLI attack detection and prevention, we
have achieved the best performance in hybrid techniques as depicted in Table 8 and
Fig. 4 for the given training sets.

Additionally, as indicated in Fig. 5, it can be observed that the distribution of the
f1-score value is 88.11%, 92.92%, 97.58%, 96.64%, 99.35%, and 99.57% for the NB, DT,
SVM, RF, ANN, and for hybrid techniques respectively.

Fig. 5  Performance distribution of the techniques in the training set (f1-score)

87
.5

3

91
.7

2

96
.4

94
.3

5

98
.8

7

99
.2

86
.3

7

90
.8

4

95
.6

1

93
.0

6

99
.1

3

99
.4

7

86
.9

5

91
.2

8

96 93
.7 99 99

.3
3

87
.2 94

.8 97
.3

93
.4 98

.7

99
.4

1.
73 6.

87

3.
8 5.
19 11

.7
6

15
.3

3

NB DT SVM RF ANN HYBRID

Precision (in %) Recall (in %) F1-score (in %) Test set accuracy (in %) Test �me (in sec.)

Fig. 6  Performance evaluation for test set

Page 25 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

According to the study shown in Table 9 and Fig. 6, the hybrid approach (ANN and
SVM) performs better accuracies in precision (98.87% and 99.20%), recall (99.13%
and 99.47%), f1-score (99.00% and 99.33%) and test set (98.70% and 99.40%) respec-
tively than other ML approaches. However their test time is too high (i.e., 11.76 and
15.33 ms respectively). Accordingly, the NB technique performs poorly in accuracy,
precision, recall, f1-score, test set evaluation metrics, and best in training time. Here,
among the implemented ML techniques SVM and ANN are weak learners.

From all the implemented techniques for SQLI attack detection and prevention, we
have achieved the best performance in hybrid techniques as depicted in Table 9 and
Fig. 6 for the given test sets.

Additionally, as indicated in Fig. 7, it can be observed that the distribution of the
f1-score value is 86.95%, 91.28%, 96.00%, 93.70%, 99.00%, and 99.35% for the NB, DT,
SVM, RF, ANN, and for hybrid techniques respectively.

Even if there has been no research work on detecting and preventing SQLI attacks
that have produced 100% accuracy, it is recommended future researchers in the area can
use hybrid techniques with great consideration of large-scale datasets to increase the
performance in the evaluation metrics (detection and prevention rates) of the systems.
Accordingly, the performance of any SQLI attack systems detection and prevention rate
depends on a detailed examination of the datasets, including the size of the data, the
platform from which the data has been collected, and the selected techniques. Finally, as
to the recommendation of [54], the detection and prevention rate of the system has been
improved by increasing the training and testing datasets and by using the recommended
techniques accordingly.

Conclusion and recommendation
SQLI is the most dangerous web application attacker. This type of attacker poses a signif-
icant risk to web applications and this may have major implications for privacy and secu-
rity issues. Web application attacks are becoming increasingly common and severe. A

Fig. 7  Performance distribution of the techniques in the test set (f1-score)

Page 26 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

large amount of data available on the internet motivates hackers to launch novel attacks.
Several studies have been conducted to mitigate this attack, either by preventing it at an
early stage or by detecting it when it occurs. We evaluated various strategies for detect-
ing and preventing SQLI. Firstly, we have defined the different types of SQLI attacks that
have been discovered thus far.

The techniques under consideration were then evaluated in terms of their ability to detect
and prevent SQLI attacks. We identified the most commonly used DL, ML, and hybrid
techniques to detect and prevent all types of SQLI attacks. We also looked into the vari-
ous mechanisms and determined which techniques could deal with the detection and pre-
vention of such SQLI attacks from different web applications. Then, using ML and hybrid
techniques, we identify the specifications for each technique and develop a comprehensive
framework for detecting and preventing SQLI attacks. We investigated that hybrid and
ANN are the best techniques for classifying SQLI based on our model performance eval-
uation. The performance evaluation results for training set in metrics such as the hybrid
approach (ANN and SVM) perform better accuracies in precision (99.05% and 99.54%),
recall (99.65% and 99.61%), f1-score (99.35% and 99.57%), and training set (99.20% and
99.60%) respectively than other ML approaches. However, their training time is too high
(i.e., 19.62 and 26.16 s respectively) for NB and RF. Accordingly, the NB technique performs
poorly in accuracy, precision, recall, f1-score, training set evaluation metrics, and best in
training time. Additionally, the performance evaluation results for test set in metrics such
as hybrid approach (ANN and SVM) perform better accuracies in precision (98.87% and
99.20%), recall (99.13% and 99.47%), f1-score (99.00% and 99.33%) and test set (98.70% and
99.40%) respectively than other ML approaches. However, their test time is too high (i.e.,
11.76 and 15.33 ms respectively). Accordingly, the NB technique performs poorly in accu-
racy, precision, recall, f1-score, test set evaluation metrics, and best in training time. Here,
among the implemented ML techniques SVM and ANN are weak learners. Finally, in this
research work, we aimed to keep researchers up-to-date, with contributions, and recom-
mendations to the understanding of the intersection between SQLI attacks and prevention
in the AI field. Here, maximizing the dataset and running with different techniques in a
real-world environment is recommended for future researchers.
Acknowledgements
Not applicable.

Author contributions
WBD: Prepared the manuscript including analysis, data curation, visualization, conceptualization, methodology, and writ-
ing of the original draft. FGD: Performs tasks including conceptualization, implementation, validation, and review. Both
authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that no competing interest.

Page 27 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

Received: 2 February 2022 Accepted: 25 December 2022

References
	 1.	 Johny JHB, Nordin WAFB, Lahapi NMB, Leau YB. SQL Injection prevention in web application: a review. In: Com-

munications in computer and information science, vol. 1487 CCIS, no. January. 2021. p. 568–585. https://​doi.​org/​
10.​1007/​978-​981-​16-​8059-5_​35.

	 2.	 Alghawazi M, Alghazzawi D, Alarifi S. Detection of sql injection attack using machine learning techniques: a
systematic literature review. J Cybersecur Privacy. 2022;2(4):764–77.

	 3.	 Han S, Xie M, Chen HH, Ling Y. Intrusion detection in cyber-physical systems: techniques and challenges. IEEE Syst
J. 2014;8(4):1052–62.

	 4.	 Dasmohapatra S, Priyadarshini SBB. A comprehensive study on SQL injection attacks, their mode, detection and
prevention. 2021. p. 617–632. https://​doi.​org/​10.​1007/​978-​981-​16-​3346-1_​50.

	 5.	 Hu J, Zhao W, Cui Y. A survey on SQL injection attacks, detection, and prevention. In: ACM international conference
on proceeding series, no June. 2020. p. 483–488. https://​doi.​org/​10.​1145/​33839​72.​33840​28.

	 6.	 Blog. What is SQL injection attack? Definition & FAQs|Avi networks.
	 7.	 Imperva. SQL (structured query language) injection. Imperva. 2021.
	 8.	 Deepa G, Thilagam PS, Khan FA, Praseed A, Pais AR, Palsetia N. Black-box detection of XQuery injection and param-

eter tampering vulnerabilities in web applications. Int J Inf Secur. 2018;17(1):105–20. https://​doi.​org/​10.​1007/​
s10207-​016-​0359-4.

	 9.	 Dizdar A. SQL injection attack: real life attacks and code examples. 2022.
	 10.	 Pan Y, et al. Detecting web attacks with end-to-end deep learning. J Internet Serv Appl. 2019. https://​doi.​org/​10.​

1186/​s13174-​019-​0115-x.
	 11.	 Zhang W, et al. Deep neural network-based SQL injection detection method. Secur Commun Networks.

2022;2022:1–9. https://​doi.​org/​10.​1155/​2022/​48362​89.
	 12.	 Pattewar T, Patil H, Patil H, Patil N, Taneja M, Wadile T. Detection of SQL injection using machine learning: a survey.

Int Res J Eng Technol (IRJET). 2019;6(11):239–46.
	 13.	 Banach Z. Most dangerous food pathogens. 2022.
	 14.	 Fang Y, Peng J, Liu L, Huang C. WOVSQLI: detection of SQL injection behaviors using word vector and LSTM. In:

ACM international conference on proceeding series. 2018. p. 170–174. https://​doi.​org/​10.​1145/​31994​78.​31995​03.
	 15.	 Li Q, Wang F, Wang J, Li W. LSTM-based SQL injection detection method for intelligent transportation system. IEEE

Trans Veh Technol. 2019;68(5):4182–91. https://​doi.​org/​10.​1109/​TVT.​2019.​28936​75.
	 16.	 Chen D, Yan Q, Wu C, Zhao J. SQL injection attack detection and prevention techniques using deep learning. J

Phys Conf Ser. 2021;1757(1):012055. https://​doi.​org/​10.​1088/​1742-​6596/​1757/1/​012055.
	 17.	 Abaimov S, Bianchi G. A survey on the application of deep learning for code injection detection. Array.

2021;11(June):100077. https://​doi.​org/​10.​1016/j.​array.​2021.​100077.
	 18.	 Son S, McKinley KS, Shmatikov V. Diglossia: detecting code injection attacks with precision and efficiency. Proc

ACM Conf Comput Commun Secur. 2013;2:1181–91. https://​doi.​org/​10.​1145/​25088​59.​25166​96.
	 19.	 Yan R, Xiao X, Hu G, Peng S, Jiang Y. New deep learning method to detect code injection attacks on hybrid appli-

cations. J Syst Softw. 2018;137:67–77. https://​doi.​org/​10.​1016/j.​jss.​2017.​11.​001.
	 20.	 P. Vähäkainu and M. Lehto, “Artificial intelligence in the cyber security environment,” Proc. 14th Int. Conf. Cyber Warf.

Secur. ICCWS2019 Artif., 2019.
	 21.	 Singh G, Kant D, Gangwar U, Singh AP. SQL injection detection and correction using machine. |In: Emerging ICT

bridging future—proceedings of the 49th annual convntion of Computer Society of India, vol. 1. 2015. p. 435–442.
https://​doi.​org/​10.​1007/​978-3-​319-​13728-5.

	 22.	 Marashdeh Z, Suwais K, Alia M. A survey on SQL injection attack: detection and challenges. 2021.
	 23.	 Hasan M, Balbahaith Z, Tarique M. Detection of SQL injection attacks : a machine learning approach. In: 2019

international conference on electrical computing technologies and applications. 2019.
	 24.	 Gao H, Zhu J, Liu L, Xu J, Wu Y, Liu A. Detecting SQL injection attacks using grammar pattern recognition and

access behavior mining. In: 2019 IEEE international conference on energy internet. 2019. p. 493–498. https://​doi.​
org/​10.​1109/​ICEI.​2019.​00093.

	 25.	 Gandhi N, Patel J, Sisodiya R, Doshi N, Mishra S. A CNN-BiLSTM based approach for detection of SQL injection
attacks. In: 2021 international conference on computational intelligence and knowledge economy. 2021. p.
378–383.

	 26.	 Zhang K. A machine learning based approach to identify SQL injection vulnerabilities. In: 2019 34th IEEE/ACM
international conference on software engineering and automation. 2019. p. 1286–1288. https://​doi.​org/​10.​1109/​
ASE.​2019.​00164.

	 27.	 Li Q, Li W, Wang J, Cheng M. A SQL injection detection method based on adaptive deep forest. IEEE Access.
2019;7:145385–94.

	 28.	 Uwagbole SO, Buchanan WJ, Fan L. An applied pattern-driven corpus to predictive analytics in mitigating SQL
injection attack. In: 2017 seventh international conference on emerging security technologies. 2017. https://​doi.​
org/​10.​1109/​EST.​2017.​80903​92.

	 29.	 Ahmed M, Uddin MN. Cyber attack detection method based on nlp and ensemble learning approach. In: 2020
23rd international conference on computer information technology (ICCIT). 2020. https://​doi.​org/​10.​1109/​ICCIT​
51783.​2020.​93926​82.

	 30.	 Tripathy D, Gohil R, Halabi T. Detecting SQL injection attacks in cloud saas using machine learning. 2020.
	 31.	 Kulkarni CC, Kulkarni SA. Human-agent knowledge transfer applied to web security. 2013. https://​doi.​org/​10.​1109/​

ICCCNT.​2013.​67267​70.

https://doi.org/10.1007/978-981-16-8059-5_35
https://doi.org/10.1007/978-981-16-8059-5_35
https://doi.org/10.1007/978-981-16-3346-1_50
https://doi.org/10.1145/3383972.3384028
https://doi.org/10.1007/s10207-016-0359-4
https://doi.org/10.1007/s10207-016-0359-4
https://doi.org/10.1186/s13174-019-0115-x
https://doi.org/10.1186/s13174-019-0115-x
https://doi.org/10.1155/2022/4836289
https://doi.org/10.1145/3199478.3199503
https://doi.org/10.1109/TVT.2019.2893675
https://doi.org/10.1088/1742-6596/1757/1/012055
https://doi.org/10.1016/j.array.2021.100077
https://doi.org/10.1145/2508859.2516696
https://doi.org/10.1016/j.jss.2017.11.001
https://doi.org/10.1007/978-3-319-13728-5
https://doi.org/10.1109/ICEI.2019.00093
https://doi.org/10.1109/ICEI.2019.00093
https://doi.org/10.1109/ASE.2019.00164
https://doi.org/10.1109/ASE.2019.00164
https://doi.org/10.1109/EST.2017.8090392
https://doi.org/10.1109/EST.2017.8090392
https://doi.org/10.1109/ICCIT51783.2020.9392682
https://doi.org/10.1109/ICCIT51783.2020.9392682
https://doi.org/10.1109/ICCCNT.2013.6726770
https://doi.org/10.1109/ICCCNT.2013.6726770

Page 28 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

	 32.	 Makiou A, Begriche Y, Serhrouchni A. Hybrid approach to detect SQLi attacks and evasion techniques. In: col-
laborative 2014—proceedings of the 10th IEEE international conference on collaborative computing, networking,
applications and worksharing. 2015. p. 452–456. https://​doi.​org/​10.​4108/​icst.​colla​borat​ecom.​2014.​257568.

	 33.	 Kar D, Sahoo AK, Agarwal K, Panigrahi S, Das M. Learning to detect SQLIA using node centrality with feature selec-
tion. In: 2016 International conference on computer analysis security trends. 2017. https://​doi.​org/​10.​1109/​CAST.​
2016.​79149​33.

	 34.	 Kamtuo K, Soomlek C. Machine learning for SQL injection prevention on server-side scripting. 2016.
	 35.	 Sivasangari A, Jyotsna J, Pravalika K. SQL injection attack detection using machine learning algorithm. 2021.

https://​doi.​org/​10.​1109/​icoei​51242.​2021.​94529​14.
	 36.	 Das D, Sharma U, Bhattacharyya DK. Defeating SQL injection attack in authentication security: an experimental

study. Int J Inf Secur. 2019;18:1–22. https://​doi.​org/​10.​1007/​s10207-​017-​0393-x.
	 37.	 Kasim Ö. An ensemble classification-based approach to detect attack level of SQL injections. J Inf Secur Appl.

2021. https://​doi.​org/​10.​1016/j.​jisa.​2021.​102852.
	 38.	 Tang P, Qiu W, Huang Z, Lian H, Liu G. Detection of SQL injection based on artificial neural network. Knowl-Based

Syst. 2020. https://​doi.​org/​10.​1016/j.​knosys.​2020.​105528.
	 39.	 Erdődi L, Sommervoll ÅÅ, Zennaro FM. Simulating SQL injection vulnerability exploitation using Q-learning rein-

forcement learning agents. J Inf Secur Appl. 2021. https://​doi.​org/​10.​1016/j.​jisa.​2021.​102903.
	 40.	 Kar D, Panigrahi S, Sundararajan S. SQLiGoT: detecting SQL injection attacks using the graph of tokens and SVM.

2016. p. 206–225. https://​doi.​org/​10.​1016/j.​cose.​2016.​04.​005.
	 41.	 Uwagbole SO, Buchanan WJ, Fan L. Applied machine learning predictive analytics to SQL injection attack detec-

tion and prevention. 2017. https://​doi.​org/​10.​23919/​INM.​2017.​79874​33.
	 42.	 McWhirter PR, Kifayat K, Shi Q, Askwith B. SQL Injection Attack classification through the feature extraction of SQL

query strings using a Gap-Weighted String Subsequence Kernel. J Inf Secur Appl. 2018;40:199–216. https://​doi.​
org/​10.​1016/j.​jisa.​2018.​04.​001.

	 43.	 Mejia-Cabrera HI, Paico-Chileno D, Valdera-Contreras JH, Tuesta-Monteza VA, Forero MG. Automatic detec-
tion of injection attacks by machine learning in NoSQL databases. 2021. p. 23–32. https://​doi.​org/​10.​1007/​
978-3-​030-​77004-4_3.

	 44.	 Pathak RK, Mohit, Yadav V. Handling SQL injection attack using progressive neural network. 2020. https://​doi.​org/​
10.​1007/​978-​981-​15-​9671-1_​20.

	 45.	 Wang Y, Li Z. SQL injection detection via program tracing. IDCS 2012, LNCS 7646. 2012. p. 264–265
	 46.	 Zhang H, Zhao B, Yuan H, Zhao J, Yan X, Li F. SQL injection detection based on deep belief network. 2019. p. 1–6.
	 47.	 Priyaa BD, Devi MI. Hybrid SQL injection detection system. 2016. https://​doi.​org/​10.​1109/​ICACCS.​2016.​75863​32.
	 48.	 Joshi A, Geetha V. SQL Injection detection using machine learning. 2014. https://​doi.​org/​10.​1109/​ICCIC​CT.​2014.​

69931​27.
	 49.	 Demetrio L, Valenza A, Costa G, Lagorio G. WAF-A-MoLE: evading web application firewalls through adversarial

machine learning. 2020. p. 1745–1752. https://​doi.​org/​10.​1145/​33411​05.​33739​62.
	 50.	 Liu M, Li K, Chen T. DeepSQLi: deep semantic learning for testing SQL injection. 2020. p. 286–297. https://​doi.​org/​

10.​1145/​33953​63.​33973​75.
	 51.	 Appelt D, Nguyen CD, Briand L. Behind an application firewall, are we safe from SQL injection attacks? 2015.

https://​doi.​org/​10.​1109/​ICST.​2015.​71025​81.
	 52.	 Islam MRU, Islam MS, Ahmed Z, Iqbal A, Shahriyar R. Automatic detection of NoSQL injection using supervised

learning. 2019. https://​doi.​org/​10.​1109/​COMPS​AC.​2019.​00113.
	 53.	 Kao DY, Lai CJ, Su CW. A framework for SQL injection investigations: detection, investigation, and forensics.In:

Proceedings of the 2018 IEEE international conference on system, man, and cybernetics SMC. 2018. p. 2838–2843.
https://​doi.​org/​10.​1109/​SMC.​2018.​00483.

	 54.	 Deriba FG, Salau AO, Mohammed SH, Kassa TM, Demilie WB. Development of a compressive framework using
machine learning approaches for SQL injection attacks. PRZEGLĄD ELEKTROTECHNICZNY. 2022;1(7):181–7. https://​
doi.​org/​10.​15199/​48.​2022.​07.​30.

	 55.	 OWASP. OWASP top 10_2021. 2021.
	 56.	 Kingthorin. SQL injection _ OWASP Foundation. 2022.
	 57.	 Amin M, et al. Review of SQL injection : problems and prevention. JOIV Int J Inform Vis. 2018;2:215–9.
	 58.	 Kumar A, Binu S. Proposed method for SQL injection detection and its prevention. Int J Eng Technol. 2018;7:213–6.
	 59.	 Hendita G, Kusuma A. Analysis of SQL injection attacks on website service. bit-Tech. 2018;1(1):26–33.
	 60.	 Abikoye OC, Abubakar A, Dokoro AH, Akande ON. A novel technique to prevent SQL injection and cross-site

scripting attacks using Knuth-Morris-Pratt string match algorithm. EURASIP J Inf Secur. 2020. https://​doi.​org/​10.​
1186/​s13635-​020-​00113-y.

	 61.	 Yun X, Wen W. Cyber security. 2018.
	 62.	 Alazab A. New strategy for mitigating of SQL injection attack. Int J Comput Appl. 2016;154(11):1–10.
	 63.	 Gurina A, Eliseev V. Anomaly-based method for detecting multiple classes of network attacks. Information. 2019.

https://​doi.​org/​10.​3390/​info1​00300​84.
	 64.	 Jahanshahi R, Doupé A, Egele M. You shall not pass : mitigating SQL injection attacks on legacy web applications.

2020. p. 445–457
	 65.	 Medeiros I, Beatriz M, Neves N, Correia M. SEPTIC: detecting injection attacks and vulnerabilities inside the DBMS.

IEEE Trans Reliab. 2019;68(3):1168–88. https://​doi.​org/​10.​1109/​tr.​2019.​29000​07.
	 66.	 Gupta MK, Govil MC, Singh G. Static analysis approaches to detect SQL injection and cross-site scripting vulner-

abilities in web applications: a survey. Int Conf Recent Adv Innov Eng ICRAIE. 2014;2014:9–13. https://​doi.​org/​10.​
1109/​ICRAIE.​2014.​69091​73.

	 67.	 Fu X, Lu X, Peltsverger B, Chen S, Qian K, Tao L. A static analysis framework for detecting SQL injection vulnerabili-
ties. In: Proceedings of the international conference on computer software application, vol. 1, no. Compsac. 2007.
p. 87–94. https://​doi.​org/​10.​1109/​COMPS​AC.​2007.​43.

https://doi.org/10.4108/icst.collaboratecom.2014.257568
https://doi.org/10.1109/CAST.2016.7914933
https://doi.org/10.1109/CAST.2016.7914933
https://doi.org/10.1109/icoei51242.2021.9452914
https://doi.org/10.1007/s10207-017-0393-x
https://doi.org/10.1016/j.jisa.2021.102852
https://doi.org/10.1016/j.knosys.2020.105528
https://doi.org/10.1016/j.jisa.2021.102903
https://doi.org/10.1016/j.cose.2016.04.005
https://doi.org/10.23919/INM.2017.7987433
https://doi.org/10.1016/j.jisa.2018.04.001
https://doi.org/10.1016/j.jisa.2018.04.001
https://doi.org/10.1007/978-3-030-77004-4_3
https://doi.org/10.1007/978-3-030-77004-4_3
https://doi.org/10.1007/978-981-15-9671-1_20
https://doi.org/10.1007/978-981-15-9671-1_20
https://doi.org/10.1109/ICACCS.2016.7586332
https://doi.org/10.1109/ICCICCT.2014.6993127
https://doi.org/10.1109/ICCICCT.2014.6993127
https://doi.org/10.1145/3341105.3373962
https://doi.org/10.1145/3395363.3397375
https://doi.org/10.1145/3395363.3397375
https://doi.org/10.1109/ICST.2015.7102581
https://doi.org/10.1109/COMPSAC.2019.00113
https://doi.org/10.1109/SMC.2018.00483
https://doi.org/10.15199/48.2022.07.30
https://doi.org/10.15199/48.2022.07.30
https://doi.org/10.1186/s13635-020-00113-y
https://doi.org/10.1186/s13635-020-00113-y
https://doi.org/10.3390/info10030084
https://doi.org/10.1109/tr.2019.2900007
https://doi.org/10.1109/ICRAIE.2014.6909173
https://doi.org/10.1109/ICRAIE.2014.6909173
https://doi.org/10.1109/COMPSAC.2007.43

Page 29 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124 	

	 68.	 Alenezi M, Javed Y. Open source web application security: a static analysis approach. In: Proceedings of the 2016
international conference on engineering and MIS, ICEMIS 2016. 2016. https://​doi.​org/​10.​1109/​ICEMIS.​2016.​77453​
69.

	 69.	 Spoto F, et al. Static identification of injection attacks in Java. ACM Trans Program Lang Syst. 2019;41(3):1–58.
	 70.	 Basutakara BS, Jeyanthi PN. A review of static code analysis methods for detecting security flaws. J Univ Shanghai

Sci Technol. 2021;23(06):647–53. https://​doi.​org/​10.​51201/​jusst/​21/​05320.
	 71.	 Das D, Sharma U, Bhattacharyya D. An approach to detection of SQL injection attack based on dynamic query

matching. Int J Comput. 2010;1(25):28–34.
	 72.	 Nanda S, Lam LC, Chiueh TC. Dynamic multi-process information flow tracking for web application security. In:

Proceedings of the 8th ACM/IFIP/USENIX international conference on middleware 2007, Middleware’07. 2008. p.
1–20. https://​doi.​org/​10.​1145/​13779​43.​13779​56.

	 73.	 Hernawan FY, Hidayatulloh I, Adam IF. Hybrid method integrating SQL-IF and Naïve Bayes for SQL injection attack
avoidance. J Eng Appl Technol. 2020;1(2):85–96.

	 74.	 Senthamil Preethi K, Murugan A. Analysis of vulnerability detection tool for web services. Int J Eng Technol.
2018;7:773–8.

	 75.	 Techniques P, et al. Design and implementation of SQL injection vulnerability scanning tool. J Phys Conf Ser. 2020.
https://​doi.​org/​10.​1088/​1742-​6596/​1575/1/​012094.

	 76.	 Kumar BJS, Anaswara PP. Vulnerability detection and prevention of SQL injection. Int J Eng Technol. 2018;7:16–8.
	 77.	 Zolanvari M, Member S, Teixeira MA, Member S, Gupta L, Member S. Machine learning based network vulnerability

analysis of industrial internet of things. 1–14.
	 78.	 Azman MA, Marhusin MF, Sulaiman R, Sains U, Marhusin MF, Sains U. Machine learning-based technique to detect

SQL injection attack. J Comput Sci. 2021. https://​doi.​org/​10.​3844/​jcssp.​2021.​296.​303.
	 79.	 Krishnan SSA, Sabu AN, Sajan PP, Sreedeep AL. SQL injection detection using machine learning, vol 11, no 3. p.

300–310.
	 80.	 Kumar BJS, Pujitha K. Web application vulnerability detection using hybrid string matching algorithm. Int J Eng

Technol. 2018;7:106–9.
	 81.	 Dharam R, Shiva SG. Runtime monitors for tautology based SQL injection attacks. In: Proceedings of the 2012

international conference on cyber security cyber warfare digital forensic, cybersecurity. 2012. p. 253–258. https://​
doi.​org/​10.​1109/​Cyber​Sec.​2012.​62461​04.

	 82.	 Goel A. Best web development tools in 2022. Ramotion. 2022.
	 83.	 Gu H, et al. DIAVA: a traffic-based framework for detection of SQL injection attacks and vulnerability analysis of

leaked data. IEEE Trans Reliab. 2020;69(1):188–202. https://​doi.​org/​10.​1109/​TR.​2019.​29254​15.
	 84.	 Chung WC, Lin HP, Chen SC, Jiang MF, Chung YC. JackHare: a framework for SQL to NoSQL translation using

MapReduce. Autom Softw Eng. 2014;21(4):489–508. https://​doi.​org/​10.​1007/​s10515-​013-​0135-x.
	 85.	 Ezzat S, Mohammed I, Laila M, Yehia K. Web anomaly misuse intrusion detection framework for SQL injection

detection. Int J Adv Comput Sci Appl. 2012;3(3):123–9. https://​doi.​org/​10.​14569/​ijacsa.​2012.​030321.
	 86.	 Manikanta YVN. Protecting web applications from SQL injection attacks. 2012. p. 609–613.
	 87.	 Dharam R, Shiva SG. Runtime monitoring framework for SQL injection attacks. Int J Eng Technol. 2014;6(5):392–

401. https://​doi.​org/​10.​7763/​IJET.​2014.​V6.​731.
	 88.	 Chang V, Kuo YH, Ramachandran M. Cloud computing adoption framework: a security framework for business

clouds. Futur Gener Comput Syst. 2016;57:24–41. https://​doi.​org/​10.​1016/j.​future.​2015.​09.​031.
	 89.	 Yassin M, Ould-Slimane H, Talhi C, Boucheneb H. SQLIIDaaS: a SQL injection intrusion detection framework as a

service for SaaS providers. In: Proceedings of the 4th IEEE international conference cyber security cloud comput-
ing CSCloud 2017 3rd IEEE international conference scalable smart cloud, SSC 2017. p. 163–170. https://​doi.​org/​
10.​1109/​CSClo​ud.​2017.​27.

	 90.	 Arvindpdmn L. “SQLI,” 박종명의 아름다운 개발 Since 2010.06. 2022.
	 91.	 Yiğit G, Arnavutoğlu M. SQL injection attacks detection & prevention techniques. Int J Comput Theory Eng.

2017;9(5):351–6. https://​doi.​org/​10.​7763/​IJCTE.​2017.​V9.​1165.
	 92.	 Alwan ZS, Younis MF. Detection and prevention of SQL injection attack: a survey. J Comput Commun.

2017;06(08):1–14. https://​doi.​org/​10.​4236/​jcc.​2014.​28001.
	 93.	 Erdődi L, Sommervoll ÅÅ, Zennaro FM. Journal of information security and applications simulating SQL injection

vulnerability exploitation using Q-learning reinforcement learning agents. J Inf Secur Appl. 2021;61(July):102903.
https://​doi.​org/​10.​1016/j.​jisa.​2021.​102903.

	 94.	 Abdulmalik Y. An improved SQL injection attack detection model using machine learning techniques. Int J Innov
Comput. 2021;11(1):53–7.

	 95.	 Fan M, Liu J, Wang W, Li H, Tian Z, Liu T. DAPASA: detecting android piggybacked apps through sensitive subgraph
analysis. IEEE Trans Inf Forensics Secur. 2017;12(8):1772–85. https://​doi.​org/​10.​1109/​TIFS.​2017.​26878​80.

	 96.	 Shunmugapriya B, Paramasivan B. Protection against SQL injection attack in cloud computing. In J Eng Res Tech-
nol. 2020;9(02):502–10.

	 97.	 Varshney K, Ujjwal RL. LsSQLIDP : literature survey on SQL injection detection and prevention techniques. J Stat
Manag Syst. 2019;22(2):257–69. https://​doi.​org/​10.​1080/​09720​510.​2019.​15809​04.

	 98.	 Ahmad K, Karim M. A method to prevent SQL injection attack using an improved parameterized stored procedure.
Int J Adv Comput Sci Appl. 2021;12(6):324–32.

	 99.	 Kareem M. Prevention of SQL injection attacks using AWS WAF. 2018. p. 47.
	100.	 Lockhart B, Peng J, Wu W, Wang J, Wu E. Explaining inference queries with bayesian optimization. Proc VLDB

Endow. 2021;14(11):2576–85. https://​doi.​org/​10.​14778/​34762​49.​34763​04.
	101.	 Clarke J. SQL injection inference attacks—tutorial and example.
	102.	 Mohammed S, Chaki H, Din MM. A survey on SQL injection prevention methods, vol. 9, no. 1. 2019. p. 47–54.
	103.	 Rawat R. “SQL injection attack detection using SVM. Int J Comput Appl. 2020. https://​doi.​org/​10.​5120/​5749-​7043.
	104.	 Chen Z, Guo M. Research on SQL injection detection technology based on SVM, vol. 01004. 2018. p. 1–5.
	105.	 Banchhor A, Vaidya T. SQL injection detection using Baye’s classification. p. 313–317.

https://doi.org/10.1109/ICEMIS.2016.7745369
https://doi.org/10.1109/ICEMIS.2016.7745369
https://doi.org/10.51201/jusst/21/05320
https://doi.org/10.1145/1377943.1377956
https://doi.org/10.1088/1742-6596/1575/1/012094
https://doi.org/10.3844/jcssp.2021.296.303
https://doi.org/10.1109/CyberSec.2012.6246104
https://doi.org/10.1109/CyberSec.2012.6246104
https://doi.org/10.1109/TR.2019.2925415
https://doi.org/10.1007/s10515-013-0135-x
https://doi.org/10.14569/ijacsa.2012.030321
https://doi.org/10.7763/IJET.2014.V6.731
https://doi.org/10.1016/j.future.2015.09.031
https://doi.org/10.1109/CSCloud.2017.27
https://doi.org/10.1109/CSCloud.2017.27
https://doi.org/10.7763/IJCTE.2017.V9.1165
https://doi.org/10.4236/jcc.2014.28001
https://doi.org/10.1016/j.jisa.2021.102903
https://doi.org/10.1109/TIFS.2017.2687880
https://doi.org/10.1080/09720510.2019.1580904
https://doi.org/10.14778/3476249.3476304
https://doi.org/10.5120/5749-7043

Page 30 of 30Demilie and Deriba ﻿Journal of Big Data (2022) 9:124

	106.	 Olalere M, et al. A Naïve Bayes based pattern recognition model for detection and categorization of structured
query language injection attack, vol. 7, no. 2. 2018. p. 189–199.

	107.	 Liu M, Chen T. DeepSQLi : deep semantic learning for testing SQL injection. p. 286–297.
	108.	 Liu T, Qi Y, Shi L, Yan J. Locate-then-detect : real-time web attack detection via attention-based deep neural net-

works. 2016. p. 4725–4731
	109.	 Volkova M, Chmelar P, Sobotka L. Machine learning blunts the needle of advanced SQL injections. MENDEL.

2019;25(1):23–30.
	110.	 Xie XIN, Ren C, Fu Y, Xu JIE, Guo J. SQL injection detection for web applications based on elastic-pooling CNN. IEEE

Access. 2019;7:151475–81. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29475​27.
	111.	 Li QI, Li W, Wang J. A SQL injection detection method based on adaptive deep forest. 2019. p. 145385–145394.

https://​doi.​org/​10.​1109/​ACCESS.​2019.​29449​51.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ACCESS.2019.2947527
https://doi.org/10.1109/ACCESS.2019.2944951

	Detection and prevention of SQLI attacks and developing compressive framework using machine learning and hybrid techniques
	Abstract
	Introduction
	Related works
	SQLI query attacks overview
	Existing techniques for SQLI detection and prevention
	DL techniques
	ML techniques
	Hybrid techniques

	Developing a web-based framework for SQLI attacks detection and prevention
	Most common attacks on SQLI
	Tautology attack
	Union query
	Piggybacked query
	Illegal or incorrect query
	Stored procedure query
	Inference query
	Alternative encoding query

	Proposed frameworks for SQLI detection and prevention
	Result and discussion
	Conclusion and recommendation
	Acknowledgements
	References

