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Abstract 

A web application is a software system that provides an interface to its users through 
a web browser on any operating system (OS). Despite their growing popularity, web 
application security threats have become more diverse, resulting in more severe dam-
age. Malware attacks, particularly SQLI attacks, are common in poorly designed web 
applications. This vulnerability has been known for more than two decades and is still 
a source of concern. Accordingly, different techniques have been proposed to coun-
ter SQLI attacks. However, the majority of them either fail to cover the entire scope 
of the problem. The structured query language injection (SQLI) attack is among the 
most harmful online application attacks and often happens when the attacker(s) alter 
(modify), remove (delete), read, and copy data from database servers. All facets of secu-
rity, including confidentiality, data integrity, and data availability, can be impacted by a 
successful SQLI attack. This paper investigates common SQLI attack forms, mechanisms, 
and a method of identifying, detecting, and preventing them based on the existence 
of the SQL query. Here, we have developed a comprehensive framework for detecting 
and preventing the effectiveness of techniques that address specific issues following 
the essence of the SQLI attacks by using traditional Navies Bayes (NB), Decision Trees 
(DT), Support Vectors Machine (SVM), Random Forests (RF), Logistic Regression (LR), 
and Neural Networks Based on Multilayer Perceptron (MLP), and hybrid approach are 
used for our study. The machine learning (ML) algorithms were implemented using the 
Keras library, while the classical methods were implemented using the Tensor Flow-
Learn package. For this proposed research work, we gathered 54,306 pieces of data 
from weblogs, cookies, session usage, and from HTTP (S) request files to train and test 
our model. The performance evaluation results for training set in metrics such as the 
hybrid approach (ANN and SVM) perform better accuracies in precision (99.05% and 
99.54%), recall (99.65% and 99.61%), f1-score (99.35% and 99.57%), and training set 
(99.20% and 99.60%) respectively than other ML approaches. However, their training 
time is too high (i.e., 19.62 and 26.16 s respectively) for NB and RF. Accordingly, the NB 
technique performs poorly in accuracy, precision, recall, f1-score, training set evalua-
tion metrics, and best in training time. Additionally, the performance evaluation results 
for test set in metrics such as hybrid approach (ANN and SVM) perform better accura-
cies in precision (98.87% and 99.20%), recall (99.13% and 99.47%), f1-score (99.00% 
and 99.33%) and test set (98.70% and 99.40%) respectively than other ML approaches. 
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However, their test time is too high (i.e., 11.76 and 15.33 ms respectively). Accordingly, 
the NB technique performs poorly in accuracy, precision, recall, f1-score, test set evalu-
ation metrics, and best in training time. Here, among the implemented ML techniques, 
SVM and ANN are weak learners. The achieved performance evaluation results indi-
cated that the proposed SQLI attack detection and prevention mechanism has been 
improved over the previously implemented techniques in the theme. Finally, in this 
paper, we aimed to keep researchers up-to-date, with contributions, and recommen-
dations to the understanding of the intersection between SQLI attacks and prevention 
in the artificial intelligence (AI) field.

Keywords:  Deep learning, Detection, Hybrid, Machine learning, Prevention, SQLI 
attack, Web application

Introduction
Malware attacks, particularly SQLI attacks, are common in poorly designed web applica-
tions. This vulnerability has been known for more than two decades and is still a source 
of concern [1]. For many years, structured query language (SQL) has been the indus-
try standard for dealing with relational database management systems (DBMS). Since 
the majority of applications for cyber-physical systems are safety–critical; misbehavior 
brought on by random errors or online attacks can severely limit their development [2, 
3]. Therefore, it’s crucial to safeguard cyber-physical systems from suffering this kind of 
attack.

SQLI  attacks on data-driven web applications and systems, also known as 
SQLI  attacks, have been a serious problem since it became common for internet web 
applications and SQL databases to be connected [4, 5, 6]. An SQLI attack occurs when 
an attacker takes advantage of a flaw in the web application’s SQL implementation by 
submitting a malicious SQL statement through a fillable field. In other words, the 
attacker will insert code into a field to dump or alter data or gain access to the backend. 
As explained by [6] and [7], SQLI is a common attack vector that allows malicious SQL 
code to access hidden information by manipulating database backends and is regarded 
as one of the most dangerous injection attacks because it jeopardizes the main security 
services such as confidentiality, authentication, authorization, and integrity [8, 9]. This 
information could include sensitive business information, private customer information, 
or user lists. A successful SQLI attacker can lead to the deletion of entire databases, the 
unauthorized use of sensitive data, and the unintentional grant of administrative rights 
to a database.

The increased development and spread of web applications have also increased the 
number and severity of web attacks [10, 11]. According to [12], the most common vul-
nerability in web applications is injection. Injection attacks take advantage of a variety of 
flaws to deliver untrusted user input, which is then processed by a web application [13]. 
The SQLI attacks entail injecting (inserting) malicious SQL commands into input forms 
or queries to gain access to a database or manipulate its data (e.g. send the database con-
tents to the attacker, modify or delete the database content, etc.) [14, 15]. Undeniably, 
most web applications today rely on a back-end database to store data collected from 
users and/or to retrieve information selected by users [16].

Forms and cookies are commonly used to interact with these users. Different hackers 
attempt to exploit this feature by injecting malicious code into the user inputs that will 
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later be used to construct the SQL queries. Improper validation of user inputs can result 
in the success of the SQLI attack, which can have disastrous consequences such as the 
deletion of the database or the collection of sensitive and confidential data from web 
application clients [17]. Several research works have addressed the SQLI attack due to its 
sensitive impact. Some of these works only attempt to detect SQLI after it has occurred 
and other works have attempted to prevent it from happening in the first place.

In this study, we looked at SQLI attacks that try to bypass the web application fire-
wall and gain unauthorized access to confidential data. These attacks target the HTTP 
or HTTPS protocol. The victim system is normally not prepared to handle this input, 
which frequently leads to data leakage and/or the attacker receiving unauthorized 
access. In this instance, the attacker has access to and/or control over the data, which 
has an impact on all areas of security, including data availability, confidentiality, and 
integrity [2].

The SQL query that was maliciously injected is intended to extract or modify data 
from the database server. Successful injection can cause data loss and/or the total data-
base to be destroyed, as well as authentication, bypass, and modifications to the data-
base by inserting, changing, and/or deleting data. Additionally, such an assault could 
take control of the hosted OS and run commands on it, usually having greater negative 
effects [2, 18]. Therefore, organizations are seriously threatened by SQLI assaults.

Even though several techniques have been proposed to combat SQLI attacks, none 
of these solutions have addressed the full scope of the attacks. As a result, there were 
no solutions that can prevent or detect all types of SQLI attacks. Recently, researchers 
have attempted to with AI integrated techniques including deep learning (DL), machine 
learning (ML), and hybrid techniques to propose more sophisticated solutions [19].

Here, learning from past data reflecting an attack and/or regular data is typically used 
to build AI approaches to help with threat detection and prevention. Historical informa-
tion can be used to interpret detected traffic, identify attack patterns, and even forecast 
future assaults before they happen [2, 20].

To grasp how SQL language can be abused, SQLI attackers and defenders need to 
understand how it functions [2]. The queries must be prepared in the SQL language and 
adhere to a specified syntax to retrieve data from databases or modify the data, such as:

The aforementioned search will provide all books with book_name "Advanced Data-
base Systems." The queries are typically typed into a web browser and sent to the data-
base management system [2].

What if the attacker in this case extends the original SQL query?
For example:
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The above query will return all book names in the database, not just the book names 
labeled as "Advanced Database Systems," because the sentence ‘1 = 1’ is always true. If 
the stored list of book names is not a secret and the previous example might not pose 
a problem [2]. If successful, it might return sensitive data, such as passwords, bank 
accounts, trade secrets, and personal information, which might be regarded as a privacy 
breach among other negative effects. However, it could be applied to value using differ-
ent syntax.

According to certain studies, inserting code using ’OR’ and a ‘TRUE’ assertion, such 
as ’1 = 1’, is referred to as "tautology" [21]. Other techniques besides tautology can be 
used, like when an attacker purposefully inserts an incorrect query to make the data-
base server return a default error page. This default error page may contain important 
information that can help an attacker comprehend the database and craft a more sophis-
ticated attack [2, 21]. In addition to numerous other techniques based on the same con-
cept, incorrectly employing SQL syntax to extract or even edit the data in the targeted 
database, ‘UNION’ can also be used to extract information.

Given that SQLI operates in this manner, the question is how to recognize and stop 
this kind of attack by using DL, ML, and hybrid techniques. By instructing a classifier 
to develop the ability to recognize, detect, and subsequently prevent an attack, it can be 
used to support the detection and prevention of SQLI attacks. The classifier can be used 
to categorize new data, including traffic or data from log files, and is trained using vari-
ous models. If the classifier is active, it will block data from reaching the database server; 
if it is passive, it will inform the administrator. Accordingly, three alternative learning 
techniques have been used to train the classifier to recognize and detect SQLI attacks [2, 
22].

The first technique was unsupervised learning (UL), in which features were taken from 
data that had not been categorized, or data that had neither normal nor pathological 
labels. The classifier finds hidden structures in the unclassified dataset using information 
and the Bayesian probability theory. When data are unclassified, it is unclear if they are 
normal or abnormal (malicious). The UL can make use of a variety of methods, including 
clustering and density estimation [2, 22].

The classifier was trained using the second technique, supervised learning (SL), using 
a set of labeled training data. The output was known in advance because the input data 
were marked, i.e., normal or aberrant. To attain an acceptable classification accuracy, the 
procedure first comprises a straightforward mapping between the input training data 
and the known output, which was followed by continuous algorithm and weight change. 
The classifier was then tested using a test set of data; if the results were within an accept-
able range of accuracy, the classifier was then ready to recognize novel data or data that 
had not been used in training or testing [2].

The fundamental problem with the SL was the time it took to create and label the 
training and test sets of data, especially for sophisticated attacks. The classification and 
regression techniques were used to classify the SL. The Bayesian networks, DT, SVM, 
K-nearest neighbors, and neural networks are some of the most used SL techniques. The 
third technique, known as semi-supervised learning, combines SL and UL techniques [2, 
22]. Accordingly, by using SQLI, the attackers can alter the SQL statement by replacing 
the user’s supplied data with their own data as depicted in Fig. 1.
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For this proposed research work, we gathered 54,306 pieces of data from weblogs, 
cookies, session usage, and from HTTP (S) request files to train and test our model. We 
divided the acquired data into sections for our model’s testing (30%) and training (70%). 
We used 38,014 of the total dataset for training and 16,292 for model testing. Among the 
datasets, 47,343 are genuine queries and 6,963 are malicious queries.

Accordingly, this work has the following major contributions.

•	 Review the recommended and state-of-the-art research works in DL, ML, and hybrid 
techniques for SQLI attacks that have been published in reputable databases.

•	 The different SQLI attack detection and prevention countermeasures are classified 
and discussed.

•	 Studying and identifying the nature of SQLI attacks and proposing prevention and 
detection mechanisms.

•	 Newly proposed solutions are described and discussed, such as those based on DL, 
ML, and hybrid techniques.

•	 Keep the researchers up-to-date, with contributions, and recommendations to the 
understanding of the intersection between SQLI attacks and prevention in the AI 
field.

Accordingly, the primary goal of this paper is to examine current SQLI attacks, iden-
tify their methodologies, strengths, and weaknesses, and finally propose a thorough 
detection and prevention method.

The rest of the paper is organized into different but interrelated sub-sections. The 
paper begins by discussing the related works in the “Related works” section, the SQLI 
query attacks overview in the "SQLI query attacks overview" section, existing methods 
for SQLI detection and prevention in the "Existing methods for SQLI detection and 
prevention" section, developing a web-based framework for SQLI attacks detection and 

Fig. 1  The SQLI attacks [23]
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prevention in "Developing a web-based framework for SQLI attacks detection and pre-
vention" section, most common attacks on SQLI in "Most common attacks on SQLI" 
section, proposed frameworks for SQLI detection and prevention in "Proposed frame-
works for SQLI detection and prevention" section, result and discussion in "Result and 
discussion" section, and the conclusion and recommendation in "Conclusion and recom-
mendation" section.

Related works
In this section, different published research works have been considered and included to 
indicate the research gaps in the area. The paper typically reviews and includes studies 
that have been published in reputable databases. Many researchers have demonstrated 
the use of DL, ML, and hybrid techniques to detect SQLI attacks [23].

A review of SQLI prevention in web applications has been presented in [1]. The 
authors have provided a summary of 14 different varieties of SQLI attacks and how they 
affect online applications. Their research’s main objective was to investigate alternative 
SQLI prevention strategies and to offer an analysis of the most effective defense against 
SQLI attacks.

Authors in [2] have conducted a systematic literature review of 36 articles related to 
research on SQLI attacks and ML techniques. To classify different varieties of SQLI 
attacks, they have identified the most widely used ML techniques. Their finding revealed 
that few studies generated new SQLI attack datasets using ML tools and techniques. 
Similarly, their results showed that only a few studies focused only on using mutation 
operators to generate adversarial SQLI attack queries. In future work, the researchers 
aimed to cover the use of other ML and DL techniques to generate and detect SQLI 
attacks.

A comprehensive study on SQLI attacks, their mode, detection, and prevention has 
been presented in [4]. The authors have identified how attackers of this kind might 
exploit such a weakness and execute weak code as well as a strategy to mitigate such 
detrimental effects on database systems. The researchers’ investigation revealed that 
web operations were frequently used for online administrations ranging from high 
levels of informal communication to managing transaction accounts and dealing with 
sensitive user data. The real issue, however, was that this data was exposed to attacks 
because of unauthorized access, where the attackers gained entry to the system using 
various hacking and cracking techniques with very malicious motives. The attacker can 
use more sophisticated queries and creative tactics to get around authentication while 
also gaining total control over both the server and the web application. Many cutting-
edge algorithms have been developed up to this point to encrypt data queries to defend 
against such attacks by structuring desirable query modification plans. In the paper, they 
worked together to discuss the history of injection attacks, different forms of injection 
attacks, various case studies, and defenses against SQLI attacks, along with an appropri-
ate illustration.

In the work of [5], a survey on SQLI attack detection and prevention has been pre-
sented. The research, according to the authors, might help laypeople comprehend SQL 
and its hazards. It also helps researchers and programmers who wanted to learn about 
all the problems that still plague web applications and what strategies can be employed 
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to stop SQLI attacks. From the researcher’s perspective, it was anticipated that if web 
application developers adhered to the strategies provided in their study, the online appli-
cations would be safe from such damaging attacks.

Detecting web attacks with end-to-end DL was presented in [10]. Three new insights 
into the study of autonomous intrusion detection systems have come from this work. 
Firstly, they assessed whether a method based on the resilient software modeling tool 
(RSMT), which autonomously monitors and describes the runtime behavior of web 
applications, was feasible for detecting web attacks. A low-dimensional representation 
of the raw features with unlabeled request data was used to recognize anomalies by com-
puting the reconstruction error of the request data, and they have also described how 
RSMT trains a stacked denoising autoencoder to encode and reconstruct the call graph 
for end-to-end DL.

Secondly, they have described how RSMT trains a stacked denoising autoencoder 
to encode and reconstruct the call graph for end-to-end DL, where a low-dimensional 
representation of the raw features with unlabeled request data is used to recognize 
anomalies by computing the reconstruction error of the request data. Thirdly, they have 
examined the outcomes of empirically testing RSMT on artificial datasets as well as 
real-world applications that have been intentionally made vulnerable. Finally, the find-
ings demonstrated that the suggested method could efficiently and accurately iden-
tify attacks, such as SQLI, cross-site scripting, and deserialization, with a minimum of 
labeled training data and domain knowledge.

According to [11], SQLI is a common and challenging network attack that can cause 
inestimable loop-breaking and loss to the database, and how to detect SQLI statements 
was one of the current research hotspots. Here, how to detect SQLI statements was 
one of the current research hotspots. As described by the authors, SQLI is a frequent 
and difficult network assault that can result in immeasurable loop-breaking and loss to 
the database. An SQLI detection model and technique based on deep neural networks 
were developed based on the data properties of SQL statements. The main technique 
used in this case was word pausing the data to turn it into word vectors, then forming a 
sparse matrix and feeding it into the model for training. Next, a multi-hidden layer deep 
neural network model with the ReLU function was built, the traditional loss function 
was optimized, and a dropout method was added to increase the generalizability of this 
model and over 96% of the final model’s accuracy was achieved. Finally, the proposed 
technique successfully addressed the issues of overfitting in ML and the requirement 
for manual screening to extract features, which significantly increases the accuracy of 
SQLI detection by comparing the experimental results with conventional ML and LSTM 
algorithms.

Black-box detection of XQuery injection and parameter tampering vulnerabilities in 
web applications has been presented in [8]. To identify XQuery injection and parameter 
tampering vulnerabilities in online applications powered by native extensible markup 
language (XML) databases, a black-box fuzzing approach has been proposed. A work-
ing prototype of XiParam was created and put to the test on weak web applications that 
used BaseX, a native XML database, as their backend. The experimental analysis amply 
proved that the prototype was successful in preventing both XQuery injection and 
parameter tampering vulnerabilities from being detected.
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In the work of [16], an SQLI attack detection and prevention technique using DL has 
been presented. Based on extensive local and international research, the authors have 
suggested an SQLI detection method that uses NLP and DL frameworks and does not 
rely on a background rule base. By allowing the machine to automatically pick up on 
the language model characteristics of SQLI attacks, the strategy has increased accuracy, 
decreased false alarm rates, and provided some protection against attacks that were 
never discovered in advance.

Detection of SQLI attacks has been presented, tested, and compared to 23 ML classi-
fiers using MATLAB [23]. They generated their own datasets, into which they injected 
abnormal SQL syntax. They checked and manually verified the SQL statements. A total 
of 616 SQL statements were used to train the test classifiers. They have used ML tech-
niques such as “coarse KNN, bagged trees, linear SVM, fine KNN, medium KNN, RUS 
boosted trees, subspace discriminant, boosted trees, weighted KNN, cubic KNN, linear 
discriminant, medium tree, subspace KNN, simple tree, quadratic discriminant, cubic 
SVM, fine Gaussian SVM, cosine KNN, complex tree, logistic regression, coarse Gauss-
ian SVM, medium Gaussian, and SVM”. The five best models in terms of accuracy were 
determined to be ensemble boosted, bagged trees, linear discriminant, cubic SVM, and 
fine Gaussian SVM. They have tested their proposed technique and the results showed 
that their technique was able to detect the SQLI attack with an accuracy of 93.8%.

The authors of [24] have proposed a model called ATTAR to detect SQLI attacks by 
analyzing web access logs to extract SQLI attack features. The features were chosen 
based on access behavior mining and a grammar pattern recognizer. The main target of 
this model was the detection of unknown SQLI statements that had not been previously 
used in the training data. Five ML techniques were used for training: NB, random forest, 
SVM, ID3, and k-means. The experimental results showed that the accuracy of the mod-
els based on random forest and ID3 achieved the best results in detecting SQLI attacks.

The authors of [25] have proposed a hybrid CNN-BiLSTM-based model for SQLI 
attack detection. The authors presented a detailed comparative analysis of different 
types of ML techniques used for the detection of SQLI attacks. The CNN-BiLSTM 
approach provided an accuracy of approximately 98%, compared with other described 
ML techniques.

The authors of [26] have presented an ML classifier to detect SQLI vulnerabilities in 
PHP code. Multiple ML techniques were trained and evaluated, including random for-
est, logistic regression, SVM, multilayer perceptron (MLP), LSTM, and CNN. The 
authors have found that CNN provided the best precision of 95.4%, while a model based 
on MLP achieved the highest recall 63.7%, and the highest f-measure of 74.6%.

The authors of [27] have proposed an adaptive deep forest model (ADF) with the inte-
gration of the AdaBoost technique. AdaBoost stands for adaptive boosting, which is a 
statistical classification technique, and the deep forest model is a layered model based on 
a deep neural network. The adaptive deep forest model proposed in [25] achieved high 
efficiency, comparable to that of traditional ML models, such as decision trees, and bet-
ter performance compared with regular deep neural network models, such as RNN and 
CNN.

The authors of [28] have created a dataset using symbolic finite automata to train 
a classifier to detect SQLI attacks. The generated data were labeled, and training was 
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conducted with an SL model with ML techniques of two-class support vector machine 
(TC SVM) and two-class logistic regression (TC LR). The generated models were evalu-
ated using a receiver operating characteristic (ROC) curve.

The authors of [29] have proposed an SQLI detection method using ensemble learn-
ing techniques and NLP to generate a bag-of-words model used to train a random forest 
classifier. The prediction was also considered in this research to improve the detection 
ability of the classifier. In this study, DT, NB, SVM, and KNN classification models were 
also trained to classify the same testing dataset, and their performances were compared 
with that of the proposed method. The experimental results showed that the proposed 
method achieved better accuracy, higher TPR, and lower FNR than the other four classi-
fiers. The evaluation metrics were used to measure the performance of the classifier. The 
measurements were based on a confusion matrix, accuracy, precision, true-positive rate, 
false-positive rate, true-negative rate, false-negative rate, receiver operating characteris-
tic curve, and area under the curve.

The authors of [30] have developed a dataset by gathering and combining a large num-
ber of smaller datasets. The generated dataset was labeled, and the learning model was 
SL. They trained seven ML models: DT, AdaBoost, random forest, optimized linear, Ten-
sorFlow linear, deep ANN, and a boosted trees classifier. Then, they compared the seven 
techniques in terms of performance and accuracy. The results showed that the random 
forest classifier outperformed all other classifiers and achieved an accuracy of 99.8%. The 
paper also compared the performance of different ML models in detecting SQLI attacks.

The authors of [31] have proposed a novel approach to the detection of SQLI attacks 
using human agent knowledge transfer (HAT) and TD ML techniques. In this model, an 
ML agent acted as a maze game to differentiate between normal SQL queries and mali-
cious SQL queries. If the incoming SQL query was an SQLI attack query, then it gained 
more rewards and was deemed an SQLI attack query before achieving the final state. 
Finally, the ML technique has achieved an accuracy of 95%.

The authors of [32] have proposed a detection system based on two techniques. The 
first detection method was based on pattern matching, which is the same as a signature-
based detection system whereby the classifier has a database of SQL attack signatures 
and only inspects the HTTP URL in an attempt to find a match. The second detection 
method used was based on ML techniques. To build this model, the authors have col-
lected malicious data and trained the classifier with these data by extracting the features 
representing attacks. They have used techniques such as SVM, NB, and K-nearest neigh-
bor. The performance of the classifier was measured using the total cost ratio (TCR).

The authors of [33] have trained an SVM to detect malicious SQL queries by modeling 
the WHERE clause of a query as an interaction network of tokens and computing the 
centrality of the nodes. Node centralities were used to quantify the degree of importance 
or centrality of a node in the network. The experimental results obtained on a dataset 
collected from five web applications using some automated attack tools confirmed that 
three of the centrality measures used in this study can effectively detect SQLI attacks 
with minimal impact on performance.

The authors of [15] have proposed an LSTM-based SQLI attack detection method, 
which can automatically learn the effective representation of data and has a strong 
advantage to confront complex high-dimensional massive data. Additionally, from the 
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standpoint of penetration, this paper has provided an injection sample development 
method based on data transmission channels. This technique can produce legitimate 
positive samples and explicitly simulate SQLI attacks. The strategy, in the researcher’s 
opinion, can successfully address the over-fitting issue brought on by a lack of sufficient 
positive samples. The experimental findings revealed that the suggested method out-
performed numerous similar classical ML techniques and widely used DL techniques 
in terms of improving the accuracy of the SQLI attack detection and reducing the false 
positive rate. Finally, the experimental results showed that the accuracy, precision, and 
f1-score of the proposed method were all above 92%.

The authors of [34] have proposed a framework for SQLI prevention via server-side 
scripting using ML and compiler platforms. A dataset of 1100 samples of SQL com-
mands were trained in four ML techniques such as boosted decision tree, DT, SVM, and 
an artificial neural network. The results indicated that the DT technique has achieved 
the highest prediction efficiency among the tested models.

The author of [35] has used the AdaBoost technique to detect SQLI attacks. In this 
study, the data were converted into stumps, which were classified as weak stumps pro-
viding less weight to the output, or strong stumps providing the highest weight in the 
overall output. The experimental result showed that the proposed technique accurately 
and effectively detected injection attacks.

The authors of [36] have proposed a method for classifying dynamic SQL queries as 
either attacks or normal based on a web profile prepared during the training phase. NB, 
SVM, and parse tree techniques were used for the classification process. The overall 
detection rate using the two datasets was 91% and 90%, respectively.

The author of [37] has designed a method to detect malicious SQL queries. The DT 
technique was used for the classification processes to detect different levels of SQLI. The 
proposed model maintained an accuracy of more than 98% in detecting SQLI attacks 
and an accuracy of 92% in classifying the level of attack as simple, unified, or lateral.

The authors of [38] have presented a simple method for SQLI attack detection based 
on an artificial neural network. First, a large amount of SQLI data were analyzed to 
extract the relevant features. Then, a variety of neural network models, such as MLP and 
LSTM, were trained. The experimental results showed that the detection rate of MLP 
was better than that of LSTM.

The authors of [39] have automatized the process of exploiting SQLI attacks through 
reinforcement learning agents. In this study, the problem was modeled as a Markov deci-
sion process. The experimental results showed that reinforcement learning agents can be 
used in the future to perform security assessment and penetration testing.

The authors of [40] have presented a detection method by modeling SQL queries as a 
graph of tokens and utilized the centrality measure of tokens to train single and multiple 
SVM classifiers. The system was tested using directed and undirected graphs with differ-
ent SVM classifiers. The experimental results demonstrated that the proposed technique 
can effectively identify malicious SQL queries.

The authors of [41] have presented a model of a two-class support vector machine 
(TCSVM) to predict binary labeled outcomes concerning whether an SQLI attack was 
positive or negative in a web request. This model has intercepted web requests at the 
proxy level and applied ML predictive analytics to predict SQLI attacks.
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The authors of [42] have presented a novel approach for classifying SQL queries. 
A gap-weighted string subsequence kernel technique was used to compute the simi-
larity metric between the query strings. Then, the SVM was trained on the similar-
ity metrics to determine whether the query strings were normal or malicious. The 
proposed approach was evaluated using many datasets and achieved an accuracy of 
92.48%.

The authors of [43] have presented a new approach to the construction of a dataset 
with a NoSQL query database. Six classification techniques were trained and evalu-
ated to identify SQLI attacks, which included: DT, SVM, random forest, KNN, neural 
network, and multilayer perceptron. The experimental results showed that the last 
two techniques obtained an accuracy of 97.6%.

The authors of [44] have trained a progressive neural network model with an NB 
classifier to successfully detect SQLI attacks. Progressive neural networks were 
trained using parameters such as error-based, time-based, SQL query, and union-
based SQLI attacks. The proposed method has achieved an accuracy of 97.897%.

The authors of [45] have proposed a hybrid approach using tree-vector kernels in 
SVM to learn SQL statements. The authors used both the parse tree structure of SQL 
queries and the query value similarity characteristic to distinguish between malicious 
and benign queries. The results confirmed the benefit of incorporation to efficiently 
and accurately identify abnormal queries.

The work [14] has presented the detection of SQLI behaviors using word vectors and 
long short-term memory (LSTM). A unique technique for detecting SQLI attacks based 
on a word vector of SQL tokens and LSTM neural networks was presented in this paper. 
In the suggested approach, SQL query strings were first syntactically broken down into 
tokens, after which a word vector of SQL tokens was built using the likelihood ratio 
test, and finally, an LSTM model was trained using sequences of token word vectors. 
They created a tool called WOVSQLI to implement the suggested method, and it was 
tested using a set of data from several sources. The performed experiments showed that 
WOVSQLI was capable of reliably detecting SQLI attacks. Finally, the results of the 
experiment showed that the proposed tool achieved an accuracy of 98.60%.

The authors of [46] have proposed a DL-based approach to detect SQLI attacks in 
network traffic. The proposed approach selected only the target features needed by 
the model to be trained using a deep belief network (DBN) model. The authors also 
employed test data to test the performance of different models, including LSTM, CNN, 
and MLP. According to the experimental results, DBN achieved an accuracy of 96%.

The authors of [47] have proposed a framework that combined the EDADT (efficient 
data adaptive decision tree) technique and the SVM classification technique to detect 
SQLI attacks. The used dataset was created using the MovieLens dataset system for 
movie recommendations, which included user login and movie details. The experimen-
tal results showed that the proposed approach achieved an accuracy of 99.87%.

The authors of [48] have proposed a method for detecting SQLI using the NB ML 
technique. The authors have applied a tokenization process to break the query into 
meaningful elements called tokens. Then, the list of tokens became an input for fur-
ther classification processes. The result of the NB technique was analyzed using preci-
sion, recall, and accuracy.
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Evading web application firewalls through adversarial machine learning has been pre-
sented in [49]. They have presented WAF-A-MoLE, a tool that models the presence of an 
adversary. This tool leverages a set of mutation operators that alter the syntax of a pay-
load without affecting the original semantics. The researchers have evaluated the per-
formance of the tool against existing WAFs, which they have trained using their publicly 
available SQL query dataset. Finally, they showed that WAF-A-MoLE bypasses all the 
considered ML-based WAFs.

Deep semantic learning for testing SQLI has been presented in [50]. The paper has 
proposed a deep natural language processing-based tool, dubbed DeepSQLI, to gener-
ate test cases for detecting SQLI vulnerabilities. Through adopting DL based neural lan-
guage model and sequence of words prediction, DeepSQLI was equipped with the ability 
to learn the semantic knowledge embedded in SQLI attacks, allowing it to translate user 
inputs (or a test case) into a new test case, which was semantically related and poten-
tially more sophisticated. The experiments were conducted to compare DeepSQLI with 
SQLmap, a state-of-the-art SQLI testing automation tool, on six real-world web applica-
tions that were of different scales, characteristics, and domains. The empirical results 
demonstrated the effectiveness and the remarkable superiority of DeepSQLI over SQL-
map, such that more SQLI vulnerabilities can be identified by using a less number of test 
cases, whilst running much faster.

Behind an application firewall, are we safe from SQLI attacks has been presented in 
[51]. The paper was focused on web application firewalls and SQLI attacks. They have 
presented an ML-based testing approach to detect holes in firewalls that let SQLIattacks 
bypass. In the beginning, the approach can automatically generate diverse attack pay-
loads, which can be seeded into inputs of web-based applications, and then submit them 
to a system that was protected by a firewall. Incrementally learning from the tests that 
were blocked or passed by the firewall, their approach can then select tests that exhibit 
characteristics associated with bypassing the firewall and mutate them to efficiently gen-
erate new bypassing attacks. In the race against cyber attacks, time was vital. Being able 
to learn and anticipate more attacks that can circumvent a firewall promptly was very 
important to quickly fix or fine-tune the firewall. They have developed a tool that imple-
ments the approach and evaluated it on ModSecurity, a widely used application firewall. 
The results they obtained suggest good performance and efficiency in detecting holes in 
the firewall that could let SQLI attacks go undetected.

Automatic detection of NoSQLI using SL has been presented in [52]. They have 
developed a tool for detecting NoSQLI using SL. To the best of their knowledge, their 
developed training dataset on NoSQLI was the first of its kind. They manually designed 
important features and apply various SL techniques. Their tool has achieved a 93.00 
f1-score as established by tenfold cross-validation. They also applied their tools to a 
NoSQLI generating tool, NoSQLMap, and find that their tool outperforms Sqreen, the 
only available NoSQLI detection tool, by 36.25% in terms of detection rate. The pro-
posed technique was also shown to be database-agnostic achieving similar performance 
with injection on MongoDB and CouchDB databases.

A framework for SQLI investigations detection, investigation, and forensics has been 
presented in [53]. This paper has proposed a framework of SQLI investigation archi-
tecture and has proved its feasibility in fighting against SQLI attacks. An effective and 
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efficient approach was also proposed to prosecute SQLI aggressors and keep them away 
from abusing the database.

The development of a compressive framework using ML Approaches for SQLI attacks 
has been presented in [54]. The paper investigates the most common SQLI attack forms, 
their mechanisms, and a method of identifying them based on the existence of the SQL 
query. Furthermore, they have proposed a comprehensive framework for determining 
the effectiveness of the proposed techniques in addressing a variety of issues based on 
the type of attack using DL, ML, and hybrid techniques. A thorough examination of the 
model using a test set revealed that the hybrid approach and ANN outperform NB, SVM, 
and DT in terms of classifying injected queries. The NB, on the other hand, outperforms 
the other approaches in terms of web loading time during testing. The results showed an 
accuracy of 99.16% for ANN and the hybrid technique has an accuracy of 99.6%, mak-
ing it the best trained among the others. As a result, the proposed method improved the 
detection and prevention of SQLI attacks. They used a small dataset for training and 
testing in this study, but maximizing the dataset and implementing the model in practice 
was recommended for future researchers.

The development of a compressive framework using ML Approaches for SQLI attacks 
has been presented in [54]. The paper investigates the most common SQLI attack forms, 
their mechanisms, and a method of identifying them based on the existence of the SQL 
query. Furthermore, they have proposed a comprehensive framework for determining 
the effectiveness of the proposed techniques in addressing a variety of issues based on 
the type of attack using DL, ML, and hybrid techniques. A thorough examination of the 
model using a test set revealed that the hybrid approach and ANN outperform NB, SVM, 
and DT in terms of classifying injected queries. The NB, on the other hand, outperforms 
the other approaches in terms of web loading time during testing. The results showed an 
accuracy of 99.16% for ANN and the hybrid technique has an accuracy of 99.6%, mak-
ing it the best trained among the others. As a result, the proposed method improved the 
detection and prevention of SQLI attacks. They used a small dataset for training and 
testing in this study, but maximizing the dataset and implementing the model in practice 
was recommended for future researchers.

According to the recommendation of [54], the detection and prevention rate of the 
system can be improved by increasing the training and testing dataset and by using the 
recommended techniques. So, we have proposed this research work to increase the sys-
tems detection and prevention rate of SQLI attacks in different web applications.

SQLI query attacks overview
An SQL is a language developed to manage data stored in relational databases [12]. It 
allows users to access, modify, and delete data. Many web applications and websites keep 
all of their data in SQL databases. SQL commands can also be used to run OS com-
mands in some cases.

Web attacks are one of the major topics to be investigated in this study. Even though 
there are numerous web attacks, SQLI is one of the most common and will be among 
the top five web attacks in 2021, according to the OWASP report [55, 56]. This attack 
grants attackers complete access to databases containing sensitive information [1, 10, 57, 
58]. As in a common understanding, a web application has three levels [54]: The first 
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presentation layer collects user feedback and shows the user the processing results. The 
presentation layer directly communicates with the user. The second control layer, the 
server script, processes data entered by the user and sends the results to the database 
layer. The database layer sends the processed data to the control layer, which then sends 
it to the presentation layer for the user to view [59–62]. As a result, data processing 
occurs on the control layer in the web application, which can be implemented in a vari-
ety of server scripting languages. The database (DB) layer finally saves and retrieves the 
data. The database stores and manages all sensitive web application data. Because this 
layer is directly connected to the control layer and has no security checks, if the con-
trol layer is successfully attacked, data in the database can be exposed and modified. The 
general concept of web-based architecture is depicted in Fig. 2.

The difficulty in perceiving the injected query at the database layer necessitates a 
system that controls and filters the query at the presentation layer based on predeter-
mined parameters [63]. Various studies have been conducted to identify and prevent the 
injected queries. The bulk of them, however, do not identify all types of SQLI, but they 
fared better on a handful in the statistical or dynamic portions. Vulnerabilities in web 
applications can exist if the sanitization function does not correctly sanitize user input. 
The static analysis cannot tell whether or not the input has been sanitized properly. The 
vulnerabilities often go unnoticed due to such flaws in static assessments.

The SQL prevent checks produced queries for those parameters and provides an alarm 
when a hypertext transfer protocol (s) (HTTP (S)) request parameter influences the syn-
tax structure of a query [64]. Different techniques are used to track user inputs, and a 
profile of caring queries has been created. This technique has a high rate of false posi-
tives and false negatives due to the inability of the application that generates the query 
to encapsulate input [65]. As a result, there is still a gap in the SQLI attack forms. Here, 
we have proposed this work to fill such gaps by using the recommended techniques and 
state-of-the-art research works accordingly.

Existing techniques for SQLI detection and prevention
Several techniques for detecting and preventing SQLI have been proposed, with some 
focusing on statistical analysis [4, 66, 67, 68, 69, 70] or dynamic analysis[71, 72], others 
on Hybrid approach [32, 73]. These techniques are used for web application vulnerability 

Fig. 2  Web application architecture [54]
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analysis, scanning, detection and prevention, mitigation, and attack avoidance. Numer-
ous studies have been conducted to investigate vulnerability analysis by conducting a 
thorough examination of a web application’s security flaws [74]. It has also been investi-
gated in previous studies by vulnerability scanning tools used in [75]. Many authors have 
recognized detection and prevention are the best way to avoid attacks from web applica-
tions [76]. The detection and prevention of attacks were successfully established by vari-
ous techniques including DL, ML, and hybrid. The techniques have been described in 
the following sections.

DL techniques

SQLI is a common and difficult attack on web applications, systems, and network secu-
rity issues. Deep or convolutional neural networks (CNN), can be used in a wide vari-
ety of threat detection and prevention scenarios [10, 11]. Code injection is the most 
common and damaging attack, ranking first on the OWASP vulnerabilities list [16, 17]. 
Accordingly, the detection and prevention of code injection attacks, which were previ-
ously done using signature or pattern-based recognition techniques, has recently been 
supplemented by the use of advanced ML techniques.

ML techniques

Several types of research implied that ML techniques [12, 77–79] can be employed 
to develop vulnerability predictors. The goal, regardless of the technique used, is to 
learn data associated with injection, which can then be used to predict vulnerability to 
new injections. A vulnerability analysis method needs to be able to adapt when more 
advanced security threats are discovered. The ML technique allows for re-training to 
respond to new vulnerability trends [16].

Hybrid techniques

The hybrid injection detection and prevention system (HIDPS) uses both ML classifiers 
and other statistical techniques to prevent and detect the rescues of SQLI attacks from 
different web applications and systems [32]. Accordingly, some of the previous research 
has used hybrid techniques [64, 73, 80]. This can be done by comparing the structure of 
the queries to detect attacks. Initially, it detected if a dynamically generated query has a 
different structure or grammar that meets certain requirements like data length, range, 
and form by input validation and input purification by allowing only predefined charac-
ters and refusing all others, including those with unique significance to the interpreter 
than a static query were followed. A new approach is therefore needed for SQLI attacks 
[18, 81].

Developing a web‑based framework for SQLI attacks detection and prevention
Frameworks have become an essential part of web development because, as web appli-
cation standards rise, so does the complexity of the technology required [82]. It’s com-
pletely unreasonable to reinvent the wheel with such sophisticated techniques. As a 
result, using frameworks endorsed by thousands of developers worldwide is a very sound 
approach to developing rich and interactive web applications. Because a web applica-
tion has a backend (server-side) and a frontend (client-side) for both the backend and 
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frontend frameworks. Many frameworks such as [53, 83, 84] have been developed and 
tested with various parameters.

Authors of [85] proposed a framework based on misuse and anomaly detection tech-
niques to detect SQLI attacks. The research of [86] discusses a secure mechanism for 
protecting web applications from SQLI attacks by using a framework and database fire-
wall. An author of [81] presents a framework that can be used to handle tautology-based 
SQLI attacks using the post-deployment monitoring technique. The authors of [87] eval-
uate runtime monitoring frameworks to detect and prevent SQLI attacks on web appli-
cations. The authors of [88] present a cloud computing adoption framework (CCAF) 
security suitable for business clouds. The authors of [89] propose SQLI intrusion detec-
tion framework as a service for SaaS providers, structured query language injection iden-
tity as a service (SQLI IDaaS), which allows a SaaS provider to detect structured query 
language injection attacks (SQLIAs) targeting several SaaS applications without read-
ing, analyzing, or modifying the source code. To raise the tenants’ awareness of the seri-
ousness of SQLIAs. The research work of [83] introduces a novel traffic-based SQLIA 
detection and vulnerability analysis framework named (DIAVA), which can proactively 
send warnings to tenants promptly. Some of them perform well on the given parameters, 
while others do not. As a result, while these frameworks detect injected queries, they 
have no control over them. However, a closer examination of the literature on the afore-
mentioned SQLI attack reveals numerous gaps and shortcomings.

Most common attacks on SQLI
As we know, SQL is a programming language that is used to create, update, and access 
data in a database. A hacker can intentionally cause the application to fail, delete data, 
steal data, or gain unauthorized access by carefully crafting SQL commands [90]. To 
address the aforementioned issue, we provide a detailed overview of the various types 
of SQLI attacks discovered to date. For each type of attack, we provide explanations and 
examples of how such attacks can be carried out, as well as explicit mitigation mecha-
nisms. Finally, we propose a comprehensive framework that is resistant to all types of 
attacks for detection and prevention.

Tautology attack

The attacker attempts to use a conditional query argument to test always true in the tau-
tology attack, such as (1 = 1) or (− −). The attacker injects the condition and transforms 
it into a tautology that is always valid using the WHERE clause [91, 92]. This type of 
attack is commonly used to access databases without requiring authentication on web-
sites [1].

For example: 

The most common type of tautology attack, the nature of the attack, and the approach 
used to detect them are described below in Table 1.
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Accordingly, the SQL query results turn the original condition into a tautology, 
allowing an unauthorized user, for example, to access all records in the database 
table. Guardium detects and prevents many variants of tautological statements in 
database requests. Previous studies were limited to investigating the most com-
mon tautology attack, but it is still necessary to investigate all types of tautology 
attacks that lead to injectables. As a result, the study investigates the different types 
of attacks and recommends a strategy for each one.

Union query

In this category of attack, the UNION operator is only used if both queries have the 
same form, the attacker constructs a SELECT statement that is similar to the origi-
nal query [1, [79]. To do so, it must be known that the correct table name, as well 
as the number of columns and their data types from the first query. As a result, two 
conditions may be satisfied, or an attack on the union query will be launched, and 
each query returns the same number of columns [92, 93]. If the data type of a col-
umn is incompatible with string data, the injected query will fail.

For example:

Based on the nature of the attack the suggested approach is described below in 
Table 2. Mostly the second query in a union is malicious [94], and for instance, the 
text after (–) is ignored since it acts as a comment for the SQL parser. Taking advan-
tage of this, the attacker uses this query to target the online application or website.

Table 1  Common tautology attacks [54]

Type of injection Nature of attack Approach 
for 
detection

String SQLI Bypassing authentication, identifying injectable parameters using string data 
type, extracting data

Rule-based

Numeric SQLI Bypassing authentication, identifying injectable parameters using numeric 
data type extracting data

Rule-based

Comment attack Bypassing authentication, identifying injectable parameters using the com-
ment form, extracting data

Rule-based

Table 2  Union injection attack [54]

Type of injection Nature of attack Recommended techniques

Union query attack Bypassing authentication, extracting data using union 
operation

Rule-based
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Piggybacked query

The piggybacked query attack concatenates more query statements onto the initial query 
“;” [1]. This technique is especially risky since it enables an attacker to insert virtually 
any SQL command. Data extraction, addition or modification of data, denial of service 
(DoS), and remote command execution are all examples of determined attacks [16]. In 
this type of attack, an attacker attempts to inject additional queries into the original 
query. Unlike other forms, attackers attempt to add new and distinct queries that "pig-
gyback" on the original query rather than changing it [92, 95, 96].

For example:

As a result, several SQL queries are sent to the database. Table  3 states the nature 
and appropriate approach used for the attack. These types of criminal behavior can be 
avoided by first locating the correct SQL query through appropriate validation or by 
employing various detection mechanisms. This type of attack can be avoided using static 
analysis and no run-time monitoring is required.

Illegal or incorrect query

This kind of attacker takes advantage of a database query that was improperly executed 
[1]. It will show database error messages, which frequently provide crucial facts that 
enable an attacker to learn the application’s database specifics. The attack goal includes 
identifying injectable parameters, performing database fingerprinting, and extract-
ing data. This attack assists an attacker in gathering critical information concerning the 
nature and function of the back-end database of a web application [86, 92]. The attack 
is thought to be a practice run for future attacks aimed at gathering information. This 
attack takes advantage of the fact that the default error pages on application servers are 
frequently excessively descriptive [97].

For example:

Due to that the recommended approach is shown in Table 4.
In general, this attack takes advantage of the error message produced by the database 

when a query is wrong.

Table 3  Piggybacked query [54]

Type of injection Nature of attack Recommended technique

Piggybacked query Adding or altering data, performing DoS, and executing 
remote commands are all examples of data extraction

ML
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Stored procedure query

Here, an attacker can use this technique to modify the database’s stored procedures 
[1]. Both authorized and unauthorized users will receive true or false results from the 
process. The users can save their features and use them whenever they want. A col-
lection of SQL queries are provided with the feature to use it. The intruder uses mali-
cious SQL codes to execute the database’s built-in stored procedures [92, 98]. This 
leads to cause the cached stored procedure query plans being recompiled. A stored 
procedure’s constraint is that it can only be used in the database.

For example:

The best method to overcome this attack is described below in Table 5.

Inference query

In this attack, the query is recast as an operation and executed based on the answer 
to a true or false question about database data values [92, 99, 100]. For this method 
of injection, attackers attempt to break into a site that has been sufficiently protected 
that when an injection is successful and there is no accessible feedback in the form 
of database error messages. Since database error messages are not available to pro-
vide feedback and attackers must rely on another approach to get a response from the 
database.

For example:Consider (malicious parameter (inference attack on SQL server. Here, 1;
if SYSTEM_USER=’sa’ SELECT 1/0 ELSE SELECT 5) [101].
QUERY GENERATED (two possible outcomes for the injected IF).

Table 4  Illegal or incorrect query [54]

Type of injection Nature of attack Recommended technique

Illegal/incorrect Query Error messages ignored by the client are used to locate 
useful data, allowing the backend database to be injected 
more easily

ML

Table 5  Stored procedure query [54]

Type of injection Nature of attack Recommended techniques

Stored procedure Query Performing privilege escalation, denial of service, and 
remote command execution

Rule-based
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Different forms of attack under inference query are shown in Table 6.

Alternative encoding query

In this attack, the injected text is changed to avoid detection by protective coding prac-
tices as well as several automated prevention techniques. This attack is used in conjunc-
tion with others [92, 102]. To intend their attack they use the regular expression [76]. 
Authors in [92] have explained this type of SQLI attack with examples. This implies that 
they do not provide a unique way to target an application; rather, they are an enabling 
technology that allows attackers to circumvent detection and prevention strategies and 
exploit the vulnerabilities depicted in Table 7.

Proposed frameworks for SQLI detection and prevention
Because of the nature of the attack and the need for detection and prevention mecha-
nisms, a more systematic and theoretical analysis of SQLI attacks is required. To develop 
our framework, we have investigated existing techniques, as well as their attacking 
methods and flaws accordingly. As a result, we propose a comprehensive framework 
that addresses all vulnerabilities identified in the previous research works. To carry 
out the activity, the attacker must first open his browser and if the application is open, 
the intruder either enters his password into the application or requests authorization 
to access the web service via the internet. The intruder must first get past the firewall 
checker to proceed. The web server then accepts user input through various mecha-
nisms, such as user input validation, and uses the input to generate queries to an under-
lying database [64, 93]. This can be accomplished by identifying injection parameters, 
determining the type and version of a web application’s database, and determining the 
database schema. If the attacker was granted permission based on the request, he will 
request application server access again. However, in this case, we proposed a model 

Table 6  Common inference query attack [54]

Types of attack Nature of attack Recommended 
technique

Blind SQLI [91] Collect valuable data by inferring from the page’s answers after 
asking the server a set of true/false questions

ML

Timing Attack[96] Observe the response time, which will assist the attacker in mak-
ing an informed decision about which injection approach to use

ML

Database Backdoor Attack Set a trigger to collect the user’s feedback and send it to his or her 
e-mail address

ML

Command SQLI Injecting and executing system-level commands via a vulnerable 
program is the essence of the attack

Rule-based

Table 7  Alternative encoding query [54]

Type of Injection Nature of Attack Recommended Technique

Alternative Encoding Query Safe protective coding and automatic prevention 
systems are used to keep it from being detected

ML
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for the detection and prevention of determining whether or not the requested access 
involves SQLI, as shown in Fig. 3.

There were several stages preceding the classification of SQL queries. The first feature 
extraction is done by comparing the static and dynamic analysis to see if the requested 
queries are injected with either approach. Based on the query, the classifier accepts it 
and matches it with the trained dataset. The extracted feature is then accepted by the 
ML classifier, which trains the model to identify the injected query. The SVM [103, 104], 
DT, NB [73, 105, 106], and other algorithms in ML techniques [75, 107–111] are used to 
solve classification algorithms. The trained model passes all stages such as preprocessing 
and feature extraction.

As a result, during the feature extraction steps, the classifiers will be trained to rec-
ognize various types of SQLI attacks based on the given trained ML model and hybrid 
approach. Based on the trained pre-fetched and trained dataset, the model matches the 
pattern of each line query requested. If the SQL query contains one or more qualified 
attacks, the model will either reject the request or send it to the application and data-
base servers to perform the requested operation if the query is pure SQL with no injec-
tion. As a result, we propose developing a new architecture based on ML and hybrid 
approaches to achieve the best possible results when dealing with SQLI query attacks.

Result and discussion
In this study, we used three injection parameters in various forms. The first is through 
a user input field, which allows a web application to use HTTP (S) POST and GET 
to request information from a backend database, and the second is through cook-
ies, which can be used to restore a client’s state information when they return to a 
web application. An attacker can exploit this vulnerability to change cookies and sub-
mit them to the database server if a web application uses the contents of cookies to 
construct SQL queries. Finally, a server variable can be created by analyzing session 
usage information and recognizing browsing behaviors. Because attackers can forge 
the values in HTTP (S) and network headers by entering malicious input into the 

Fig. 3  Proposed framework for SQLI attack detection and prevention [54]
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application’s client-end or by crafting their request to the server, logging these vari-
ables to a database without sanitization could result in SQLI vulnerability. Accord-
ingly, all the attacks sent to the server are logged and saved as attack log data in the 
database. Furthermore, attack log data is divided into two categories: attacks and nor-
mal data.

Using various ML techniques, we trained and assessed vulnerability classifier mod-
els to determine which approach performed the best. The set of algorithms includes 
traditional NB, DT, SVM, RF, LR, and Neural Networks Based on MLP and hybrid 
techniques that are used for our study. The ML algorithms were implemented using 
the Keras library, while the classical methods were implemented using the Tensor 
Flow-Learn package.

We evaluated the performance of the models using ten-fold cross-validations, 
where the dataset was divided into ten different partitions and the final accuracy 
result was recorded.

During the training and testing of the selected techniques, we can get multiple clas-
sifiers, and we need to evaluate the performance of each classifier using appropriate 
evaluation metrics, from which the best one is selected. The samples can be combined 
according to the real target category and the category predicted by the classification 
model to obtain the following four cases:

Table 8  Performance evaluation for the training set

No Techniques Evaluation Metrics

Precision Recall F1-score Training set 
accuracy

Training 
time (in 
sec.)

NB 88.33% 87.89% 88.11% 89.40% 08.73

DT 93.09% 92.75% 92.92% 95.70% 53.01

SVM 97.15% 98.02% 97.58% 98.80% 19.06

RF 97.28% 96.00% 96.64% 95.30% 09.48

ANN 99.05% 99.65% 99.35% 99.20% 19.62

Hybrid 99.54% 99.61% 99.57% 99.60% 26.15

Table 9  Performance evaluation for test set

No Techniques Evaluation Metrics

Precision Recall F1-score Test set accuracy Testing time 
(in msec.)

NB 87.53% 86.37% 86.95% 87.20% 01.73

DT 91.72% 90.84% 91.28% 94.80% 06.87

SVM 96.40% 95.61% 96.00% 97.30% 03.8

RF 94.35% 93.06% 93.70% 93.40% 05.19

ANN 98.87% 99.13% 99.00% 98.70% 11.76

Hybrid 99.20% 99.47% 99.33% 99.40% 15.33
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True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 
(FN). Let TP, TN, FN, and FP denote their corresponding sample numbers, then obvi-
ously TP + TN + FN + FP = the total number of samples.

The confusion matrix of the classification results by taking each class as positive 
samples separately is shown in Tables 8 and 9.

For classification models, the evaluation criteria are precision, recall, f1-score, and 
training/test set accuracy as described in Eqs. (1–4). Since positive and negative sample 
imbalance is very common in the field of SQLI attack detection and prevention, it is 
unreasonable to use only accuracy rate as the evaluation metric, so the evaluation met-
ric used is f1-score as the detection and prevention classifier performance in addition 
to detection accuracy (accuracy), check-all rate (recall), and check-accuracy rate (preci-
sion). the f1-score is used as a comprehensive evaluation criterion for classifier perfor-
mance [11].

The results of techniques in the training and testing phases are described in Tables 8 
and 9 respectively.

According to the study shown in Table 8 and Fig. 4, the hybrid approach (ANN and 
SVM) performs better accuracies in precision (99.05% and 99.54%), recall (99.65% and 

(1)Accuracy =
TP + TN

TP + TN + FN + FP

(2)Precision =
TP

TP + FP

(3)Recall =
TP + TN

TP + FN

(4)F1− score =
2 ∗ (Precision ∗ Recall)

Precision+ Recall
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99.61%), f1-score (99.35% and 99.57%), and training set (99.20% and 99.60%) respec-
tively than other ML approaches. However, their training time is too high (i.e., 19.62 and 
26.16 s respectively) for NB and RF. Accordingly, the NB technique performs poorly in 
accuracy, precision, recall, f1-score, training set evaluation metrics, and best in training 
time.

From all the implemented techniques for SQLI attack detection and prevention, we 
have achieved the best performance in hybrid techniques as depicted in Table 8 and 
Fig. 4 for the given training sets.

Additionally, as indicated in Fig. 5, it can be observed that the distribution of the 
f1-score value is 88.11%, 92.92%, 97.58%, 96.64%, 99.35%, and 99.57% for the NB, DT, 
SVM, RF, ANN, and for hybrid techniques respectively.

Fig. 5  Performance distribution of the techniques in the training set (f1-score)
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According to the study shown in Table 9 and Fig. 6, the hybrid approach (ANN and 
SVM) performs better accuracies in precision (98.87% and 99.20%), recall (99.13% 
and 99.47%), f1-score (99.00% and 99.33%) and test set (98.70% and 99.40%) respec-
tively than other ML approaches. However their test time is too high (i.e., 11.76 and 
15.33 ms respectively). Accordingly, the NB technique performs poorly in accuracy, 
precision, recall, f1-score, test set evaluation metrics, and best in training time. Here, 
among the implemented ML techniques SVM and ANN are weak learners.

From all the implemented techniques for SQLI attack detection and prevention, we 
have achieved the best performance in hybrid techniques as depicted in Table  9 and 
Fig. 6 for the given test sets.

Additionally, as indicated in Fig.  7, it can be observed that the distribution of the 
f1-score value is 86.95%, 91.28%, 96.00%, 93.70%, 99.00%, and 99.35% for the NB, DT, 
SVM, RF, ANN, and for hybrid techniques respectively.

Even if there has been no research work on detecting and preventing SQLI attacks 
that have produced 100% accuracy, it is recommended future researchers in the area can 
use hybrid techniques with great consideration of large-scale datasets to increase the 
performance in the evaluation metrics (detection and prevention rates) of the systems. 
Accordingly, the performance of any SQLI attack systems detection and prevention rate 
depends on a detailed examination of the datasets, including the size of the data, the 
platform from which the data has been collected, and the selected techniques. Finally, as 
to the recommendation of [54], the detection and prevention rate of the system has been 
improved by increasing the training and testing datasets and by using the recommended 
techniques accordingly.

Conclusion and recommendation
SQLI is the most dangerous web application attacker. This type of attacker poses a signif-
icant risk to web applications and this may have major implications for privacy and secu-
rity issues. Web application attacks are becoming increasingly common and severe. A 

Fig. 7  Performance distribution of the techniques in the test set (f1-score)
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large amount of data available on the internet motivates hackers to launch novel attacks. 
Several studies have been conducted to mitigate this attack, either by preventing it at an 
early stage or by detecting it when it occurs. We evaluated various strategies for detect-
ing and preventing SQLI. Firstly, we have defined the different types of SQLI attacks that 
have been discovered thus far.

The techniques under consideration were then evaluated in terms of their ability to detect 
and prevent SQLI attacks. We identified the most commonly used DL, ML, and hybrid 
techniques to detect and prevent all types of SQLI attacks. We also looked into the vari-
ous mechanisms and determined which techniques could deal with the detection and pre-
vention of such SQLI attacks from different web applications. Then, using ML and hybrid 
techniques, we identify the specifications for each technique and develop a comprehensive 
framework for detecting and preventing SQLI attacks. We investigated that hybrid and 
ANN are the best techniques for classifying SQLI based on our model performance eval-
uation. The performance evaluation results for training set in metrics such as the hybrid 
approach (ANN and SVM) perform better accuracies in precision (99.05% and 99.54%), 
recall (99.65% and 99.61%), f1-score (99.35% and 99.57%), and training set (99.20% and 
99.60%) respectively than other ML approaches. However, their training time is too high 
(i.e., 19.62 and 26.16 s respectively) for NB and RF. Accordingly, the NB technique performs 
poorly in accuracy, precision, recall, f1-score, training set evaluation metrics, and best in 
training time. Additionally, the performance evaluation results for test set in metrics such 
as hybrid approach (ANN and SVM) perform better accuracies in precision (98.87% and 
99.20%), recall (99.13% and 99.47%), f1-score (99.00% and 99.33%) and test set (98.70% and 
99.40%) respectively than other ML approaches. However, their test time is too high (i.e., 
11.76 and 15.33 ms respectively). Accordingly, the NB technique performs poorly in accu-
racy, precision, recall, f1-score, test set evaluation metrics, and best in training time. Here, 
among the implemented ML techniques SVM and ANN are weak learners. Finally, in this 
research work, we aimed to keep researchers up-to-date, with contributions, and recom-
mendations to the understanding of the intersection between SQLI attacks and prevention 
in the AI field. Here, maximizing the dataset and running with different techniques in a 
real-world environment is recommended for future researchers.
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