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Resources, Sunyani, Ghana another. If the currency you buy increases against the currency you sell, you profit, and

you do this through a broker as a retail trader on the internet using a platform known
as meta trader. Only 2% of retail traders can successfully predict currency movement in
the forex market, making it one of the most challenging tasks. Machine learning and its
derivatives or hybrid models are becoming increasingly popular in market forecasting,
which is a rapidly developing field.

Objective: While the research community has looked into the methodologies used by
researchers to forecast the forex market, there is still a need to look into how machine
learning and artificial intelligence approaches have been used to predict the forex
market and whether there are any areas that can be improved to allow for better
predictions. Our objective is to give an overview of machine learning models and their
application in the FX market.

Method: This study provides a Systematic Literature Review (SLR) of machine learn-
ing algorithms for FX market forecasting. Our research looks at publications that were
published between 2010 and 2021. A total of 60 papers are taken into consideration.
We looked at them from two angles: | the design of the evaluation techniques, and (ii)
a meta-analysis of the performance of machine learning models utilizing evaluation
metrics thus far.

Results: The results of the analysis suggest that the most commonly utilized assess-
ment metrics are MAE, RMSE, MAPE, and MSE, with EURUSD being the most traded
pair on the planet. LSTM and Artificial Neural Network are the most commonly used
machine learning algorithms for FX market prediction. The findings also point to many
unresolved concerns and difficulties that the scientific community should address in
the future.

Conclusion: Based on our findings, we believe that machine learning approaches in
the area of currency prediction still have room for development. Researchers interested
in creating more advanced strategies might use the open concerns raised in this work
as input.

Keywords: Systematic Literature Review, Forex market, Machine learning, Meta-
analysis
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Introduction

The foreign exchange or forex market is the largest financial market in the world where
currencies are bought and sold simultaneously. It is even larger than the stock market;
According to the 2019 Triennial Central Bank Survey of FX and Over-the-Counter
(OTC) derivatives markets, it has a daily volume of $6.6 trillion [7]. It is a non-central-
ized market that operates 24 h a day except the weekend, which makes it unique from
other financial markets. Because of its high volatility, nonlinearity, and irregularity, the
forex market, unlike stocks, is one of the most complex markets [1]. The traits of Forex
show differences compared to the stock, bond, and other financial markets. These differ-
ences make forex traders have more trading opportunities and advantages for profitable
trades. Some of these advantages include no commissions, no middlemen, no fixed lot
size, low transaction costs, high liquidity, almost instantaneous transactions, low mar-
gins/high leverage, 24-h operations, no insider trading, limited regulation, and online
trading opportunities [73]. In the forex market, currency pairs are traded, with the base
currency being the first listed currency and the quote currency being the second. Cur-
rency pairs compare the value of one currency to another (the base currency to the quote
currency). When the prices depreciate, a quote currency is bought against the base cur-
rency, which leads to profit, and when the prices elevate, the base currency is bought
against the quote currency [1]. Two main types of techniques are used to forecast future
values for a typical financial time series, which are fundamental analysis and technical
analysis. Fundamental analysis is a method of examining economic, social, and politi-
cal issues that may influence currency prices in the forex market. In contrast, technical
analysis involves using historical data price chart, which provides a roadmap for past
price behavior. To forecast the future, a technical analyst looks to the past. Predicting
the direction of a currency pair’s movement is the most important choice in Forex. Pre-
dicting currency movement correctly can bring many benefits to traders and vice versa.
In past and recent years, the research community has been highly active in predicting
the forex market using machine-learning models. On one hand, many verifiable types
of research have been conducted with the aim of understanding and predicting cur-
rency trends in the forex market using machine-learning models. According to Zhelev
and Avresky [77], the cited literature in the field of deep learning is a basic foundation
for solving the challenging problem of prediction of forex price. While the research
community has spent a lot of time studying the methodologies used by researchers and
practitioners in the context of predictive models in the forex market, there isn't much
information on how to forecast currency pair movement in the forex market using
machine-learning models and Meta-Analysis. To address this gap in knowledge, we
conducted a Systematic Literature Review (SLR) on the use of machine learning (ML)
techniques for forex market forecasting, with the goal of (i) understanding and summa-
rizing current algorithms and models, and (ii) analyzing its evaluation metrics and open
challenges to guide future research. Our SLR is to provide a complete examination of
I machine learning as it has been considered in previous research, and (ii) the training
processes used to train and assess machine learning algorithms. We also give a meta-
analysis of the performance of the machine learning models that have been developed so
far, as judged by their assessment criteria. In addition to examining the state of the art,
we critically examined the approaches that have been applied thus far.
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Research questions posed for our systematic literature review

Research Question

Motivation

1. For forecasting, what machine learning algorithm
was used?

2.What dataset was used to train the model, the
period and timeframe considered in the literature

3. Bvaluation setup

i. What types of validation techniques were exploited?
ii. What evaluation measures were employed to get
access to the prediction models?

3. Performance Meta-Analysis: using evaluation met-

To look into the most up-to-date machine learning
approaches for forecasting the FX market that has been
considered so far

In terms of machine learning algorithms, examine the
machine learning parameters employed in previous
studies. The answers to these questions will help prac-
titioners and researchers figure out the best machine
learning configuration for FX market forecasting: which
training technique will produce the greatest forecasting
results

Examine the approaches studied to (i) validate and (ii)
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rics of the selected studies assess the proposed forex market forecasting models

Related research

Our objective is to conduct a systematic literature review to comprehend and sum-
marize studies on machine learning prediction models in the forex market. It’s worth
noting, however, that some secondary research on machine learning algorithms and
deep learning has been proposed. [18, 27, 44, 54, 59].

According to Fletcher [18] when including advanced exogenous financial informa-
tion to estimate daily FX carry basket returns, committees of discriminative tech-
niques such as Support Vector Machines (SVM), Relevance Vector Machines (RVM),
and Neural Networks) perform well.

Panda et al. [44] conducted a second SLR on Exchange Rate Prediction utilizing
ANN and Deep Learning Methodologies, and offered novel approaches that were dis-
tinct according to them from 2000 to 2019, for predicted exchange rate projection
the effects observed during the protected period within examined are displayed using
newly proposed models such as Artificial Neural Network (ANN), Functional Link
Artificial Neural Network (FLANN), Hidden Markov Model (HMM),

Support Vector Regression (SVR), an Auto-Regressive (AR) model. Some of the
suggested novel neural network models for forecasting, on the other hand, took
into account theoretical support and a methodical approach in model creation. This
results in the transmission of new deep neural network models.

Islam et al. [27] conducted a SLR, which looked at recent advances in FOREX cur-
rency prediction using machine-learning algorithms. They utilized a keyword-based
search approach to filter out popular and relevant research from papers published
between 2017 and 2019. They also used a selection algorithm to decide which papers
should be included in the review. They analyzed 39 research articles published on
"Elsevier," "Springer," and "IEEE Xplore" that forecasted future FOREX prices within
the specified time frame based on the selection criteria. According to their findings,
in recent years, academics have been particularly interested in neural network mod-
els, pattern-based approaches, and optimization methodologies. Many deep learning
algorithms, like the gated recurrent unit (GRU) and long short-term memory (LSTM),
have been thoroughly investigated and show great promise in time series prediction.

Evaluating the Performance of Machine Learning Algorithms in Financial Mar-
ket Forecasting was the subject of Ryll & Seidens [54] study, more than 150 related
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publications on utilizing machine learning in financial market forecasting were
reviewed in this study. They created a table across seven primary factors outlining the
experiments done in the studies based on a thorough literature review. They provide
a simple, standardized syntax for textually describing machine-learning algorithms by
listing and classifying distinct algorithms. They conducted rank analyses to analyze
the comparative performance of different algorithm classes based on performance
criteria acquired from publications included in the survey. In financial market fore-
casting, machine-learning algorithms beat most classic stochastic methods, accord-
ing to their findings. They also discovered evidence that recurrent neural networks
outperform feed-forward neural networks and support vector machines on average,
implying that there are exploitable temporal relationships in financial time series
across asset classes and countries. The same is true when comparing the benefits of
different machine learning architectures.

Sezer et al. [59] did a thorough evaluation of DL studies for financial time series fore-
casting implementations. Convolutional Neural Networks (CNNs), Deep Belief Net-
works (DBNs), and Long-Short Term Memory (LSTM) were used to categorize the
papers. Their findings show that, despite the fact that financial forecasting has a lengthy
study history, overall interest in the DL community is increasing as a result of the use of
new DL models,thus, there are numerous chances for researchers. They also attempted
to predict the field’s future by highlighting potential bottlenecks and opportunities in
order to aid interested scholars.

Berradi et al. [6] suggested that giving the latest research of deep learning techniques
applied to the financial market field can help investors to make an accurate decision.
They gathered all the recent articles related to deep learning techniques applied to fore-
casting the financial market, which includes the stock market, stock index, commodity
forecasting, and Forex. Their main goal was to find the most models used recently to
solve the prediction problem using RNN, their characteristics, and their novelty. They
gave all aspects that involve the process of forecasting beginning with preprocessing, the
input features, the deep learning techniques, and the evaluation metrics employed. Their
finding is that the hybrid model outperforms the traditional machine learning tech-
niques, which leads to the conclusion that there is a very strong relationship between the
combination of all the approaches and better prediction performance.

The goal of Henrique et al. [23] is to present methods for selecting the most important
advances in machine learning applied to financial market prediction to present a review
of the articles chosen, clarify the knowledge flow that the literature follows, and propose
a classification for the articles. In addition, their study provides an overview of the best
approaches for applying machine learning to financial time series forecasting as deter-
mined by the literature. The publications were then objectively assessed and categorized
into the following categories: markets utilized as test data sources, predictive variables,
predicted variables, methodologies or models, and performance metrics used in com-
parisons. In all, 57 papers from 1991 to 2017 were examined and categorized, spanning
the specialist literature. Based on searches of connected article databases, no reviews
employing such objective methodologies as main route analysis on the topic provided
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here were discovered according to them. The most cited articles, those with the high-
est bibliometric coupling and co-citation frequencies, the most recently published arti-
cles, and those that are part of the primary path of the literature studied knowledge flow
were all discussed in the study. It should be highlighted that they were objective and
straightforward survey methodologies, independent of the researcher’s expertise, that
could be used not just for preliminary research but also as knowledge validation for sea-
soned experts. In addition, the prediction algorithms and key performance measures for
each article were presented. In addition to using neural and SVM networks, the authors
used data from the North American market extensively. Similarly, the majority of the
forecasts are based on stock indexes. New suggested models will likely be compared to
neural and SVM network benchmarks, using data from the North American market,
as one of the probable findings regarding the categorization presented in the research.
The examination of the behavior of forecasts in developing markets, such as those of the
BRICS, as well as the application of novel models in financial market prediction, contin-
ues to provide research opportunities.

Kaushik [32] presents a comprehensive review of contemporary research on Machine
Learning and Deep Learning for exchange rate forecasting, based on peer-reviewed pub-
lications and books. The paper examines how Machine Learning and Deep Learning
algorithms vary in projecting exchange rates in the FOREX market. SVM, Deep learn-
ing approaches such as Feedforward Neural networks, and hybrid ensembles have supe-
rior prediction accuracy than standard time series models, according to research. Future
research should be conducted to assess the performance of these models, according to
the authors,however, no single forecasting model consistently stands out as the best
when evaluated using different criteria and on different currency pairs, and decisions
based on the models’ predictions should be used with caution.

Regarding the publications mentioned above, it's worth noting that none of them
focused specifically on machine-learning methods for the FX market from 2010 to 2021.
Fletcher [18] concentrated on discriminative approaches (Support Vector Machines
(SVM), Relevance Vector Machines (RVM), and Neural Networks) without examining
other machine learning algorithms critically.

Islam et al. [27] took into account machine learning in the context of forex trading,
highlighting Regression Methods, Optimization Techniques, SVM Method, Neural Net-
work Chaos Theory, Pattern-based Methods, and Other Methods, but the period under
consideration was from 2017 to 2019, but there has been a lot of work in this area over
the last two decades. Panda et al. [44] concentrated on deep learning and hybrid tech-
niques, as well as a few other machine learning algorithms, but the number of publica-
tions chosen was insufficient for the period under evaluation.

The research published by Sezer et al. [59] focused on deep learning research by look-
ing at Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and
Long-Short Term Memory (LSTM): however, there are other deep learning models such
as Radial Basis Function, Multi-layer Perceptron, and many more deep learning methods
that have been used in forex market prediction that were not looked at by the article.
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Contributions
The following are the contributions by this SLR:

1. We took a critical look at 60 primary articles or studies that present machine learn-
ing forecasting models in the forex market. Researchers can use them as a beginning
stage to expand the knowledge on the topic.

2. We give a comprehensive summary of the primary studies found. This section is
divided into three sections: I machine learning methodologies, (ii) evaluation strate-
gies, and (iii) performance analysis of the presented models.

3. Based on our findings, we offer guidance and recommendations to help further
research in the field.

Research methodology

In this study, a systematic literature review was employed as a research approach since it
is a defined and methodical way of discovering, evaluating, and studying existing mate-
rial in order to investigate a certain research issue or phenomenon Barbara [5].

We followed the SLR rules that were proposed by Barbara [5]. In addition, we incor-
porated the process of systematic reference inclusion, often known as "snowballing," as
outlined by [71].

We adopted the SLR guidelines proposed by [71].

The following subsections describe the process followed.

Search strategy

A technique was proffered to retrieve all published articles/papers/literature associated
with the topic. Our primary studies retrieval techniques involve search terms and phrase
identification, databases to be searched, search and paper picking strategy adopted for
the study.

Identifying search terms and phrases
To find the relevant search terms and phrases we followed five steps outlined by Barbara

[5]:

a. We found alternative spellings and/or synonyms for all major terms and phrases;

b. We double-checked the keywords in any important paper;

c. In cases where a database supports it, we employed Boolean operators for conjunc-
tion, such as the OR, AND operator for concatenation of major phrases and operator
for concatenation of alternative spellings and synonyms If necessary, we combined
the search string into a summary form.

Results for a). To better tailor our search keywords, we first defined the population,
intervention, and outcome. Specifically:
Results for b). The alternative spellings and synonyms identified are:
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« Forex: (“forex “OR “foreign exchange”).

+ Market: (“Market “OR “trading”).

« forecasting: (“forecasting” OR “predicting”)

+ Machine Learning: (“machine learning” OR “supervised learning” OR “classification”
OR “regression” OR “unsupervised learning”);

Results for c). We searched through the keywords in the relevant papers/articles and
couldn’t come up with any further spellings or synonyms to add to the list of terms to
consider.

Results for d). The following search query was created using Boolean operators:

(“forex “OR “foreign exchange”) AND (“Market “OR “trading”) AND (“forecasting” OR “predicting”) AND Machine Learning:
(“machine learning” OR “supervised learning” OR “classification” OR “regression” OR “unsupervised learning”);

Results for e). We also defined the short search string reported below, due to the IEEE
Xplore digital library’s search term limitation:

(“forex “OR “foreign exchange™) AND (“Market “OR “trading”) AND (“forecasting” OR “predicting””) AND Machine Learning:
(“machine learning” OR “supervised learning” OR “classification” OR “regression” OR “unsupervised learning”);

Resources searched
In an SLR, selecting appropriate resources to search for germane material is critical. All
available literature relevant to our study topics was selected and searched using the fol-

lowing resources:

+ Google Scholar (https://scholar.google.com)

+ IEEE Xplore digital library ( https://ieeexplore.ieee.org)
+ ScienceDirect ( https://www.sciencedirect.com)

+  Microsoft Academic (https://academic.microsoft.com)
« ACM digital library ( https://www.acm.org)

Our decision to use these databases was based on our desire to collect as many pub-
lications as possible in order to adequately conduct our systematic literature review.

Because they contain a massive amount of literature related to our research questions,
such as journal articles, conference proceedings, books, and other materials, the chosen
sources or databases are recognized as one of the most representative for Forex market
forecasting research and are used in many other SLRs.

Article selection process
Figures 1, 2 and 3 depicts the article selection procedure used in this study. The selection
procedure is described in depth in the subsections that follow.
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Google Scholar
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Microsoft (120)
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(Full text)
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(Full text)
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Fig. 1 Article selection process

Article/Paper (Reference code for paper example P1)
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algorithm used pairp papet/ Validation technique metrics

in paper/article
article

Fig. 2 Showing conceptual framework for data extraction from the primary studies

a. We gathered the main research in the digital libraries specified in “Resources
searched” section using the search strings given in “Identifying search terms and
phrases” section. The search technique was restricted by a chronological range,
therefore publications from 2010 to 2021 were examined. Table 1 second column dis-
plays the search results generated by the digital libraries: As you can see, we down-
loaded a total of 120 documents related to the query.

b. We started by removing non-relevant publications from the complete list of retrieved
sources using the exclusion criteria (detailed reported in “Resources searched” sec-
tion). The exclusion criteria were applied after reading the title, abstract, and key-
words of the 120 publications discovered. Table 1 shows data source and search
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Fig. 3 VOSviewer (http://www.vosviewercom/) was used to undertake a bibliographic coupling analysis. The
number of references that are common across the publications evaluated is represented by the size and color
of the nodes. The number of referenced references that two publications have in common is indicated by the
link's strength

Table 1 Data source and search results

Resource name Total articles downloaded Number of initial articles selected Final selection
(Databases)

Google Scholar 120 100 60

IEEE Explorer

ScienceDirect
Microsoft Academic
ACM

results with 120 initial papers and 20 removed, leaving 100 for the second step of
screening, which included the inclusion criteria. This approach yields our final search
string, which consists of 60 articles (60 percent of the papers discovered in the previ-
ous stage).

Point c should be critically looked at.

c. We employed a snowballing strategy to seek for possible missing papers [71]. The
technique of identifying more sources using a paper’s reference list or citations is
known as snowballing [71]. In our context, we employed both forward and backward
snowballing: with the former, we included articles that were referred to in the initially
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selected papers, and with the latter, we included publications that were referenced in
the initially selected papers. We followed the same method as before, scanning the
titles, abstracts, and keywords of the snowballed papers and applying the exclusion/
inclusion criteria again: as a consequence, several publications were recognized as
requiring further examination.

d. Given a collection of 60 sources identified using search string and then supplemented
with those collected via snowballing. As a result, 60 papers made it through all of the
stages.

e. We used the last filtering, i.e., the quality assessment step, after we had determined
the set of final articles to evaluate in the SLR, to ensure that all of the final articles
provided the data required to answer our research questions (see “Evaluation of the
study’s quality” section). As a result of this phase, we were able to compile the final
list of articles for our study. Until this point, all 60 sources found had passed the qual-
ity check. As a result, our SLR is based on 60 studies. “Extraction of data” section
details the data extraction procedure. The next subsections include (i) inclusion/
exclusion criteria, (ii) the procedure’s quality evaluation method, and (iii) the data

extraction process.

Inclusion and exclusion criteria
An article has to meet the following criteria to be useful in answering our research
questions.

A. Exclusion criteria: We omitted sources that satisfied the following limits from our

research:

+ Articles about predicting methods other than machine learning.
+ Articles written in a language besides English.
« Articles that aren’t available in their whole.

B. Sources that complied with the following restrictions were considered for inclusion

in our research:

+ All the articles, written in English, report machine learning techniques for forex mar-
ket forecasting;

+ Articles that provide new strategies for improving the performance of existing
machine learning algorithms for forecasting FX markets. It's worth noting that
we included a wide range of publications (for example, journal, conference, work-
shop, and short papers) in order to compile a comprehensive collection of relevant

resources.

Evaluation of the study’s quality

After the final selection process, the quality of the publications was assessed. The legiti-
macy and completeness of the selected publications were assessed using the checklist
below.
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Q1: Does the machine learner classifier have a well-defined definition?
Q2: Can you tell me about the evaluation methodologies.

Consider the scenario in which research uses MAE, RMSE as an assessment statistic.

Extraction of data

We began extracting the data needed to address our study questions once we had chosen

the final publications to be utilized for the SLR. We depended on the data in particular.
Table 2 shows the extraction form used in the selected publications, such as the

machine learning algorithm.

Extraction of data form

Once we'd decided on the final papers for the SLR, we started extracting the data we'd
need to answer our research questions. We used the data extraction form shown in
Table 2 in particular. In addition to information on the specific aspects under exami-
nation, such as the machine learning approach employed in the selected publications,
we have left aside a section for characterizing baseline models of the analyzed study.
This made it easy to find a baseline model of prior research as well as future research
direction.

Conceptual framework for data extraction

Result

In this part, we offer a brief description of the demographics of the articles that passed
the inclusion/exclusion criteria and the quality evaluation before providing the findings
of the SLR with regard to the examined research topics.

Characteristics of the population

The final list of relevant primary studies evaluated in this SLR is presented in Tables 3
and 4, with columns "Year’ and 'Book/Book Chapter/ Conf./Article/Thesis’ indicating
the year of publication and the periodicals in which the study was published. As can be

Table 2 Shows the descriptions for data extraction features

Attribute description

Machine learning algorithm used What type(s) of machine learning algorithms were employed
in the research?
Dataset Currency pair - What kind of data was utilized to train the model? EURUSD,
Period for example

What is the duration of the dataset?
What period is under consideration? Eg. 1d,1H,4H,1T W,1 M etc

Validation techniques What technique has been used to validate the model? E.g,,
k-fold cross-validation, the percentage split, etc

Evaluation metrics What evaluation measures, such as Root Mean Square (RMS),
Precision, Recall, F Measure, and AUC-ROC, were utilized to
assess the model's accuracy?

Evaluation Metric Formulae What is the formula for the evaluation metrics?
Baseline Model What baseline model was used in the article?
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Table 5 Table showing machine learning algorithms use in the year 2022

Machine learning algorithm Year of publication ReferenceS
Support 2022 [33]
Vector Regression
LSTM 2022 [31]
Gated Recurrent Neural Network and Convolutional Neural 2022 [38]
Network
20
v
Q
£
2
“ 10
0 . c e
0 ‘.' . ol \.'
ST I FTFES TSI IS
g » & & o O &
~ & T & W & &
e}% Qéa & ) < ‘\6
\)0 Q?',é% ;\0 owob @‘)

Machine learning algorithms

Fig. 4 Bar chart reporting the number of primary studies and the machine learning algorithm adopted in
each

seen, all of the articles evaluated were published between 2010 and 2021; 80% of this pri-
mary research were published after 2014, perhaps indicating a developing tendency that
is now establishing itself as a more established subject. In conclusion We determined
that the application of machine learning techniques for FX market prediction still poses
open difficulties based on the quantity and types of papers released by the research

community.

RQ1—Algorithm for machine learning
The first research question of our SLR was connected to the machine learners utilized in
the literature, as identified in the primary papers. We wanted to know I whose machine
learning method was used, (ii) what deep learning (Neural Network and related algo-
rithms) was used, and (iii) what additional machine learning strategies were used. The
outcomes of our analyses are detailed in the subsections below.

Beyond the 60 primary considered from 2010 to 2021, some papers published in 2022
as shown in Table 5 used machine learning algorithms including the authors publication
were also looked at but did not affect the analysis of the initial 60 papers.

RQ2.3 Machine Learning algorithms

Our investigation revealed that a wide range of machine learning methods were applied.
The bar chart in Fig. 4 displays the algorithms utilized in the primary investigations, as
well as their frequency of presence. The machine learning method, the primary research
in which it was utilized, and the number of primary studies that employed it are all listed
in Table 6. It’s worth noting that many or hybrid algorithms may have been utilized in
single primary research.
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Table 6 Showing machine learning models and studies that made use of it

Machine learning algorithms Studies Number
of
studies

LST™M [P1], [P3], [P4], [P6], [P7], [P8], [P10], [P14], [P15], 19

[P19], [P20], [P21], [P23], [P25], [P40], [P43], [P54],
[P55], [P56]
ANN (P2], [P5], [P71, [P9], [P10], [P11], [P12], [P13], [P18], 19
[P27], [P28], [P39], [P45], [P46], [P51], [P52], [P53],
[P57], [P59]
CNN [P4], [P11], [P16], [P57], [P58] 6
SVYM [P7], [P24], [P26], [P36], [P37], [P42], [P45], [P48], 11
[P50], [P57], [P60]

GRU [P8], [P10], [P20], [P56] 4

RL [P9], [P25] 2

MLP [P10], [P26], [P33], [P56] 4

Logistic/Linear Regression, Regularized Logistic/  [P11], [P12], [P22], [P53] 4

Linear Regression, Gradient Boosting Classifier/

Regression

RNN [P15], [P16], [P171, [P20], [P30], [P38], [P43], [P56] 8

Decision Tree [P26], [P44], [P49] 3

RBF [P26], [P50] 2

Bayesian Compressed Vector Autoregression [P31] 1

fuzzy relational model [P32], [P33], [P34], [P35], [P59], [P60] 6

Genetic algorithm [P36], [P45] 2

KNN (P41] 1

Naive Baye [P47] 1

Extreme Learning Machines (ELMs) [P29] 1

LONG SHORT MEMORY NEURAL NETWORK (LSTM) as it is possible to these
was investigated and used by 19 primary studies. A possible reason lies into the output
of this type of models, which has shown a great performance and to properly analyze
non-linear data, its ability to overcome the varnishing gradient problem pose by other
neural networks.

ARTIFICIAL NEURAL NETWORK (ANN) as a deep learning model was also used
by 19 primary studies indicating a growing trend in the use of it in the forex market
prediction.

CONVOLUTIONAL NEURAL NETWORK is one of the deep learning algorithms
that has not receive massive usage in the forex market, this model was use by 6 of our
primary studies but can be further exploited in the foreign exchange market.

SUPPORT VECTOR MACHINE (SVA) was also used a number of times, 11 primary
studies used this algorithm which is the third most used algorithm according to Figs. 4,
5, 6 and 7. This classifier, as previously described by Farhat [17] can attain very high
performance.

GRU stands for GATED RECURRENT UNIT and is a type of RNN with a gating
mechanism. Compared to LSTMs, GRUs do not contain an output gate [57], four pri-
mary studies exploited this algorithm for their work.
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m Percentage split only

m Percentage split with Cross
Validation

u Cross Validation only

Not Applicable

®m Random Sub-Sampling

Fig. 5 Validation approaches used in primary investigations are depicted in a pie chart

Study name Statistics for each study Hedges's g and 95% C

Hedges's Standard  Lower Upper Relative  Relative

9 error limit ~ limit ~ Z-Value p-Value weight  weight

[P6] 0.004888  0.005875 -0.006627 0.016403 0.832000 0.405409 13.68
[P8] 0.010150  0.014220 -0.017721 0.038021 0.713783 0.475361 8.94
[P12] 0.045400  0.005000 0.035600 0.055200 9.080000 0.000000 14.11
[P15) 0.064880 0.085820 -0.103324 0.233084 0.756001 0.449649 0.57
P19 0.029200 0.002407 0.024482 0.033918 12.131284 0.000000 15.05
[P21] 0.461100 0.429600 -0.380901 1.303101 1.073324 0.283126 ol 0.02
[P29) 0.059543  0.378190 -0.681696 0.800782 0.157442 0.874896 0.03
[P37) -0.003370  0.015910 -0.034553 0.027813 -0.211816 0.832250 8.09
[P42) 0.027240  0.633800 -1.214985 1.269465 0.042979 0.965718 0.01
[P43) 0.003100  0.008400 -0.013364 0.019564 0.369048 0.712092 12.28
[P54) 0.004902  0.007739 -0.010266 0.020070 0.633406 0.526469 12.67
[P58) 0.002410  0.003952 -0.005336 0.010155 0.609783 0.542006 14.55

0.013952  0.008573 0.001069 0.026835 2.122643 0.033784

-1.00 0.5 0.00 0.50 1.00
Fig. 6 Results of meta-analysis based on MAE as Hedge's g and RMSE as Standard error
Model Effect size and 35% confidence interval Test of null[2Tail Heterogeneity Tausquared
Number ~ Point  Standard Lower ~ Upper Tau  Standard

Model Studies estimate enor  Vanance  fmit  fmit Zvile Pvae  Ovae of(Q) Pvalue lsquaed  Squaed Enor  Variance Tau
Fied V217 /A 1 1 : O 173 1246 000 AL I 1 . 10 11 1
Randon 0 oW om0 om0 un o

Fig. 7 Results of meta-analysis based on MAE as Hedge’s g and RMSE as Standard error

REINFORCEMENT LEARNING (RL) this algorithm has not been exploited much as
only two of our primary studies made use of it showing more opportunity in the use of

this algorithm in the forex market.

MULTILAYER PERCEPTRON (MLP) is a feedforward artificial neural network
(ANN) with three layers of nodes: input, hidden layer, and output layer. Except for the

Page 20 of 40
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input nodes, each node in our selection is a neuron with a nonlinear activation function.
Four key papers used this approach in their research.

LOGISTIC/LINEAR REGRESSION this machine learning algorithm was used by 4
of our primary studies, not popular in forex prediction.

RECURRENT NEURAL NETWORK Unlike traditional feedforward neural net-
works, RNNs have memory. Information fed into them persists, and the network can
draw on this to make inferences. 8 papers from our primary studies used RNN for
forex prediction.

DECISION TREE As may be seen, three key research studied Decision Trees. The out-
put of these types of models, which consists of a rule describing the requirements for
making a choice, could be one reason.

FUNCTION ON A RADIAL BASE NEURAL NETWORK (RBF) is a real-valued func-
tion whose value is solely determined by the distance between the input and a fixed
point, such as the origin or another fixed point known as the center. This neural network
was used by two of our key studies for their prediction models since any function that
satisfies the property is a radial function.

EXTREME LEARNING MACHINES, BAYESIAN COMPRESSED VECTOR,
K-NEAREST NEIGHBOR, NAIVE BAYE AND RANDOM FOREST these are the
least use algorithms according to our primary studies, from our studies we noticed that
these algorithms were used in only one paper each showing the unpopularity in forex
prediction.

FUZZY RELATIONAL MODEL was combined with other machine learning algo-
rithms in predicting the forex market, 6 papers adopted this model in our primary
studies.

The GENETIC ALGORITHM is a search heuristic based on Charles Darwin’s natural
selection hypothesis. This algorithm mimics the natural selection process, in which the
most fit individuals are chosen for reproduction in order to create offspring for the fol-
lowing generation. It was combined with other machine learning models in predicting
currency direction. 2 of our primary studies made us of this algorithm.

RQ2-dataset
Currency pairs are grouped into two thus the major and the minor, the major pairs are
the four most heavily traded currency pairs in the forex (FX) market. The EUR/USD,
USD/JPY, GBP/USD, and USD/CHEF are the four major pairs at the moment. The EUR/
USD is the most widely traded currency pair in the world, accounting for more than
20% of all forex transactions. The USD/JPY is a distant second, followed by the GBP/
USD and, with a minor part of the global currency market, the USD/CHE. 75 percent of
all forex trades are made on the big pairings. Minor currency pairs are ones which leave
out the United States dollar, and they are normally less liquid. Examples include the euro
and Swiss franc (EUR/CHF), Canadian dollar and Japanese yen (CAD/JPY), or pound
sterling and Australian dollar (GBP/AUD etc.

Table 7 show the major currency pairs and corresponding primary papers/ articles that
made use of dataset of them. From the table 42 papers made use of the EUR/USD cur-
rency pair and we can clearly say that according to our finding, it is the most traded and
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Table 7 Major currency pairs and corresponding studies that used its dataset

Currency pairs (Major) Studies [Papers that use dataset of the currency pair]

EUR/USD [P1], [P4], [P6], [P7], [P8], [P9], [P10], [P12], [P13], [P14], [P15], [P16], [P18],
[P19], [P20], [P23], [P24], [P25], [P27], [P28], [P29], [P34], [P35], [P36], [P38],
[P42], [P43], [P44], [P46], [P47], [P48], [P49], [P50], [P51], [P52], [P53], [P54],
[P55], [P56], [P56], [P57], [P60]

USD/IPY [P4], [P5], [P7], [P10], [P20], [P28], [P34], [P41], [P49], [P50Q], [P56], [P57], [P58]

USD/GBP [P4], [P5], [P7], [P8], [P10], [P16], [P19], [P20], [P25], [P28], [P34], [P35], [P42],
[P44], [P49], [P50], [P51], [P54]

USD/CHF [P7],[P8], [P10], [P16], [P20], [P27], [P32], [P34], [P35], [P56]

used currency pair. 18 papers made use of datasets of USD/GBP which is the next most
traded pair after EUR/USD from our primary studies. USD/JPY came third as the next
most used dataset from our study with 13 papers making use of its dataset. Last is USD/
CHF dataset with 10 papers making use of it. From our study, we found out that some
papers/articles made use of more than one dataset of the major currency pair. Some
papers combined both minor and major pairs.

RQ3—evaluation setup
Our third research question revolves around the machine learning forecasting model
evaluation strategies. It refers to:

i. validation techniques,
ii. evaluation metrics adopted, and
iii. datasets exploited.

RQ3.1—validation techniques
70% of the pie chart which is made up of 42 primary studies used percentage split only
as a validation technique which is the most used validation technique in the 60 primary
studies. 3 of the primary studies made use of percentage split and cross-validation
representing 5% of the total primary studies. Articles that used cross-validation only
represent 5% of the total primary studies which is just 3 articles. Some primary stud-
ies were designed as systems that did not make use of any validation techniques and
that took 18% of the primary studies representing 11 papers or studies, one validation
technique.

that came up only is Random sub-sampling validation that is just 2% of the total pri-
mary studies. Papers that used percentage split divided the dataset into two parts (Train-
ing and Test dataset) with the large part for training with the other part for the test.
K-Fold cross-validation was used with K being set to 10. In this approach, the technique
divides the original data set into ten equal-sized subsets at random. One of the ten sub-
sets is kept as a test set, while the other nine are utilized as training sets. The cross-vali-
dation is then done ten times, with each of the ten subsets serving as the test set exactly
once [26].
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Table 8 Evaluation metrics and corresponding primary studies

Evaluation Metrics Studies

MAE [P1], [P6], [P8], [P10], [P12], [P14], [P15], [P19], [P21], [P29], [P34], [P37],
[P42], [P43], [P52], [P54], [P56], [P58]

MAPE [P2], [P3], [P5], [P14], [P21], [P22], [P27], [P29], [P30], [P32], [P34], [P37],
[P38], [P43], [P49], [P54]

RMSE [P3], [P8], [P12], [P15], [P19], [P21], [P28], [P32], [P33], [P34], [P4Q], [P41],
[P42], [P43], [P45], [P51], [P53], [P54], [P56], [P58]

MSE [P5], [P6], [P7], [P8], [P14], [P17], [P19], [P21], [P27], [P29], [P32], [P38], [P42],
[P43], [P48], [P49]

R-SQUARE [P8], [P17]

AUC [P20]

ACCURACY, PRECISION, RECALL, F1 [P23], [P24], [P25], [P47], [P57], [P60]

MAD [P27]

PF [P28]

Theil's U, ARV [P29]

BCVAR-MS, MSFE, MAFE [P31]

D-stat [P33]

SEM [P34]

Back Testing Base on sliding Window  [36]

ME, MPE, MASEP, AIC, BIC [P37]

MdAE, SMAPE, RMSPE, RMdSPE, MAAE  [P43]

Confusion Metrix [P44]

Table 8 shows evaluation metrics adopted by the primary studies, the most widely
used are Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root
Mean Square Error (RMSE), and Mean Square Error (MSE). Studies [P20], [P27], [P28],
[P29], [P31], [P33], [P34], [36], [P37], [P43], [P44] adopted evaluations metrics that
didn’t appear in any other primary paper aside them.

RQ4—meta-analysis of performance

The last research topic of our study was a statistical meta-analysis of machine learning
algorithm performance in Forex market forecasting. A complete re-execution of the pre-
diction models on a shared dataset with common assessment criteria would have been
perfect for this sort of investigation, allowing them to be benchmarked. This, however,
is not covered by a Systematic Literature Review; the purpose is to combine the findings
of the major investigations. We looked at the effects of I the machine learning algorithm
and (ii) the validation approach in this research. A statistical meta-analysis seeks to
combine several studies to improve the estimates of impact sizes and clarify uncertainty
when separate research disagrees. While individual studies are frequently insufficient
to establish solid generalizable results, their combination may result in a lower random
error and smaller confidence ranges. Meta-analyses have another significant flaw: they
are unable to compensate for poor study design and bias in the individual research. If
the studies are carried out and evaluated appropriately, the benefits vastly outweigh the
minor drawbacks. We used the recommendations provided in the book to conduct the
meta-analysis. In a meta-analysis, the first step is to calculate the result of interest and
summary statistics from each of the individual studies. Not all prior research evaluated
the performance of the presented models in the same way, as described in the evaluation
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metrics. To have a common baseline, we utilized Mean Square Error, Root Mean Square
Error, and other metrics that were used in most of the other sources. To make a fair
comparison, we looked at all of the publications and the metrics used. Papers that eval-
uated the effectiveness of machine learning model prediction in terms of Mean Abso-
lute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error
(RMSE), and so on.

The analysis is based on twelve studies. The standardized difference in means (d) is
the effect size index. The results of this analysis will be generalized to comparable stud-
ies. Therefore, the random-effects model was employed for the analysis. If we assume
that the true effects are normally distributed (in d units), we can estimate the prediction
interval. For all of the values in the primary studies, we utilized Comprehensive Meta-
Analysis v3 to derive effect size estimates. It's worth mentioning that effect sizes must be
normalized in order to be comparable across research. We used Hedges’ g as the stand-
ardized measure of effect magnitude to achieve this goal. There are three main statistics
recorded here which are the Q-value with its degrees and P-value, the I-square statistics,
and finally Tau-square however these statistics don’t tell us how much the effect size var-
ies. In our case the Q-value is 78.174, the degree of freedom is 12 and P-value is 0.0. The
next statistic recorded is I-square which is 85.929 in our analysis. Finally, the last statis-
tic recorded is Tau-square which is the variance of true effects in our case Tau-squared
is 0.017. The prediction interval tells how much the test size varies here we will report
that the true effect size is 0.05 and 0.95. In our meta-analysis, the mean effect size using
the Hedge’s g is 0.013952 with the Mean Absolute Error of each selected study using
the Hedges g value. A 0.5 effect size indicates that the treatment group’s mean is half a
standard deviation higher than the control group’s mean, the effect sizes imply that the
mean of the treatment group is half a standard deviation higher than the mean of the
control group (Table 9).

Conclusion

The application of machine learning techniques for forex market forecasting was the
subject of a systematic literature review in this research. It focused on three particu-
lar features of how prior research performed experiments on forex forecasting models,
namely I which machine learning model was used, (ii) which sorts of assessment proce-
dures were used, and (iii) what validation approaches were used. Our research was based
on publications that were published between 2010 and 2021. We looked at 60 publica-
tions out of a total of 120 that proposed machine learning algorithms for FX market
forecasting. Existing studies were examined, as well as unresolved topics that need to
be addressed in a future study. The research shows that deep learning models like ANN,
LSTM, MLP-Neural Networks, and Radial Basis Function are more suited for forecast-
ing the forex market than other machine learning algorithms like KNN and Nave Baye.
The results are encouraging. To make the research field more precise, we have offered a
list of steps to take. As a result, we conclude that the conclusions on the use of percent-
age split are suspect, and that the dataset should be divided into three parts: training,
test, and validation test. In this regard, we hope that our findings may serve as a spring-
board for further investigation.
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Abbreviations

MAE Mean Absolute Error

MASE Mean Absolute Scaled Error
MSFE Mean square forecasting error
MAPE Mean absolute percentage error
AlC Akaike Information Criterion
SEM Standard Error of the Mean
RMSE Root Mean Square Error

BIC Bayesian Information Criterion
ME Mean Error

MSE Mean Square Error

NN1 Neural Network 1

ARV Average relative variance

R2 R-Square

NN2 Neural Network 2

MAFE Mean absolute forecasting error
AUC Area Under Curve

NN3 Neural Network 3

MPE Mean Percentage Error

RBI Reserve Bank of India

BCVAR-MS Bayesian Compressed Vector Autoregression Mean Square
MAD Mean absolute deviation

NA Not applicable

ETS Exponential smoothing

PF Profit factor

ELM Extreme Learning Machine
NSGA-II Non dominated sorting genetic algorithm Il
CGP Cartesian Genetic Programming
ARIMA Autoregressive integrated moving average
RelU Rectified linear unit

H1 One Hour Time frame

H4 Four Hour Time frame

1d Daily Time frame
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