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Abstract 

Anomaly detection is a relevant problem in the area of data analysis. In networked sys-
tems, where individual entities interact in pairs, anomalies are observed when pattern 
of interactions deviates from patterns considered regular. Properly defining what regu-
lar patterns entail relies on developing expressive models for describing the observed 
interactions. It is crucial to address anomaly detection in networks. Among the many 
well-known models for networks, latent variable models—a class of probabilistic mod-
els—offer promising tools to capture the intrinsic features of the data. In this work, we 
propose a probabilistic generative approach that incorporates domain knowledge, i.e., 
community membership, as a fundamental model for regular behavior, and thus flags 
potential anomalies deviating from this pattern. In fact, community membership serves 
as the building block of a null model to identify the regular interaction patterns. The 
structural information is included in the model through latent variables for commu-
nity membership and anomaly parameter. The algorithm aims at inferring these latent 
parameters and then output the labels identifying anomalies on the network edges.

Keywords:  Probabilistic models, Latent variable models, Community detection, 
Anomaly detection

Introduction
Anomalies or outliers—deviations in the observed data so extreme as to arouse suspi-
cion [1]—form an unavoidable and problematic obstacle for data scientists. Over the 
past decades, anomalies have engendered a growing sense of concern in fields as varied 
as intrusion detection for network systems [2–4], fraud detection in banking industry [5, 
6], identifying fake users and events in communication networks, and medical condition 
monitoring [7], to name a few. Methods and techniques from various fields, such as sta-
tistics [8], data mining [9], machine learning [10, 11], and information theory [12], have 
been employed to address this problem.

Much of this growing body of work focuses on standard tabular datasets [13–16]. 
However, anomaly detection in network datasets, where many individuals interact in 
complex ways, has been lagging behind. In fact, in many complex systems the data is 
made of pairwise interactions between individuals, i.e., the only observed informa-
tion. For instance, in social networks, we know the nature of interactions between 
the individuals, i.e., friendship, financial, but we may not have any metadata about 
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the individuals. In this context, anomalies can merely be detected by considering the 
set of interactions, and measuring which nodes or edges manifest an interaction pat-
tern that is significantly different from that of their peers. In the case of online social 
networks, for example, advanced detection techniques that are independent of profile 
information are needed to detect fake profiles and malicious activities.

Our main objective in this work is to investigate the anomaly detection problem in 
networks. We consider the problem of observing a network that can have two pos-
sible, and different, mechanisms for edge formation; one involves the majority of the 
edges, whereas the other is an anomaly that we aim to detect. In other words, we have 
a regular pattern of interactions, and an anomaly. The latter belongs to a subset of 
interactions that deviates from the regular pattern.

In many networked systems, in particular social networks, the interaction pattern is 
driven by community membership: individuals belong to groups and this determines 
how they interact [17, 18]. To properly detect anomalies, one should incorporate this 
insight to build a suitable null model that distinguishes between regular interactions 
and those instead relatable to malicious activities. Thus, we focus on networks that 
display community patterns as the regular mechanism.

Efforts have been made in this area and various models have been proposed for 
applying community detection approaches in anomaly detection. For instance, Prado-
Romero et al. [19] proposes an adaptive method to detect anomalies using the most 
relevant attributes for each community. In general, most of the approaches focus on 
attributed graphs to predict anomalous behavior [20–23].

Probabilistic generative models are however a powerful approach to tackle commu-
nity detection, as they allow to incorporate domain knowledge about how interac-
tions arise into rigorous probabilistic models. However, they have been rarely used in 
the context of anomaly detection. Along these lines, [24] propose a Bayesian model 
that combines network edges with additional information on nodes to identify anom-
alous nodes. Here, instead we do not assume any extra information being available a 
priori beyond the network structure.

In this work, we aim to build our model upon recent developments in commu-
nity detection [25] to address anomaly detection in networks. Specifically, we aim at 
incorporating latent variables that measure the extent to which edges are classified as 
anomalous, together with latent variables for the hidden community structure. More 
specifically, by starting with an expressive generative model that captures the inter-
action patterns observed in network datasets, we can improve predictive power in 
detecting anomalous network interactions as well. The task is to infer both types of 
latent variables, i.e., communities and anomalies.

We tackle the problem by building the core foundational probabilistic generative 
model, while considering the existence of individual anomalous edges. Our model 
outputs labels for edges, identifying them as legitimate or anomaly. We assume that 
the only data we observe is the set of edges, coded by the adjacency matrix of entries 
Aij , containing the weight of an edge between nodes i and j. Our goal is to determine 
which of the two possible mechanisms generated the edge and to label anomalies 
accordingly. Our approach is applicable to both directed and undirected networks. 
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We present an efficient and scalable algorithm which could be easily utilized by prac-
titioners on networked datasets, without the need for extra node metadata.

Methods
Modeling anomalous edges

To achieve our goal of identifying anomalous edges and detecting communities in net-
works simultaneously, we need to explore statistical patterns in the connectivity of the 
networks dictated by community structure. This can be obtained using the formalism 
of network probabilistic generative models [25–27], as they are based on a rigorous 
theoretical framework and have efficient numerical implementations. These approaches 
assume that nodes are assigned to latent variables representing communities and these 
community memberships determine the probability that edges exist between the nodes. 
In particular, to model non-anomalous (or regular) edges, we consider the ideas pro-
posed in [25]; as they flexibly apply to various types of networks with the characteris-
tics needed in our problem: undirected and directed, weighted and unweighted, and it 
assumes mixed-membership community structure where nodes can belong to multiple 
communities.

We further assume that individual edges can be identified as anomalies when they 
deviate from what we consider a regular behavior, as described above. To model this, 
we introduce a binary random variable Zij ∈ {0, 1} : when Zij = 1 the edge (i,  j) is an 
anomaly. This is a latent variable that is not known in advanced and needs to be learned 
from data. It determines the probability distribution from where the edge (i,  j) is then 
extracted. From a generative modeling perspective, this setting can be understood as 
first drawing latent labels on edges, Zij , that determine which edges are anomalous and 
which edges are regular. Then drawing interactions Aij between nodes from a specific 
distribution depending on the edge type, anomalous or regular. A schematic representa-
tion of our model is shown in Fig. 1. Formally, the generative model is:

where µ ∈ [0, 1] is an hyper-parameter controlling the prior distribution of Z. Here, 
we assume a Poisson distribution with mean value of Mij for the formation of regular 
edges, and a Poisson distribution with mean value of π for the anomalous edge forma-
tion. The parameter Mij =

∑

k uikvjkwk is controlled by community structure as ui, vi 
are community membership vectors; ui = [uik ] determines how much i belongs to 
community k considering the amount of out-going edges; vi = [vik ] only considers in-
coming edges. An affinity matrix w of positive real-valued entries and dimension K × K  , 
where K is the number of communities, encodes the density of edges in different com-
munities, i.e., it shapes assortative or disassortative structures of the communities. Here 
we assume an assortative structure where nodes are more likely to exist within rather 
than between communities. This implies that w = [wk ] is diagonal. However, similar 
derivations can be found for other types of structures. Collectively, we indicate with 
� =

(

{ui}, {vi},w,π ,
{

Zij

})

 the latent variables of the model.

(1)Zij ∼ Bern(µ)

(2)Aij ∼

{

Pois(Aij;π) if Zij = 1 (anomalous edge)
Pois(Aij;Mij) if Zij = 0 (regular edge)

,
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Based on this, the probability of an edge Aij given the latent variables � can be writ-
ten as:

We assume a non-informative prior for w and sparsity-enforcing priors for the member-
ship vectors ui, vi , thus encouraging the model to limit the number of non-zero entries.

Our goal is to estimate the latent variables, � , given the adjacency matrix Aij . 
To this end, we perform the inference task by maximizing the log-likelihood, 
L(�) = log P(A|�) with respect to � . Given network data as the input, the desired 
output is inferring the probability that an edge is anomalous, as well as the underlying 
community structure, i.e., clustering nodes in communities. Our approach is capable 
of both learning how nodes are divided into groups and identifying those edges that 
are likely to be anomalous. We implement the inference task using an Expectation–
Maximization (EM) scheme as detailed in “Convergence criteria” section. A pseudo-
code of the algorithm is provided in Algorithm 1. We refer to our model for anomaly 
detection in networks with community structure as ACD.

The computational complexity of the algorithm scales as O(EK + N 2) , where E is 
the total number of edges. In most of the applications, K is usually much smaller than 
E and for sparse networks, as is often the case for real datasets, E ∝ N  . Hence, the 
complexity is dominated by O(N 2) . This contribution comes from terms containing 
Qij that are not also multiplied by Aij , i.e. terms in the denominators of the updates in 
Algorithm 1. The matrix Q is a dense object that is necessary for classifying edges as 
anomalies. This may make it prohibitive to run our model on large systems. Exploring 
possible approximation to it to allow scaling to larger sizes is an interesting direction 
for future work.

(3)P(Aij|�) = Pois(Aij;Mij)
1−Zij Pois(Aij;π)

Zij .

Fig. 1  Model visualization. a Graphical model: the entry of the adjacency matrix Aij is determined by the 
community-related latent variables u, v, w (blue), and by the anomaly parameters π (orange), depending on 
the values taken by the hyper-prior µ . b Example of possible realization of the model: blue edges display 
interactions mainly based on the community, the orange edge exhibits an anomalous edges
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Results on synthetic data
In order to validate the performance of our model and investigate its applicability, 
we apply it to synthetic datasets sampled with our generative model, see Appendices 
for details (“Appendix 2: Generative model” section). These have known ground truth 
community memberships and anomalous edges. Hence, we assess the ability of our 
algorithm to identify anomalous edges and in detecting communities. Once param-
eters are inferred, we use point estimates of ui, vj to assign nodes to group and of Zij 
to classify edges. We compare these estimates with their respective ground truth val-
ues. As performance metrics we consider the F1 score and cosine-similarity (CS), 
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respectively. We are interested in particular in assessing how these quantities vary 
with ρa , the fraction of anomalous edges over the whole set of edges.

Specifically, we generate synthetic data sets with N = 500 nodes, average degree of 
�k� = 20 , K = 3 hard communities of equal size with assortative structure and a range of 
ρa ∈ [0, 1].

As a baseline model for comparison, we consider a version of our model that reduces 
to standard community detection (CD) as in [25]. This is obtained by setting µ,π = 0 
which are kept fixed as hyper-parameters in inference.

We observe that ACD significantly outperforms CD in detecting communities 
robustly across different values of ρa , as shown in Fig. 2. In particular, its performance 
is stronger within an intermediate region where ρ ∈ [0.4, 0.6] , i.e. when the majority of 
edges switches from being regular to being anomalous and CD’s performance decays 
much faster. In terms of anomaly detection, we observe that the performance improves 
by the increase of the anomaly density, with the largest improvement achieved for small 
values of ρa < 0.2 , before reaching a steady increase towards the maximum value of 1 for 
larger ρa.

Results on real world datasets
In order to verify the validity of the algorithm and evaluate its performance on real-
world datasets, we carry out three experiments. We study three real-world datasets with 
node attributes available as potential ground truth for comparison for community mem-
bership of nodes. More details on the studied datasets are available in “Real data: dataset 
description” section.

Experiment 1: injection of anomalous edges

In the first experiment, we inject anomalous edges in a given input network. These edges 
are selected uniformly at random among all the possible pairs of nodes that are not 
already connected by an edge. Then, we apply our method on this altered network and 
measure the algorithm’s performance in (i) detecting the injected edges, i.e., anomalous 

Fig. 2  Community detection and anomaly detection in synthetic networks. a Cosine similarity (CS) between 
ground truth and inferred communities and b the F1 score between the ground truth and the inferred 
anomalies. The model’s ability to detect anomalous edges increases with increasing the ratio of anomalous 
edges in the network. Synthetic networks with N = 500 nodes, π = 0.6 , and K = 3 communities of equal-size 
unmixed group membership generated with ACD. Lines and shades around them are averages and standard 
deviations over 20 sampled networks
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edges, and (ii) detecting how communities are correlated with the node attributes availa-
ble with the dataset. As performance metrics we measure precision, recall, and the Area 
Under the Curve (AUC) for anomaly detection and CS for community detection. We 
vary the fraction ρa of injected anomalous edges to assess how performance is impacted 
by this number.

Books about US politics The network we study in this experiment contains 105 books 
about US politics which were published around the 2004 presidential election [28] (POL-
BOOKS). In this network, nodes are books and an undirected, binary edge between two 
books indicates that those were co-purchased by the same costumer, for a total of 441 
edges. Injected anomalies here represent books that are either mistakenly co-purchased 
or mistakenly accounted in the dataset.

The results of this experiment is presented in Fig.  3. While AUC and community 
detection are both robust against the number of edges injected in the network, precision 
and recall are more nuanced. This is due to the possibility of tuning the prior of Zij via 
µ in order to obtain different regimes in retrieving anomalous edges. As can be seen in 
Table 1 and Fig. 4, for a given level of injected anomalies, we can have high precision or 
high recall, depending on the initialized value of the prior. Hence, classification perfor-
mance can be tuned towards either high precision or high recall by calibrating µ accord-
ingly, depending on the practitioner’s goal.

For instance, when a practitioner wants to be strict in the criteria of labeling an edge 
as anomalous, thus avoiding labeling as “anomalous” edges that are not, then one should 

Fig. 3  The network of POLBOOKS with injected edges (Experiment 1). We compare the performance of the 
ACD in terms of community detection and the detection of the anomalous edges injected in the network. 
We tune the percentage of injected edges ρa . Here π = 0.25 . Markers and errors denote means and standard 
deviations over 20 samples
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be more conservative with the prior, i.e. select a smaller µ . Instead, when the priority 
is to detect as many anomalies as possible (at the risk of mislabeling true edges) one 
should increase µ and thus increase recall. This choice should depend on the applica-
tion at hand, in particular one should reflect on the potential cost of classifying an edge 
as anomaly when it is not and compare it with the potential cost of missing anomalous 
edges.

Experiment 2: 2‑step inference of communities

In the second experiment we are interested in exploiting the information learned about 
anomalous edges to enhance performance in community detection. The hypothesis is 
that the presence of anomalies may corrupt community detection, for instance when 
anomalous edges connect two nodes that should not be part of the same communities. 
Using our model, we can act on the dataset by removing those edges that have higher 
probability of being anomalous, thus reducing noise in favor of better community detec-
tion. In practice, this is executed using a 2-step routine where we first run ACD on the 
input dataset to estimate Zij . Then, we remove those edges with higher probability of 
being anomalous. Finally, we perform regular CD (running ACD with π = µ = 0 ) on the 
“cleaned” network to extract communities. We observe enhanced results in the commu-
nity detection task after removing the anomalous edges.

Zachary’s Karate Club We first test this second experiment on the dataset of Zachary’s 
Karate Club to convey in more qualitative terms how model improves upon the com-
munity detection task. The network’s small size of 34 nodes allows to better visualize the 
problem and how the 2-step routine works. This social and undirected network shows 
the interactions between members of a university karate club for a period of 3 years from 

Table 1  The confusion matrix for the network of POLBOOKS with injected edges (Experiment 1)

We show how our model performs in terms of identifying anomalies—edges that have been injected in the dataset—as we 
vary the prior on Z, tuned by the parameter µ . Here π = 0.25 and ρa = 0.087

µ Precision Recall F1

High precision 0.5 0.78 0.32 0.45

High recall 0.75 0.27 0.64 0.38

Fig. 4  The network of POLBOOKS with injected edges (Experiment 1). We compare the performance of 
ACD in detecting the anomalous injected edges by estimating the confusion matrix for tow different values 
to initialize µ . By adjusting the value of µ , we can tune the recall and precision. a µ = 0.5,π = 0.25 , b 
µ = 0.75,π = 0.25
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1970 to 1972. The members are the nodes and an edge between a pair of members indi-
cates social interactions between them. During this period, due to administrative issues, 
the club splintered into two. We exploits the membership of the nodes in the new clubs 
as possible meaningful ground truth communities.

It is should be noted that what we refer to as the ground truth communities are in 
fact metadata of nodes that could be utilized to compare the resulting communities. The 
intention is merely to have a criterion for a quantitative comparison. In other words, 
we examine how the communities inferred by the algorithm are consistent with existing 
metadata. In all the real data studied in this work, this interpretation of the metadata as 
the ground truth is applied.

Figure 5 provides a visual representation of how the 2-step routine works. Commu-
nities inferred before and after removing anomalous edges are compared against those 
obtained using node attributes as ground truth. We remove two edges classified with 
the highest probability as anomalous, these are shown in red in Fig. 5a. Removing the 
red edge connecting two more central nodes has the effect of changing the community 
assigned to one of the two nodes, which is now aligned with the ground truth after run-
ning CD the second time. Instead, the other node in the removed edge keeps its commu-
nity as detected in the first step, which was already aligned with the ground truth. As a 
result, the 2-step routine improves community detection performance. Notice also that 
removing the other anomalous edge does not impact performance, as the nodes involved 
in that edge do not switch communities and are already aligned with the ground truth. 
Hence, not all the removed edges may necessarily impact community detection the 
same.

We can now proceed analogously to apply the experiment on a larger dataset and pre-
sent quantitative results on the POLBOOKS dataset. Figure  6 demonstrates the com-
munities inferred by ACD using the 2-step routine and the inferred anomalous edges 
are shown in red in Fig.  6a as in the example before. We notice that the majority of 

Fig. 5  The network of Zachary karate Club (Experiment 2). a The communities inferred by ACD. The 
edges inferred by our algorithm as the anomalous edges are shown in red. Here, π = 10−4,µ = 0.1 . b The 
communities inferred by CD (i.e. ACD with π = µ = 0 ). c Ground truth communities
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the detected edges are between different communities. Comparing the communi-
ties detected in panels (a) and (b) with the ground truth communities in panel (c) we 
notice how the 2-step routine infers communities more aligned with the ground truth, 
as several nodes at the center of the figure switch communities from blue to green after 
removal (For more details on the soft community membership of nodes, see Fig. 10). In 
other words, ACD is capable of improving community detection by uncovering edges 
that interfere with the community detection process.

Quantitatively, this is shown in Table 2 by an increase of CS value from 0.77 to 0.84 
after anomaly removal, consistently over different values of prior’s parameter µ . Table 2 
emphasizes the robustness of the model in detecting communities that are aligned 
with metadata information with respect to changing the initial value of µ . In order to 
compare the performance of ACD in community detection task, we applied Bayesian 
Poisson matrix factorization (BPMF) [29] on the POLBOOKS dataset, which results in 
CS = 0.778± 0.065 . In addition, in the table we report also the results of link prediction 
tests for model validation in the absence of ground truth (metadata are only a candidate 
for ground truth, true model parameters are unknown in real data). Specifically, we run 
5-fold cross-validation and measure the AUC on the test dataset. Higher values indicate 

Fig. 6  The network of POLBOOKS (Experiment 2). We show an example output of running the 2-step 
algorithm where we first detect anomalous edges, then remove them and finally run regular CD on the 
pruned dataset.) The communities inferred by ACD before removal. The edges inferred by ACD as anomalous 
edges are shown in red. Here, π = 0.0001,µ = 0.5 . b The communities inferred by CD after removal of 
anomalies. c Ground truth communities. Red rectangles denote pairs of nodes that are connected by the 
edges inferred as anomalous. Cyan rectangles demonstrate the nodes that changed their community 
membership, after removing the aforementioned anomalous edges. Cyan edges in panel (a) present the 
edges connected to these

Table 2  The network of POLBOOKS (Experiment 2)

We present the ability of ACD in community detection, represented by cosine similarity (CS). Moreover, we validate the 
model by measuring the AUC in link prediction tasks. The results are robust with respect to the initial values of µ . By 
removing the edges detected as anomalies, the community detection task is improved. Here, π = 10

−3 . The CS errors are 
calculated by averaging over 20 runs of the edge removal routine. To estimate AUC we perform 5-fold cross validation and 
report the averages and standard deviations over the fivefolds

Measure Removed anomalous 
edges

µ0

0.01 0.05 0.5

CS Yes 0.837± 0.015 0.834± 0.020 0.838± 0.014

No 0.767± 0.039 0.766± 0.040 0.768± 0.040

AUC​ Yes 0.882± 0.018 0.883± 0.019 0.888± 0.020

No 0.953± 0.058 0.936± 0.056 0.922± 0.045
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better performance in predicting missing edges, and better model’s expressiveness. We 
see that the AUC only slightly drops when removing the anomalous edges, thus suggest-
ing that removing information in an informed way (i.e. anomalous edges as detected by 
our model) enhances community detection without drastically affecting the AUC.

Experiment 3: Adding anomalous non‑edges

The first two sets of analyses examined the ability of the algorithm in detecting the 
anomalous edges and the impact of removing those edges from the dataset in commu-
nity detection and link prediction tasks. However, our model is also able to estimate the 
probability of a non-edge to be anomalous. This can be used for instance in cases where 
we expect certain connections between nodes to happen, and if they are not observed 
we can use our algorithm to detect potential missing edges. Hence, we design a new 
experiment to assess the possibility of improving the community detection task by add-
ing edges between disconnected nodes. In other words, the algorithm detects unseen 
edges which may improve community detection if we were to add them to the network, 
in a similar 2-step routines as before, this time by adding, instead of removing edges.

As in the previous experiments, we apply ACD on the dataset to estimate Z. How-
ever, in this case, we select the entries corresponding to non-edges (i.e. Aij = 0 ) which 
have highest probability of being anomalous and then add them to the network. Then, 
we apply regular CD on the final dataset and compare communities inferred before and 
after adding these edges.

American college football The experiment was tested on a network of football games 
between American colleges in the fall of 2000 [17]. Nodes in the network indicate the 
college teams and the undirected, and binary edges connecting them represent the 
games between the teams. The teams are divided into 12 conferences where members 
of each conference have more frequent games with each others compared to the games 
with members of other conferences. We use the conference membership as candidate 
ground truth community memberships to compare against. An anomalous non-edge 
corresponds to a game that has not been planned by the league’s organizers but could 
have been played (for instance by adding more games to the fixtures or substituting with 
other games currently in the fixture), as it aligns with the pattern of existing games. In 
this context, selecting the fixtures is an important task for the organizers, as the set of 
matches that a team has to play can significantly impact its chance to go to the final 
National Championship.

In Fig. 7 we show a qualitative example of how communities change before and after 
addition of 6 non-existing edges classified with the highest probability of being anoma-
lous ( they correspond to 1% of the total number of edges). It is clear from this figure that 
addition of few edges impacts the community membership of several nodes, and not only 
those directly connected to the newly added edges. In particular, it strengthen the mem-
berships of nodes in the communities of the nodes directly connected to the added edge 
(see e.g. the green and pink, whose nodes become less overlapping). In addition, it softens 
the membership of several nodes that are “Independent” (brown nodes in Fig. 7c), they 
do not belong to any conference. These are nodes that play several games against nodes in 
various conferences. In general both approaches achieve strong results in detecting com-
munities that align with conference membership. However, the 2-step routine with edge 
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addition improves performance further, as detected by both CS and F1-score, see Table 3. 
These results show the flexibility of our model in detecting various types of anomalies and 
acting on them by suitably modifying the network to enhance community detection.

Discussion
We have proposed a probabilistic model for detecting anomalies in networks. It relies 
on the assumption that regular patterns of interactions are determined by community 
structure and exploits this insight to detect pairs of nodes, existing or non-existing ties, 
that deviate from regular behavior.

The algorithmic implementation uses an expectation–maximization routine that out-
puts both community membership of nodes and probability estimates for pairs of nodes 
of being anomalous or not. We find that in synthetic data it improves community detec-
tion while also showing robust performance in identifying anomalies.

In addition, in the case of real-world datasets, we have performed various experiments 
that show an increase in the model’s ability in community detection tasks. Specifically, 
both in the experiment where the inferred anomalous edges were removed from the net-
work, and in the case where non-existing but potential ties were identified and added to 
the network, there was an improvement in detecting communities that are aligned with 
metadata. Also, in another experiment, in which anomalous edges were injected into the 
system, ‌ our model showed high capability in detecting these ties.

Fig. 7  The network of American college football after addition of edges (Experiment 3). a The communities 
inferred by CD on the original input data. b Community detection by CD algorithm on the dataset after 
addition of the potential inferred edges inferred by ACD (these edges are shown in red). c Ground truth 
communities. The nodes that changed their communities between a and b are shown with cyan border. 
Those with red border are nodes connecting to added edges. The name of some of the nodes impacted by 
the edge addition is added to the figure as the footnote

Table 3  The network of American college football (Experiment 3)

We report CS and F1-score between the inferred communities and those given by metadata. Averages and standard 
deviations are over 20 runs of the edge addition routine

CD on dataset ACD on dataset CD on dataset 
with added 
edges

CS 0.955 ± 0.003 0.957 ± 0.001 0.957 ± 0.003

F1 0.959 ± 0.005 0.957 ± 0.003 0.962 ± 0.006
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We have focused here in anomalies on pairs of nodes, edges or non-edges but 
similar ideas and methods can be used to extend this model to anomalies on nodes. 
In this context, it may be interesting to explore future extensions that incorporate 
extra information, e.g. node attributes, along with community structure, as done for 
instance in [24, 30–32]. As accurately identifying anomalies is deeply connected with 
the chosen null model determining what regular patterns are, it is important to con-
sider other possible mechanism for tie formation, beyond community structure. In 
recent works [33–35], we found that modeling community patterns together with 
reciprocity effects, leads to higher predictive performance, thus more expressive gen-
erative models. This could significantly change the performance of our foundational 
model as well. Hence, a natural next step is to include reciprocity in our model and 
measure how, by varying the intensity of these effects, anomaly detection improves 
(or decreases).

As a final remark, it is worth mentioning that what is referred to as an anomalous 
edge in this work should not necessarily be interpreted as an undesirable interaction 
or malicious activity. Indeed, an anomaly here reflects an unusual pattern, as com-
pared to that of other edges, which can not be explained by the core structural pattern 
of the dataset, in this case driven by community structure. We encourage practition-
ers to carefully assess its qualitative interpretation based on the application at hand 
and preferably guided by domain expertise and knowledge.

Appendices
Appendix 1: Inference with expectation–maximization

Our goal is, given two mechanisms responsible for edge formation, first to determine 
the values of the parameters � : (uik , vik ,wk ,π ,µ) , which determine the relationship 
between the anomaly indicator Zij and the data, and then, given those values, to esti-
mate the indicator Zij itself. We have the posterior:

Summing over all the possible indicators we have:

which is the quantity that we need to maximize to extract the optimal � . It is more con-
venient to maximize its logarithm, log-likelihood, as the two maxima coincide. We use 
the Jensen’s inequality:

where q(Z) is a variational distribution that must sum to 1. In fact, the exact equality 
happens when,

(6)P(Z,�|A) =
P(A|Z,�)P(Z|µ)P(�)P(µ)

P(A)
.

(7)P(�|A) =
∑

Z

P(Z,�|A),

(8)L(�) = log P(�|A) = log
∑

Z

P(Z,�|A) ≥
∑

Z

q(Z) log
P(Z,�|A)

q(Z)
,
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this definition is also maximizing the right-hand-side of Eq. (8) w.r.t. q.
Finally, we need to maximize the log-likelihood with respect to � to get the latent varia-

bles. This can be done in an iterative way using Expectation–Maximization algorithm (EM), 
alternating between maximizing w.r.t. q using Eq. (9) and then maximzing Eq. (35) w.r.t. �.

We start by derivation of Eq. (8) with respect to the individual parameters, for example 
we start by considering uik . We assume uniform prior w.r.t. � , but we can easily incorporate 
more complex choices if needed.

where in the last equation we used once again Jensen’s inequality with:

Defining Qij =
∑

Z q(Z)Zij , the expected value of Zij over the variational distribution, 
we finally obtain:

We find similar expression for vik and wk,

(9)q(Z) =
P(Z,�|A)

∑

Z P(Z,�|A)
,

(10)
∑

Z

q(Z)
∂

∂uik

[

log
P(Z,�|A)

q(Z)

]

=
∑

Z

q(Z)
∂

∂uik
log P(Z,�|A)

(11)=
∑

Z

q(Z)
∂

∂uik

∑

i,j

(1− Zij) log Pois(Aij;Mij)

(12)=
∑

Z,j

q(Z) (1− Zij)
∂

∂uik

[

−uikvjkwk + Aij log
∑

k

uikvjkwk

]

(13)=
∑

Z,j

q(Z) (1− Zij)

[

−vjkwk + Aij

ρijk

uik

]

= 0,

(14)ρijk = uikvjkwk/
∑

k

uikvjkwk .

(15)uik =

∑

j(1− Qij)Aijρijk
∑

j(1− Qij) vjkwk
.

(16)vjk =

∑

i(1− Qij)Aijρijk
∑

i(1− Qij)uikwk
,

(17)wk =

∑

i,j(1− Qij)Aijρijk
∑

i,j(1− Qij)uikvjk
.
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For π:

yielding

Similarly for µ:

yielding:

To evaluate q(Z), we substitute the estimated parameters inside Eq. (9):

where

(18)
∑

Z

q(Z)
∂

∂π

[

log
P(Z,�|A)

q(Z)

]

=
∑

Z

q(Z)
∂

∂π
log P(Z,�|A)

(19)=
∑

Z

q(Z)
∂

∂π

∑

i,j

[

Zij log Pois(Aij;π)
]

(20)=
∑

Z

q(Z)
∂

∂π

∑

i,j

[

Zij (−π + Aij log π)
]

(21)=
∑

Z,i,j

q(Z)

[

Zij (−1+ Aij
1

π
)

]

= 0,

(22)π =

∑

i,j QijAij
∑

i,j Qij
.

(23)

∑

Z

q(Z)
∂

∂µ

[

log
P(Z,�|A)

q(Z)

]

=
∑

Z

q(Z)
∑

i<j

∂

∂µ

[

Zij logµ+ (1− Zij) log(1− µ)
]

(24)=
1

µ

∑

i<j

Qij −
1

1− µ

∑

i<j

(1− Qij),

(25)µ =
1

N (N − 1)/2

∑

i<j

Qij .

(26)q(Z) =

∏

i,j Pois(Aij;π)
Zij Pois(Aij;Mij)

1−Zij
∏

i<j µ
Zij (1− µ)(1−Zij)

∑

Z

∏

i,j Pois(Aij;π)
Zij Pois(Aij;Mij)

1−Zij
∏

i<j µ
Zij (1− µ)(1−Zij)

(27)

=
∏

i<j

[

Pois(Aij;π)Pois(Aji;π)µ
]Zij

[

Pois(Aij;Mij)Pois(Aji;Mji) (1− µ)
](1−Zij)

∑

Zij=0,1

[

Pois(Aij;π)Pois(Aji;π)µ
]Zij

[

Pois(Aij;Mij)Pois(Aji;Mji) (1− µ)
](1−Zij)

(28)=
∏

i<j

Q
Zij

ij (1− Qij)
(1−Zij),
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Convergence criteria

The EM algorithm consists of randomly initializing π ,µ,u, v,w , then iteration of Eqs. 14–
17, 22, 25, and 28, until the convergence of the following log-posterior,

where we neglect const, constant term due to the uniform priors. To calculate log q(Z) , 
we used Eq. (28), i.e., a Bernoulli distribution.

One can further add parameters’ regularization, for instance by assuming Gamma-dis-
tributed priors for the membership vectors,

where a ≥ 1 , to ensure the maximization of the log-likelihood (the second derivative 
must be negative), similarly for the vik . This would add new terms to the log-likelihood:

Alternatively, one can add constraints to the parameters, e.g. 
∑

k uik = 1 (and simi-
larly for vi ). This would modify the likelihood by adding the corresponding Lagrange 
multipliers.

(29)Qij =
Pois(Aij;π)Pois(Aji;π)µ

Pois(Aij;π)Pois(Aji;π)µ+ Pois(Aij;Mij)Pois(Aji;Mji) (1− µ)
.

(30)L(�) = log P(�|A) ≥
∑

Z

q(Z) log
P(Z,�|A)

q(Z)

(31)

= −
∑

Z

q(Z) log q(Z)+
∑

Z

q(Z)
{

log P(A|Z;�)+ log P(Z|µ)+ log P(�)+ log P(µ)
}

(32)= −
∑

Z

q(Z) log q(Z)+ log P(�)+ log P(µ)

(33)

+
�

Z

q(Z)







�

i,j

�

Zi,j log Pois(Ai,j;π)+ (1− Zi,j) log Pois(Ai,j;Mi,j)+ Zi,j logµ+ (1− Zi,j) log(1− µ)
�







= −
�

i<j

�

Qi,j logQi,j + (1− Qi,j) log(1− Qi,j)
�

+
�

i,j

�

Qi,j

�

−π + Ai,j log π
�

+(1− Qi,j)
�

−Mi,j + Ai,j logMi,j

�

+Qi,j logµ+ (1− Qi,j) log(1− µ)
�

+ const,

(34)P(uik ; a, b) ∝ ua−1
ik e−buik ,

(35)

L(�) = L(�)+ (a− 1)
∑

i,k

log uik − b
∑

ik

uik

+ (a− 1)
∑

i,k

log vik − b
∑

ik

vik .
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Appendix 2: Generative model
Being generative, our model can be used to generate synthetic networks that include 
both anomalous edges and community structure. To this end, we sample the parameters 
(u, v,w,µ,π) and then, given these latent variables, we sample Z. Finally, given the Z and 
the latent variables, we can sample the adjacency matrix A.

For a given set of community parameters as the input [25, 30], we sample anomalous 
edges from a Poisson distribution as in Eq. (2), with a Bernoulli prior as in Eq. (1). The 
mean value of the Poisson distribution, π , is constant for all edges, however, its value 
can be chosen in order to control the ratio ρa of edges being anomalous over the total 
number of edges. The average number of anomalous and non-anomalous edges are 
N 2µ (1− e−π ) , and (1− µ)

∑

i,j(1− e−Mij ) , respectively. Assuming a desired total 
number of edges E, we can multiply π ,µ and Mij by suitable sparsity constants that tune: 
(i) the ratio

(ii) the success rate of anomalous edges π . Once these two quantities are fixed, the 
remaining sparsity parameter for the matrix M, is estimated as:

which can be solved with root-finding methods.

Appendix 3: Performance in real‑world datasets
Real data: dataset description

We tested our algorithm on three real-world datasets with the available ground truth 
communities. A brief overview of features of the studied datasets is presented in Table 4.

Real data: performance

Figure 8 shows how ACD can capture the anomalous edges with a satisfying accuracy, by 
tuning the parameters of our model, i.e., µ and π.

We apply ACD on a network with injected anomaly to estimate Qij , as the the expected 
value of Zij over the variational distribution (see “Appendix 1: Inference with expecta-
tion–maximization” section). The entries with the highest values are detected as anoma-
lous edges, Fig. 9.

ρa =
N 2µ (1− e−π )

N 2µ (1− e−π )+ (1− µ)
∑

i,j(1− e−Mij )
, ∈ [0, 1];

(36)E (1− ρa) = (1− µ)
∑

i,j

(1− e−cMij ),

Table 4  Datasets description

Network Abbreviation N E Refs.

American college football          College football 115 613 [17]

Political blogs network POLBLOGS 1490 19,090 [37]

Books about US politics POLBOOKS 105 441 [28]

Zachary karate club Zachary 34 78 [36]
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Political blogs: To evaluate the efficiency and ability of our model when appiled to 
larger datasets, we used our model on the network of hyperlinks between weblogs on 
US politics [37]. This is a directed network with 1490 nodes, each belonging to one of 
two categories: conservative, or liberal. We run the Experiment 1 on this dataset by 
injecting some random anomalous edges, then applying the algorithm to detect those 
injected edges. Depending on the aim of the study, we can tune the value of the priors 
to have a higher precision or recall. Table 5 displays different regimes of performance 
with respect to the value of anomaly parameter, π (Fig. 10). 

Fig. 9  The network of Zachary karate Club (Experiment 1). a Q matrix, estimated by ACD, as the expected 
value of Zij over the variational distribution. b The inferred anomalous edges, i.e., the entries of Q with the 
values above the threshold, here, the threshold = 0.7×max(Q) . Here, µ = 0.1,π = 10−4

Table 5  The confusion matrix for the network of POLBLOGS with injected edges (Experiment 1)

We show how our model performs in terms of identifying anomalies—edges that have been injected in the dataset—as we 
vary the anomaly parameters, π . Here µ = 0.5 and ρa = 0.33

π Precision Recall F1

High recall/precision 0.3 0.49 0.99 0.65

High precision 0.5 0.45 0.27 0.34

High recall 0.8 0.40 0.69 0.51

Fig. 8  The network of Zachary karate Club with injected edges (Experiment 1). Precision = 1.0, recall = 0.667, 
and F1 score = 0.8. Here π = 0.25,µ0 = 0.5
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