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Abstract 

Recent advances in Information and Communication Technologies have a signifi-
cant impact on all sectors of the economy worldwide. Digital Agriculture appeared 
as a consequence of the democratisation of digital devices and advances in artificial 
intelligence and data science. Digital agriculture created new processes for making 
farming more productive and efficient while respecting the environment. Recent and 
sophisticated digital devices and data science allowed the collection and analysis of 
vast amounts of agricultural datasets to help farmers, agronomists, and professionals 
understand better farming tasks and make better decisions. In this paper, we present 
a systematic review of the application of data mining techniques to digital agriculture. 
We introduce the crop yield management process and its components while limiting 
this study to crop yield and monitoring. After identifying the main categories of data 
mining techniques for crop yield monitoring, we discuss a panoply of existing works 
on the use of data analytics. This is followed by a general analysis and discussion on the 
impact of big data on agriculture.

Keywords:  Digital agriculture, Data analytics, Crop management, Big data, Data 
mining, Machine learning

Introduction
DA, (also called digital farming or smart farming)1 [78, 105, 130], is a modern approach 
that uses digital and smart devices [sensors, cameras, satellite, drones, the Global Posi-
tioning System (GPS)] in conjunction with Data Mining (or data analytics) to improve 
productivity and to optimise the use of resources. Digital Agriculture (DA) comes as a 
response to the increasing demand for improving productivity while reducing farming 
operational costs. Moreover, the improvement of productivity should not be done at 
any cost, e.g., overuse of natural resources and chemical products. DA can, for example, 
manage crop growth by finding appropriate fertilisation program for each farming field 
and can help farmers to reduce their operational costs and respect the environment by 
refining their farming operations based on the needs of each part of the farming field.

Since agriculture has a direct and significant impact on the population and therefore 
its economic environment, DA in its turn should be viewed as the next natural step to 
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respond to the world population’s needs while protecting the environment, by taking 
advantage of the recent technological advances in digital devices, communications sys-
tems, and artificial intelligence. These allow us to construct multidimensional domains, 
where the farms and farmers are their central subjects. Figure 1 shows the agriculture 
ecosystem and its direct impact on other sectors of the economy.

Besides, since DA involves the development, adoption and iteration with digital tech-
nologies [39], and Artificial Intelligence (data analytics, ...), these developments and 
interactions should be well-defined (laws, regulations and policies) to guarantee rights 
and benefits of all the involved actors (farmers, farm holders’, data owners’, developers 
and analysts, technology vendors’,...) [70, 77, 78, 92, 113, 146].

DA can be regarded as a data driven form of farming, in which decision-making pro-
cesses are based on explicit information derived from data collected through various 
sources [148]. DA and Precision Agriculture (PA) seem to refer to the same thing, how-
ever, as stated in [148], DA involves the development and adoption of modern technolo-
gies in both collecting the data and its analysis in various farming contexts, while PA 
takes into account only the in-field variability [147]. DA aims to exploit advanced digital 
devices, ranging from a simple sensor to complex robots, to offer the required farmland 
treatment with high accuracy. DA can be applied in almost all agricultural fields. For 
instance, in crop production: DA allows accurate management of crops, which includes 
fields, wasteland, crop, pest, and irrigation management, soil classification, etc. In Ani-
mal production: DA allows monitoring the animal over its whole life cycle, its food 
quantity, health control and protection from diseases, and so on. Fishery, animal Hus-
bandry, livestock and dairy farming are some examples [14]. In Forestry: We can effi-
ciently manage forests by supporting the environmental and sustainable decision [36]. 
DA can help in detecting unhealthy trees, air pollution, discriminate different tree spe-
cies, protect the wildlife, etc. From the economy point of view, the application of DA for 
forest management enhances the wood quality and its production, which can augment 
profits; reduce waste and maintain the environment [138].

Addressing DA from all the above mentioned views is a challenging task and cannot 
be achieved without the participation of specialists from all these sectors. In this study, 

Fig. 1  The interlocked sectors involved in DA
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we focus on the use of Big Data in crop management, it is, not only one of the pillars in 
agriculture but also it can profoundly affect biodiversity. Moreover, crop growth is a very 
complex process involving various endogenous and exogenous factors. Recent advances 
in digital technologies allow us to collect data about all these factors. DA has the ability 
to elucidate the correlations and interactions of these factor to help farmers and agrono-
mists optimise the productivity while reducing the side effects on the environment. DA 
exhibits several benefits to agriculture as shown in Figure  2. These benefits were dis-
cussed in [10, 13, 70, 98, 104, 112, 113, 130, 135, 148] and summarised in the following:

•	 DA provides a farmer with useful information to support their decision-making pro-
cesses, such as soil and weather monitoring and prediction, weed and pest monitor-
ing, crop yield dynamic predictions, etc.

•	 DA can sustain the environment and improve the products’ quality, since it provides 
high quality information and measurements for optimal farming operations on each 
field.

•	 DA can provide farmers advanced management methods against climate change and 
other environmental challenges. The farmer can continuously monitor crop growth 
and protect them against diseases.

•	 DA offers valuable feedback to farmers and good assessment of risks, to minimise 
microbiological or disaster-related risks.

•	 DA can provide prediction and assistance to farmers against adverse weather inci-
dence, disasters and market instability by assessing the loss at the farm level.

•	 Farmers/agronomists can benefit from advanced models to understand the market 
and forecast which products could be more profitable.

The contributions of this study are in the investigation of big data analytics applications 
to crop production. Crop farming is a complex task, and it depends on many factors that 
should be taken into account. To optimise the operational cost and reduce the impact 
on the environment, the big data analytics emerges as one of the most cost effective 
approaches nowadays. The contributions, therefore, include the following:

Fig. 2  Role of DA in crop production process



Page 4 of 37Chergui and Kechadi ﻿Journal of Big Data           (2022) 9:123 

•	 A comprehensive overview of Digital Agriculture big-data with a presentation of the 
conceptual-layered framework to show the effectiveness of data analytics on Digital 
Agriculture, when some necessary steps have been implemented. For instance, large-
scale data analytics can only be effective if the historical data is available, carefully 
collected, and it is of high quality.

•	 A highlight of the different types of data used in the existing studies, and a presenta-
tion of the classification of different techniques applied to crop yield monitoring and 
their effectiveness of the overall results.

•	 A review and analytical studies of the most widely used data mining techniques to 
crop farming, with a report of their advantages and shortcomings.

•	 A discussion on the advantages of big data in agriculture, and how this can be used 
efficiently for crop farming and its extension to the agricultural field in general.

•	 A discussion on Digital Agriculture applications for crop management in small and 
large scale holders.

•	 A discussion on Digital Agriculture challenges and potential paths for future 
research.

Methodology
To study the impact of data analytics and big data on DA based on previous works, we 
conducted a systematic review approach that consists of three steps: (1) collection of 
related work, (2) selection of relevant work, and (3) examination and analysis of the fil-
tered related work.

In the first step, we performed keyword-based research and We gathered a large 
number of studies from well-known and popular online sources (Web of Science, Sco-
pus, IEEEXplore, ACM, etc.). We used a combination of keywords from the two sets 
(Big data, data mining, data analytics, machine learning, Internet Of Things, sensors) 
and (Digital agriculture, smart farming, precision agriculture, agriculture, farming). We 
gathered more than 327 articles. In the next steps, We selected a small number of arti-
cles, which are considered relevant for further analysis, based on their ideas, methods, 
data types and sources, addressed problems, proposed solutions, tools used and quality 
of the results.

Through the literature analysis, the study aims to find responses to the following 
research questions and discuss findings in the following sections.

•	 What is the process of DA for crop management?
•	 What are the various data types generated by farms and used in DA applications for 

crop management?
•	 What role does big data analytics play in DA?
•	 How are big data analytics used for crop management?
•	 What are the influences of the farm’s scale on the application of DA?
•	 How big is the data used in the proposed DA solutions’?
•	 What are the challenges facing the DA?
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Figure 3 summarises the overall approach, adopted from the PRISMA2 flow diagram.

Related work
Despite that DA and Big Data being relatively recent research fields, their scientific lit-
erature is rich and covers several concepts. As DA is at the cross boundaries between 
agriculture and ICT, three major dimensions have emerged as of a very high importance; 
technology, social economics and ethics, and decision-making based on Machine Learn-
ing. The first dimension focuses on the use of advanced technologies to improve prac-
tices and productivity [56, 124]. In Ref. [124], the authors studied the impact of sensor 
networks in agriculture, including remote sensing technologies, wireless devices, and 
other IoT devices. Ref. [56] reviewed some developments in remote sensing within Big 
Data processing and management in agriculture. The second dimension concerns legal, 
ethics, social and economic factors of DA, to provide insights into the impact of digit-
ised information and its analysis on the farm management; farmer identity, skills, pri-
vacy, production, and value chains in food systems [39, 70, 77, 78, 92, 113, 146, 148]. The 
third dimension focuses on the application of big data analysis and machine learning 
(ML), to optimise and forecast the production and the use of resources. In this paper, we 
only consider this dimension.

Various studies have been conducted on the application of data analytics to crop yield 
management. For instance, [71] presented a systematic review on crop yield prediction 
using ML techniques, and extracted major ML algorithms, features and evaluation met-
rics used in those studies. Ref.[35] discussed the yield estimation by integrating agrarian 
factors in ML techniques. This allowed them to show a strong relationship between crop 
yield and climatic factors. Ref. [103] Provided a systematic review on the use of com-
puter vision and AI to enhance the grain quality of five crops (maize, rice, wheat, soy-
bean and barley), disease detection and phenotyping. Ref. [64] reviewed the application 

Fig. 3  The research methodology flowchart

2  http://​www.​prisma-​state​ment.​org/.

http://www.prisma-statement.org/
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of big data analysis in some fields of agriculture. It highlighted solutions to some key 
well-known problems, used tools and algorithms, along with input datasets. The authors 
concluded that big data analytics in agriculture is still at its early stage, and many bar-
riers need to be overcome, despite the availability of the data and tools to analyse it. To 
measure the level of usage of big data in DA, the authors defined big data metrics (low, 
medium, high) for each of its dimensions (volume, velocity, and variety). However, while 
it is a very simple model, it is not easy to specify thresholds, as some dimensions, such 
as volume and velocity depend on technological advances. Ref. [12] presented a review 
on the use of ML methods to detect biotic stress in crop protection. The authors ana-
lysed the potential of these techniques and their suitability to deal with crop protection 
from weeds, diseases and insects. In addition, they provided very good instructive exam-
ples from different fields of DA. An earlier similar study was presented in [89], where 
the authors studied four very popular learning approaches; Artificial Neural Network 
(ANN), Support Vector Machine (SVM), K-means, and K-Nearest Neighbour (KNN). 
Ref. [25] presented a survey on data mining clustering methods applied to food and agri-
cultural domains. It first described major techniques of unsupervised classification, then 
it examined some existing techniques applied to agriculture products; like fruit clas-
sification, wine classification, analysis of remote sensing in forest images and machine 
vision.

This study is not just an update of previous surveys. The main objective is to examine 
the effectiveness of big data analytics in crop yield monitoring and discuss the challenges 
of such paradigm shift in the agriculture domain. Moreover, It is important to under-
stand the sources of datasets, their types, and which ML techniques are more suitable to 
analyse them.

DA: it’s all about data
Digital Agriculture (DA) relies heavily on the data sources and techniques used to col-
lect it. This data is then organised in agricultural data warehouses and analysed [93]. The 
results of this data analysis provide significant insights to farmers and agronomists about 
how to improve the production, minimise the farming operational costs, manage risks, 
and protect the environment. The process of deploying DA is derived from data science.

Digital agriculture process

Figure   4, adopted from the knowledge pyramid DIKW, shows a data-driven process, 
which is at the heart of DA. This usually shows how data from past experiences and 
models serve as input to techniques of mining and analysis to help in future decisions 
and acting accordingly. The newly collected data will be used to further refine the pro-
cess and adapt it to an ever-evolving agricultural world.

This is a data-driven methodology derived from the overall knowledge discovery pro-
cess. The first phase, data collection, is crucial to the validity of the whole analysis. One 
needs to carefully identify the type of data that should be collected and the approach 
of gathering it and maintain it through its whole life cycle. This is even more complex 
in DA, as the data is issued from various and heterogeneous sources, and contains a 
number of factors of uncertainties. The second phase, data representation and analysis, 
is very sophisticated, as there is no common standards in the way the data should be 



Page 7 of 37Chergui and Kechadi ﻿Journal of Big Data           (2022) 9:123 	

integrated, consolidated, to derive a unified representation that is suitable for its analy-
sis, and in the choice of the analysis techniques. Finally, the decision-making is a labori-
ous task, where the extracted knowledge will be associated to the expertise of farmers 
and agronomists, farming constraints and regulations to derive new management pro-
cesses with the view to improve productivity and quality of products, reduce and their 
impact on the environment. Figure  5 depicts a diagram presenting the DA process for 
crop yield monitoring, as explained below.

•	 Data collection and preparation It is important to identify the data types and attrib-
utes based on the problem at hand (e.g., crop management), and the level of granu-
larity of the data. The required data sources should also be identified and assessed for 
their data quality. As mentioned above, the data is then prepared for analysis. This 
includes data integration, representation, selection, transformation, etc.

Fig. 4  DA– a data-driven process

Fig. 5  Big Data Analytics system architecture for crop yield monitoring
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•	 Data analysis the complex nature of the agricultural data requires an elaborative 
analysis approach, ranging from methods of feature selection or extraction to various 
learning algorithms to discover models, patterns (or knowledge in general term) for 
data analysis. These will be evaluated against the expected quality of results and their 
suitability to a decision-making process.

•	 Decision-making The main goal of the DA process is the decision-making. Any deci-
sion should follow the state-of-the-art practice, be justifiable and scientifically sound.

Digital agriculture data

In agriculture, Very large amounts of data can be collected from various sources. These 
include sensors, weather stations, satellite imagery, drone imagery, and many other 
instruments. The datasets include weather data, farm records, environmental condi-
tions, soil parameters (nutrients, texture, moisture, and so on. The data is usually rich, 
large, very complex, and heterogeneous. Therefore, its analysis is not straightforward.

The heterogeneity is not only expressed by the data types and formats, but it can be 
collected using different equipment of different quality. In addition, historical data may 
be described with different sets of attributes compared to very recent data. This can pre-
sent inconsistencies in naming conventions and measures when the data is collected 
from different locations and times. Moreover, the data can be static and historical, which 
is considered as offline data, and can be online weather data collected at regular intervals 
(streams of data values), such as weather data (e.g., every 15 minutes), satellite imagery, 
which is characterised of being spatio-temporal, such as Geo-spatial data, Moderate-
Resolution Imaging Spectroradiometer (MODIS) images, etc.

As mentioned earlier, the data collection is not well tackled in the literature. Most 
of the studies assume that the data is known already, and the experimental setup was 
already in place. Therefore, more effort is allocated to the data analysis and interpreta-
tion rather than on the complete environmental parameters and conditions. In the fol-
lowing sections, we discuss the data analysis process. This discussion is structured based 
on the main categories of the data analysis; classification, and clustering [24]. Note that, 
for high quality results, the data needs to be pre-processed, as discussed in the previous 
section. The pre-processing includes cleaning (dealing with missing values, redundant 
data, noise and outliers), data transformation, dimensionality or data reduction, and so 
on.

Classification for crop monitoring
Big Data analytics system architecture is depicted in Fig.   5. While this system is tar-
geted specifically to crop yield management, it can be adapted to any data-driven appli-
cation. This architecture implements faithfully what we have highlighted in the previous 
sections. In this section, we will focus on the data analysis layer of the architecture, 
moreover, we will pay attention to the data types and their sources, techniques of data 
acquisition, the learning algorithms. The main objective of the crop management data 
analysis is to get some insights about the crop monitoring problems and show the poten-
tial of DA through big data analytics, also called data mining. Data mining and its tech-
niques are involved in several roles in crop production. Farmers may want to know the 
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future yield of their crop, specific areas of their farms suffer from the spread of weeds 
or under-nutrition. Researchers can look for information such as plant growth patterns, 
optimum growing conditions, best pest and disease control environment and so on. Data 
mining offers panoply of sophisticated techniques required to meet all of these needs.

There are two major categories of data analysis: Classification and Clustering. In the 
work of [24], authors studied applications of data mining techniques in crop manage-
ment and proposed a classification of these applications. They found that the classifi-
cation and clustering are the main used categories, where the classification includes 
prediction, detection, protection, and categorisation). The choice between classification 
or clustering analysis is very simple. If the models or classes we are looking for were 
known in advance and we have an annotated data to support the training of the learn-
ing algorithms, then classification is the right choice. However, the annotated data is not 
always available and easy to generate, and in many cases we do not know even which 
models or patterns we are looking for. In these situations, clustering analysis is the right 
alternative.

In this section, we focus on the studies that use classification methods for their data 
analysis. Clustering analysis will be covered in the next section. We structure these clas-
sification studies based on the application objectives or targets which arecategorisation, 
prediction, detection, and protection.

Categorisation

While the classification main objective is to assign a given object into one of the pre-
determined classes, in the agricultural world, the use of classification process may vary 
depending on the stakeholders interests. In this study, we report four different applica-
tions (or targets) which are widely used in agriculture categorisation, prediction, detec-
tion, and protection.

Categorisation aims at defining the classes (or class labels) based on the simple recog-
nition of similarities that exist across a set of entities. For example, categorisation can 
be used to classify small fruit from fruit with normal to big size, to make an estima-
tion of yields; which may have an economic impact if the farmer wants to make different 
packages or prices for each type of fruit separately. It can also be used to classify dam-
aged crops from good ones in order to estimate losses, or to prepare for the harvest and 
marketing. Categorisation can also be applied for crop mapping (e.g., poor, average, high 
yield), which aims to provide information on farmed fields given a specific type of crops, 
or to identify a type of crops that are more suitable for a particular field. Based on the 
input data, categorisation can help improve the farming operations based on the mean-
ingful categories (classes) predefined in advance.

Producing accurate crop maps is essential for effective agricultural monitoring [131]. 
Categorisation approaches can be applied to study regional crop distribution within or 
post growing season. For this purpose, it can offer:

•	 A good understanding of how crops are distributed at early stage of their develop-
ment; allowing for an opportune decision making and management, as well as 
adjusting crop planting structure, is crucial. Besides, the timely available of (spatial 
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or maps) distribution of crop types is required for statistical and economic purposes 
[131].

•	 The availability of crops maps is critical for the diverse agricultural monitoring activi-
ties, such as crop acreage estimation, yield modelling, harvest operation schedules 
[131, 144], etc.

Moreover, categorisation has been applied for agricultural field mapping [31], to quan-
tify the cropping intensity for small-scale farms [58], to identify and map crops and to 
retrieve the area of major cultivation [100] and to classify land-cover and crop [76]. 
Table  1 highlights the major fields, ideas and tools used for crops categorisation. We can 
see that data issued from satellites and remote sensing, and the features with vegetation 
indices especially NDVI and EVI, the RGB colours, are the most used.

Crop yield prediction

The estimation of crop yield is crucial in DA, as it enables efficient planning of resources. 
Economically, an early and accurate prediction of yields can help decision-makers to 
react to the crops market. Moreover, crop yield prediction permits the study of factors 
that influence and affect the production, such as climate and weather, natural soil fer-
tility and its physical structure and topography, crop stress, the incidence of pests and 
diseases, etc.

The prediction of crop yields has been the subject of many studies. Ref. [71] presented 
a literature review on crop forecasting, where the authors highlighted the most used 
machine learning algorithms along with the applied metrics and measures. In this sec-
tion, we examine the learning algorithms that have been used in crop yield prediction 
from different views: data types, the pre-processing methods, and features or the predic-
tor variables used in each study. Tables  2 and  3 summarise some relevant studies.

The crop yield forecasting approaches follow two major types of sources of data. The 
first type is related to the sources that have direct impact on the crops. These sources are 
soil data, weather data, environmental parameter data. These are usually used to predict 
crop yield [27, 34, 42, 46, 51, 73]. The second type of sources are the use of advanced 
technologies and tools like satellite multi/hyper spectral images, remote sensing and 
sensors to collect the data [62, 83, 102, 114, 152]. Some advanced studies use both types 
of data sources [1, 40, 54, 59, 65, 67, 68, 97, 120, 121].

The forecasting models based on the first type of data sources provides a pre-season 
estimation of the yield, even before the beginning of the crop season. This allows farmers 
to decide which strategy to both optimise the farming operations and crop production. 
These decisions include choosing seeds and crop type, type of fertiliser and its applica-
tions. Moreover, This data can also be used for some crop monitoring during the grow-
ing season.

The monitoring systems based on the second type of data analysis - data imagery 
obtained from satellite, cameras, scanner, sensors - allow for on-season estimation 
(emergence, detect stress conditions of crop, harvest dates, ...). These models are com-
plex since they have to analyse the data that consists of both spatio-temporal and non-
spacial. While the spatial data is of high resolution, some images can be of very poor 
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quality, (e.g., images with lot of clouds). Features or predictor variables used in this kind 
of applications depend on the type of data sources, NDVI and EVI are the most used 
vegetation indices for satellite and remote/approximate sensors’ data source, min/max 
temperature and precipitation for weather data source, soil moisture and nitrogen ferti-
liser for soil based data source.

Crop protection

Crop disease is considered as a major menace for food security in many regions of the 
world since it causes serious crops losses. While the detection of crop diseases correctly 
and timely when they first appear is crucial in crop monitoring, this remains a difficult 
task. One of the solutions to deal with this issue is to use data analytics approach. This 
will reduce yield losses and prevent farmers to take effective reactive actions. Forewarn-
ing can be seen as the outputs of data mining process. Usually, this consists of examining 
the features of a newly presented case and assigning it to a predefined class.

Several interesting efforts have been developed to prevent crops losses due to dis-
eases, Tables  4 and 5 summarise some major studies. Ref. [7] presented an overview of 
ML techniques for crop disease classification. In addition, it presented to a case study 
where a deep learning algorithm was successfully used. Ref. [45] provided a review on 
advanced ANN techniques to process hyper-spectral data for plant disease detection. 
Recently, deep learning approaches have been emerged and widely used for plant dis-
ease detection and classification, with a variety of network architectures (CNN, AlexNet, 
googLeNet, CaffeNet, DenseNet, Inception, LeNet, VGGNet,...) and training methods 
(shallow, deep, from scratch) [9, 16, 21, 28, 38, 63, 79, 82, 125, 139, 143, 150, 155]. More-
over, [127] presented an interesting study on the potential of the use of deep learning for 
plant stress phenotyping.

Crop protection, that consists of disease, stress, and weed detection, aims to offer tools 
that detect plants disease caused by various biotic (pathogen, insect, pest, and weed) 
or abiotic (temperature stress, nutrient deficiency, toxicity, herbicide) variables [126]. 
The earlier the stress, disease or their symptoms are detected, the greater the chance of 
reducing the disease spread within a field. This has gained significant advantage from the 
advances in image collection and processing and their analysis using ML algorithm. The 
state-of-the-art is very rich. The large majority of studies carried out so far were using 
image processing, consequently image-based data and classification techniques. These 
are capable of detecting disease at the scale of leaf, canopy or field [126].

Disease detection at a leaf level uses images collected using digital cameras, which are 
stored in data warehouses. For instance, PlantVillage database [6, 9, 21, 28, 63, 79, 88, 
106, 125, 129, 150] is created for this purpose. The objective of this repository is to build 
classifiers with high accuracy. The basic classifiers can simply assign to an unseen image 
a label healthy or infected, while more elaborated classifiers can identify the disease - in 
other words, classify unseen images to disease classes. However, this approach has some 
limitations. First, it depends on the quality of the images, as when taken in natural envi-
ronment, these images are subject to different degrees of light, shadow, dust and leaves 
overlapping and requires sophisticated image processing, which is not an easy task. Sec-
ond, usually the datasets sizes are small, which affect the learning phase of the classifiers 
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and more importantly the potential of some advanced learning algorithms such as deep 
learning. Data augmentation (rotation, light shade’s variation, colour inversion, transla-
tion and changes in intensity and so on) is one of the methods used to overcome this 
problem to artificially increase the number of images [6, 9, 21, 63, 79, 129, 150], but it 
does not always work. Transfer learning is another solution to scarce/small data-set, 
where the knowledge obtained from solving a task in a given domain is transferred to 
the target domain in which the dataset is small [6, 11, 28]. The transfer learning can only 
be efficient if the source and target domains share some similarities in terms of diseases 
and their symptoms, for example. Moreover, it is very challenging to transfer knowledge 
from representations learned using RGB images to a target task using multi-spectral 
images from UAV or satellite [126].

Third, this approach cannot detect more than a single disease at a time, and the detec-
tion of diseases if the symptoms are manifested in another area than leaves. Plant can-
opy based-image was proposed as a solution to this problem. The idea is to collect data 
relative to disease in  situations where single-leaf phenotypes alone would not provide 
sufficient information. Such features include the size, the height, the structure, and 
branching of canopy [126]. The canopy-based detection uses UAV equipped with (multi/ 
hyper) spectral cameras and sensors to collect the data [32, 49, 80, 82, 136, 143, 153, 
155]. Then data needs to be processed to extract features which are usually related to 
vegetation indices like NDVI and EVI or colours like RGB and NIR. The benefit from 
UAV images comes with cost on complexity of analysis since images taken by UAV are 
susceptible to occlusion, overlapping, and atmospheric effects. Also, UAV is not able 
to fly at higher altitudes, which decreases the quality of the collected images. To cover 
larger zones and fields, satellite-based remote sensing and images has been proposed as 
a very good alternative [15, 81, 109, 156]. However, the problem with satellite remote 
sensing is the revisit time, which is 16 days on average, which makes protection applica-
tions difficult, and some diseases can spread rapidly in fields before they are detected. 
Moreover, passive sensors cannot penetrate clouds [149]. The integration of these data 
with additional data sources like field surveys, contextual information of field and crop 
rotation can improve the accuracy [15, 81, 109].

Detecting diseases only from one data source based on digital images or sensor data is 
not sufficient. Besides, variations in symptoms may lead to false positives due to dynamic 
nature of plant changes [126]. Consequently, the appearance-based identification of dis-
eases is not reliable enough to accurately detect unhealthy plants, especially in the early 
growth stages. The use of multi-data sources can improve the accuracy of the detection. 
For instance, the use of physiological features and morphological characteristics (growth 
attributes, yield-related features, soil) [66], or the employment of satellite-based images 
and canopy-based images [156], where the disease can be identified at the plant canopy 
level and at the field level.

Crop maturity monitoring

Crop maturity is a kind of crop yield prediction, but it is based on image data. This tech-
nique has been used in fruit detection, like apples, tomatoes, oranges, etc, and provides 
an early estimation of yield. It is also used for crop monitoring to provide information 
to farmers with the view to plan their farming operations, adjust management practices 
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before harvesting, etc. Such intelligent systems for monitoring crop implement the data 
mining process incorporating machine vision and image processing methods among 
with advanced learning algorithms, such as CNN, SVM and ANN. Unlike crop yield 
prediction process described above, this process is based on a single-data source; digital 
images [5, 23, 52, 75, 108, 122] or sensor based-images [117, 123, 153]. Table  6 summa-
rises such techniques. The challenges of these systems are more or less the same as those 
of systems for crop disease detection and protection. For instance, images with differ-
ent illumination and lighting angles, complex surroundings and backgrounds, noise, the 
presence of clouds, etc.

Clustering for crop monitoring
Clustering techniques are not widely employed in DA, few efforts have been deployed to 
investigate the potential of these techniques for zones’ delineation within a field. There 
are several reasons for splitting an agricultural field into zones. Some traditional reasons 
include crop diversification within a field, crop-rotation, facilitating the management 
tasks, and more recently we defined the zones based on yield maps. This usually helps 
to improve the overall crop yield of the field, by managing the zones more effectively. 
Therefore, delineation of Management zones (DMZ) is a very important task for farming 
operations since determining zones of low-or-high yields, and understanding the rea-
sons behind low yields, can help come up with specific solution for each zone with the 
view to increase the yields. In addition, it has other economic benefits, because we can 
target each zone with the right amount of fertilisers, water, and other nutrients.

According to [69], delineation of management zones is an effective way to manage the 
variability of soil within a field, such that each zone will receive specific management. In 
[145], a management zone is defined as a subregion of a field that has a relatively homo-
geneous combination of yield-limiting factors, for which a single rate of a specific crop 
input is appropriate to reach maximum efficiency of farm inputs. In [53], it is defined as 
a subregion of a field that is relatively homogeneous with regard to soil attributes.

DMZ is a complex spatial problem, which is addressed in the literature from several 
perspectives. This has attracted interest from many researchers [61, 85, 87, 110, 140]. A 
literature review has been presented in [90], where the authors discussed the delineation 
of soil management zones from the variable-rate fertilisation point of view. many other 
studies presented the delineation based on various criteria. Some techniques that have 
been used include topographic maps, direct soil sampling, non-invasive soil sampling by 
electrical conductivity equipment, soil organic matter or organic estimated by remote 
sensing, and yield maps built using data collected over several seasons/years [99].

Figure  6 depicts the general process of delineation of management zones designed 
according to methodologies followed by the majority of the literature.

The majority of problems that are related to crop management imply the management 
of fields and zones. Therefore, the collected data is usually characterised by geographic 
coordinates and time associated with each sample, which leads to the use of data min-
ing techniques that are more suitable for spatial and temporal datasets. It is well rec-
ognised that agricultural datasets are typically spatio-temporal, as the data is always 
associated with location and time. However, these datasets contain a significant amount 
of noise, outliers, and even missing values. For instance, GPS capture devices introduce 



Page 22 of 37Chergui and Kechadi ﻿Journal of Big Data           (2022) 9:123 

Table 6  An analytical study on examples of crop maturity monitoring (fruits detection and 
counting) approaches; highlights the applied algorithm, plant and data type, data pre-processing 
and the extracted features

References Application Algorithm Plant Data type Data pre-
processing

Extracted 
features

[123] Fruit detec-
tion

EM Tomato High spacial 
resolution sensor 
images

Noise and 
stalks remov-
ing spacial 
segmentation

Shape and size

[23] Fruit detec-
tion

ANN Apple fruit 
and tree 
canopy

Digital images Segmentation Area of fruit-
sarea of small 
fruits cross-
sectional area 
of foliage fruit 
number total 
cross-section 
total cross-
sectional

[108] Fruit detec-
tion

SVM Coffee Digital images Segmenta-
tion: homo-
geneous 
information

42 colours 
features

[5] Fruit detec-
tion

BC Gaussian Cherry Digital images Segmenta-
tion: enhance-
ments  and 
specular 
reflections 
removing 
by inward 
interpolation 
method

Colours 
features:RGB

[52] Fruit detec-
tion &clas-
sification

CNN Strawberries Digital images Hand marking 
regions of 
interests

/

[75] Immature fruit 
detection

ANN Peach Digital images Hue-Satura-
tion-Intensity 
for illumina-
tion enhance-
mentpixels’ 
normalisation 
histogram 
equalisation 
reconstruc-
tion of images 
backgoud 
elimination

Texture features

[117] Fruit counting CNN Sweet pep-
perrock melon 
strawberry 
apple, avo-
cado mango, 
orange

Multi-spectral 
images(RGB,NIR)

Pixel-wise 
segmentaion 
bounding box 
annotation

Colour and tex-
ture features

[122] Immature 
fruitcounting

SVM Green citrus Digital images Images 
conversion 
from RGB to 
graycircular 
Hough trans-
form

13 texture 
features
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some noise, imprecisions, and even outliers in the data. Satellite imagery also faces huge 
imprecision and noise (such as clouds, ...).

Because of the type of the datasets, which is spatio-temporal, it is not surprising 
to notice that the majority of the clustering algorithms used are of type partitional. 
K-means and Fuzzy C-Mean (FCM) are considered among the most popular clustering 
techniques and heavily used to cluster agricultural data [17, 18, 84, 134, 137, 142, 151, 
154]. The FCM approach has an advantage over K-means, as it deals better with impre-
cision and noisy data. Moreover, other types of clustering algorithms have also been 
proven to be efficient in DA, such as density-based and hierarchical-based clustering 
techniques applied to DMZ [48, 116].

As mentioned above, besides its huge importance in crop management, delineation 
of management zone (DMZ) has received much attention, as the data is now available 
not only from traditional sources but also from refined sources, including advanced data 
pre-processing techniques. In addition, the recently collected data integrates knowledge 
of experts and farmers experiences on their fields, which improves significantly the qual-
ity of the data [84, 141]. Advanced imaging enhancement techniques improve further 
the data quality, and they offer the ability to track the development of crops and provide 
a Geo-referenced data that can describe the spatial and the temporal variability of soil 
and crops variables at high resolution, covering large areas [17, 84, 101, 132, 133, 141, 
151].

Systematic analysis
In the following we will explore the application of data analytics in DA and its extension 
to big data, and illustrate the practical challenges that hinder the full adoption of DA by 
farmers.

DA in (small /large) scale farming

Farming can be carried out on a small or large-scale fields depending on several fac-
tors like land size, capital, farmer skills, level of use of machinery and technology, etc. 
According to FAO3 and Grain4, over 90% of all farms worldwide are of small-scale hold-
ing on average 2.2 hectares (from 0.6 to 10 hectares), except for Northern America 
where small farms have an average size of 67.7 hectares5. Small-scale farms represent 
25% of the world’s farmland today, where 73.12% are located in developing countries.

Fig. 6  The delineation management zones process

3  http://​faost​at3.​fao.​org/​faost​at-​gatew​ay/​go/​to/​home/.
4  https://​grain.​org.
5  According to the criterion put forward by Lincoln University in Nebraska, which defines a small farm in the US as one 
with an annual turnover of less than US$50,000)

http://faostat3.fao.org/faostat-gateway/go/to/home/
https://grain.org
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In [10] the authors described three categories of smart farming technology, which are 
complementary:

•	 Data acquisition technologies: they are used to acquire the data that is related to the 
farm. These include remote sensing, weather data, etc.;

•	 Data analysis and evaluation technologies: these technologies usually take as input 
the data that has been collected so far and deliver insight to the farmer. These include 
computer-based visualisation and decision models, farm management and informa-
tion systems;

•	 Precision application technologies: these are focusing on variable-rate application 
and guidance technologies.

The application of smart technologies and data analytics for crop management are not 
restricted to one kind of farm. Nowadays, every farm should adopt smart technologies, 
as they are needed for variable rates applications (irrigation, pesticides, fertilisers) [72, 
102, 154] while protecting the environment.

The size of the farm determines how these technologies will be used. Large farms tend 
to develop their smart technology to monitor their farming land, or to afford some of the 
existing sophisticated systems like CropX as they hold the scale and margins. While small 
farms tend to rent sophisticated machinery and smart applications on demand, especially 
with the proliferation of cloud technologies that makes these smart applications reason-
able, the work of [30] is an example among others, of a smart irrigation system designed 
for smallholders. Besides, some technologies are more suitable for large-scale farms like 
drones and aerial vehicles used to monitor crops which are not as profitable or efficient 
for small scales because they have less difficulty visualising their crops. On the other side, 
large-scale farms are responsible for 70% of current deforestation6, the largest share of 
agriculture-related greenhouse-gazes emissions, agricultural water use and habitat disrup-
tion resulting in biodiversity loss. Generally, small-scale farms require considerably fewer 
external inputs and cause minor damage to the environment.

Table  7 summarises the main differences between small and large-scale farming from 
several perspectives. However, DA can be applied to any kind of farm without restric-
tion. Yet, we have found that the number of papers that addressed large-scale farms is 
almost the same as works on large-scale farms.

Technologies for data acquisition Table  7 can be used to all types of farms, such as 
remote sensing, imagery data systems, and so on. The acquired data, over the years, can 
lead to the phenomenon of Big Data. If pre-processed and stored properly, this will give 
a significant competitive advantage to farms that collected them, whether they are small 
or large. Some of the applications and data analyses that can be performed of the col-
lected are summarised in the Tables  1,  2,  3, 4 and  5,  6.

DA and big data

Big data is not just characterised by the volume, but also by velocity, variety, and oth-
ers [86]. These are enough to challenge the existing data mining techniques, as trying 

6  IPBES, 2019: Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services.
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to develop techniques to deal with large volumes of data (volume), various types of data 
attributes (variety or heterogeneity), and be able to analyse the new data as soon as it 
is collected (velocity) are extremely challenging tasks. Moreover, many other character-
istics can be found in some big data-driven applications, these include veracity, value, 
viscosity, veracity, visualisation, etc. In this study, we added veracity, as the data, col-
lected by various instruments and sensors, is of different quality, which creates a huge 
challenge to the data pre-processing task, and therefore its analysis. In the following, we 
discuss the impact of Big Data challenges on DA.

•	 Velocity: many studies that have been examined do not consider the data velocity 
during their data collection. In DA, the frequency of collecting data depends on its 
source and the problem for which the data was collected. Some applications need 
real-time data and others do not. For instance, crop yield prediction does not need 
real-time data or data streams. It is performed at ad-hoc, while crop protection and 
disease detection require high quality sensors and imagery data connected to effi-
cient methods of data analysis, which need continuous control.

•	 Variety: this is very common in agricultural datasets, as multiple sources were used 
to collect all the necessary information about the farm and farming operations. The 
data values can be a simple number such as temperatures to more elaborated such as 
imagery data, NDVI, soil texture, etc. This makes the definition of distance measures 
and other parameters of the learning algorithms very difficult.

•	 Veracity: Agricultural data contains many missing values and collected from various 
sources of varying quality. The data is very noisy, and more importantly it contains 
many missing values. Therefore, it is very challenging to clean and prepare it for the 
analysis. This was the case in the work conducted by [37], and also in [93–96, 107] 
where data was collected from very large farming areas.

Table  8, summarises a set of representative papers reported in the paper according to 
their usage of big data. For each paper, we identify the type, the size, the heterogeneity 
of data used, and the frequency of its collection. Also, we consider the number and type 
of ML algorithms used, the complexity of the proposed analysis algorithms and devices 
used to collect data, data analysis applied to a given crop and problem to solve. One 
can notice while the data analysis algorithms and techniques were heavily used and var-
ied, the rigorous process of knowledge discovery was not followed, usually the data is 
relatively small either in size (small observations) or the data has few dimensions (for 
instance, considering only weather data, or fertiliser, without taking into account other 
factors).

From Table  8, we can extract three classes of applications according to their usage of 
big data: Full usage (the data contains all the characteristics of big data), light usage (the 
data contains some characteristics), non-usage (the data does not contain any character-
istic of big data).

To examine the degree of use of the big data concept and to figure out which of its 
dimension is more present, we conducted a statistical study where we classify works 
according to their employment of the 4Vs of big data.
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Figures  7 and  8 show that no work has a full employment of big data (4Vs). One can 
notice that the agricultural data is multidimensional and heterogeneous (variety). More-
over, we have found that the prediction applications display more use of big data, there 
exist studies that have used three dimensions such as DMZ applications. It is worth not-
ing that these applications, either prediction or delineation of zones, have the potential 
to use big data to provide stable and accurate results.

If we put aside the volume dimension (V1) (see Figure   7, only 7% of the reviewed 
studies used (V2, V3 and V4), and 32% of studies just employed data mining techniques 
for agriculture problems. The most employed data mining techniques are for prediction, 
including yield prediction, forecasting, prediction of fertiliser applications, etc.

DA practical challenges

There exist a number of challenges and obstacles impeding the potential benefit of DA. 
In [104], the authors studied the barriers that prevent the adoption of smart farming 
in their country, Brazil. Some of these barriers include lack of integration and compat-
ibility between different agriculture systems, lack of advanced data manipulation of data 
obtained from different equipment, poor telecommunications infrastructure on rural 
areas, and finally, the lack of training in deploying and using new technologies. These 
barriers are common to the majority of countries in the world.

Fig. 7  Distribution of works according to the used Big Data dimensions’

Fig. 8  Percent of employment of big data dimensions
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From the Table  7, we can see that over 73% of crop farms are located in developing 
countries. So that, the investment in high and sophisticated DA technologies is not 
there. Most of the main technologies used in DA systems (GPS, UAV, auto-steering and 
variable rate technology) are designed for relatively large-scale farms located in devel-
oped countries [10] or designed by developed countries. Some of these technologies are 
becoming available recently. For instance, since 2018 African scientists can have access 
to free and open-source satellite data as a result of a deal signed by the African Union 
with the European Commission’s Copernicus programme.

As DA is relatively new technology, there is a lack of standards and common solutions 
for data collection, preparation and storage. In addition, there is a lack of data for many 
reasons, farmers did not record their data and it takes time to build significant historical 
datasets [20, 39, 77, 78, 92, 146]. Another major barrier is that many farmers are relying 
more on their expertise and refusing to adopt these new and complex technologies [10]. 
Moreover, the transition from their traditional practices and farming habits to these 
technologies comes with a cost and energy (training and learning new skills).

[20] States that the legal and regulatory frameworks around the collection, sharing and 
use of agricultural data contributes to a range of challenges. Many laws potentially influ-
ence the ownership, control of and data access. Ref. [74] presented a set of socio-ethical 
imperatives associated with the use of data in agriculture, including dependency risks, 
data concentration, potential lock-in effects, and the peril of transformation of farmers 
into information tools, in addition to the sustainability challenges.

Finally, according to [47], the real economic value of the use of big data in farming is 
still unknown, especially for small-scale farming. Consequently, it will be hard to con-
vince them to switch from process-driven towards data and machine learning driven. 
This is reaffirmed in [20], where the authors stated that on one side, farmers are enticed 
with promises of increased profits and farming efficiency, on the other hand the proofs 
are not there yet.

Conclusion
Digital agriculture (DA) is a data-driven approach that exploits the hidden information 
within the collected data to gain new insights; transforming the farming practices from 
intuitive-based decision-making to informed-based decision-making. DA relies on effi-
cient data collection practices, efficient data preparation and storage techniques, effi-
cient data analytics, and efficient deployment and exploitation of the gained insights to 
make optimal farming decisions.

In this study, we presented a systematic review of the potential use of the data mining 
process in crop production and management and highlighted serious gaps which can be 
considered in future studies. The majority of the current practices were dominated by 
statistical analyses and small machine learning systems. However, these can only give 
some ideas within a very limited view of the overall system. Agricultural data-driven 
applications collect a significant amount of data from various sources. This constitutes 
an excellent opportunity to the field to answer numerous research and practical ques-
tions that were not possible before. Nevertheless, despite all the advantages that can 
be gained from DA, there are several other challenges and obstacles that need to be 
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addressed, among them lack of data, lack of skills, and lack of maturity and standards so 
that it can be adopted and deployed quickly and easily.

In this study, we cover approaches that deal the entire process of data mining; from 
data collection to knowledge deployment. We cover this process from big data view, 
with more focus on crop monitoring and management in an attempt to understand the 
challenges that DA is currently facing. We defined the research questions addressed by 
the study and provided a classification of data mining techniques used in the field. For 
each class, a set of representative existing works have been reviewed, and an analytical 
study has been provided to highlight the category of machine learning method applied 
and for which purpose. We discussed the big data concepts and its current impact on 
DA, and showed that from the data analyst’s view, the transition towards DA is ready 
to embrace big data analytics concepts. This provides new opportunities of investment 
into these challenges and allows for a efficient ways of managing crops. Besides, it will 
provide farmers with new insights into how they can grow crops more efficiently, while 
minimising the impact on the environment. It also promises new levels of scientific dis-
covery and innovative solutions to more complex problems.
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